Repository logo
Communities & Collections
All of DSpace
  • English
  • Español
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "BITTNER HOFFMANN, GUSTAVO JUAN ESTEBAN"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Thesis
    IDENTIFICACION DE SISTEMAS DINAMICOS LINEALES MEDIANTE MAXIMA VEROSIMILITUD CON MEZCLA FINITA DE DISTRIBUCIONES NORMALES
    (2020) BITTNER HOFFMANN, GUSTAVO JUAN ESTEBAN; Departamento de Electrónica; Aguero Vasquez, Juan Carlos; CARVAJAL GUERRA, RODRIGO
    This Thesis addresses the identification problem of output-error systems with nonGaussian measurement noise. Initially the problem is restricted to minimum phase noise zeros, i.e. the roots of the numerator associated with the noise transfer function lies within the unit circle. The noise distribution is approximated by a finite Gaussian mixture, whilst the parameters of the system and the parameters that approximate the noise distribution are simultaneously estimated using the principle of Maximum Likelihood. To this end, a global optimization algorithm is utilized to solve the resulting nonconvex optimization problem. It is shown that our approach improves the accuracy of the estimates, when compared with classic estimation techniques such as the Prediction Error Method (PEM), in terms of covariance of the estimation error, while also obtaining an approximation of the noise distribution. The benefits of the proposed technique are illustrated by numerical simulations. Later, a Maximum Likelihood estimation algorithm for a non-minimum-phase linear dynamic system with Gaussian mixture noise distribution is developed. Based on the Expectation-Maximization algorithm, we propose an identification technique to estimate the system model parameters and the Gaussian mixture parameters. We show that the estimates obtained by using this approach exhibit good accuracy. The benefits of our proposal are illustrated via numerical simulations. The work hereby presented is divided in three main parts. First, an overview of classical system identification and the state of the art technique, given by the Method of Moments, for solving the problem of interest is discussed. The second part of the thesis presents a solution based on a global optimization method, given by the Pattern Search algorithm, to solve the Maximum Likelihood estimation problem. A Gaussian Mixture Model is considered to approximate the noise distribution and its parameters are simultaneously estimated with the system parameters. The third part of the thesis addresses an extension by considering non-minimum phase noise zeros. An ExpectationMaximization based algorithm is proposed to estimate the system model arameters and the Gaussian mixture parameters.

UNIVERSIDAD

  • Nuestra Historia
  • Federico Santa María
  • Definiciones Estratégicas
  • Modelo Educativo
  • Organización
  • Información Estadística USM

CAMPUS Y SEDES

  • Información Campus y Sedes
  • Tour Virtual
  • Icono Seguridad Política de Privacidad

EXTENSIÓN Y CULTURA

  • Dirección de Comunicaciones Estratégicas y Extensión Cultural
  • Dirección General de Vinculación con el Medio
  • Dirección de Asuntos Internacionales
  • Alumni
  • Noticias
  • Eventos
  • Radio USM
  • Cultura USM

SERVICIOS

  • Aula USM
  • Biblioteca USM
  • Portal de Autoservicio Institucional
  • Dirección de Tecnologías de la Información
  • Portal de Reportes UDAI
  • Sistema de Información de Gestión Académica
  • Sistema Integrado de Información Argos ERP
  • Sistema de Remuneraciones Históricas
  • Directorio USM
  • Trabaja con nosotros
Acreditación USM
usm.cl
Logo Acceso
Logo Consejo de Rectores
Logo G9
Logo AUR
Logo CRUV
Logo REUNA
Logo Universia

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback