Thesis INTRODUCCIÓN A LA TEORÍA DE LOS ESQUEMAS AFINES
Loading...
Date
2020-01
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE MATEMÁTICA. MAGISTER EN CIENCIAS, MENCIÓN MATEMÁTICA
Campus
Casa Central Valparaíso
Abstract
En la primera parte de esta tesis se presentan y discuten algunos resultados importantes de la
teorı́a de los esquemas afines. Se define el espectro primo de un anillo conmutativo con identidad
y se analizan sus caracterı́sticas como espacio topológico. Por otro lado, se presenta una breve
introducción a la teorı́a de los haces, la cual servirá para luego construir el haz estructural de
anillos conmutativos sobre el espacio topológico Spec(R). De esta manera, se entrega la noción
de esquema afı́n como un espacio topológico vinculado a un haz de anillos conmutativos.
La segunda parte de este trabajo se basa en algunas aplicaciones de la teorı́a de los esquemas a
las áreas de la geometrı́a algebraica y la teorı́a de números. Se examinan ejemplos relacionados
con curvas algebraicas, puntos regulares y singulares. Por último, se utilizan las herramientas
de la teorı́a de los esquemas para realizar un estudio detallado acerca de las caracterı́sticas del
√
anillo Z 3 .
In the first part of this thesis, some important results on affine scheme theory are presented and discussed. The prime spectrum of a commutative ring with identity is defined and its properties as a topological space are analyzed. On the other hand, a brief introduction to sheaf theory is presented, which will be useful for building the structural sheaf of commutative rings on the topological space Spec(R). In this sense, the notion of an affine scheme as a topological space linked to a sheaf of commutative rings is given. The second part of this work is based on some applications of the scheme theory on algebraic geometry and number theory. Examples related to algebraic curves, regular and singular points are examined. Finally, the tools given by scheme theory are used to make a full research about √ the properties of the ring Z 3 .
In the first part of this thesis, some important results on affine scheme theory are presented and discussed. The prime spectrum of a commutative ring with identity is defined and its properties as a topological space are analyzed. On the other hand, a brief introduction to sheaf theory is presented, which will be useful for building the structural sheaf of commutative rings on the topological space Spec(R). In this sense, the notion of an affine scheme as a topological space linked to a sheaf of commutative rings is given. The second part of this work is based on some applications of the scheme theory on algebraic geometry and number theory. Examples related to algebraic curves, regular and singular points are examined. Finally, the tools given by scheme theory are used to make a full research about √ the properties of the ring Z 3 .
Description
Keywords
ANILLOS CONMUTATIVOS, ESQUEMAS AFINES