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Claudio González Fuentes

ha sido aprobada por la Comisin de Evaluación de la tesis como requisito

para optar al grado de Doctor en F́ısica, en el examen de defensa de tesis

rendido el d́ıa 12 de Octubre de 2016.

Niembros de la comisión:

Dr. Pedro Landeros Silva
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Abstract

This thesis is a compendium of theoretical and experimental works on ferromagnetic
resonance (FMR) in uniformly magnetized nanostructures and thin films.
In the theoretical part, supervised by Dr. Pedro Landeros, a very general and
comprehensive model to find the full set of equilibrium states and their stabilities under
the action of spin polarized currents is presented. This model allows to find the regime
of steady-state oscillations of the magnetization and build complete phase diagrams
Moreover, a general model of the detection of the ferromagnetic resonance in
nanostructures by the spin rectification effect is presented, which accounts for the
excitation of FMR both by spin polarized currents and voltage controlled magnetic
anisotropy. The model is successful to explain many published results on this subject.
In the experimental part, supervised by Drs. Carlos Garćıa and Ricardo Henŕıquez, a
new methodology for a more precise determination of the spectroscopic g-factor in thin
films in FMR experiments, is presented. The results are promising in order to solve the
great discrepancy in the values of g that can be found in the literature. FMR was also
employed for a study of the intensity of perpendicular magnetic anisotropy (PMA) in
CoFeB/Pd multilayers. It was found that there is a critical thickness of Pd for which net
PMA appears and that the intensity of the PMA increases with the number of
repetitions. These results have been attributed to the continuity of the CoFeB/Pd
interface and to the varying PMA intensity as more interfaces are deposited.
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Introduction

Motivation

Spintronics, or spin electronics, is an emerging technology which takes advantage of the
electron’s spin degree of freedom to extend, complement and overcome the limitations of
the traditional electronics, that exploit only the electron’s charge degree of freedom.
The birth of the spintronics may be found on the pioneering discoveries regarding
spin-dependent transport properties on solids during late 80s, remarkably the giant
magnetoresistance (GMR) effect [1, 2], whose discovery was awarded with the 2007
Nobel prize in physics. In the 90s great progress was done on improvement of the GMR
materials, leading to the application of GMR on commercial hard disk drives, which
substantially increased the bit-per-area density on such devices . In 1996 Slonczwesky
[3] and Berger [4] predicted that is possible to manipulate the magnetization orientation
on ferromagnets (FMs) through spin polarized currents outgoing from another
ferromagnet. This phenomenon is called the Spin Transfer Torque (STT). Shortly
thereafter, STT was confirmed by several experiments [5–7]. This groundbreaking
discovery aimed numerous research and found an application on the recently developed
STT-RAM devices [8]. Despite the enormous advances in the field of spintronics, there
are still important issues yet to be solved, like the large amount of currents needed to
manipulate the magnetization, the thermal stability of the memory elements and their
unwanted stray fields.
A fundamental characterization technique for the current research in spintronics is the
ferromagnetic resonance (FMR) spectroscopy. For many decades, FMR spectroscopy has
been carried out using single frequency microwave cavities [9]. More recently, the
apparition of broadband FMR spectroscopy have meant a qualitative jump in the
efficiency of FMR to extract material parameters from ferromagnetic thin films.
Moreover, the recent discovery of the spin rectification effect (SRE) has allowed to
perform FMR spectroscopy on nanometric structures.
This thesis presents a theoretical and experimental investigation aimed to the
improvement of these FMR techniques as well as a study of the valuable information
that can be obtained from them. In the following sections we are going to introduce
some concepts that are fundamental for the subjects addressed in this thesis, to finally
give out a general outline of the upcoming chapters.
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Larmor’s precession and ferromagnetic resonance

(FMR)

  

(a) (b)

Figure 1: (a) Larmor’s precession of an isolated magnetic moments around the external
field H. (b) Collective precession of the magnetic moments of a solid around the effective
field He.

It is well known that a particle that has a fixed magnetic moment vector µ, under a
uniform magnetic field H has a potential energy is given by [10]:

U = −µ0µ ·H, (1)

where µ0 is the vacuum permittivity. The minimum potential energy and most stable
orientation for µ is parallel to H. Let’s suppose now that we set µ in a direction other
than H and let the system to evolve. In absence of dissipative mechanisms, µ will not
directly point to H , instead will trace a perpetual circular orbit around H. This is
known as Larmor’s precession (see figure 1(a)). The torque on µ moment is given by:

τ =
dL

dt
= µ0µ×H,

where L is the mechanical angular momentum of the particle. The ratio between L and
µ is called the gyromagnetic ratio γ∗ and is related to the the ratio between the charge
and the mass of the partcle. γ is given by:

γ =
gq

2m
, (2)

where q and m are the charge and the mass of the particle respectively. g is a
dimensionless factor that characterizes the nature of the magnetic moment of the
particle. For a classical charged rotating body, one can demonstrate easily that g is
equal to 1. This is also true for the magnetic moment generated by the electron’s orbital
momentum within the atom.

2



On the other hand, many subatomic particles (and atomic nucleus) have intrinsic
magnetic moments, whose origin is not the rotation of electrical charges, instead the
origin can be found in the Dirac’s equation of relativistic quantum mechanics. The value
of g in these particles may differ notably from 1. A well-known case is the electron,
which possess an intrinsic magnetic moment or spin that has an associated value of
g = 2 (exactly 2.0023) with minor corrections arising from quantum field theory.
The precise value of g in elemental particles has a deep importance in since is a test of
physical models. In solids the main contribution to the magnetic moment comes from
the electron’s spin, although orbital magnetic moment may contribute significantly in
some cases [11]. In the following, we will use m for the unit vector pointing in the same
direction of the magnetic moment of an isolated electron or an uniformly magnetized
ferromagnetic body (FM) . The equation of precession for m, in the case of an isolated
electron, will be:

ṁ= −γ∗m×H (3)

where γ∗ = µ0γ. The value of γ in this case is obtained from Eq. 2 after replacing q and
m with the respective values of elemental charge and electron’s mass respectively. The
minus sign on the right hand side of 3 comes from the negative charge of the electron.
The Larmor’s frequency of precession the will be ωL = γµ0H, with γ =28.04 GHz/T.
Since the typical magnetic fields generated in laboratories are up to few T, ωL/2π falls
in the range of few to tens of GHz.
Any physical system that has a natural frequency of oscillation is susceptible to be put
in resonance. In this case, it is possible to put m in resonance with a periodic magnetic
field with a frequency close to ωL. That would be the case of an isolated electron.
However, in a FM there are other forces that must be considered, apart from the torque
exerted by H:

• The exchange force, that keep the magnetic moments of neighbouring electrons
aligned.

• The Magnetostatic fields: the fields generated by the magnetization itself. In a
FM the discontinuity of the magnetization at the edges makes up bound magnetic
charges that generate magnetic fields.

• The magnetocrystalline anisotropy. A solid with crystalline structure has
symmetries that makes more energetically favorable for m to point in certain
directions.

All the above mentioned contributions constitute what is called the effective field He. In
figure 1(b), m describes a circular orbit around He analogously to the circular orbit
around H in the Larmor’s precession. Ferromagnetic resonance (FMR) is thus, the
Larmor’s precession extended to FMs.

Landau-Lifshitz-Gilbert equation

Considering the reasons given in the precedent section, the correct equation that
describes the temporal evolution of m in a FM is:

ṁ= −γ∗m×He.
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Figure 2: Torques acting on the magnetization of a ferromagnetic body.

Additionally, solids have relaxation mechanisms that dissipate energy, making m
oscillations attenuate and eventually point parallel to He. These mechanisms constitute
a phenomenological torque called the Gilbert damping. The Gilbert damping makes m
to point in the same direction of Heff but without altering its magnitude: the
appropriate term to fulfill these requirements is αm×ṁ, as shown in figure 2, where α is
a phenomenological constant [12]. The new equation of movement is then:

ṁ = γ∗m×He + αm×ṁ (4)

The above is the Landau-Lifshitz-Gilbert (LLG) equation, which is also valid on a
microscopic level for non uniformly magnetized bodies. In such case the exchange forces
must be included. However, in this thesis only single domain ferromagnetic bodies are
considered, so m will always be assumed to be uniform inside.

Perpendicular magnetic anisotropy (PMA)

Since this subject will be mentioned recurrently on this thesis, a brief description of the
phenomenon is given here.
A FM will always tend to minimize the formation of bound charges on its surface due
that it is more energetically favorable. In absence of extrinsic factors, configuration
shown in figure 3(a) will be much more stable than the one shown in 3(c), and
consequently m will spontaneously point along the plane of the film.
However, for some types of ultra-thin films made of ferromagnetic materials in contact
with non-magnetic metals like Pd and Pt, or insulators like MgO, an interesting
interfacial phenomenon appears which favors that m points perpendicular to plane of

4



  

(a) (b)

(c) (d)

Figure 3: Spontaneous orientation of the magnetization for a thin FM with (a) and
without (c) net PMA (c). (b) and (d) depicts the formation of surface bound charges in
each case.

the film . This phenomenon is called perpendicular magnetic anisotropy (PMA). In
some cases PMA is so strong that m will spontaneously point perpendicular to the
plane of the film. When this happens we say that the structure has net PMA.

Thin films and nanostructures

The expression thin film will be employed when referring to structures whose thickness
is nanometric but their lateral dimensions are macroscopic, like the figure 4(a) . Thin
films studied in this thesis may be made from single or multiple layers of different
materials (represented by different layer colors in Fig. 4(a)).
The term nanostructure will be empolyed for structures of both vertical and lateral
nanometric dimensions, more specifically nanopillars of elliptical cross section like shown
in 4b). These nanopillars are made of two single domain ferromagnetic layers, namely
the free and the polarizer layer, separated from a non magnetic material. If the spacer is
a metal the device is named Spin Valve (SV) and when the spacer is an insulator is
named Magnetic Tunnel Junction (MTJ). The vectors m and p are the unitary vectors
of the magnetization of the free and polarizer layers respectively.
These nanostructures present the giant magnetoresistance (GM) effect in the case of
SVs, or tunneling magnetoresistance (TMR) effect in the case of MTJs. This means
that their electrical resistance measured across the vertical axis, depends strongly on the
relative angle between m and p. Closely related to this is the presence of the spin
transfer torque (STT) effect in these nanostructues. STT effect is the change of the
orientation of m by spin polarized electric current coming from the polarizer layer. This
subject will be addressed in detail in chapter 1.
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Free FM layer

Polarizer FM layer
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 (~
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Figure 4: Geometry and dimensions of thin films (a) and nanostructures (b) studied in
this thesis.

