Publication: Simulación computacional de la capa atmosférica de superficie para la evaluación aeroestructural de una torre meteorológica telescópica móvil
Loading...
Date
2023-10
Authors
Fuenzalida Godoy, Antonia Paz
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
El diseño de una torre meteorológica telescópica responde a la falta de precisión en la exploración y evaluación del recurso eólico para la generación de energía. El innovador diseño que permite su traslado y montaje en terreno, es estudiado ante distintos campos de viento presentes en la capa atmosférica para conocer la interacción del mástil con el flujo. Por lo que se analiza desde la dinámica computacional de fluidos la interacción fluido estructura, realizando un análisis de sensibilidad de la torre telescópica inmersa en viento atmosférico, obteniendo el perfil dinámico de presiones que ejerce el viento sobre el mástil.
En particular se simula con el software Autodesk CFD el fluido en condiciones de estratificación neutra, estable e inestable, utilizando el modelo de turbulencia RANS k− 𝜔 SST y prototipos a escalas, en particular 1:8, 1:4 y 1:1. Con los resultados de las simulaciones se analiza la velocidad instantánea próxima a la torre, en diferentes alturas, con esta variable se hace uso de la norma chilena NCh432 que parametriza las presiones resultantes del viento, en particular para torres de sección cuadrada con viento en dirección perpendicular y oblicuo.
Se determina como caso más desfavorable para la interacción aeroestructural una estratificación estable con el ángulo de ataque perpendicular a la cara de barlovento, junto con ello se establece que no existe gran influencia de intensidad de turbulencia en la interacción fluido estructura.
La interacción fluido estructura no compromete el funcionamiento del mástil ni presenta riesgos para la robustez o estabilidad de este, por otro lado la torre telescópica genera jets de velocidad en el viento y una estela de mezcla de velocidades sin mayores torbellinos.
Con ello se concluye la evaluación numérica del diseño telescópico y por lo tanto se aprueba la ingeniería básica del mástil retráctil, para trabajos futuros se recomienda el uso de un software más complejo para analizar a detalle la torre con sus sistemas de transporte y anclaje, en escenarios más extremos de estratificación estable, en particular con grandes variaciones de temperatura. Además de realizar un estudio específico para vibraciones mecánicas, con el objetivo de determinar la frecuencia de destrucción y analizar en base a los modos de vibraciones y frecuencia natural las circunstancias para evitar que ocurra. Posterior a ello se sugiere la construcción del prototipo a escala
The design of a telescopic meteorological tower addresses the issue of precision in exploring and assessing wind resources for energy generation. The innovative design, which allows for its transportation and assembly on-site, is studied under various atmospheric wind field conditions to understand the mast's interaction with the airflow. Hence, the fluid-structure interaction is analyzed through computational fluid dynamics (CFD), conducting a sensitivity analysis of the telescopic tower immersed in atmospheric wind. This analysis yields the dynamic pressure profile exerted by the wind on the mast. In particular, the fluid is simulated using Autodesk CFD software under neutral, stable, and unstable stratification conditions, employing the RANS k-ω SST turbulence model and scale prototypes, specifically 1:8, 1:4, and 1:1. Using the simulation results, the instantaneous wind speed near the tower at different heights is analyzed, and this variable is applied according to the Chilean standard NCh432, which parameterizes wind-induced pressures, particularly for square-section towers with wind blowing perpendicularly and obliquely. The most unfavorable case for the aerostructural interaction is determined to be stable stratification with the angle of attack perpendicular to the windward face. It is also established that turbulence intensity does not significantly influence the fluid-structure interaction. The fluid-structure interaction does not compromise the mast's operation or pose risks to its robustness or stability. Additionally, the telescopic tower generates velocity jets in the wind and a wake of velocity mixing without significant eddies. In conclusion, the numerical evaluation of the telescopic design is completed, and the basic engineering of the retractable mast is approved. For future work, it is recommended to employ more advanced software to conduct detailed analyses of the tower with its transportation and anchoring systems under more extreme stable stratification scenarios, particularly with large temperature variations. Furthermore, a specific study on mechanical vibrations is suggested to determine the destruction frequency and analyze, based on vibration modes and natural frequencies, the circumstances to prevent such occurrences. Subsequently, the construction of a scale prototype is recommended.
The design of a telescopic meteorological tower addresses the issue of precision in exploring and assessing wind resources for energy generation. The innovative design, which allows for its transportation and assembly on-site, is studied under various atmospheric wind field conditions to understand the mast's interaction with the airflow. Hence, the fluid-structure interaction is analyzed through computational fluid dynamics (CFD), conducting a sensitivity analysis of the telescopic tower immersed in atmospheric wind. This analysis yields the dynamic pressure profile exerted by the wind on the mast. In particular, the fluid is simulated using Autodesk CFD software under neutral, stable, and unstable stratification conditions, employing the RANS k-ω SST turbulence model and scale prototypes, specifically 1:8, 1:4, and 1:1. Using the simulation results, the instantaneous wind speed near the tower at different heights is analyzed, and this variable is applied according to the Chilean standard NCh432, which parameterizes wind-induced pressures, particularly for square-section towers with wind blowing perpendicularly and obliquely. The most unfavorable case for the aerostructural interaction is determined to be stable stratification with the angle of attack perpendicular to the windward face. It is also established that turbulence intensity does not significantly influence the fluid-structure interaction. The fluid-structure interaction does not compromise the mast's operation or pose risks to its robustness or stability. Additionally, the telescopic tower generates velocity jets in the wind and a wake of velocity mixing without significant eddies. In conclusion, the numerical evaluation of the telescopic design is completed, and the basic engineering of the retractable mast is approved. For future work, it is recommended to employ more advanced software to conduct detailed analyses of the tower with its transportation and anchoring systems under more extreme stable stratification scenarios, particularly with large temperature variations. Furthermore, a specific study on mechanical vibrations is suggested to determine the destruction frequency and analyze, based on vibration modes and natural frequencies, the circumstances to prevent such occurrences. Subsequently, the construction of a scale prototype is recommended.
Description
Keywords
Energía eólica , Torre meterorológica , Simulación con computadores