Thesis MODELACIÓN DEL DESGASTE ABRASIVO MEDIANTE EL MÉTODO DE ELEMENTOS DISCRETOS
Loading...
Date
2015-08
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE INGENIERÍA MECÁNICA. MAGÍSTER EN CIENCIAS DE INGENIERÍA MECÁNICA
Campus
Casa Central Valparaíso
Abstract
En Chile, principalmente en el rubro minero, la abrasión del mineral limita
fuertemente la vida útil de los equipos, afectando su productividad y costos de
operación. Disponer de una herramienta numérica para predecir la pérdida de material
asociado al desgaste abrasivo del mineral, permitiría disminuir los costos de
experimentación y el riesgo en la etapa de diseño y re-diseño.
En el presente trabajo se implementó el método numérico de elementos
discretos (MED) para modelar el fenómeno de desgaste abrasivo en máquinas que
interactúan con sólidos a granel. En particular, se simularon interacciones de sólidos a
granel deslizándose sobre superficies, bajo distintas condiciones de presión y
velocidad, donde el principal mecanismo de pérdida de material es el desgaste
abrasivo [1]. Para predecir la pérdida de material, se utilizó el modelo de desgaste de
Archard [2].
El método numérico se validó al modelar y contrastar los resultados del
experimento de la rueda de desgaste [3], donde se midió el desgaste abrasivo del
mineral de cobre y arena sobre una placa de acero estructural A37-24 ES, bajo
distintas condiciones de granulometría y operación de la máquina de desgaste.
Una etapa clave fue la calibración del modelo numérico, que permitió ajustar
los parámetros de la modelación, logrando caracterizar el mineral de cobre y la arena
como un sólido a granel en la simulación. En las simulaciones realizadas con sólidos
a granel completamente calibrados, se obtuvieron resultados favorables en la
predicción del patrón de desgaste y de la variación de la tasa de desgaste, al modificar
la granulometría del mineral ensayado.
In Chile, mainly at the mining field, many processes are severely affected by wear, limiting the machinery lifespan. A numerical tool for wear prediction would reduce the experimental costs of obtaining the operational parameters required to increase equipment lifespan and productivity. In the present work the discrete elements method (DEM) was implemented, to model the abrasive wear of solid bulks on machine elements. In particular, interactions of solid bulks sliding on surfaces under different conditions of pressure and velocity were simulated, where the main mechanism of material loss is the abrasive wear [1]. The Archard wear model [2] was used to predict the rate and pattern of wear. The numeric method was validated with the simulation of the wheel wear experiment [3], where the abrasive wear of copper ore and sand on a structural steel plate ES A37-24, is measured and simulated under different conditions of granulometry, sliding speeds and wear pressures. A key step was the calibration of the numerical model, which allows the setting of the modeling parameters, during the characterization of the copper ore and sand as a solid bulk in the simulation. In simulations with fully calibrated solid bulks, favorable results were obtained in predicting the wear pattern and variation of the wear rate, by changing the particle size of the tested mineral.
In Chile, mainly at the mining field, many processes are severely affected by wear, limiting the machinery lifespan. A numerical tool for wear prediction would reduce the experimental costs of obtaining the operational parameters required to increase equipment lifespan and productivity. In the present work the discrete elements method (DEM) was implemented, to model the abrasive wear of solid bulks on machine elements. In particular, interactions of solid bulks sliding on surfaces under different conditions of pressure and velocity were simulated, where the main mechanism of material loss is the abrasive wear [1]. The Archard wear model [2] was used to predict the rate and pattern of wear. The numeric method was validated with the simulation of the wheel wear experiment [3], where the abrasive wear of copper ore and sand on a structural steel plate ES A37-24, is measured and simulated under different conditions of granulometry, sliding speeds and wear pressures. A key step was the calibration of the numerical model, which allows the setting of the modeling parameters, during the characterization of the copper ore and sand as a solid bulk in the simulation. In simulations with fully calibrated solid bulks, favorable results were obtained in predicting the wear pattern and variation of the wear rate, by changing the particle size of the tested mineral.
Description
Keywords
MÉTODO DE ELEMENTOS DISCRETOS, DESGASTE ABRASIVO, PERFIL DE DESGASTE