Thesis outline

The structure of this thesis is outlined on Fig. 5.
The theoretical part of this thesis is exposed in chapters 1 and 2 and deals with the
generation and detection of FMR on nanostructures.
Chapter 1 establish a general theoretical framework to find equilibrium states of the
magnetization under the presence of spin polarized currents, as well as their stability.
These determination of these states is fundamental for the correct application of the
theory developed in chapter 2. The layers colors in (a) represent different materials.
Chapter 2 focus on the generation of FMR by spin polarized currents, in addition to a
recently discovered effect: the voltage controlled PMA (VCMA). This chapter also
addresses the detection of FMR in nanostructures by the spin rectification effect (SRE).
Chapter 3 describes a methodological advance in the broadband FMR spectroscopy
technique to improve the accuracy of the determined gyromagnetic factor.
Chapter 4 exposes an application of the broadband FMR spectroscopy with a
systematic study of PMA intensity in CoFeB/Pd multilayers.
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Figure 5: Outline of the thesis
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Chapter 1

Spin transfer steady-state oscillators

1.1 Introduction: Spin transfer torque

Let’s suppose we have a nanostructure composed by 2 metallic FMs with different
magnetization orientations and a metallic non-magnetic spacer between them as shown
in Fig. 1.1(a). The Fermi level of each conductor is populated mainly by electrons
whose spin points in the same direction of the magnetization. If an electric current
starts to flow from bottom to the top layer there will be not only a charge flow but also
a transfer of part of the magnetic momentum carried by those electrons, as shown in
Fig. 1.1(b). This magnetic moment transfer acts as and extra force in the LLG equation
presented in the introduction, and can lead to the cancellation damping force, making
possible perpetual oscillations of the free layer magnetization m around the effective
field He (see Fig. 1.2).

1.2 Landau-Liftshitz-Gilbert-Slonczewski equation

The dynamics of m in a SV or MTJ nanopillar structuretransversed by an electric
current is described by the Landau-Liftshitz-Gilbert-Slonczewski (LLGS) equation:

ṁ = −γ∗m×
[
He − α

γ∗
ṁ− β‖ (θ) m× p−β⊥p

]
, (1.1)

where p is the unit vector of the magnetization of the polarizer and θ is the relative
angle between m and p.
Respect to the Eq. 4, Eq. 1.1 includes two extra terms proportional to the electric
current. The term

β‖ (θ) m× p

represents the In-Plane STT (IP-STT), also called the Slonczewski or non-adiabatic
STT. This term is not conservative and is the responsible of the anti-damping effect
shown in Fig. 1.2. β‖ (θ) is the IP-STT field magnitude.
On the other side, the term:

β⊥ (θ) p
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Free layer

Polarizer
 layer

Spacer

(a) (b)

electrons of conduction

Figure 1.1: Nanostructure with two different orientations of the magetization for the free
and fixed layer. In (a) the current is null and in (b) the electric current starts to flow, so
the polarizer layer transfers some of its magnetic moment to the free layer.

  

Figure 1.2: Effect of the anti-damping force on the precision of m.
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Table 1.1: g dependence on u = cos θ for different STT models. g1 (u) is equal to the

first derivative of g respect to u . In the ballistic model, ζPf
= 0.25 (1 + Pf )

3 P
−3/2
f with

Pf the polarizing factor, while in the diffusive model χ is the giant magneto-resistance
asymmetry parameter. In MTJs P is the tunneling polarization factor.

Reference g (u) g1 (u)

Ballistic polariza-

tion model[3]

(
−4 + (3 + u) ζPf

)−1 −ζPf
g2 (u)

Diffusive polariza-

tion model[14]

(Pf (1 + χ)) (2 + χ (1 + u))−1 −χg2 (u) (Pf (1 + χ))−1

STT in MTJs[15,

16]

P (1 + P 2u)
−1 −Pg2 (u)

represents the Field-Like STT (FL-STT), also called the out-of-plane or adiabatic STT.
This term is conservative and is equivalent to an extra applied magnetic field of
magnitude β⊥ (θ).
In general FL-STT is important only in MTJs whereas in SVs is often considered
negligible. The most relevant term is the IP-STT. β‖ (θ) is given by

β‖ = bg (θ)

with

b =
~IDC

2µ0qeMsV
,

where ~ is the reduced plank’s constant, qe is the elementary charge, Ms and V are the
saturation magnetization and volume of the free layer respectively. IDC is the electric
current and is defined positive when the electrons flow from the free to the polarizer
layer. g (θ) is a function that depends on the specific model taken for the STT. A brief
summary of the main models that can be found in literature an their respective g (θ)
functions is given in Table 1.1.
In this chapter it is assumed that β⊥ (θ) is proportional to β‖ (θ) [13] by a factor ν:

β⊥ (θ) = νβ‖ (θ) .

Then, the LLGS equation can be rewritten in the following form:

ṁ = −γ∗m×
[
He − α

γ∗
ṁ− β‖ (θ) (m× p+νp)

]
(1.2)

It is worth mentioning that up to date, no analytical solutions of m(t) have been found
for the LLGS equation, even in the case of non-angular dependence of β‖ (θ).
Nonetheless, it is not necessary to solve directly the LLGS to obtain a full picture of m
dynamics. Instead, the strategy here is to find the set of equilibrium states of m, and
the dynamics of the perturbations around them. But first, the next two sections detail
the systems of reference employed for the calculations as well as the derivation of He.
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1.2.1 Systems of Reference

It is convenient to define two systems of reference:

• The standard or experimental system of reference: In this system the z axis is
perpendicular to the film’s plane and the x axis points along the easy axis of the
nanostructure, as shown in Fig. 1.3.

• The moving system of reference. In this system the Z points in the same direction
than m and the X lies on the film’s plane, as shown in Fig. 1.4. The cartesian
axes in this system of reference will be denoted capital letters (X,Y,Z) in order to
avoid confusions.

The standard system of reference is more easily seen in the experimental configuration
and is better to find the equilibrium states of m. On the other hand, the moving system
of reference is more convenient for the analysis of the dynamics.

  

short axis
long axis

Polarizer FM layer

Spacer

Free FM layer

Figure 1.3: Geometry of the nanopillar and the cartesian axes of the standard system of
reference considered in the theory.
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short axis
long axis

Polarizer FM layer

Spacer

Free FM layer

Figure 1.4: Geometry of the moving system of reference considered in the theory.

From Fig. 1.3, the components of m, p and the applied magnetic field H in the
standard system of reference are:

mx = cos (φ) cos (ϕ) ,

my = cos (φ) sin (ϕ) ,

mz = sin (φ) ,

Hx = H cos (φH) cos (ϕH) ,

Hy = H cos (φH) sin (ϕH) ,

Hz = H sin (φH) ,

px = cos (φp) cos (ϕp) ,

py = cos (φp) sin (ϕp) ,

pz = sin (φp) . (1.3)

The components of H and p in the moving system of reference are obtained by applying
successively the rotation matrices respect to z and x axis: Rz [−π/2− ϕ],
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Rx [−π/2 + φ] on (mx,my,mz), where the rotation matrices are:

Rx [Ω] =

 1 0 0
0 cos Ω − sin Ω
0 sin Ω cos Ω

 ; Rz =

 cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

 .

Therefore:

mX = mY = 0,

mZ = 1,

HX = −H (cosφH sin (ϕ− ϕH)) ,

HY = −H (cosφH cos (ϕ− ϕH) sinφ+ cosφ sinφH) ,

HZ = H (cosφ cosφH cos (ϕ− ϕH) + sinφ sinφH) ,

pX = − cosφp sin (ϕ− ϕp) ,
pY = − cosφp cos (ϕ− ϕp) sinφ+ cosφ sinφp,

pZ = cosφ cosφp cos (ϕ− ϕp) + sinφ sinφp = cos θ. (1.4)

1.2.2 Effective field

The effective field He accounts for the conservative fields interacting with m 1. He is
equal to the derivative of the total magnetic energyper unit of volume ε , respect to the
magnetization:

He = − 1

µ0Ms

δε

δm
,

where ε is the sum of the energies arising from the mechanisms listed below:

Zeeman energy

The Zeeman energy arises from the interaction of a magnetized body with the external
magnetic field H:

εH = −µ0Ms (Hxmx +Hymy +Hzmz) (1.5)

Magnetostatic Energy

This term is generated by the bound magnetic charges that appear on the surface of a
FM. For bodies of ellipsoidal shape, the energy may be put in terms of the
demagnetizing factors Nx, Ny, and Nz:

εM =
µ0M

2
s

2

(
Nxm

2
x +Nym

2
y +Nzm

2
z

)
, (1.6)

where Ms is the saturation magnetization and µ0 is the vacuum permeability. D is the
demagnetizing tensor:

D =

 Nx 0 0
0 Ny 0
0 0 Nz

 . (1.7)

1In fact the FL-STT is also conservative, however, is convenient to put all the current-dependent terms
apart from He
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Thin films may be approximated by an ellipsoid of infinite lateral dimensions, in that
case Nx = Ny = 0 and Nz = 1. In the case of an elliptical cylinder like the free layer of
the nanostructure shown in Fig. 1.3, the demagnetizing factors have been obtained
explicitly in the work of Beleggia et al. [17].
By convention, the standard system of reference is chosen to have ±x as the in-plane
spontaneous magnetization axis also called easy axis. Therefore Nx will always be
smaller than Ny and Nz and will be along the long axis of the body.

Magnetocrystalline Anisotropy

These terms may arise from the symmetries of the crystalline grid of a FM. In this work
2 types of magnetocrystalline anisotropies are considered:

• In plane uniaxial magnetic anisotropy (IPA) IPA promotes m along the ±x
axis. The corresponding energy term is:

εu = −1

2
µ0MsHum

2
x (1.8)

where Hu is the magnitude of the IPA field. Notice that this term is analogous to
the Nx term in Eq. 1.6, so the effect of IPA without shape anisotropy, can be
obtained by making the change:

Nx → −
Hu

Ms

,

and set Ny = 0, Nz = 1. In this work the results are presented in terms of the
demagnetizing factors. If the reader wants to apply the results to a thin film or
nanostructure with IPA, the above mentioned transformations must to be carried
out.

• Perpendicular magnetic anisotropy (PMA) PMA promotes m along the ±z
axis. The corresponding energy term is:

εs = −1

2
µ0MsHsm

2
z. (1.9)

where Hs is the magnitude of the PMA field. In thin films, this term will compete
against the demagnetizing field and may eventually overcome it, making the
magnetization to point spontaneously out of plane, in such case we say that the
films has net PMA. A more detailed discussion about the origin and examples of
perpendicular magnetic anisotropy will be given in chapter 4.

Total energy density

Now we have and the complete set of energy terms and thus we can get the effective
field:

He = − δ

δm
(εH + εM + εu + εs) =

H−MsNxmxx̂−MsNyŷ +Meffmzẑ (1.10)
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were:
Meff = Hs −MsNz

Meff stands for the effective magnetization. If Meff < 0 the FM has net PMA.

1.2.3 Stationary solutions of the LLGS equation

Since at this point all the terms of Eq. 1.1 have been derived as well as the systems of
reference, now the calculation of the equilibrium states of the LLGS equation in the
standard system of reference is carried out. To start with, the β‖ dependence on θ is
neglected, and ṁ is taken as null:

0 = −γ∗m×
(
He − β‖ (m× p+νp)

)
. (1.11)

To satisfy the above equation the quantity inside the parenthesis has to be parallel to m:

He − β‖ (m× p+νp) = λm, (1.12)

where λ is a still undetermined constant. The terms of He that are linear on the
components of m are grouped in the left side:

L ·m = −H+νβ‖p, (1.13)

where L is the matrix:

L =

 −MsNx − λ −pzβ‖ pyβ‖
pzβ‖ −MsNy − λ −pxβ‖
−pyβ‖ pxβ‖ −Meff − λ

 .

The set of equations implicit in Eq. 1.11 can be solved readily with the Crammer’s rule:

mx =
det L1

det L
; my =

det L2

det L
; mz =

det L3

det L
, (1.14)

where Lj is the result of replacing the j-column of the matrix L by the vector
−H+νβ‖p. Then by applying the normalization condition:

m2
x +m2

y +m2
z = 1, (1.15)

it is obtained a polynomial equation of degree 6 (or sextic equation) in λ with up to six
real solutions. In summary, the vectorial Eq. 1.11 was transformed into a polynomial
equation of one variable: λ. According to the Abel-Ruffini theorem [18], the sextic
equation can not be, in general, solved algebraically , and hence analytic solutions are
not always available. Therefore, Eq. 1.15 was solved numerically using the internal
Wolfram Mathematica software root-finding algorithms. Once the set of real solutions
for λ are obtained, each one is replaced in the set of Eqs. 1.14 to obtain the
corresponding set of equilibrium states of m.
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Adding θ dependence

Finally, to obtain a even better estimation of the solutions of Eq. 1.11, the dependence
on θ is included. This is done by an iterative method: once the set of equilibrium for m
have been obtained by the above described method, new values of β‖ are calculated and
process is repeated again with this new values. This iterative process is stopped when
the difference between the successive values of β‖ is less than 10−4%. A set of many
starting values of θ are taken in each calculation, chosen randomly between 0 and 2π.

1.2.4 Dynamical behavior of equilibrium solutions

Once the set of equilibrium orientations of the magnetization meq
i have been obtained,

the stability of each one is determined by analyzing the dynamics of perturbations on
them. To start with, Eq. (1.1) is put in terms of perturbative magnetization unit vector
mp, perturbative effective field Hep and perturbative IP-STT field βp

‖ :

ṁp = −γ∗mp ×
[
Hep − α

γ∗
ṁp − βp

‖ (mp×p+νp)

]
, (1.16)

were:
mp = mXŶ +mY Ŷ +

(
1−m2

X −m2
Y

)
Ẑ. (1.17)

mX,Y accounts for the small time-dependent deviations of mp respect to the equilibrium
orientation.βp

‖ is obtained expanding up to first order in mX and mY :

βp
‖ (θ) ≈ b [g (pZ) + g1 (pZ) (mXpX +mY pY )] (1.18)

were g and g1 are specified in table (1.1). Notice that pZ = cos θ, where θ is the relative
angle between p and m.
Hep is obtained by first getting the components of mp in the standard system of
reference (mp

x,y,z) as function of the ones from the moving system of reference (mX,Y ).
The later was carried out by applying successively the rotation matrices Rx [π/2− φ]
and Rz [π/2 + ϕ] on the vector (mX ,mY , 1):

mp
x = cos (ϕ) (cosφ−mY sinφ)−mX sinφ,

mp
y = mX cosϕ+ (cosφ−mY sinφ) sinϕ,

mp
Z

= mY cos (φ) + sinφ. (1.19)

Then, He from Eq. 1.10 is put in terms of mX,Y using the set of Eqs. 1.19, to finally
apply the successive rotation matrices Rz [−π/2− ϕ] , Rx [−π/2 + φ] on it:

Hep = Rx

[
−π

2
+ φ
]
·Rz

[
−π

2
− ϕ

]
·He (1.20)
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explicitly:

Hep
x = (MsNxm

p
x −H cosφH cosϕH) sinϕ+ cosϕ

(
−MsNym

p
y +H cosφH sinϕH

)
,

Hep
y = sinφ

[
cosϕ (MsNxm

p
x −H cosφH cosϕH) + sinϕ

(
µ0MsNym

p
y −H cosφH sinϕH

)]
+

cosφ (−Meffm
p
z +H sinφH) ,

Hep
z = cosφ

[
H cosϕ cosφH cosϕH −Ms

(
Nxm

p
x cosϕ+Nym

p
y sinϕ

)
+H cosφH sinϕ sinϕH

]
+ sinφ (−Meffm

p
z +H sinφH) . (1.21)

Finally inserting Eqs. 1.21, 1.18 and 1.17 into 1.16 and solving for ṁX,Y , the following
set of equations is obtained:

ṁX = A11mX + A12mY .

ṁY = A21mX + A22mY , (1.22)

where:

A11 = γ∗ [−HXY − αHXX+

bIDC (pZg (pZ) (1 + αν)− pXg1 (pZ) (pX (1 + αν) + pY (ν − α)))] ,

A12 = γ∗ [−HY Y − αHXY−
bIDC (pZg (pZ) (α− ν) + pY g1 (pZ) (pX (1 + αν) + pY (ν − α)))] ,

A21 = γ∗ [HXX − αHXY−
bIDC (pZg (pZ) (ν − α) + pXg1 (pZ) (pY (1 + αν) + pX (α− ν)))] ,

A22 = γ∗ [HXY − αHY Y +

bIDC (−pZg (pZ) (1 + αν)− pY g1 (pZ) (pY (1 + αν) + pX (α− ν)))] , (1.23)

with:

HXX = HZ −Meff sin2 φ+

Ms

[
Ny + (Nx −Ny) sin2 ϕ− cos2 φ

(
Nx cos2 ϕ+Ny sin2 ϕ

)]
,

HXY = HY X = Ms (Nx −Ny) sinφ sin (2ϕ) ,

HY Y = HZ + cos (2φ)Meff −
Ms cos (2φ)

2
[Nx +Ny + (Nx −Ny) cos (2ϕ)] . (1.24)

Terms of order higher than one in mX,Y have been neglected as well as terms
proportional to α2. The set of Eqs. 1.22 may be written in the matrixial form:

ṁ = A ·m

The eigenvalues of A evaluated at each meq
i determine whether the equilibrium point is

stable or not: if the real part of both eigenvalues is negative, meq
i will be stable, in any

other case will be unstable. The two eigenvalues of A can be obtained straightforwardly:

λ± =
1

2

(
A11 + A22 ±

√
(A11 − A22)2 + 4A12A21

)
(1.25)
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Apart from the stability, the real and imaginary parts of λ± give out qualitative
description of the trajectory described by m when approaching to (distancing from)
stable (unstable) equilibrium points in the unitary sphere that represents the domain of
m, as is shown in Fig. 1.5. There are two groups of cases:

• (A11 − A22)2 + 4A12A21 > 0: λ+ and λ− have null imaginary and different real
part. The trajectory described by m is in quite direct. Those points are denoted
as “nodes”, as shown in Fig. 1.5(a)

• (A11 − A22)2 + 4A12A21 < 0: λ+ and λ− have not null imaginary part and the
same real part is given by:

Re[λ±] =
1

2
(A11 + A22) . (1.26)

Also, the magnitude of the imaginary part of the two eigenvalues is the same and
given by:

|Im[λ±]| = 1

2

√
(A11 − A22)2 + 4A12A21.

The trajectory described by m in the unitary sphere is in spiral, as shown in Fig.
1.5(b). In this case, |Im[λ±]| corresponds to the angular velocity of the spiral.
Notice that FMR can be considered as the case in which m follows a spiral
trajectory towards a stable equilibrium point, however, a source of energy prevents
m from reach it, making him to orbit perpetually that point. Therefore, one can
infer that |Im[λ±]| evaluated at α = IDC = 0 (i.e. excluding damping and
anti-damping mechanisms), is the natural frequency of oscillation ωN . As in other
physical systems ωN is very close, but not equal, to the resonance frequency ωR.
The exact value of ωR will be obtained in chapter 2.

1.3 Application: self-oscillations in magnetic tunnel

junctions

In order to illustrate the theory exposed above, we have studied the magnetization
dynamics of a typical spintronics device: a MTJ under the action of a spin polarized
current and no external magnetic field. The absence of the magnetic field is interesting
since is more desirable condition to real application devices[19].
In this type of MTJs is common that the free and polarizer layer are of CoFeB alloy
whereas the spacer is MgO. The following parameters for the MTJ free layer are taken:
Ms = 1.1 × 106A/m, α = 0.01, µ0Hu = 0.01 T, P = 0.57, ν = −0.1, thickness d = 1.6
nm and a junction area A = π × 150nm× 70nm. These values were taken from an
elliptical cross-section MTJ studied in reference [19], with exception of Hs wich was
modified in order to better expose the results: µ0Hs = 1.58 T. Therefore the free layer
has a small but significant net PMA: µ0Meff=-0.2 T. The demagnetizing factors were set
to equal to the ones from an infinite thin film: Nx = Ny = 0; Nz = 1. Nonetheless,
notice that the shape anisotropy have been included by the finite value of the in-plane
anisotropy field Hu
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Figure 1.5: Qualitative sketch of the possible trajectories of m close to an equilibrium
point in the unitary sphere, and their dependence on the complex eigenvalues of A matrix
.
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Figure 1.6: Simulations of m trajectory (blue) at the proximity of the N equilibrium
point of the unitary sphere, for a MTJ nanostructure under zero applied field. In (a) the
oscillations are around the stable N point and are induced by an oscillating magnetic field:
hRF = 0.25 mT; ω = 5.6 GHz, where ω was set at the natural frequency of oscillation.
In (b) steady state oscillations appear spontaneously around the unstable N point. The
starting point of m in both cases is set at φ = 81◦; ϕ = 0◦.

Emergence of steady self-oscillations

In the zero current case, there are six possible equilibrium states meq
i , as shown in Fig.

1.6 plotted as points on a unitary sphere. Among them, only the two ones out of the
plane are stable, namely the N and S points. Therefore, independently of the initial
orientation of m, it will end up at one of those two stable points. One can check from
Eqs.1.23 and 1.24 that (A11 − A22)2 + 4A12A21 evaluated at both N or S points is
negative, so the real part of both λ+ and λ− will be given by the expression 1.26 which
corresponds to the case shown Fig. 1.5(b). Since A11 + A22 < 0, the stability of N and S
points is confirmed.
If p is kept at φp=0◦ and IDC is increased, the equilibrium points S and N do not change
their position in the unitary sphere. However A11 + A22, increases with IDC, passing
from negative values at IDC = 0 to positive values at certain critical value IcDC. For
I > IcDC there will not longer be stable equilibrium points on the unitary sphere, since
the other 4 equilibrium points maintain their unstability.
One may think that in this case the orbit of m on unitary sphere turns chaotic, however,
chaos is precluded in dynamic systems with two degrees of freedom by the
Poincare-Bendixson theorem [20]. What really happens is that the orbit of m end up in
a steady state oscillations (SSO) regime around one of the unstable points of the unitary
sphere, as shown in Fig. 1.6(b).
The value of IcDC can be derived from Eq. 1.26 by solving:

A11 + A22 = 0.
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After some algebra:

Ic
DC =

2αqeMsV

(1 + αν)~|g1(0)|

(
|µ0Meff| −

Hu

2

)
. (1.27)

To better visualize the results, numerical simulations of m trajectory on the unitary
sphere are shown in Fig. 1.6. The value of IDC was set at 0.7 mA (slightly above
IcDC = 0.63 mA). In the simulations m initially approaches the N point, and then starts
to orbit perpetually around it (see Fig. 1.6(b)). Notice that the SSO regime is
completely analogous to conventional FMR: the same simulation was carried out with
IDC = 0 and including a oscillating perturbative extra magnetic field. The result is
shown in Fig. 1.6(a): m describes an orbit around the stable N point.
A main outcome of this work is the demonstration of the impossibility to generate SSO
with zero external magnetic field with g1 null i.e without angular dependence of IP-STT.
This can be concluded from 1.27: if β‖ were not dependent on θ, g1 would be zero and
hence Ic

DC diverges. This conclusion have been also presented in the references [21] and
[22]. In those works the existence of SSOs at zero external field was attributed to a
special “wavy angular dependence” of STT. In contrast, this work it has demonstrated
that is a general consequence for of any type of β‖ dependence on θ.
Experimentally SSOs can be detected through the oscillatory changes on the
magnetoresistance on SVs or MTJs ,this subject will be treated in more detail in
chapter2. The technological importance of the SSOs comes from the fact that is a new
way to produce microwave oscillating electric signals from a non-oscillatory source: the
DC current.

