Repository logo
Communities & Collections
All of DSpace
  • English
  • Español
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Barrientos Sessarego, Alejandro Javier"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Thesis
    Prediction of molecular parameters from astronomical emission lines, using neural networks
    (2021-08) Barrientos Sessarego, Alejandro Javier; Mendoza Rocha, Marcelo Gabriel; Departamento de Informática; Solar Fuentes, Mauricio
    La astronomía molecular es un campo que está floreciendo en la era de los grandes observatorios tales como el Atacama Large Millimeter/submillimeter Array (ALMA). Con tadio telescopios modernos, sensibles y de alta resolución, tales como ALMA y el Square Kilometer Array, el tamaño de los cubos de datos está escalando rápidamente, generando una necesiad de poderosas herramientas automáticas de análisis. Este trabajo explora la habilidad de realizar predicciones de parámetros molecular, tales como temperatura de excitación y densidad de columna desde líneas espectrales astronómicas, mediante el uso de redes neuronales. Se usaron como casos de prueba, los espectros de CO, HCO+, SiO y CH3CN entre 80 y 400 GHz. Los espectros de entrenamiento fueron generados con MADCUBA, una herramienta de análisis espectral, del estado-del-arte. El algoritmo presentado a continuación, fue diseñado para permitir la generación de predicciones para múltiples moléculas en paralelo, de una manera escalable y que presenta una aceleración lineal. Usando redes neuronales, es posible predecir la densidad de columna y la temperatura de excitación de estas moléculas con un error absoluto medio del 8.5% para CO, 4.1% para HCO+, 1.5% para SiO y un 1.6% para CH3CN. La precisión d ela predicción depende del nivel de ruido, la saturación de la línea y el número de transiciones. Se realizaron predicciones sobre datos reales de ALMA. Los valores predichos por la red neuronal para estos datos reales difieren en sólo un 13% de los datos de MADCUBA en promedio. Las limitaciones actuales de la herramienta incluyen la no consideración del ancho de línea, tamaño de la fuente, múltiples componentes de velocidad y mezcla de líneas.

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual
  • Icono Seguridad Política de Privacidad

EXTENSIÓN Y CULTURA

  • Dirección de Comunicaciones Estratégicas y Extensión Cultural
  • Dirección General de Vinculación con el Medio
  • Dirección de Asuntos Internacionales
  • Alumni
  • Noticias
  • Eventos
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback