Repository logo
Communities & Collections
All of DSpace
  • English
  • Español
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Valderrama Bustos, Álvaro Gabriel"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Representaciones homogéneas, heterogéneas y mixtas para la estimación de potencial fotovoltaico urbano en Santiago
    (2023-07) Valderrama Bustos, Álvaro Gabriel; Valle Vidal, Carlos; Departamento de Informática; Allende Olivares, Héctor Manuel
    Los inminentes problemas asociados al cambio climático han acelerado los esfuerzos para lograr una pronta transición energética hacia fuentes renovables. Por ende, la estimación precisa y a gran escala del potencial de generación de distintas energías renovables tomar una nueva importancia en el proceso de toma de decisiones y políticas públicas. La estimación fotovoltaica sobre las zonas urbanas es particularmente complicada dada la influencia de las oclusiones del sol por edificaciones adyacentes, la disponibilidad incierta de áreas favorables para las instalaciones y la ausencia de datos apropiados públicamente disponibles y confiables. El Ministerio de Energía ha generado una base de datos del potencial fotovoltaico urbano de Santiago, que puede utilizarse para efectos de aprendizaje. Más aún, una segunda base de datos, obtenida desde el Servicio de Impuestos Internos, presenta descriptores de las edificaciones presentes en el territorio nacional, entre otras, el número de pisos o la superficie total construida. Esto permite consolidar una base de datos a nivel de manzana, la cual presenta una lista de edificios con sus respectivos descriptores y el potencial fotovoltaico, en términos del área favorable, de esta. Con estos datos se puede realizar aprendizaje automático para modelar la relación entre las características de las manzanas y su potencial. Esta prometedora aproximación tiene, sin embargo, una dificultad adicional: distintos registros (i.e. manzanas) tienen distinto número de edificaciones, y por ende distinta dimensionalidad. Esto requiere por lo tanto un manejo particular de los datos, los cuales tienen largo variable. En el presente proyecto se propone aprovechar la capacidad de las redes convolucionales uno dimensionales de aprender patrones sobre secuencias de datos para realizar el aprendizaje sobre representaciones secuenciales de los datos disponibles. Más aún, se propone utilizar los datos tanto en la representación habitual “homogénea” (distintas posiciones de la secuencia corresponden a distintas instancias del mismo tipo de dato), como “heterogéneas” (distintas posiciones corresponden a distintos tipos de datos, en nuestro caso, distintos atributos de las edificaciones), como una tercera representación “mixta”, inicialmente homogénea seguida de heterogénea. Además, esto permitirá igualmente a la red aprender representaciones convolucionales significativas de los datos. Si bien estas innovadoras representaciones heterogénea y mixta no permiten mejorar significativamente los resultados del estado del arte homogéneo, si se aprecian diferencias en los costos computacionales asociados, siendo la representación heterogénea significativamente menos costosa en tiempos de entrenamiento y predicción que la representación estándar homogénea. Esto se evidencia igualmente en el aprendizaje realizado sobre las representaciones intermedias, donde la representación heterogénea aprendida logra desempeños similares utilizando órdenes de magnitud menos dimensiones que las otras representaciones.

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual
  • Icono Seguridad Política de Privacidad

EXTENSIÓN Y CULTURA

  • Dirección de Comunicaciones Estratégicas y Extensión Cultural
  • Dirección General de Vinculación con el Medio
  • Dirección de Asuntos Internacionales
  • Alumni
  • Noticias
  • Eventos
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback