Thesis ESTUDIO DE TOPOLOGÍAS DE CONVERTIDORES MULTINIVEL PARA DISEÑO DE INVERSORES EMPLEADOS EN INSTALACIONES FOTOVOLTAICAS
Loading...
Date
2019
Journal Title
Journal ISSN
Volume Title
Program
Campus
Universidad Técnica Federico Santa María UTFSM. Casa Central Valparaíso
Abstract
La energía solar fotovoltaica es una de las energías renovables más utilizadas en la actualidad,esto se debe a la gran disminución del costo de los paneles en los últimos años y los avances enconvertidores para este tipo de aplicación. Su modularidad permite que sus aplicaciones puedanser de pequeña o gran escala. Éstas van desde un pequeño sistema para calentar el agua de un usodoméstico, hasta una gran planta de generación eléctrica.La energía suministrada por los paneles fotovoltaicos es continua (DC) y puede funcionar demanera aislada o conectado a red. Para realizar una conexión a red, generalmente se requieren dosetapas, una etapa de elevación de tensión (DC-DC) y otra etapa de conversión de tensión de continuaa alterna (DC-AC). La primera etapa se debe al bajo voltaje DC entregado por cada panel,el cual no es su ciente para alcanzar los niveles de tensión de la red. La topología más utilizadaen la industria para esta tarea, corresponde al convertidor DC-DC Boost seguido de un inversor(DC-AC). En este contexto, la investigación y desarrollo busca tener convertidores de menor tamaño y mayor e ciencia. Una forma de realizar esto es reducir el número de etapas, buscando unaalternativa al convertidor Boost.Dentro de las alternativas actuales para una conexión directa DC-AC de paneles a la red seencuentran los convertidores basados en redes de impedancia, los cuales pueden reemplazar la etapaDC-DC con el n de disminuir pérdidas de conmutación generadas por el convertidor Boost.Existen varias redes de este tipo, sin embargo, una de las topologías más prometedoras correspondea la topología Quasi-Z, debido a que cumple con un alto factor de elevación de tensión y bajaspérdidas.Si bien la utilización de este tipo de redes de impedancia favorece la e ciencia al reducir elnúmero de etapas, el control y diseño es más complejo que los convertidores convencionales, ya quese debe controlar el factor de elevación de tensión junto a las corrientes que se inyectan a la red.Existen varios tipos de control para los convertidores basados en redes de impedancia, sin embargo,en este trabajo de título se estudia la modulación PWM (Pulse Width Modulation), quetiene varias implementaciones, entrando en detalle en tres de ellas. Este tipo de modulación introduceun contenido armónico de alta frecuencia en las corrientes de salida del convertidor queserán inyectadas a la red, por lo que necesita una etapa de ltrado antes de la conexión a red. Esimportante mencionar que el control del factor de elevación y de las corrientes de conexión a redse realiza por separado, y su relación está sujeta a una restricción propia de la modulación.La etapa de conversión DC-AC, realizada por un inversor, es obligada para una conexión a reddebido a que se requiere pasar del voltaje continuo (DC) entregado por los paneles al voltaje alterno(AC) de la red. Para esto existen diferentes topologías de inversores que pueden o no ser multinivel.Sin embargo, en la actualidad surge un mayor interés en trabajar con convertidores multinivel,ya que generan una señal de mayor calidad debido a que contienen un mayor número de nivelesde tensión, reduciendo el contenido armónico de la corriente entregada a la red. Dado lo anterior,se decide trabajar con un inversor de tres niveles donde la topología seleccionada corresponde alinversor T-Type.En este trabajo de título se diseña y simula un inversor T-Type de tres niveles, precedido de unared de impedancia Two-Quasi-Z, todo conectado a red. En una primera etapa se implementa el controlen lazo abierto para determinar la mejor modulación PMW a utilizar. Una vez seleccionada lamodulación, se diseña el control en lazo cerrado sintonizando de manera adecuada los controladores,para posteriormente realizar la simulación del circuito conectado a red mediante el software PLECS.Finalmente, de acuerdo a los resultados obtenidos, se concluye que es posible controlar de formaindependiente el factor de elevación y las corrientes que se inyectan a la red, siempre y cuando secumpla con la restricción propia de la modulación. Además, se logra reducir el número de etapas alutilizar este tipo de redes siendo una buena alternativa al convertidor DC-DC utilizado actualmentepara aplicaciones de baja potencia.
