Thesis CONTROL DESACOPLADO DE POTENCIA Y VOLTAJE DEL CONVERTIDOR MODULAR MULTINIVEL TRIFÁSICO-TRIFÁSICO
Loading...
Date
2013-09
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE ELECTRÓNICA. MAGÍSTER EN CIENCIAS DE LA INGENIERÍA ELECTRÓNICA (MS)
Campus
Casa Central Valparaíso
Abstract
Los nuevos desafı́os tecnológicos impulsan los desarrollos en todas las
áreas de la ciencia. En particular, en el área de convertidores de potencia
se requiere perfeccionar las topologı́as existentes con mejores modelos y estrate-
gias control, y si esto no es suficiente, se deben inventar nuevas topologı́as que
puedan dar solución a los problemas que actualmente existen o que en un futuro
puedan aparecer. Es por esto que en este trabajo se busca realizar un modelo
simple y desacoplado del convertidor multinivel modular matricial (M3C), para
ası́ plantear una estrategia de control desacoplada que permita mantener estable
al convertidor.
La topologı́a analizada en esta tesis lleva por nombre convertidor multinivel
modular matricial, el cual corresponde a la fusión entre el convertidor multinivel
modular y el convertidor matricial, con lo cual se logra un convertidor que posee
las ventajas de contar con un gran número de almacenamientos de energı́a DC,
sin la necesidad de utilizar un gran condensador adicional en un bus DC que
maneje toda la energı́a que es utilizada por el convertidor, con lo cual se mejora
la confiabilidad, comparado con la configuración back-to-back. Además el M3C
puede seguir operativo aunque alguna celda falle, ya que cuenta con numerosas
celdas por rama, lo cual le da una gran ventaja frente al convertidor matricial.
Dentro de sus desventajas se destaca la gran cantidad de semiconductores que
son necesarios para lograr el M3C, además de la complejidad de control del
mismo, ya que no existe un bus DC que desacople fı́sicamente los sistemas de
entrada y salida.
El modelo desarrollado en este trabajo propone un método simple y des-
acoplado con el cual expresar las ecuaciones dinámicas de los cuatro grupos de
corrientes que conforman el M3C, las corrientes del sistema trifásico de entra-
da, del sistema trifásico de salida, las que circulan internamente por las nueve ramas del convertidor y las de modo común. El modelo de las corrientes de
modo común, no es utilizado en este trabajo debido a que los sistemas trifásicos
utilizados están con sus neutros flotando, ya que las pruebas a realizar en el
laboratorios sugieren ese tipo de conexión. El modelo elaborado se centra en
las propiedades multiplicativas de las matrices auxiliares P y Q, las que permi-
ten desacoplar cualquier matriz de dimensiones 3 × 3 en cuatro componentes,
es decir, en cuatro matrices de dimensiones 3 × 3 que poseen la propiedad de
que al sumarse, se reconstituye la matriz original. También se ha modelado las
celdas que conforman las ramas del convertidor, que en este caso corresponden
a celdas puente H, capaces de generar tanto voltajes positivos como negativos.
El modelo de estas celdas es equivalente a utilizar celdas semi-puente, por lo
que la elección de una u otra celda no modifica el modelo del convertidor.
The new technological challenges driving the development in all areas of science. Particularly, in the area of power converters topologies is requi- red refine existing models and strategies with better control, but if this is not enough, you must invent new topologies that can provide solutions to the pro- blems that currently exist or that in the future may appear. That is the reason why in this paper seeks to make a simple and decoupled model for the matrix modular multilevel converter, in order to allow us a simple decoupled control strategy that maintains the converter stable. The topology analyzed in this thesis is called matrix modular multilevel converter, which corresponds to the fusion of the modular multilevel converter and matrix converter. The achieved converter has the advantages of having a large number of DC power storages, without the need for an additional capacitor in large DC bus that handles all the energy that is used by the converter, thereby improving reliability compared with the back- to-back configuration of MMC. Besides, in case of any cell fails the M3C can still be operative, due it has numerous cells per arm, which gives it a great advantage over the matrix converter. Among their disadvantages are the large amount of semiconductors that are required for achieve the M3C, besides the complexity of control of the same, since there is no DC bus that physically decoupling the input and output systems. The model developed in this thesis proposes a simple and decoupled method which generates the dynamic equations of the four groups of currents inside the M3C, the currents of the three-phase input system, the three-phase output system, the circulating currents of the nine branches of the converter and the common mode currents. The Common mode currents are not used in this work because the three-phase systems do not have their neutral points connected to ground, due the tests to be performed in the laboratory suggest that type of connection. The model developed focuses on the multiplicative properties of the auxiliary matrices P and Q, which decouple into four parts any matrix of 3 × 3 dimension, where each part is a 3 × 3 matrix, which has the property that when summed the four parts, the original matrix is reconstituted. It also has modeled the cells along the arm of the converter, which in this case correspond to H bridge cells, capable of generating both positive and negative voltages. The model of these cells are equivalent to using half-bridge cells, so that the choice of one or another type of cell does not change the model of the converter.
The new technological challenges driving the development in all areas of science. Particularly, in the area of power converters topologies is requi- red refine existing models and strategies with better control, but if this is not enough, you must invent new topologies that can provide solutions to the pro- blems that currently exist or that in the future may appear. That is the reason why in this paper seeks to make a simple and decoupled model for the matrix modular multilevel converter, in order to allow us a simple decoupled control strategy that maintains the converter stable. The topology analyzed in this thesis is called matrix modular multilevel converter, which corresponds to the fusion of the modular multilevel converter and matrix converter. The achieved converter has the advantages of having a large number of DC power storages, without the need for an additional capacitor in large DC bus that handles all the energy that is used by the converter, thereby improving reliability compared with the back- to-back configuration of MMC. Besides, in case of any cell fails the M3C can still be operative, due it has numerous cells per arm, which gives it a great advantage over the matrix converter. Among their disadvantages are the large amount of semiconductors that are required for achieve the M3C, besides the complexity of control of the same, since there is no DC bus that physically decoupling the input and output systems. The model developed in this thesis proposes a simple and decoupled method which generates the dynamic equations of the four groups of currents inside the M3C, the currents of the three-phase input system, the three-phase output system, the circulating currents of the nine branches of the converter and the common mode currents. The Common mode currents are not used in this work because the three-phase systems do not have their neutral points connected to ground, due the tests to be performed in the laboratory suggest that type of connection. The model developed focuses on the multiplicative properties of the auxiliary matrices P and Q, which decouple into four parts any matrix of 3 × 3 dimension, where each part is a 3 × 3 matrix, which has the property that when summed the four parts, the original matrix is reconstituted. It also has modeled the cells along the arm of the converter, which in this case correspond to H bridge cells, capable of generating both positive and negative voltages. The model of these cells are equivalent to using half-bridge cells, so that the choice of one or another type of cell does not change the model of the converter.
Description
Keywords
M3C