Repository logo
Communities & Collections
All of DSpace
  • English
  • Español
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kalise Balza, Dante Francisco"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Thesis
    MODELAMIENTO Y CONTROL ACTIVO DE VIBRACIONES EN ESTRUCTURAS DELGADAS
    (Universidad Técnica Federico Santa María) Kalise Balza, Dante Francisco; Departamento de Electrónica; Hernández Sánchez, Juan Longino
    The Linear Quadratic Regulator (LQR) is a well-known design method for control systems. The theory behind it can be adapted in an simple way to deal with other optimal control problems of great interest for the community, as witnessed in the literature. Our aim is the optimal control of the vibrations for flexible structure models. The optimal control problem is posed over infinite-dimensional spaces, formulated as (view document) where Y, U are separable Hilbert spaces, of observation and control respectively, and the operators Q, R, T, F and C, reflect the control, observation, design and dynamics associated with the model. In order to solve this problem we must establish a formulation over finitedimensional spaces, with a solution that converges to the solution of the continuous problem. For this purpose we use a finite element scheme, arriving to the classical statement of the LQR problem in finite-dimensional spaces. In the literature there are many books and papers dealing with existence, stability and convergence issues, but the only approach that states optimal convergence rates for the approximated control problem is due to Lasiecka and Triggiani. Our goal then is to perform an error analysis from a theoretical and a computational point of view under this framework. We apply the results of these two authors for two flexible strcuture models: the highly-damped wave equation, and the Timoshenko model. For the highly-damped wave equation we obtain theoretical orders of convergence for a distributed and a point control problem, which are computationally validated. For the Timoshenko beam model, our motivation is related to the study of convergence rates for the feedback gain.

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual
  • Icono Seguridad Política de Privacidad

EXTENSIÓN Y CULTURA

  • Dirección de Comunicaciones Estratégicas y Extensión Cultural
  • Dirección General de Vinculación con el Medio
  • Dirección de Asuntos Internacionales
  • Alumni
  • Noticias
  • Eventos
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback