Thesis
Deep Learning Semi-supervised Strategy for Gamma/Hadron Classification of Imaging Atmospheric Cherenkov Telescope Events

dc.contributor.departmentDepartamento de Electrónica
dc.contributor.guiaAraya López, Mauricio Alejandro
dc.contributor.guiaSelf-Supervised
dc.coverage.spatialCampus Casa Central Valparaíso
dc.creatorRiquelme Román, Diego Vicente
dc.date.accessioned2024-09-25T18:15:17Z
dc.date.available2024-09-25T18:15:17Z
dc.date.issued2022-07
dc.description.degreeINGENIERO CIVIL ELECTRÓNICO
dc.description.degreeMAGISTER EN CIENCIAS DE LA INGENIERIA ELECTRONICA
dc.description.programDEPARTAMENTO DE ELECTRÓNICA. INGENIERÍA CIVIL ELECTRÓNICA
dc.identifier.barcode191523393UTFSM
dc.identifier.urihttps://repositorio.usm.cl/handle/123456789/8232
dc.identifier.urihttps://doi.org/10.71700/dspace-memorias/1628
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectDEEP LEARNING
dc.subjectSELF-SUPERVISED
dc.subjectCHERENKOV
dc.subjectCLASSIFICATION
dc.subjectHIGH-ENERGY ASTRONOMY
dc.subjectCONVOLUTIONAL
dc.titleDeep Learning Semi-supervised Strategy for Gamma/Hadron Classification of Imaging Atmospheric Cherenkov Telescope Events
dc.typeTesis de Pregrado
dspace.entity.typeTesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
m19152339-3.pdf
Size:
3.4 MB
Format:
Adobe Portable Document Format