1.3.1 Stability phase diagrams

The results shown in the precedent sections were illustrative examples for fixed values of
p and IDC. A very general picture of the dynamics of the system can be seen in the
stability phase diagram (Fig. 1.7(a)) in which φp and the current density J vary
continuously from 0 to 15 and 0 to 2×1011A/m. The phase stability diagram identifies
the cases where two states are stable (lighter color in zone I and III), only one state is
stable (intermediate color in zones II, V and VI) and all states are unstable (darker color
in zone IV). In zone I, the orientations of m toward N and S are stable and therefore the
magnetization can end up in any of them depending on its initial condition. In zone II
only the orientation towards S (or N) is stable if φp > 0 (φp < 0). In zone III, again two
stable equatorial states appear, where one of them lies in the plane (G1 for φp > 0 and
G2 for φp < 0) and the other one is located in S (N) for φp > 0 (φp < 0). For the area
VI, only the orientation towards S (N) is stable if φp > 0 (φp < 0), since the point G1

(G2) is not an equilibrium state anymore. In zone V only the in-plane state remains
stable (point G1 or G2), while in zone IV all states are unstable and hence OSSs are
expected [20]. Besides, notice that there is a small asymmetry in the phase diagram
regarding the change in sign of φp, which is originated by the FL-STT.
It’s worth mentioning that OSSs can exist outside of zone IV as well, namely the
coexistence of both a stable equilibrium and OSSs. Nevertheless, OSSs inside the zone
IV are independent of the initial condition m(t = 0), whereas that the coexisting of
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Figure 1.7: Phase stability diagram. The color identifies the following cases: two states
are stable (lighter color in zone I and III), only one state is stable (intermediate color
in zones II, V, and VI), and all states are unstable (darker color in zone IV). (b)-(e)
represent magnetization orbits solved for some points (φp, J) of zones I-IV. The point(
0, JNS

)
shows local destabilization of both N and S. (f) and (g) depict m components

as a function of t/T, with T=328 ns.
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OSSs with a stable equilibrium point depends on the initial condition, since whether
m(t = 0) is close to stable equilibrium point m will reach such state.
To corroborate the analytical results, the LLGS equation has been solved numerically, as
illustrated in Figs. 1.7(b)–(g), where the orbits of m are shown. The initial condition of
m (red lighter arrow) is arbitrarily chosen as φ(t = 0) = 10◦ and ϕ(t = 0) = 45◦. The
equilibrium states are shown by means of yellow circles and green squares for stable and
unstable states, respectively. In Fig. 1.7(b) all states are unstable, hence the
magnetization reaches the OSSs regime. m components are plotted in Figs. 1.7(f)–(g)
in order to see clearly the oscillating steady-states. In zone V, the magnetization reaches
the point G1 and OSSs states are not feasible (not shown). Overall, analytical results
are in very good agreement with the numerical ones. It has been shown that at pZ = 0 a
destabilization of all equilibrium states is feasible and its range is limited by
simultaneous stabilization of in-plane points G1 and G2 (and also by simultaneous
stabilization of N and S). Furthermore, when pZ 6= 0 the OSSs zone increases up to
reach the point where both the stabilization of N and G2 (or S and G1) occurs
simultaneously and again the broadening of IV is limited.

1.4 Summary

I have developed a model that allows to find the equilibrium states an of the
magnetization of the free layer in nanostructures type spin valve or magnetic tunnel
junction, subjected to spin polarized currents, as well as the stability of those states .
The advantage of the model developed in this work, with respect to previous ones, is its
completeness and generality: all the fixed points and their stabilities are found for any
value of the experimental parameters. This information let us to build very
comprehensive phase diagrams like the example of the Fig. 1.7. Much of the previous
works have consider only certain orientations of the polarizer or take into account only
two of the fixed points [22–24]
Moreover, in our work the angular dependence of β‖ is included. This contrast with
other works in which similar phase diagrams were calculated [23]. Although this may
not have significant effect in the position of the fixed points, has enormous influence on
their stability and should never be excluded. A summary of the main outcomes of the
work presented in this chapter have been published in reference [25], in collaboration
with Rodolfo Gallardo and Pedro Landeros.
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Chapter 2

Voltage controlled perpendicular
magnetic anisotropy

2.1 Introduction

In chapter 1 it was shown how spin polarized currents can be employed to manipulate
the magnetization on single domain FMs. Despite the important advances in this
subject, there is still a problem to overcome: the high current density needed to
manipulate the magnetization. A promising alternative to solve this issue is to use
voltages instead of currents to manipulate the magnetization. During the last years it
has been demonstrated theoretically [26–28] and experimentally [29] that is possible to
modify the magnitude and of the interfacial PMA between a ferromagnetic metal and an
oxide by the application of a electric field across the structure. A qualitative description
of this phenomenon is shown in Figure 2.1: let’s suppose that we have a MTJ structure
like the one depicted on Figure 2.1 with significant PMA. Under 0 applied voltage, the
equilibrium magnetization is pointing in some angle φp between the film’s plane and the
normal. If we then apply a voltage across the MTJ, there will be charge accumulation
on the interface between the free layer and the insulator. This charge accumulation will
modify the occupation of the Fermi levels at interface, and consequently the interfacial
electronic states that give origin to the PMA. The magnitude of the PMA is thus
modified and φp increases or decreases depending on the sign of the voltage. This effect
has been called Voltage Controlled Magnetic Anisotropy (VCMA). The work of Wang et
al.[30] demonstrated that the effect may be strong enough to switch the magnetization
of the ferromagnet by the application of a voltage. Ndo et al. [31] verified the VCMA
effect in the Co40Fe40B20/MgO junctions. This is interesting since this combination of
materials have also been widely employed on STT devices. Therefore, provided that the
lateral dimensions of a MTJ nanopillar are nanometric, the application of a voltage
would produce simultaneously both VCMA and STT effects. Regarding this, it is worth
to note that if we apply an oscillating voltage across a MTJ like the one shown on
Figure 2.1, it would induce FMR through the VCMA, STT or both effects, in the same
way of any other oscillating parameter in the LLGS equation would do.
In this respect the theoretical-experimental work of Zhu et al. [13] was the first in
demonstrating the coexistence of VCMA and STT in electrically induced FMR at MTJ.
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Figure 2.1: Voltage Controlled Magnetic Anisotropy (VCMA) in a magnetic tunnel junc-
tion (MTJ): the charges accumulated at the interface between the free layer and the
insulator (blue dashed rectangle) modify the interfacial electronic states, resulting in a
change of the perpendicular magnetic anisotropy (PMA).

However their theoretical results were done only with simulations and consequently have
a lack of generality.
This work has been motivated in great measure by the above mentioned work of Zhu et
al. [13], and is aimed to fulfill such lack of generality by developing a comprehensive and
analytical model to distinguish and quantify VCMA and STT effects through FMR
experiments in MTJ nanopillars. To start with, we have to explain how FMR is
detected in nanostructures by means of the Spin rectification effect.

2.2 Spin Rectification Effect

The microwave currents driving the magnetization dynamics in SVs or a MTJs can
couple with the same magnetization dynamics that the are generating leading to the
appearance of a DC voltage across the device, this effect, known as the spin rectification
effect (SRE), enables the FMR to be electrically detected in structures much smaller
than available by conventional detection. The SRE was first observed by Tulapurkar et
al.[32] and since then has been extensively used to study the magnetization dynamics in
nanostructures.
A conceptual depiction of the SRE is shown in figure 2.2. The precession of m gives rise
to periodic changes in the TMR from low (2.2(a)) to high resistance states (2.2(a)).
Now, let’s suppose that the microwave current is negative in the first half of the cycle
and positive in the second half. The time average of the voltage will be different from
zero, because for equal magnitude of the microwave current , the resistance in the first
half of the cycle is lower than in the second one. This voltage will be proportional to the
amplitude of the oscillations of m and hence will be maximum at the resonance
frequency.
In the following section we will theoretically derive the lineshape of the FMR spectrum
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(a) Low Resistance (b) High Resistance

Figure 2.2: Spin Rectification Effect (SRE): during the first half of the oscillation cycle
(a), the electric current is negative, and positive during the second half (b). Although the
time average of the electric current is zero, the voltage is not: in the first part of the cycle
the resistance is lower due to the m · p dependence of the tunnel magnetoresistance. The
time average of the voltage reflects the amplitude of m oscillations

around the resonance frequency and show how this can be used to the quantification of
the magnitude of the spin torque vector and the recently discovered VCMA effect.

2.3 Rectified DC voltage across a MTJ

The typical experimental setup [33–35] to detect FMR electrically is depicted in figure
2.3. A microwave current IRF (t) and a DC current IDC are injected simultaneously into
the sample through a bias tee. The temporal average of voltage 〈V 〉 across the sample
can be detected with a nanovoltmeter or alternatively by a lock-in amplifier in order to
improve the signal-to-noise ratio. In the later case the microwave generator must
modulate the microwave current to a low frequency (hundreds of Hz), which is taken as
reference by the lock-in amplifier. 〈V 〉, will depend on the total current I (t) flowing
through the MTJ and its electrical resistance R [t] , which in turn depends directly on
relative angle θ (t) between m and p. It is assumed that I (t) = IDC + IRF (t) and
θ (t) = θ0 + δθ (t), where IRF (t) and δθ (t) are the time-dependent perturbations on IDC
and θ0: the equilibrium values of those quantities.
A good approximation of 〈V 〉 is obtained expanding it up to second order:

〈V 〉 =

〈
V (IDC , θ0) +

∂V

∂θ

∣∣∣
θ0
δθ (t) +

∂V

∂I

∣∣∣
IDC

IRF (t) +
1

2

∂2V

∂I2

∣∣∣
IDC

IRF (t)2 +

∂2V

∂I∂θ

∣∣∣
IDC ,θ0

IRF (t) δθ (t) +
1

2

∂2V

∂θ2

∣∣∣
θ0
δθ (t)2

〉
(2.1)
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Figure 2.3: Experimental set-up of electrically detected FMR

The relevant part is only on the time average of the perturbative part of the voltage,
namely the rectified voltage δV . Then, the equilibrium component V (IDC , θ0) will be
disregarded in the following. Moreover, since δθ (t) and IRF (t) have a periodic time
dependence, both second and third terms averages zero. Then:

δV =
1

2

∂2V

∂I2

∣∣∣
IDC

〈
IRF (t)2〉+

∂2V

∂I∂θ

∣∣∣
IDC ,θ0

〈IRF (t) δθ (t)〉+
1

2

∂2V

∂θ2

∣∣∣
θ0

〈
δθ (t)2〉 (2.2)

The first term arises from the non-linearity of the I-V curve and gives rise to
non-resonant background in δV [36]. Second and third terms are the most relevant: they
are proportional to the amplitude of the precession of m and hence are key to detect the
FMR. In the following, it will be assumed that the non-resonant background has been
conveniently subtracted in the analysis of the experimental data.
The following expression for the voltage is considered:

V = R (I, θ) I

where R is the tunnel magnetoresistance. Recalculating 2.2:

δV =

((
∂2R

∂θ∂I

∣∣∣
IDC ,θ0

)
IDC +

∂R

∂θ

∣∣∣
θ0

)
〈IRF (t) δθ (t)〉+

1

2
IDC

(
∂2R

∂θ2

∣∣∣
θ0

)〈
δθ (t)2〉
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The term proportional to IDC within the first term of δV , is expected to be small
respect to the second one [37] and hence is neglected. This is as a consequence of the
relatively weak dependence of R (I, θ) on I.
Respect to the last term of δV , although may be important in anisotropic
magnetoresistance experiments [38], it has been argued that is not relevant in the SRE
unless IDC � IRF [36]. A further demonstration of the latter assumption, is the fact that
in reported SRE experiments δV does not follow a linear relationship with IDC . Finally:

δV =

(
∂R

∂θ

∣∣∣
θ0

)
〈IRF (t) δθ (t)〉 (2.3)

For the TMR, the Slonczewsky [39] expression is assumed:

R =
R0

1 + P 2 cos θ
. (2.4)

Where P is the polarization factor, and R0 is the electrical resistance at θ = π/2. Also
IRF (t) = I0

RF cos (ωt) with I0
RF and ω are the amplitude and frequency of the microwave

current, respectively. Then:

δV =
R0P

2 sin θ0I
0
RF

(1 + P 2 cos θ0)2 〈cos (ωt) δθ (t)〉 . (2.5)

Since δθ (t) is a perturbation, it can be put in terms of the components of the perturbed
m in the moving system of reference: mp, already employed in the stability analysis of
the chapter 1. Expanding δθ (t) up to first order:

θ (t) = arccos (mp · p) = arccos (mX (t) pX +mY (t) pY + cos θ0) (2.6)

≈ θ0 −
mX (t) pX +mY (t) pY

sin θ0

, (2.7)

then:

δθ (t) = −mX (t) pX +mY (t) pY
sin θ0

(2.8)

Replacing in 2.5 :

δV =
R0P

2I0
RF

(1 + P 2 cos θ0)2 〈− cos (ωt) (mX (t) pX +mY (t) pY )〉

At this point is convenient to define a new function to distinguish the ω-dependent part
of δV from the scaling prefactor. This function corresponds to the double of the time
average inside the angle brackets, is adimensional, and defines the “lineshape” of the
FMR response:

LS (ω) = 〈−2 cos (ωt) (mX (t) pX +mY (t) pY )〉 .
Replacing this in Eq. 2.5:

δV =
R0P

2 sin θ0I
0
RF

2 (1 + P 2 cos θ0)2LS (ω)

The following subsection is about the derivation of mX,Y (t) in order to get LS (ω).
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2.3.1 Obtaining m(t)

We look for stationary solutions for the perturbations mX,Y (t) in the magnetization
using the LLGS equation as the starting point:

ṁ = −γ∗m×
[
He − α

γ∗
ṁ− β‖m× p−β⊥p

]
(2.9)

In chapter 1 the magnitude of FL-STT was assumed proportional to the IP-STT by a
constant: β⊥ = νβ‖. Notice that the objective in that case was to build phase-diagrams
assuming a specific model for the STT vector. In this chapter the scenario is different:
we want to provide a model to get β‖ and β⊥ directly from the experiment, so it is not
assumed a priori any particular relationship between them.
For the clarity of the results presented in this chapter, it is convenient put LLGS in
terms of the spin torque efficiency. The STT efficiency for each component is defined by:

β′‖ =
dβ

dI

β′⊥ =
dβ

dI

So, the LLGS equation is rewritten:

ṁ = −γ∗m×
[
He − α

γ∗
ṁ− I (t)

(
β′‖m× p+β′⊥p

)]
(2.10)

The following replacements should be made:

m = mX (t) X̂ +mY (t) Ŷ + Ẑ

I (t)→ IDC + I0
RF cos (ωt) (2.11)

The oscillating current injected into the MTJ, simultaneously excites both VCMA and
STT dynamically. The effect on the STT is simply to vary the magnitudes of β‖ and β⊥
periodically. The case of the VCMA effect is somewhat different, since is proportional to
the voltage instead of the current. The voltage that is generating the microwave current
has the same frequency ω, but in principle, not the same phase because of the capacitive
component of the MTJ. This voltage will make a periodic modulation of the PMA field:

Hs (t) = H0
s −

dHs

dV

(
VDC + V 0

RF cos (ωt+ ∆)
)

(2.12)

Where H0
s is the magnitude of the unperturbed PMA field, VDC and V 0

RF are the DC
component and the amplitude of the microwave voltage respectively. dHs/dV is the
efficiency of the VCMA effect. Respect to its sign, it has been found that H⊥ increases
when the free FM layer is charged positively [13, 34], so dHs/dV is positive in the the
above expression. Moreover, in the work of Zhu et al. [13, 34], it was found that
dHs/dV is pretty constant over the full range of voltages employed. ∆ is the phase shift
between the microwave current and voltage across the MTJ. A circuit analysis must be
done in order to get ∆. The current flow through the MTJ can be treated like the
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leakage current of a two paralel plates capacitor [40] . Therefore, the complex
impedance to this current is the same as in a parallel RC circuit:

Z =
R

1 + iωRC

Where C is the capacitance. Considering that the typical MTJs have lateral dimensions
are tens of nm and spacer thickness is less than 2 nm, therefore, their capacitance can
be approximated as the corresponding to an infinite parallel plates capacitor: C = Aε/d.
Since A ∼ 10−14 m , d ∼ 10−9m and ε for MgO is around ten times the vacuum
permittvity [41] (ε0 = 8.85× 10−12 Fm−1), it comes out that C falls in the sub 10−15F
range. The product ωRC then results to be a few mΩ, which is five orders of magnitude
below typical R[θ] values. Therefore, it is safe to assume that Z = R[θ] and that the
microwave current and voltage are in phase i.e. ∆ = 0. Rewriting equation in terms of
current:

Hs = H0
s − β′V

(
IDC + I0

RF exp (iωt)
)

(2.13)

where:

β′V =
dHs

dI
=

1

R

dHs

dV

β′V is the current efficiency of the VCMA effect and has the same units than β′‖ and β′⊥.
Turning back to the specification of the components of equation 2.10, notice that he
inclusion of the VCMA results in a change of the perturbed effective field respect to the
given in equation 1.10, so the following replacement is made:

He → He − β′V
(
IDC + I0

RF exp (iωt)
)
mZ ẑ.

The above is written for the standard system of reference. The corresponding
replacement in the moving system of reference is:

He → He − β′V (IDC + IRF cos (ωt)) (mY (t) cosφ+ sinφ)
(

cosφŶ + sinφẐ
)
, (2.14)

where the transformation was carried out following the procedures exposed in chapter 2.
At this point, all the terms of equation 2.10 have been specified. The stationary
solutions of mX,Y (t) are obtained assuming they will end up oscillating at the same
frequency ω of the microwave current:

mX (t) = m0
X exp (iωt) ,

my (t) = m0
Y exp (iωt) (2.15)

where m0
X,Y are complex quantities whose imaginary part reflects the phase difference

between the magnetization dynamics and the microwave current.
After making the replacements indicated in equations 2.11, 2.14 and 2.15 in 2.10 and
linearizing, taking m0

X,Y and I0
RF as perturbations, the following set of equations are

obtained:

(J11 − iω)m0
X + (J12 − iαω)m0

Y = TX (2.16)

(J21 + iαω)m0
X + (J22 − iω)m0

Y = TY (2.17)
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where α2 has been taken as 0, and

J11 = −γ∗
(
HXY − IDCβ′‖ cos θ0

)
J12 = −γ∗ (HY Y + IDC (β′⊥ cos θ0 − β′V cos (2φ)))

J21 = γ∗
(
HXX − IDC

(
β′⊥ cos θ0 + β′V sin2 φ

))
J22 = γ∗

(
HXY + IDCβ

′
‖ cos θ0

)
TX = γ∗I0

RF

[
β′‖pX + β′⊥pY −

β′V
2

sin (2φ)

]
TY = γ∗I0

RF

(
β′⊥pX − β′‖pY

)
(2.18)

The values of, HXX , HXY and HZZ , as well as the components of the vector p in the
moving system of reference, were already given in chapter 1 and were not modified here.
Notice that the terms TX and TY , are both proportional to I0

RF ,thus reflecting the
excitation input into the system.
It is worth noting that the terms derived from the angular dependence of the STT, i.e.
the terms proportional to g1, are not present in equations 2.18 . Although it was
demonstrated in chapter 1 that those terms are fundamental for the correct analysis of
the stability of fixed points, they are not relevant for the results of this chapter and have
been omitted. This was carefully verified by also carrying out all the upcoming
calculations but also including the terms proportional to g1: the results presented only
second order corrections respect to the presented here.
The equation (2.11) can be put in terms of a matrixial equation for the components of
m0
⊥:

J′ ·m0
⊥ = T⊥, (2.19)

with

J′ =

(
J11 − iω J12 − iαω
J21 + iαω J22 − iω

)
, (2.20)

m0
⊥ =

(
m0
X

m0
Y

)
, (2.21)

T⊥ =

(
TX
TY

)
. (2.22)

The system of Equations (2.19) can be solved directly using Cramer’s rule:(
m0
X

m0
Y

)
=

1

− det J′
×
(
−J22TX + J12TY + i (TX − TY α)ω
J21TX − J11TY + i (TXα + TY )ω

)
(2.23)

where det J′ is
− det J′ = ω2 − ω2

R − iλω,
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and

ω2
R = J11J22 − J12J21,

λ = − (J11 + J22 + (J12 − J21)α) ,

SX = −TX + TY α,

ASX = −J22TX + J12TY ,

SY = −TXα− TY ,
ASY = J21TX − J11TY .

The time dependence of mX (t) and mY (t) then will be:(
mX (t)
mY (t)

)
= <

[
exp (iωt)

ω2 − ω2
R − iλω

(
ASX − iSXω
ASY − iSY ω

)]
(2.24)

or more explicitly:(
mX (t)
mY (t)

)
=

1

(ω2 − ω2
R)

2
+ λ2ω2

×

[
cos (ωt)

(
ASX (ω2 − ω2

R) + λω2SX
ASY (ω2 − ω2

R) + λω2SY

)
+

sin (ωt)

(
λωASX − SXω (ω2 − ω2

R)
λωASY − SY ω (ω2 − ω2

R)

)]
. (2.25)

2.3.2 Lineshape of the FMR spectrum

We have obtained explicitly mX,Y (t) in the last subsection, so we can now evaluate the
lineshape function:

LS (ω) = 2 〈− cos (ωt) (mX (t) pX +mY (t) pY )〉 =

−
(
ASXpX + ASY pY

)
(ω2 − ω2

R) + λω2 (SXpX + SY pY )

(ω2 − ω2
R)

2
+ λ2ω2

It is convenient to put the above expression in terms of

S = − (SXpX + SY pY ) ,

AS = −
(
ASXpX + ASY pY

)
.

then:

Ls (ω) =
AS (ω2 − ω2

R) + λω2S

(ω2 − ω2
R)

2
+ λ2ω2

(2.26)

Ls (ω) is a dimensionless function that defines the “lineshape” of the FMR lineshape.
Finally:

δV =
R0P

2I0
RF

2 (1 + P 2 cos θ0)2LS (ω) (2.27)

Equation 2.27 together with 2.26 are is the main result of this chapter.
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2.3.3 Lineshape features

The factors S and AS are quatities related to the symmetric and antisymmetric
components of the lineshape. Since AS has units of frequency2 while S has units of
frequency, it is convenient to define

A∗S =
AS
ωR

(2.28)

knowledge of the relative magnitude of A∗S in comparison with S, as well as their
respective signs, gives out valuable qualitative information of the shape of Ls (ω) around
ωR, as is shown in figure 3.11.

  

(a) (b)

(c) (d)

Figure 2.4: Lineshape function Ls (ω) plotted for different values of S and A∗S: (a) and
(b) show the completely symmetric and asymmetric case, respectively; (c) and (d) show
the sum of a completely symmetric and antisymmetric Ls (ω) with equal and opposed
signs, respectively. Red dashed vertical lines demarcate the ω region of width λ centered
at the resonance frequency ωR. All the quantities are normalized to ωR, except for Ls (ω)
which is dimensionless.

After some algebra, it is possible to show that for a completely symmetric lineshape
(A∗S = 0), ωR is the resonance frequency i.e. the frequency where Ls (ω) takes its
maximum amplitude. Furthermore, this maximum value is equal to |Sλ| and λ is the
full width at half maximum of the peak.

33



On the other side, for a completely asymmetric lineshape (S = 0), ωR is the the
frequency where Ls (ω) makes null. Moreover, for λ� ωR, the values of ω where Ls (ω)
takes its extreme values are given by ωR ± λ/2 (see figure 3.11) and the absolute value of
Ls (ω) at those points is equal to |A∗S/ (2λ)|.

2.4 Special cases

In the following sub-sections expressions for S and A∗S in experimentally relevant
configurations will be derived and compared with published results. In all the exposed
cases p points along the +x̂ axis. Also, second order terms arising from the expansions
of S and A∗S have been disregarded.
Notice that all the parameters on which δV depends can be readily obtained from the
information given in the articles, with the exception of I0

RF , which is amplitude of the
microwave current that is actually reaching the MTJ. I0

RF can not be determined
directly from the power applied to the MTJ, due to the unexpected impedance
mismatch in microwave circuits. The work of Sankey et al. [35] presents a method to
obtain I0

RF from the non-resonant background arising from the first term of equation
2.2. However all the other works cited here, do not provide such information.
Therefore, only the lineshape features are predicted the magnitude of the prefactor in
2.2 is disregarded. In any case, this is not importnat being that the relevant physics can
be inferred from the symmetric and asymmetric part of Ls (ω).

2.4.1 m spanning the x-y plane

This configuration can be seen in the works of Sankey et al.[35] and Kubota et al. [42].
The VCMA effect is null since m lies in the plane.
Nonetheless, this case is included because is important to verify that our predictions are
also applicable to purely STT experiments. It is obtained that:

S

I0
RFγ

∗ = β′‖ sin2 ϕ, (2.29)

A∗S
I0
RFγ

∗ = −β′⊥ sin2 ϕ×[
γ∗ω−1

R

(
Meff +Hu cos2 (2ϕ) +H cosφH cos (ϕ− ϕH)

)]
. (2.30)

It is readily seen that S (A∗S) is always proportional to the IP-STT (FL-STT)
component of STT vector. Also, both S and A∗S are proportional to sin2 ϕ, however A∗S
includes an extra, dimensionless factor (inside the square brackets) that may modify its
proportion respect to the S component. We can check the validity of our predictions
looking at the figure 2.5 taken from reference [35]. The Figure shows the ST-FMR peaks
for different DC biases. For IDC = 0 (figure 2.5(b)), the lineshape is completely
symmetric, indicating that β′⊥ makes null at zero current. For IDC < 0 (figure 2.5(a)),
the contribution of the asymmetric part is significative and has equal sign respect to the
symmetric one, confirming the predictions of equations 2.29 and 2.30. For IDC > 0 the
asymmetric part is roughly of the same amplitude as for negative current but its sign is
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(b)

(a)

(c)

Figure 2.5: Spin rectified voltage on a magnetic tunnel junction, for negative (a), zero
(b) and positive (c) values of IDC . p and H point in +x and +y directions respectively
and m is aligned with H which has a magnitude of 0.1T. Reprinted with permission from
[35].
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opposite (figure 2.5(c). These observations are consistent with a model of STT in which
β‖ is linear and β⊥is quadratic on current, so β′‖ is a constant and β′⊥ is linear on it.

2.4.2 m spanning the x-z plane

Figure 2.6: Spin rectified voltage on a magnetic tunnel junction (MTJ) at different mag-
nitudes of the magnetic field H, which lies within the x-z plane and has an elevation angle
of φ = 55◦. It is assumed that m is approximately aligned with H. In this experiment,
only VCMA is present as the lateral dimensions of the MTJ are micrometric (1× 1µm2).
Reprinted with permission from [34]

This configuration can be seen in the Refs. [34],[13] and in one of the cases of reference
[43]. The results are reproduced on Figs. 2.6, 2.7 and 2.8. Notice that in the last case
the magnitude of the magnetic field was swept at a fixed microwave frequency, and
consequently our model is not applicable from a quantitative point of view, however, we
expect the same qualitative lineshape features, provided that the resonant frequency is a
monotonic function of the resonant field.
The following expressions for S and A∗S are obtained for this configuration:

S

I0
RFγ

∗ = β′‖ sin2 φ, (2.31)

A∗S
I0
RFγ

∗ = (−β′⊥ + β′V cosφ cosϕ) sin2 φ×[
γ∗ω−1

R

(
Hu cos2 φ−Meff sin2 φ+H (cosφ cosϕ cosφH cosϕH + sinφ sinφH)

)]
,

(2.32)
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Figure 2.7: Macrospin simulations of the spin rectified voltage on a MTJ arising from
the combined action of VCMA and STT effects. In (a) there is zero FL-STT (IP-
STT+VCMA) whereas in (b) there is zero VCMA (IP-STT+FL-STT) . H points in
the ±x direction and the free layer has a small net PMA. Reprinted with permission from
[13]

where ϕ can take only the values 0 or π.
One of the main outcome of equations 2.31 and 2.32 is that in the absence of STT the
lineshape will be always completely asymmetric. This can be confirmed in figure 2.6
extracted from the work of Nozaki et al.[34] and figure 2.8 extracted from the work of
Shiota et al. [43] (filled squares plots). In above mentioned works, only the VCMA
effect is present since the lateral dimensions of the studied MTJs are micrometric.
Notice that the results show that the sign of A∗S is different in each case. This may be
explained because in the experiment of reference [34], µ0Meff is small in comparison to
H, being that the thickness of the free layer was intentionally tunned to cancel the
demagnetizing field, so the sign of the factor inside the square parenthesis is positive.
On the other side, for the experiment of reference [43], µ0Meff is large in comparison to
H, being that the free layer is thin enough (2.0 nm) to have no net PMA, so the sign of
the factor inside the square parenthesis is negative. Another important feature predicted
by equation 2.32, which is confirmed in the work of reference [43], is the sign reversal of
A∗S upon direction reversal of H (see figure 2.8). This is originated by the cosϕ factor
accompanying β′V in equation 2.32: when ϕ changes from 0 to π, A∗S reverses its sign.
The interplay between STT and VCMA is studied on the work of Zhu et al. [13]. It is
mentioning that in the above mentioned paper the sign convention for the current is
opposite to the employed in my calculations (and opposite to all other examples showed
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here), so the expressions for S and A∗S in equations 2.31 and 2.32 must be considered as
multiplied by -1. Another important feature of this work is that FL-STT was assumed
to be linear on the current, so β′⊥ is constant and has a finite value when IDC = 0.
The figure 2.7 was extracted from the above mentioned work, and show macrospin
simulations of the SRE voltage around the resonance frequency. In Figure 2.7(a) is
shown the case in which both IP-STT and VCMA are present whereas in figure 2.7(b)
IP-STT and FL-STT are present. The free layer has a small net PMA, so at zero
magnetic field, m points out of the plane (φ ' π/2).
When H = ±50 Oe x̂, there is a small deviation of φ respect to the normal, so a reversal
of H leads to a sign reversal of mx, which is equivalent to a change from ϕ = 0 to π in
equation 2.32.
Then, according to expression 2.32, for the IP-STT + VCMA case (β⊥ = 0), A∗S reverses
its sign upon reversal of H (see figure 2.7(a) for Hx = ±50 Oe). Moreover when H
makes null, A∗S also does, so the lineshape becomes completely symmetric (see figure
2.7(a) for Hx=0). In contrast, for the IP-STT + FL-STT case (βV = 0), A∗S does not
reverse its sign upon reversal of H (see figure 2.7(b) for Hx = ±50 Oe) and hence does
not makes null for H = 0 (see figure 2.7(b) for Hx=0).

38



2.4.3 m spanning the y-z plane

  

(a)

(b)

Figure 2.8: Spin rectified voltage on a magnetic tunnel junction (MTJ) at RF frequency
of 1.0 GHz and different orientations of the magnetic field H: (a) ϕ = 0◦ (filled squares)
and ϕ = 90◦ (open circles), (b) ϕ = 180◦ (filled squares) ϕ = 270◦. In this experiment,
only VCMA is present as the lateral dimensions of the MTJ are micrometric (1× 4µ m2).
Reprinted with permission from [43]

This configuration has been studied only in two of the SRE measurements reported in
the reference [43], which are reproduced in Fig. 2.8: open circle plots in figure 2.8(a)
and 2.8(b) corresponds to ϕ = π/2 and ϕ = −π/2 cases respectively. In such case, the
lateral dimensions of the structure (1× 4µm2) are large enough to ensure that STT is
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not present. The S and A∗S components of the lineshape will be:

S

I0
RFγ

∗ = β′‖ −
1

2
β′V sin (2φ) sinϕ (2.33)

A∗S
I0
RFγ

∗ = −β′⊥ ×[
γ∗ω−1

R (Meff cos (2φ) +H (cosφ cosφH sinϕ sinϕH + sinφ sinφH))
]
(2.34)

where ϕ can take only the values −π/2 and π/2.
According to the above equations, in absence of STT, the lineshape will be always
completely symmetric and the sign of S reverses upon H reversal, which is confirmed
from Fig.2.8. Moreover, the sign of S is also correctly predicted in each case.
An interesting feature predicted for equations 2.33 and 2.34 is the interplay between the
IP-STT and VCMA effects in the symmetric part of the lineshape that would result in a
cancellation (ϕ = π/2) or a reinforcement (ϕ = −π/2) of it. This contrast with all the
other experimental configurations presented here, in which they never form part of S at
the same time. This is interesting, since the maximization of S is a more efficient way for
increasing the magnitude of δV than A∗S (see figure 3.11), and, being that these effects
usually are both much stronger than the FL-STT in MTJs. Then this configuration is
optimal for maximizing the sensitivity of the MTJs thinking on its potential application
as r.f. diode[44]. Up to date, I have not found reported experiments in that direction.

