Thesis PREDICTIVE CONTROL IN AN INDIRECT MATRIX CONVERTER
Loading...
Date
2011
Authors
Journal Title
Journal ISSN
Volume Title
Program
Campus
Universidad Técnica Federico Santa María UTFSM. Casa Central Valparaíso
Abstract
El convertidor matricial indirecto ha sido objeto de investigaci´on durante alg´un
tiempo. Una de las caracter´isticas favorables de este convertidor es la ausencia
de un condensador en el enlace dc, permitiendo la construcci´on de convertidores
compactos y capaces de operar en condiciones atmosf´ericas adversas, tales como
temperaturas y presiones extremas. Estas caracter´isticas han sido estudiadas ampliamente
y son las razones principales por las que la familia de convertidores
matriciales han sido investigados desde hace d´ecadas. El convertidor matricial indirecto
cuenta con una t´ecnica de conmutaci´on f´acil de implementar y m´as segura,
la conmutaci´on a corriente cero en el enlace dc. Adem´as, el convertidor matricial
indirecto convencional tiene capacidad de flujo bidireccional de energ´ia y puede
ser dise˜nado para tener peque˜nos elementos reactivos en su filtro de entrada.
Estas caracter´isticas hacen que el convertidor matricial sea una tecnolog´ia adecuada
para convertidores de alta eficiencia en aplicaciones espec´ificas, tales como
aeroespacial, militar, sistemas de generadores e´olicos, elevadores externos para
la construcci´on y el molinos de bolas, donde las ventajas compensan los costes
adicionales de una forma indirecta del convertidor matricial en comparaci´on a
los convertidores convencionales. Este convertidor usa esquemas de modulaci´on
por ancho de pulso y vectorial coplejos para asegurar el objetivo de factor de
potencia unitario y corrientes de carga sinusoidales. Gracias a los avances tecnol
´ogicos, r´apidos y poderosos microprocesadores se utilizan para el control y
la modulaci´on de los convertidores de potencia. Para hacer frente al alto poder
de procesamiento necesarios por estos microprocesadores, algunas investigaciones
han demostrado el potencial positivo de las t´ecnicas de control predictivo basado en modelos en muchas aplicaciones de electr´onica de potencia. Si bien a´un existen
algunos desaf´ios en los m´etodos de control predictivo, se ha demostrado como una
alternativa atractiva para poder controlar los convertidores de potencia ya que
sus conceptos son muy intuitivos y f´aciles de entender, pudiendo aplicarse a una
amplia variedad de sistemas. Adem´as, esta t´ecnica puede incluir varios aspectos,
la compensaci´on de tiempo muerto, y las restricciones no lineales, por lo que es un
controlador de f´acil aplicaci´on, sobre todo porque est´a abierto a modificaciones y
extensiones para aplicaciones espec´ificas. El control predictivo de corriente puede
ser descrito como un caso particular de control predictivo basado en modelos, el
cual tiene en cuenta la propia naturaleza discreta de los estados de conmutaci´on
del convertidor y la implementaci´on digital. La mayor´ia de los m´etodos de control
predictivo de corriente aplicados en los convertidores matriciales consideran
la regulaci´on de la corriente de salida y la minimizaci´on de la potencia reactiva en
el lado de la entrada, obteniendo corrientes de entrada en fase con sus respectivos
voltajes de fase. Sin embargo, esto no puede asegurar que las corrientes de entrada
presentar´an formas de onda sinusoidales, especialmente cuando est´a presente distorsi
´on arm´onica en los voltajes de alimentaci´on y fuertes resonancias en el filtro
de entrada. Para mejorar la calidad de la corriente de entrada, a lo largo de este
documento se ilustrar´a c´omo el control predictivo de corriente puede ser aplicado
a un convertidor matricial indirecto y cómo las formas de onda de las corrientes
de entrada y carga pueden ser controladas.
