Thesis Algoritmo de respuesta de demanda para optimización de redes de distribución frente a carga masiva de vehículos eléctricos
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Eléctrica
Departament
Campus
Campus Santiago San Joaquín
Abstract
La rápida transformación de la matriz energética nacional, impulsada por políticas que buscan reducir la dependencia del carbón para minimizar la contaminación, ha generado un aumento significativo en los proyectos de generación solar. Sin embargo, esta transición introduce desafíos relacionados con la intermitencia de las fuentes renovables, donde los niveles de generación dependen en gran medida de las condiciones climáticas y la hora del día. Esto ha disminuido la flexibilidad de la matriz energética, agravando las dificultades para equilibrar la generación y la demanda. Paralelamente, el crecimiento constante de la electromovilidad añade una capa adicional de complejidad, ya que la demanda adicional de los vehículos eléctricos (EVs) impacta la capacidad de los sistemas de distribución para suministrar energia eficientemente, especialmente en horas punta. Estos desafíos subrayan la necesidad urgente de optimizar la infraestructura de recarga residencial sin recurrir a inversiones costosas en nuevas conexiones o infraestructura adicional.
Este trabajo se centra en el diseño de un algoritmo inteligente de ordenamiento de carga para un portafolio de consumidores en un edificio residencial, compuesto por EVs con diversos requerimientos de carga y tiempos de descanso disponibles. La solución propuesta es un algoritmo de respuesta de demanda, gestionado por un agregador de demanda, capaz de redistribuir las cargas de EVs y otros consumos flexibles hacia horarios fuera de punta, además este algoritmo prioriza los EVs según sus necesidades de carga, aplana la curva de demanda, reduce los picos de consumo y optimiza el uso de la infraestructura existente. El algoritmo desarrollado integra estrategias de Desprendimiento de Carga y Desplazamiento de Carga para mejorar la asignación de recursos de potencia en tiempo y locación.
Los beneficios clave de este enfoque incluyen la reducción de costos para los residentes mediante tarifas más bajas en horarios de menor demanda, una mejor integración de las fuentes renovables y una mayor resiliencia de la red gracias al almacenamiento distribuido. También permite retrasar inversiones en infraestructura de transmisión y garantizar una carga optima de los EVs, cumpliendo con los requerimientos individuales de energía.
The rapid transformation of the national energy matrix, driven by policies aimed at reducing coal dependency to minimize pollution, has led to a significant increase in solar generation projects. However, this transition introduces challenges associated with the intermittency of renewable energy sources, where generation levels are highly dependent on weather conditions and time of day. Consequently, the flexibility of the energy matrix has diminished, exacerbating difficulties in balancing generation and demand. In parallel, the consistent growth of electromobility has introduced a new layer of complexity, as the additional demand from electric vehicles (EVs) impacts the ability of distribution systems to supply energy efficiently, particularly during peak hours. These challenges underscore the urgent need to optimize residential charging infrastructure without resorting to costly investments in new connections or additional infrastructure. This work focuses on the design and comparison of an intelligent load-sorting algorithm for a portfolio of consumers in a residential building, consisting of EVs with diverse charging requirements and varying available rest times. The proposed solution is a demand response algorithm managed by a demand aggregator, capable of redistributing EV and other flexible loads to off-peak hours. This algorithm prioritizes EVs based on their charging needs, flattens the demand curve, reduces peak demand, and optimizes the use of existing infrastructure. The algorithm also incorporates strategies such as Load Shedding and Load Shifting to enhance power resource allocation (time and location). Key benefits of this approach include reduced costs for residents through lower offpeak charging rates, improved integration of renewable energy sources, and enhanced grid resilience through distributed energy storage. It also delays the need for costly transmission infrastructure investments, and ensures optimal EV charging that meets individual energy requirements daily.
The rapid transformation of the national energy matrix, driven by policies aimed at reducing coal dependency to minimize pollution, has led to a significant increase in solar generation projects. However, this transition introduces challenges associated with the intermittency of renewable energy sources, where generation levels are highly dependent on weather conditions and time of day. Consequently, the flexibility of the energy matrix has diminished, exacerbating difficulties in balancing generation and demand. In parallel, the consistent growth of electromobility has introduced a new layer of complexity, as the additional demand from electric vehicles (EVs) impacts the ability of distribution systems to supply energy efficiently, particularly during peak hours. These challenges underscore the urgent need to optimize residential charging infrastructure without resorting to costly investments in new connections or additional infrastructure. This work focuses on the design and comparison of an intelligent load-sorting algorithm for a portfolio of consumers in a residential building, consisting of EVs with diverse charging requirements and varying available rest times. The proposed solution is a demand response algorithm managed by a demand aggregator, capable of redistributing EV and other flexible loads to off-peak hours. This algorithm prioritizes EVs based on their charging needs, flattens the demand curve, reduces peak demand, and optimizes the use of existing infrastructure. The algorithm also incorporates strategies such as Load Shedding and Load Shifting to enhance power resource allocation (time and location). Key benefits of this approach include reduced costs for residents through lower offpeak charging rates, improved integration of renewable energy sources, and enhanced grid resilience through distributed energy storage. It also delays the need for costly transmission infrastructure investments, and ensures optimal EV charging that meets individual energy requirements daily.
Description
Keywords
Electromovilidad, Algoritmo de carga, Matriz energética, Demanda energética
