Thesis Análisis y optimización de factores influyentes en la eficiencia de la biolixiviación para minerales de botaderos de ripios
Loading...
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil de Minas
Campus
Campus Santiago San Joaquín
Abstract
La disminución de reservas de minerales de alta ley ha impulsado el interés en la revalorización de botaderos de ripios de baja ley (0.42% CuT) mediante tecnologías como la biolixiviación, un proceso que utiliza microorganismos para extraer metales como cobre y plata. Este trabajo aborda el problema de la baja eficiencia en la extracción de metales debido a factores como la mineralogía compleja, el tiempo de curado, el potencial redox (ORP) y el consumo de reactivos. La hipótesis plantea que la optimización de estos factores mejora la eficiencia de la biolixiviación. El objetivo principal fue optimizar la extracción de metales mediante un análisis exhaustivo de resultados experimentales, comparando biolixiviación (76% Cu) y lixiviación ácido-clorurada (61% Cu).
Se propuso una matriz mineralógica clasificando minerales en potenciadores (calcosina, crisocola), mantenedores (limonita) e inhibidores (calcopirita), y se desarrolló un modelo predictivo no lineal (Modelo BX) integrando pH (1.8 – 2.0), ORP (550 – 600 mV), temperatura (25 – 45°C), humedad (10 – 25%), tiempo de curado y mineralogía. Los resultados muestran que la biolixiviación superó a la lixiviación ácido-clorurada, aunque con mayor consumo de ácido (61 kg/t vs. 44 kg/t) debido a la baja actividad de Acidithiobacillus thiooxidans.
El Modelo BX, predijo la extracción con un error relativo de 0.147% y R² de 0.999, capturando la cinética bacteriana. Se recomienda optimizar la temperatura a 30°C, extender el curado a 15 – 20 días, suplementar Fe²⁺ (>1.3 g/L) y escalar a pruebas piloto.
In the context of mining, the depletion of high-grade mineral reserves has driven interest in reprocessing low-grade tailings dumps (0.42% CuT) using technologies such as bioleaching, a process that employs microorganisms to extract metals like copper and silver. This study addresses the issue of low metal extraction efficiency due to factors such as complex mineralogy, curing time, redox potential (ORP), and reagent consumption. The hypothesis posits that optimizing these factors enhances bioleaching efficiency. The primary objective was to optimize metal extraction through a comprehensive analysis of experimental results, comparing bioleaching (76% Cu) with acid-chloride leaching (61% Cu). A mineralogical matrix was proposed, classifying minerals as enhancers (chalcocite, chrysocolla), maintainers (limonite), and inhibitors (chalcopyrite), alongside the development of a non-linear predictive model (BX Model) integrating pH (1.8 – 2.0), ORP (550-600 mV), temperature (25 – 45°C), humidity (10 – 25%), curing time, and mineralogy. Results show that bioleaching outperformed acid-chloride leaching, albeit with higher acid consumption (61 kg/t vs. 44 kg/t) due to low Acidithiobacillus thiooxidans activity. The BX Model, predicted extraction with a relative error of 0.147% and an R² of 0.999, accurately capturing bacterial kinetics. Recommendations include optimizing temperature to 30°C, extending curing to 15 – 20 days, supplementing Fe²⁺ (>1.3 g/L), and scaling up to pilot tests.
In the context of mining, the depletion of high-grade mineral reserves has driven interest in reprocessing low-grade tailings dumps (0.42% CuT) using technologies such as bioleaching, a process that employs microorganisms to extract metals like copper and silver. This study addresses the issue of low metal extraction efficiency due to factors such as complex mineralogy, curing time, redox potential (ORP), and reagent consumption. The hypothesis posits that optimizing these factors enhances bioleaching efficiency. The primary objective was to optimize metal extraction through a comprehensive analysis of experimental results, comparing bioleaching (76% Cu) with acid-chloride leaching (61% Cu). A mineralogical matrix was proposed, classifying minerals as enhancers (chalcocite, chrysocolla), maintainers (limonite), and inhibitors (chalcopyrite), alongside the development of a non-linear predictive model (BX Model) integrating pH (1.8 – 2.0), ORP (550-600 mV), temperature (25 – 45°C), humidity (10 – 25%), curing time, and mineralogy. Results show that bioleaching outperformed acid-chloride leaching, albeit with higher acid consumption (61 kg/t vs. 44 kg/t) due to low Acidithiobacillus thiooxidans activity. The BX Model, predicted extraction with a relative error of 0.147% and an R² of 0.999, accurately capturing bacterial kinetics. Recommendations include optimizing temperature to 30°C, extending curing to 15 – 20 days, supplementing Fe²⁺ (>1.3 g/L), and scaling up to pilot tests.
Description
Keywords
Biolixiviación, Optimización, Ripio, Extracción de metales