The indirect matrix converter has been the subject to investigation for some time. One of the favorable features of this converter is the absence of a dc-link capacitor, which allows for the construction of compact converters capable of operating at adverse atmospheric conditions such as extreme temperatures and pressures. These features have been explored extensively and are the main reasons why the matrix converters family has been investigated for decades. The indirect matrix converter features an easy to implement and secure commutation technique, the dc-link zero current commutation. Moreover, the conventional indirect matrix converter has bidirectional power flow capabilities and it can be designed to have small sized reactive elements in its input filter. These characteristics make the matrix converter a suitable technology for high efficiency converters for specific applications such as military, aerospace, wind turbine generator system, external elevators for building construction and skin pass mill, where these advantages make up for the additional cost of an indirect matrix converter compared to conventional converters. This converter uses complex pulse width modulation and space vector modulation schemes to achieve the goal of unity displacement power factor and sinusoidal output current. Thanks to technological advances, fast and powerful microprocessors are used for the control and modulation of power converters. To deal with the high processing power needed for these microprocessors, some research has shown the positive potential of model-based predictive control techniques in many power electronics applications. While there are a few challenges to the predictive control method, it has been demonstrated as an appealing alternative to power converters control because its concepts are very intuitive and easy to understand, and it can be applied to a wide variety of systems. In addition, it may involve multiple variable systems and non-linear constraints, making it an easy controller to implement, especially since it is open to modifications and extensions for specific applications. Predictive current control can be described as a particular case of model-based predictive control which takes into account the inherent discrete nature of the switching states of the power converter and the digital implementation. Most of predictive current control methods applied in matrix converters take into consideration the output current regulation and the reactive power minimization on the input side, obtaining input currents in phase with their respective phase voltages. However, this cannot ensure that they present a sinusoidal waveform, especially when harmonic distortion in the source voltage or strong resonances on the input filter are present. To enhance the quality of the source current, in this document is illustrate how the predictive current control can be applied to an indirect matrix converter and how both source and load currents waveforms can be controlled.
The indirect matrix converter has been the subject to investigation for some time. One of the favorable features of this converter is the absence of a dc-link capacitor, which allows for the construction of compact converters capable of operating at adverse atmospheric conditions such as extreme temperatures and pressures. These features have been explored extensively and are the main reasons why the matrix converters family has been investigated for decades. The indirect matrix converter features an easy to implement and secure commutation technique, the dc-link zero current commutation. Moreover, the conventional indirect matrix converter has bidirectional power flow capabilities and it can be designed to have small sized reactive elements in its input filter. These characteristics make the matrix converter a suitable technology for high efficiency converters for specific applications such as military, aerospace, wind turbine generator system, external elevators for building construction and skin pass mill, where these advantages make up for the additional cost of an indirect matrix converter compared to conventional converters. This converter uses complex pulse width modulation and space vector modulation schemes to achieve the goal of unity displacement power factor and sinusoidal output current. Thanks to technological advances, fast and powerful microprocessors are used for the control and modulation of power converters. To deal with the high processing power needed for these microprocessors, some research has shown the positive potential of model-based predictive control techniques in many power electronics applications. While there are a few challenges to the predictive control method, it has been demonstrated as an appealing alternative to power converters control because its concepts are very intuitive and easy to understand, and it can be applied to a wide variety of systems. In addition, it may involve multiple variable systems and non-linear constraints, making it an easy controller to implement, especially since it is open to modifications and extensions for specific applications. Predictive current control can be described as a particular case of model-based predictive control which takes into account the inherent discrete nature of the switching states of the power converter and the digital implementation. Most of predictive current control methods applied in matrix converters take into consideration the output current regulation and the reactive power minimization on the input side, obtaining input currents in phase with their respective phase voltages. However, this cannot ensure that they present a sinusoidal waveform, especially when harmonic distortion in the source voltage or strong resonances on the input filter are present. To enhance the quality of the source current, in this document is illustrate how the predictive current control can be applied to an indirect matrix converter and how both source and load currents waveforms can be controlled.
Description
Catalogado desde la version PDF de la tesis.
Keywords
CONVERTIDOR MATRICIAL, CONTROL PREDICTIVO, CONVERTIDORES