Repository logo
Communities & Collections
All of DSpace
  • English
  • Español
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gonzalez Perez, Karen Fernanda"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Thesis
    IDENTIFICACIÓN DE MODELOS DE VIBRACIONES PARA CONTROL DE SISTEMAS DE ÓPTICA ADAPTATIVA
    (2018) Gonzalez Perez, Karen Fernanda; Departamento de Electrónica; Agüero Vásquez, Juan Carlos; Carvajal Guerra, Rodrigo Javier
    In all major ground-based astronomical observatories, adaptive optics (AO) has becomean intrinsic technique to bring scienti c observations closer to the diraction limitof the astronomical instruments. This is because AO enables the compensation of theoptical aberrations caused by atmospheric turbulence, as well as the vibrations of thestructure of the telescope induced by elements within the system instrumentation (suchas fans and cooling pumps), wind and movements of the telescope. Since vibrationsstrongly affect the performance of the AO systems and hinder the achievement of goodquality images, it is necessary to obtain a model of these vibrations to later developsimple but effective control techniques that can be implemented in real time. It is forthis reason that in this thesis it is proposed to characterize these vibrations by modelingthem as a linear combination of oscillators each one driven fed by a noise and identifyingthe continuous-time oscillators using regular sampling. The model of the oscillator isrepresented as continuous-time autoregressive model, obtaining its discrete-time equivalentmodel, in terms of the parameters of the model in continuous-time oscillator. Then,the model is identi ed using the method of Maximum Likelihood using local and globaloptimization algorithms.When a local optimization algorithm is used, a good initial estimation is required forthe parameters of the system. Then one performs the corresponding optimization, whichin this case is implemented using the algorithm of quasi Newton. On the other hand,when a global optimization algorithm is used, the equivalent model of sampled data isanalyzed for two cases: i) instantaneous sampling and ii) integrated sampling.Both types of optimization are analyzed in detail, illustrating the behavior of thelog-likelihood function through numerical examples that show that it presents severallocal maxima.

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual
  • Icono Seguridad Política de Privacidad

EXTENSIÓN Y CULTURA

  • Dirección de Comunicaciones Estratégicas y Extensión Cultural
  • Dirección General de Vinculación con el Medio
  • Dirección de Asuntos Internacionales
  • Alumni
  • Noticias
  • Eventos
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback