Thesis Machine learning based efficiency estimation for clock gating collapsing
Loading...
Date
2023
Journal Title
Journal ISSN
Volume Title
Program
Ingeniería Civil Informática
Departament
Campus
Campus Santiago San Joaquín
Abstract
En este documento se discute sobre la creación de una herramienta para la industria de la automatización de diseños electrónicos (EDA, basado sus siglas en inglés) basada en machine learning para predecir si un colapso de celdas de tipo clock gate influye de forma positiva o negativa en el consumo de energía dinámica de un circuito integrado. La discusión incluye la generación del dataset, la metodología del entrenamiento y pruebas, y los resultados y conclusiones del experimento.
This document discusses the creation of a tool for the industry of Electronic Design Automation (EDA) based on machine learning to predict if a certain collapse of clock gating cells will affect positively or negatively the dynamic power consumption of an integrated circuit. The discussion includes the generation of the dataset, the methodology used for training and testing, and results and conclusions of the experiment.
This document discusses the creation of a tool for the industry of Electronic Design Automation (EDA) based on machine learning to predict if a certain collapse of clock gating cells will affect positively or negatively the dynamic power consumption of an integrated circuit. The discussion includes the generation of the dataset, the methodology used for training and testing, and results and conclusions of the experiment.
Description
Keywords
Machine learning, Clock gates, LightGBM