2.5 Summary

I have obtained general analytic expressions for the spin rectified voltage across magnetic
tunnel junctions and spin valve nanopillars of elliptical cross section, subjected to an
microwave oscillating current applied perpendicular to the plane. The model accounts
for the simultaneous existence of spin transfer torque (STT), both in-plane and field-like,
and voltage controlled magnetic anisotropy (VCMA). The relative magnitudes of those
effects can be obtained from the analysis of the lineshape of the ferromagnetic resonance
(FMR) spectrum. Our results are applicable for arbitrary applied magnetic field vector,
magnetization vector of the polarizer layer and lengths of the elliptical major and minor
axis . Overall, the results are in excellent agreement with the experimental results
published on this subject, which in summary are particular cases of the general model
exposed here. These results may be useful for future experimental works aimed to
distinguish and quantify the STT and VCMA effects through ferromagnetic resonance
spectroscopy in nanostructures. Moreover, these results will be a guideline to optimize
the rectified voltage, considering the application of these devices as r.f. diodes.
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Chapter 3

g-factor determined by
ferromagnetic resonance

3.1 Introduction

Since its discovery in 1946 [45], ferromagnetic resonance spectroscopy (FMR) has been
an essential tool in the area of experimental magnetism. FMR is a widely employed tool
to probe multiple dynamic and static properties of magnetic materials, like the
spectroscopic g-factor, saturation magnetization, magnetic damping and
magnetocrystalline anisotropies.
In recent times, broadband FMR is being increasingly adopted. In this variant of FMR,
the microwave magnetic fields reach the sample through a coplanar waveguide unlike the
classic FMR in which the sample must be introduced in a fixed-frequency microwave
cavity. Therefore it is possible to set many different frequencies without altering the
experimental set-up. With the use of broadband FMR, the most important magnetic
parameters can be determined in a matter of minutes.
Among all the parameters that can be determined with broadband FMR, g and Ms are
always present. Determination of g is important because unlike Ms there are almost no
experimental technique other than FMR to find it . Moreover g value is directly related
to the relative contribution of the orbital and spin angular momentum to the total
magnetic moment a ferromagnet.

µL
µs

=
g − 2

2
(3.1)

Since the orbital angular momentum is largely quenched by the crystalline field in bulk
3d ferromagnets, the value of g is generally quite close to 2. Two mechanisms may
contribute to the incomplete quenching of the orbital momentum leading to
perturbations on that value, one is the spin-orbit coupling of the electrons of the d-band
and the other is the reduction of the crystalline field symmetries at the interfaces of
ultrathin ferromagnetic films. The study of the above effects thus requires measuring g
with very high accuracy, however the determination of g with better than 1% precision
has been tricky with the use of in-plane broadband FMR technique [9, 46]. For example
in the case of bulk Permalloy there is large spreading of the values of g given the
literature.
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Recently the work of Shaw et al. [47] dealt with this problem: they attributed the large
spreading of the values of g and Ms among the literature, to the differing ranges of
frequencies employed among the different broadband FMR experiments. To solve this
problem, they presented a data analysis methodology in which the correct value of g and
Ms are determined by extrapolating their fitted values to the case in which the range of
frequencies goes to infinity.
In this chapter we study theoretically two sources of systematic error propagation in
broadband FMR experiments that may have spoiled the correct determination of g and
Ms in previous studies, as well be the cause of the apparent dependence of their values
on the range of frequencies employed. One is the incorrect determination of the static
magnetic field in the place where the sample is, and the other is the disregarding of the
presence of in-plane anisotropy terms. We test our results with simulated and real
broadband FMR data of a Ni80Fe20 (Permalloy) sample.
Furthermore, we propose and test experimentally a simple methodology to reduce
significantly the above mentioned sources of systematic errors..

3.2 Propagation of systematic errors in the Kittel

equation

It is well known that in the in-plane geometry the relationship between the frequency
and resonance magnetic field is given by [48]:

f =
gµBµ0

h
[Hres (Hres +Ms)]

1/2 (3.2)

Where h is Plank’s constant, µ0 is the permeability of free space, and µB is the Bohr
magneton. The way to obtain g and Ms in broadband ferromagnetic resonance is simple
fit of the resonance fields for a set of different frequencies with the above expression. In
the next section we analyze how large is the deviation of g and Ms from its actual values
due to an error in the measurement of Hres.

3.2.1 g error propagation

To start with, we put Eq. 3.2 in terms of g

g =
fh

µ0µB
[Hres (Hres +Ms)]

−1/2 (3.3)

The error propagation is simply the derivative of g respect to Hres

dg

dHres

= − fh

2µ0µB
(2Hres +Ms) [H (Hres +Ms)]

−3/2

Replacing with Eq. 3.2
dg

dHres

= − g (2Hres +Ms)

2Hres (Hres +Ms)
(3.4)
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It is more clear to put the error propagation in terms of f , to do so, we solve Eq. 3.2 for
Hres and replace into Eq. 3.4, to obtain

dg

dHres

= −
g
[
1 + 4f

2
]1/2

2Msf
2 (3.5)

were

f =
hf

gµ0µBMs

(3.6)

3.2.2 Ms error propagation

We start applying derivative respect to Ms in Eq. 3.3

dg

dMs

= −Hresfh

µ0µB
[Hres (Hres +Ms)]

−3/2 (3.7)

Applyig chain rule with Eq. 3.4

dMs

dHres

=
dg

dHres

(
dg

dMs

)−1

=
(2Hres +Ms)

Hres

(3.8)

We put this in terms of f

dMs

dHres

= 2 + u−2 +
(1 + 4u)1/2

2u2
(3.9)

Eqs. 3.5 and 3.9 are the main results of this section.
Fig. 3.1. shows the error propagation vs frequency using the standard values of g and
Ms of bulk Ni80Fe20 (g = 2.11 and µ0Ms = 1.02 T). Notice that the signs of the error
propagation on g and Ms are always opposite and the vertical scale is logarithmic. To
illustrate how large can be the deviations of g and Ms in this case, let’s assume that for
example we measure the resonance fields vs frequencies in a range of frequencies around
f=3 GHz and our Hall sensor is miscalibrated in such a way that it gives a value of the
magnetic field that is 15 Oe below the actual one. According to Fig.3.1 the fittings will
give us a value of g = 1.95 and µ0Ms = 1.22 T. If the frequency were 20 GHz, the given
values would be much more close: g = 2.10 and µ0Ms = 1.01 T
The later example shows how a relative small shift of the measured magnetic field can
lead to a relatively large systematic deviations of g and Ms from their actual values,
especially at low frequencies. This may explain the large spreading of the values of g
than can be found in the literature for Permalloy [47].
A recently published paper from Shaw et al. [47] was devoted this problem: they
propose a methodology to resolve the exact value of g with less than 1% precision. They
found that there is a significant variation of the value of the g depending on the range of
frequencies employed to the fitting: if the range selected goes from 4GHz to fup, the
value of g progressively goes up approaching the convergence value (g=2.11) as f
increases, starting from g = 2.01 at fup = 20 GHz and ending at g = 2.10 at fup = 60
GHz. On the other side, the value of Ms converges in the the opposite way: goes down
approaching the actual value µ0Ms=1T decreasing from higher values as fup increases.
Our calculations show that this behavior may be explained from the systematic error
propagation arising from a shift of the measured magnetic field respect to the actual one.
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Figure 3.1: Error propagation for g (a) and (b) Ms respect to measured value of Hres .
Notice that the vertical scale is logarithmic and that the sign of the g error propagation
is negative

3.3 Simulated results

In order to better visualize and test our results , we have performed fittings on
simulated ferromagnetic resonance data adding a shift in the magnetic field . The
parameters chosen were g = 2.11 and µ0Ms = 1T corresponding to bulk permalloy [47].
The procedure is as follows: values of Hres are calculated solving exactly Eq. 3.2 setting
f = 2 GHz up to f = 20 GHz in steps of 0.5 GHz. The values of Hres are then
incremented or reduced in 5 Oe. We fit the altered data with the Kittel equation
without include any extra fitting parameters, in a range that goes from f = 2 GHz up to
fup with fup going from 10 to 20 GHz. The fitted values for g and Ms are then plotted
vs fup. The results are shown in Fig. 3.2. In the first case, plotted in black filled circles
the measured values of Hres are 5 Oe below the actual value, i.e. δH =-15 Oe, whereas
in the second case, shown in black open circles panel of the same figure, the measured
values of Hres are 5 Oe above the actual values, i.e. δH =5 Oe.
It is worth mentioning that the true values of g, µ0Ms and the magnitude of δH were

44



Figure 3.2: Fitted values of g (a) and µ0Ms (b) vs upper fitting frequency (fup) of the
simulated data, in which the exact values of the resonance magnetic field Hres were altered
by adding a positive (black, filled circles) and negative shift (black, open circles) of 5 Oe
to its exact value.

deliberately chosen to better comparison with Fig. 2 of reference [47].
It this clear from Fig. 3.2 that the magnetic field shift, positive or negative, produces
significant systematic deviations of g and Ms respect to the actual values. This
deviations, in each case, have opposite signs and decrease as more high frequency data is
included, all of which is in accordance with Eqs. 3.5 and 3.9.

3.4 Experimental methodology

A 5 nm thick film of Ni80Fe20 (Permalloy) was dc magnetron sputtered at room
temperature onto a Si/SiO2 substrate and subsequently capped with 1.5 nm of Al to
prevent oxidation . The base pressure of the chamber was less than 3 x 10−8 Torr and
the substrate was rotated during all the process to inhibit the formation of in-plane
magnetic anisotropies. The Broadband FMR measurements were performed in a
NanOsc PhaseFMR instrument with a 200-µm-wide coplanar waveguide (CPW). The
DC magnetic field H generated by the electromagnet is modulated with a low frequency
(490 Hz) field hac(t) parallel to H generated by Helmholtz coils attached to magnet
poles Fig. ??(a). Since the sign of H is just a matter of convention, we have defined the
positive values of H as cases in which the magnetic field vector points to the pole with
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Figure 3.3: (a) Picture of the broadband FMR set-up indicating his main components.(b)
Diagram of a slice of the coplanar waveguide with the sample on it.

the Hall sensor attached (see Fig. ??(a)).
The sample is put face down on the waveguide and a microwave signal of frequency f is
injected into the waveguide through the RF-in cable. The sample is thus subjected a
microwave field hrf perpendicular to the modulated field H + hac(t) (Fig. ??(b)). The
returning signal is injected into the PhaseFMR instrument through the RF-out cable, its
microwave component is rectified by a RF diode and then injected in a lock-in amplifier
whose reference signal source is the same that the one of the modulating field hac(t) .
The signal detected by the lock-in is thus proportional to the slope of S21 parameter.
Two sets of measurements were done, one with positive and other with negative values
of H. In both cases the magnitude of the H was varied from 0 to 3.5 kOe and f was
varied from 3 GHz to 17 GHz in steps of 0.5 GHz.
To estimate the actual value of H were the sample is, the following procedure is carried
out: A Hall effect sensor is placed at the middle point of the gap between the poles of
the electromagnet, as shown in Fig. 3.4 (a). This Hall effect sensor is connected to an
external gaussmeter and we assume that its reading is equal to the value of H felt by
the sample in the measurement configuration (Fig. 3.4 (b)). A second Hall effect sensor
is permanently fixed to one of the poles and connected to the internal gaussmeter of the
PhaseFMR instrument, we denote the reading of this sensor HP . Then, a wide set of
DC current values are injected into the electromagnet in order to vary H across the full
possible range. The readings of both Hall effect sensors are collected and linear
relationship is established between them by fitting with:

H = C1HP + C2 (3.10)

where C1 and C2 are the fitting constants. The values of C1, C2 are grabbed by
PhaseFMR instrument allowing it to interpolate H by the reading of HP when
executing the FMR measurements. It should be noted that in the ideal case, the value
of C2 must be always 0, given that there is no reason to get a non-zero value for H when
HP = 0. However, having performed the calibration protocol described above in a set of
independent FMR experiments, we found that C2 varies typically around ± 25 Oe.
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Figure 3.4: Magnetic field calibration steps: (a) An external Hall effect sensor is placed
in the gap between the magnet poles and its readings are correlated with another perma-
nently attached to one of the poles, (b) During measurements the value of H felt by the
sample is interpolated by the reading of the fixed Hall effect sensor.

