Thesis CONTROLABILIDAD DE SISTEMAS DE TRANSMISIÓN DE ONDAS
Loading...
Date
2019-09-06
Journal Title
Journal ISSN
Volume Title
Program
DEPARTAMENTO DE MATEMÁTICA. MAGISTER EN CIENCIAS, MENCIÓN MATEMÁTICA
Campus
Casa Central Valparaíso
Abstract
Se estudian propiedades de controlabilidad en modelos de propagación de ondas en medios
heterógeneos, mediante la ecuación de ondas con coeficientes discontinuos. En el primer
capı́tulo se revisan los principales tópicos relacionados con la ecuación de ondas para luego
pasar a nociones de controlabilidad de ecuaciones diferenciales parciales, tomando a modo
de ejemplo la ecuación del calor y la ecuación de ondas. En el segundo capı́tulo se cambia
al contexto de medios heterogéneos donde se generalizan resultados previos, ver [2], y se
obtiene una desigualdad de Carleman para la ecuación de ondas lineal con transmisión en
el caso de función peso no constante en la interfaz, siendo este el principal resultado de
nuestro trabajo presentado en el Teorema 2.2.1. Se demuestra la controlabilidad exacta
para un amplio conjunto de ecuaciones de ondas con transmisión a través de HUM (Hilbert
Uniqueness Method) y la estimación de Carleman obtenida, permitiendo la generalización
de algunos resultados al caso de interfaces no convexas. Se presentan dos ejemplos explı́citos
de función peso que no entran en el contexto de [2] y abren la discusión para el estudio
de dominios más generales. Finalmente en el tercer capı́tulo se introduce el problema de
controlabilidad para sistemas de transmisión de ondas semilineales, el cual, si bien no se
obtuvieron resultados concluyentes, sirve como referencia para trabajos futuros.
Controllability properties are studied in wave propagation models in heterogeneous media using the wave equation with discontinuous coefficients. In the first chapter we review the main topics related to the wave equation and then move on to notions of controllability of partial differential equations, taking as example the heat equation and wave equation. In the second chapter we change to the context of heterogeneous media and we generalize previous results, see [2], and we obtain a Carleman estimate for the linear transmission wave equation in the case of non-constant weight function on the interface, this being the main result of our work presented in the Theorem 2.2.1. We prove the exact controllability for a broad set of transmission wave equations using HUM (Hilbert Uniqueness Method) and the Carleman estimate obtained, allowing the generalization of some results in the case of non-convex interfaces. We present two explicit examples of weight function that do not fall within the context of [2] and open the discussion for the study of more general domains. Finally in the third chapter we introduce the controllability problem for semilinear transmission systems of waves, in which although we did not obtain conclusive results it serves as a reference for future work.
Controllability properties are studied in wave propagation models in heterogeneous media using the wave equation with discontinuous coefficients. In the first chapter we review the main topics related to the wave equation and then move on to notions of controllability of partial differential equations, taking as example the heat equation and wave equation. In the second chapter we change to the context of heterogeneous media and we generalize previous results, see [2], and we obtain a Carleman estimate for the linear transmission wave equation in the case of non-constant weight function on the interface, this being the main result of our work presented in the Theorem 2.2.1. We prove the exact controllability for a broad set of transmission wave equations using HUM (Hilbert Uniqueness Method) and the Carleman estimate obtained, allowing the generalization of some results in the case of non-convex interfaces. We present two explicit examples of weight function that do not fall within the context of [2] and open the discussion for the study of more general domains. Finally in the third chapter we introduce the controllability problem for semilinear transmission systems of waves, in which although we did not obtain conclusive results it serves as a reference for future work.
Description
Keywords
CONTROL DE EDP, ECUACIÓN DE ONDAS CON TRANSMISIÓN