Photovoltaic solar energy is one of the most widely used renewable energies at present. Thisis due to the great decrease in the cost of panels and advances in converters for this type of applicationthat have been developed over the last years. Its modularity allows small- or large-scaleapplications. These applications can are adapted from a small system to heat water for domesticuse to a large electric-generation plants.The energy generated by the photovoltaic panels is continuous (DC) and can operate in anisolated grid or connected to the distribution grid. In order to make the grid connection, usuallytwo stages are required, the rst one associated with voltage elevation (DC-DC) and the second onerelated to voltage conversion from DC to AC (DC-AC). The rst step is needed because the DCvoltage delivered by each panel is not enough to reach the voltage levels of the grid. The most usedtopology in the industry for this task corresponds to the DC-DC Boost converter followed by aninverter (DC-AC). In this context, research and development seek to get smaller and more efficientconverters. One way to face this issue is to reduce the number of stages, looking for an alternativeto the Boost converter.Among the current alternatives for a direct DC-AC grid-connection of panels are the impedancenetwork based power converters, which can replace the DC-DC stage in order to reduce switchinglosses generated by the Boost converter. There are several impedance network based power convertersof this type, however, one of the most promising topologies corresponds to the Quasi-Ztopology, since it ful lls a high-voltage rise factor and low losses.Although the use of this type of impedance networks can increase the whole system efficiencyby reducing the number of stages, the control and design is more complex than the conventionalones, since the voltage gain factor must be controlled together with the currents that are injectedinto the grid.There are several types of control for this type of impedance networks, however, the modulationPWM (Pulse Width Modulation) is studied in this work. This type of modulation has different implementations,three of them are analyzed in detail. This modulation introduces a harmonic contentin the high frequency currents therefore it needs a ltering step before the connection to the grid. Itis important to mention that the voltage gain factor and the control of the grid connection currentsare carried out separately, and their relationship is subject to a speci c restriction of the modulation.The DC-AC conversion stage, performed by an inverter, is required for a grid connection because it is needed to go from the continuous voltage (DC) delivered by the panels to the alternatingvoltage (AC) of the grid. To do this, there are dierent topologies of inverters that may or may notbe multilevel, however, currently there is a greater interest in working with multilevel converters,since they generate a higher quality signal by reducing the harmonic content of the current deliveredto the grid. Given the above, it is decided to work with a three-level inverter where the selectedtopology corresponds to the T-Type inverter.In this thesis work, a three-level T-Type inverter is designed and simulated, which is connectedto a by a Two-Quasi-Z impedance network, all connected to the grid. In a rst stage, the open-loopcontrol is implemented to determine the best PMW modulation to be used. Once the modulationhas been selected, the closed-loop control is designed by tuning the controllers in an appropriateway, to later perform the simulation of the circuit connected to the grid by using the PLECS software.Finally, according to the results obtained, it is concluded that it is possible to independentlycontrol the elevation factor and the currents that are injected into the grid, as long as the speci crestriction of the modulation is ful lled. In addition, it is possible to reduce the number of stageswhen this type of networks is used, therefore, it turns as a good alternative to the DC-DC converterthat are currently used for low voltage applications.
Photovoltaic solar energy is one of the most widely used renewable energies at present. Thisis due to the great decrease in the cost of panels and advances in converters for this type of applicationthat have been developed over the last years. Its modularity allows small- or large-scaleapplications. These applications can are adapted from a small system to heat water for domesticuse to a large electric-generation plants.The energy generated by the photovoltaic panels is continuous (DC) and can operate in anisolated grid or connected to the distribution grid. In order to make the grid connection, usuallytwo stages are required, the rst one associated with voltage elevation (DC-DC) and the second onerelated to voltage conversion from DC to AC (DC-AC). The rst step is needed because the DCvoltage delivered by each panel is not enough to reach the voltage levels of the grid. The most usedtopology in the industry for this task corresponds to the DC-DC Boost converter followed by aninverter (DC-AC). In this context, research and development seek to get smaller and more efficientconverters. One way to face this issue is to reduce the number of stages, looking for an alternativeto the Boost converter.Among the current alternatives for a direct DC-AC grid-connection of panels are the impedancenetwork based power converters, which can replace the DC-DC stage in order to reduce switchinglosses generated by the Boost converter. There are several impedance network based power convertersof this type, however, one of the most promising topologies corresponds to the Quasi-Ztopology, since it ful lls a high-voltage rise factor and low losses.Although the use of this type of impedance networks can increase the whole system efficiencyby reducing the number of stages, the control and design is more complex than the conventionalones, since the voltage gain factor must be controlled together with the currents that are injectedinto the grid.There are several types of control for this type of impedance networks, however, the modulationPWM (Pulse Width Modulation) is studied in this work. This type of modulation has different implementations,three of them are analyzed in detail. This modulation introduces a harmonic contentin the high frequency currents therefore it needs a ltering step before the connection to the grid. Itis important to mention that the voltage gain factor and the control of the grid connection currentsare carried out separately, and their relationship is subject to a speci c restriction of the modulation.The DC-AC conversion stage, performed by an inverter, is required for a grid connection because it is needed to go from the continuous voltage (DC) delivered by the panels to the alternatingvoltage (AC) of the grid. To do this, there are dierent topologies of inverters that may or may notbe multilevel, however, currently there is a greater interest in working with multilevel converters,since they generate a higher quality signal by reducing the harmonic content of the current deliveredto the grid. Given the above, it is decided to work with a three-level inverter where the selectedtopology corresponds to the T-Type inverter.In this thesis work, a three-level T-Type inverter is designed and simulated, which is connectedto a by a Two-Quasi-Z impedance network, all connected to the grid. In a rst stage, the open-loopcontrol is implemented to determine the best PMW modulation to be used. Once the modulationhas been selected, the closed-loop control is designed by tuning the controllers in an appropriateway, to later perform the simulation of the circuit connected to the grid by using the PLECS software.Finally, according to the results obtained, it is concluded that it is possible to independentlycontrol the elevation factor and the currents that are injected into the grid, as long as the speci crestriction of the modulation is ful lled. In addition, it is possible to reduce the number of stageswhen this type of networks is used, therefore, it turns as a good alternative to the DC-DC converterthat are currently used for low voltage applications.
Description
Catalogado desde la version PDF de la tesis.
Keywords
CONVERTIDORES MULTINIVEL, QUASI-Z, RED DE IMPEDANCIA