Thesis
Determinantes del precio de la vivienda en el Gran Santiago mediante modelos econométricos y de aprendizaje automático

dc.contributor.correferenteScavia Dal Pozzo, Javier Andrés
dc.contributor.departmentDepartamento de Industrias
dc.contributor.guiaFarías Gordon, María Elisa
dc.coverage.spatialCampus Santiago Vitacura
dc.creatorCisternas Urbina, Mauricio Andrés
dc.date.accessioned2025-10-22T17:12:44Z
dc.date.available2025-10-22T17:12:44Z
dc.date.issued2025-10
dc.description.abstractLa presente memoria analiza los determinantes del precio de oferta de casas en el Gran Santiago (2025) y compara el desempeño de modelos explicativos basados en mínimos cuadrados ordinarios con algoritmos de aprendizaje automático, utilizando una base de 462 observaciones con el precio expresado en UF y modelado en logaritmos. El conjunto de variables incluye atributos físicos de la vivienda, índices urbanos de entorno y dummies territoriales de localización, con procedimientos de validación y diagnóstico que aseguran la robustez de las estimaciones y la evaluación fuera de muestra. En modelos explicativos, conforme a métricas y supuestos clásicos de la econometría, la regresión lineal con índices compuestos construidos obtuvo el mejor desempeño. Dicho modelo observa que la localización en las zonas nor-oriente y norte-centro de la Región Metropolitana, el equipamiento interior y la pertenencia a condominio cerrado tienen efectos económicos destacados sobre el precio, donde al ubicarse en la zona norte–oriente se asocia a un incremento aproximado de 65,22 %, cada baño adicional a un 21,58 % y vivir en condominio cerrado a un 12,08 %. Estos resultados se complementan con la incidencia positiva de los índices de amenidades y servicios del entorno, además de la contribución de la superficie, cuya variación marginal por metro cuadrado es positiva aunque de menor magnitud relativa(...).es
dc.description.abstract This thesis analyzes the determinants of asking prices for single-family houses in Greater Santiago (2025) and compares the performance of explanatory models based on ordinary least squares with machine learning algorithms, using a dataset of 462 observations with prices expressed in UF and modeled in logarithms. The set of covariates includes physical housing attributes, urban environment indices, and territorial location indicators (dummies), together with validation and diagnostic procedures that ensure robust estimation and out-of-sample evaluation. In explanatory models, consistent with standard econometric metrics and assumptions, the linear regression with constructed composite indices delivered the best performance. This specification indicates that location in the northeast and north-central zones of the Metropolitan Region, interior equipment, and residence within a gated community have economically meaningful effects on price: being in the northeast zone is associated with an approximate increase of 65.22%, each additional bathroom with 21.58%, and living in a gated community with 12.08%. These findings are complemented by the positive incidence of amenity and service indices in the surrounding area, as well as the contribution of floor area, whose marginal variation per square meter is positive albeit of smaller relative magnitude(...).en
dc.description.programIngeniería Civil Industrial
dc.format.extent155 páginas
dc.identifier.barcode3560900288979
dc.identifier.urihttps://repositorio.usm.cl/handle/123456789/76896
dc.language.isoes
dc.publisherUniversidad Técnica Federico Santa María
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPrecio de la vivienda
dc.subjectModelos hedónicos
dc.subjectRegresión lineal
dc.subjectMínimos cuadrados ordinarios (MCO)
dc.subjectAprendizaje automático
dc.subjectRandom Forest
dc.subjectXGBoost
dc.subjectAccesibilidad urbana
dc.subjectTasación inmobiliaria
dc.subjectíndices compuestos
dc.subject.ods8 Trabajo decente y crecimiento económico
dc.subject.ods9 Industria, innovación e infraestructura
dc.subject.ods11 Ciudades y comunidades sostenibles
dc.titleDeterminantes del precio de la vivienda en el Gran Santiago mediante modelos econométricos y de aprendizaje automático
dspace.entity.typeTesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3560900288979.pdf
Size:
1.98 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: