Thesis Simulación de Monte Carlo para el análisis de variabilidad operativa en carguío y transporte en minería a cielo abierto
Loading...
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil de Minas
Campus
Campus Santiago San Joaquín
Abstract
La minería ha sido crucial para el desarrollo económico de Chile, experimentando periodos de auge y declive, influenciados por la demanda de minerales, los precios en el mercado y los avances tecnológicos. En este contexto, la implementación de digitalización en las operaciones y los procesos mineros, la automatización, el internet de las cosas (IoT) y la inteligencia artificial (IA) emergen como un avance tecnológico crucial que está transformando la industria. Estas innovaciones permiten no solo optimizar los procedimientos operativos, sino también recopilar una gran cantidad de datos que pueden ser aprovechados para analizar tendencias.
Este impulso hacia la digitalización ha promovido la adopción de herramientas avanzadas que facilitan una reportabilidad más ágil y ofrecen análisis detallados en tiempo real de la operación minera. Sin embargo, estas herramientas a menudo se limitan a la visualización, sin explotar plenamente el potencial de simulación de escenarios a partir de los datos recopilados. Para abordar estos desafíos, en esta memoria se propone el desarrollo de un script en Python que implemente simulaciones de Monte Carlo para generar múltiples escenarios, con el objetivo de cuantificar los riesgos y oportunidades presentes en los planes de producción. Este enfoque permitirá mejorar la planificación y ejecución de los planes de producción en la industria minera, aumentando la certeza en la gestión de la variabilidad de los procesos y proporcionando una base sólida para la toma de decisiones en condiciones de incertidumbre.
La metodología propuesta para alcanzar los objetivos planteados comienza con un análisis del árbol de valor del carguío y transporte, con el fin de comprender las variables del sistema. A continuación, se elaboran planes de producción minera de manera tradicional, utilizando métodos determinísticos. Finalmente, se incorpora la elaboración de los planes de producción mediante simulaciones de Monte Carlo. Este enfoque no solo permite el cálculo del riesgo, sino que también facilita la evaluación de su impacto, contribuyendo así a la formulación de planes de acción específicos.
Los resultados indican que la simulación de escenarios mediante eventos discretos, utilizando Monte Carlo a través de un script de Python, permite evaluar tanto los planes de producción determinísticos como los estocásticos. Este enfoque facilita la identificación de fluctuaciones en los valores proyectados, aumentando la precisión en la planificación minera. Además, la incorporación de estas herramientas mejora la capacidad de anticiparse a los riesgos y oportunidades, lo que refuerza la toma de decisiones en un entorno operativo dinámico y con alta variabilidad.
Mining has been crucial to Chile´s economic development, experiencing periods of boom and bust, influenced by mineral demand, market prices, and technological advances. In this context, the implementation of digitalization in mining operations and processes, automation, the Internet of Things (IoT), and artificial intelligence (AI) emerge as a crucial technological advancement that is transforming the industry. These innovations allow not only to optimize operating procedures, but also to collect a large amount of data that can be leveraged to analyze trends. This push toward digitalization has promoted the adoption of advanced tools that facilitate more agile reporting and offer detailed real-time analysis of the mining operation. However, these tools are often limited to visualization, without fully exploiting the potential of simulating scenarios from the data collected. To address these challenges, this paper proposes the development of a Python script that implements Monte Carlo simulations to generate multiple scenarios, with the aim of quantifying the risks and opportunities present in production plans. This approach will improve the planning and execution of production plans in the mining industry, increasing certainty in the management of process variability and providing a solid basis for decision-making under conditions of uncertainty. The proposed methodology to achieve the stated objectives begins with an analysis of the loading and transport value tree, in order to understand the system variables. Next, mining production plans are drawn up in a traditional way, using deterministic methods. Finally, the elaboration of production plans is incorporated through Monte Carlo simulations. This approach not only allows the calculation of risk, but also facilitates the evaluation of its impact, thus contributing to the formulation of specific action plans. The results indicate that the simulation of scenarios through discrete events, using Monte Carlo through a Python script, allows the evaluation of both deterministic and stochastic production plans. This approach facilitates the identification of fluctuations in projected values, increasing the accuracy of mining planning. Furthermore, the incorporation of these tools improves the ability to anticipate risks and opportunities, which reinforces decision-making in a dynamic and highly variable operating environment.
Mining has been crucial to Chile´s economic development, experiencing periods of boom and bust, influenced by mineral demand, market prices, and technological advances. In this context, the implementation of digitalization in mining operations and processes, automation, the Internet of Things (IoT), and artificial intelligence (AI) emerge as a crucial technological advancement that is transforming the industry. These innovations allow not only to optimize operating procedures, but also to collect a large amount of data that can be leveraged to analyze trends. This push toward digitalization has promoted the adoption of advanced tools that facilitate more agile reporting and offer detailed real-time analysis of the mining operation. However, these tools are often limited to visualization, without fully exploiting the potential of simulating scenarios from the data collected. To address these challenges, this paper proposes the development of a Python script that implements Monte Carlo simulations to generate multiple scenarios, with the aim of quantifying the risks and opportunities present in production plans. This approach will improve the planning and execution of production plans in the mining industry, increasing certainty in the management of process variability and providing a solid basis for decision-making under conditions of uncertainty. The proposed methodology to achieve the stated objectives begins with an analysis of the loading and transport value tree, in order to understand the system variables. Next, mining production plans are drawn up in a traditional way, using deterministic methods. Finally, the elaboration of production plans is incorporated through Monte Carlo simulations. This approach not only allows the calculation of risk, but also facilitates the evaluation of its impact, thus contributing to the formulation of specific action plans. The results indicate that the simulation of scenarios through discrete events, using Monte Carlo through a Python script, allows the evaluation of both deterministic and stochastic production plans. This approach facilitates the identification of fluctuations in projected values, increasing the accuracy of mining planning. Furthermore, the incorporation of these tools improves the ability to anticipate risks and opportunities, which reinforces decision-making in a dynamic and highly variable operating environment.
Description
Keywords
Simulación de Monte Carlo, Eventos discretos, Variabilidad operativa