3.4.1 Results and discussion

The H spectrum recorded for each value of frequency was fitted by the derivative of the
sum of an symmetrical and antisymmetrical Lorentzian [38]:

P =
d

dH

[
S (∆H)2 + AS (H −Hres)

4 (H −Hres)
2 + (∆H)2

]
(3.11)

Where S, AS, Hres and ∆H are the symmetric, antisymmetric, resonance field and
linewidth of the FMR peak respectively. An example of the obtained H spectrum at f=
10 GHz and the corresponding fit with Eq. 3.11 is shown in Fig. 3.5 (a). The overall
results for Hres values in the two set of experiments are summarized in Fig. 3.5 (b).
H+
res, |H−res| stand for the absolute values of Hres with H > 0 , H < 0 respectively. We

found that, on average, the values of H+
res are 35 Oe above |H−res|, this may more clearly

seen in the inset of Fig. 3.5 (b). However, given the symmetries of our experiment, if our
calibration procedure were perfect both values should be the same. We then infer that
there must be shift of the measured values of Hres of magnitude |δH|=17.5 Oe respect
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Figure 3.5: (a) Resonance spectra for f=10 GHz and the least squares fitting .(b)|Hres|
vs F for opposite directions of the magnetic field. Inset: zoom in the 8.5 to 11.5 GHz
range

to their actual values, that is, the actual values of H+
res and |H−res| should be better

approximated by H+
res-δH and |H−res| + δH respectively. Therefore there is an equal but

opposite sign shift in the measured magnetic field in the two set of experiments, pretty
much in the same way as the example we presented in the simulated data section .
We then did the analysis of the variation of g and Ms vs fup in the same a we did for the
simulated data. The results are shown in Fig. 3.6. It is observed that the values of g
and Ms follows the same trends than the simulated ones confirming our predictions,
though in the case of negative ∆H, the deviation is lower. We now propose a method to
minimize the effect of magnetic field shift, taking the average of the values of H+

res and
|H−res| as a more accurate value of |Hres|

Hav
res =

H+
res + |H−res|

2
(3.12)

We tested our method repeating the same analysis to g and Ms vs fup, now using the
Hav
res values in the fittings, the results are plotted on Fig. 3.6 in red squares. It can be

observed that the new results showed a much smaller variation in the value of g and Ms:
around only a 3 percent, in comparison with the H+

res and |H−res| results, which varied up
to 50 percent. The average values of g and µ0Ms across the fup variation were 2.11 and
0.87 T respectively. We expect these values to be much more close to the true values
than the ones obtained from the fittings with H+

res and |H−res| values.
The later may be confirmed comparing our result for g with the one obtained by
Nibarger et al. [49], whom measured the value g ' 2.05 for a 5nm thickness NiFe
sample, despite in the later case the studied sample was fabricated in a way to produce
significant in-plane magnetic anisotropy.

3.5 Inclusion of In-plane anisotropy

It is seen in Fig. 3.6, the values of g and Ms after the magnetic field correction (red
filled squares) still show a slight variation on fup, suggesting that there is still a source
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Figure 3.6: Fitted values of g (a) and µ0Ms (b) vs upper fitting frequency (fup) for a 5
nm thick film of Ni80Fe20. The fits come from the resonance fields of 3 sets of data: the
magnetic field pointing rightward (black circles), leftward (white circles) and the average
of the two values (red squares)

of systematic error propagation in the results. This may be explained by the presence of
in-plane anisotropy terms in the sample. Let’s suppose that, for example there is
uniaxial in-plane anisotropy in the sample and we apply the magnetic field along the
easy axis, in such a case the Kittel equation should be

f =
gµBµ0

h
[(Hres +Hu) (Hres +Hu +Ms)]

1/2 (3.13)

where Hu is in-plane anisotropy field. On the other side, let’s suppose that we include
the magnetic field shift as an extra fitting parameter in the non in-plane anisotropy,
Kittel equation. We, then have

f =
gµBµ0

h
[(Hres + δHres) (Hres + δHres +Ms)]

1/2 (3.14)

The comparison between Eq. 3.14 with Eq. 3.13 makes clear that is impossible for the
fitting routine to distinguish between the in-plane magnetic anisotropy and a negative
shift in Hres , therefore it is evident that the effect of exclude in-plane anisotropy term
in Eq. 3.2 will be the same to underestimate Hres by a constant magnitude Hu, i.e
∆Hres = −Hu when a sample has no in-plane anisotropy . Consequently, there will be a
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decreasing underestimation of g and overestimation of Ms as more high frequency data is
included, exactly in the same way of negative ∆Hres plotted in white circles on Fig. 3.2.
These deviations are confirmed in the work of Shaw et al. [47]: g and Ms shows
asymptotic behaviors when in-plane anisotropy terms are excluded from the Kittel
equation. In the case of g (Ms) it approaches the true values from below (above) as
more high frequency data is included. The work also shows that those asymptotic
behaviors are largely spoiled when Hu is included in the Kittel equation, resulting in a
further confirmation of our results.
In our case, our best estimation for the studied parameters are: g=2.13 ± 0.05,
µ0Ms=0.85 ± 0.01 T and µ0Hu=0.51 ± 0.09 mT. These values were obtained applying
the magnetic field along the easy axis, minimizing the magnetic field shift by the
averaging methodology yet described, and fitting our data with Eq. 3.13 in all the range
of frequencies (3-17GHz). The inability of the fitting routine to distinguish between a
shift in the measured magnetic and in-plane anisotropy terms, also means that it is
impossible to determine ∆Hres and Hu simultaneously, and thus at least one of the two
parameters must be determined independently.

3.6 Summary

We have demonstrated theoretically and experimentally that for in-plane broadband
FMR experiments, an unconsidered error in the measured value of the magnetic field of
only a few Oersteds generates systematic and opposite sign deviations in the fitted
values of spectroscopic g-factor (g) and the saturation magnetization (Ms) from their
actual values. This difficults the determination of g and Ms with less than 1% precision
in typical broadband FMR experiments. We also demonstrate that unconsidered
in-plane anisotropy terms in the fittings have a comparable effect in the error
propagation for those parameters.
The theoretical predictions were satisfactorily checked with simulated and real FMR
data taken on a 5nm thickness Ni80Fe20 sample with a range frequencies from 3 to 17
GHz.
A simple method to minimize the error in the measured magnetic field, and thus the
error propagation to g and Ms, was proposed. The method was successfully tested in the
studied permalloy sample demonstrating that is possible to get high precision (less than
1%) values of both quantities using microwave excitation frequencies of only a few GHz.
Our results also explain satisfactorily all the aspects of the article from Shaw et al. [47],
regarding to the apparent dependence of g and Ms values on the range of frequencies
used. It is also demonstrated that the asymptotic behavior of those quantities is a
consequence of the decreasing f dependence of the systematic error propagation.
We believe our results will be useful to researchers interested in to measure accurate
values of g and Ms using broadband FMR.
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Chapter 4

Perpendicular magnetic anisotropy
in CoFeB/Pd multilayers

4.1 Introduction

Materials with Perpendicular magnetic anisotropy (PMA) are promising candidates to
form part of the next generation of data storage technologies. Recently, great interest in
these materials has been aimed by their application as building blocks of the memory
cells of the Spin Transfer Torque Magnetoresistive Random Access Memory
(ST-MRAM). In this type of memory a bit of information is stored on the magnetic
orientation of the free layer of a MTJ structure like the nanostructures already shown in
chapters 1 and 2. The magnetic orientation of the free layer is read from changes in the
TMR of the structure, and the switching of the magnetization is done by STT.
Out of plane anisotropy nanostructures offer many advantages respect to their in-plane
anisotropy counterparts, like the lower switching currents, better thermal stability and
better achievable areal density. The understanding of the physics behind the PMA is
then a fundamental issue in the present days magnetism.
As stated in the introduction, PMA is of interfacial origin and appears in certain
combinations of ferromagnetic and non-magnetic materials. In the study presented in
this chapter, the ferromagnetic material is the Co40Fe40B20, and the non-magnetic
material is Pd. A systematic study of the variation of PMA intensity and the reversal of
the magnetization in samples made of stacked repetitions of CoFeB/Pd bilayers is
carried out. The parameters varied are the thickness of Pd, the thickness of the CoFeB
and the number of repetitions of the bilayer structure.

4.2 Experimental methods

4.2.1 Samples fabrication

A series of thin films of Ta(20Å)/Pd(20Å)/[Co40Fe40B20(tCoFeB)/Pd(tPd)]n/Pd(50Å)
were deposited by DC magnetron sputtering on thermally oxidized Si(100) substrates.
The base pressure of the chamber was better than 2×10-8Torr and a working Ar
pressure of 5×10-3 Torr was employed. The Ta(20Å)/Pd(20Å) bilayer serves as seed
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layer whereas the Pd(50Å) is to prevent the oxidation. These layers are in all the set of
samples, so in the following the will not be mentioned.
The parameters varied were the thickness of the CoFeB layer (tCoFeB), the thickness of
the Pd later (tPd), and the number of repetitions (n). Next is the list of the fabricated
samples in each case:

• [Co40Fe40B20(tCoFeB)/Pd(10Å)]5 with tCoFeB = 2, 3, 4 and 5 Å.

• [Co40Fe40B20(3Å)/Pd(tPd)]5 with tPd = 2, 3, 4 and 5 Å.

• [Co40Fe40B20(tCoFeB)/Pd(10Å)]n with n = 5, 10, 15.

4.2.2 AGM measurements

The AGM measurements were carried out at room temperature using a commercial
PMC MicroMag 2900 magnetometer. All the measurements presented in this chapter
were carried out with the magnetic field applied out of plane. Results are shown in Fig.
4.1
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Figure 4.1: Out of plane hysteresis loops measured with AGM magnetometry and VVPM
model predictions, for all the series of samples: (a) variable thickness of CoFeB, (b)
variable thickness of Pd and (c) variable number of repetitions.
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4.2.3 Kerr microscopy measurements

Figure 4.2: Kerr microscopy images of the evolution of labyrinth magnetic domains of the
reversing

[
CoFeB(3Å)/Pd(10Å)

]
5

sample for (a)t=4, (b) 20,(c) 44, and (d) 65s after the
application of a perpendicular magnetic field. White and black zones indicate negative
and positive saturation respectively.

Magnetic domain structure was imaged using a Evico Magnetics Kerr microscope with a
highly stable and intense Xenon short arc light source. The instrument has an optical
resolution down to 300nm and a maximum perpendicular magnetic field of 9200 Oe.
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4.2.4 FMR measurements

Figure 4.3: FMR spectrum for the Co40Fe40B20(3Å)/Pd(6 Å)]5 sample.

The measurements were carried out at the PhaseFMR spectrometer facility, using the
same measurement procedures described in chapter 3. The only difference here, is that
H was always applied perpendicular to the plane of the sample and the frequency steps
smaller (every 0.1 GHz) in order to get more nice spectra. An illustrative example of the
FMR spectra obtained in the set of studied samples is shown in Fig. 4.3. The resonant
field vs frequency can be identified as the most intense and narrow line of the spectrum.
Frequently, others and less intense secondary lines also appear (can be seen at the right
inferior quadrant of the spectrum), due to the second harmonics emitted by the
PhaseFMR device. These secondary peaks are not relevant for the current analysis.
FMR peaks were fitted with the well known, out of plane, FMR formula:

fres = γ′ (H −Meff)

where fres is the resonance frequency (ωR/2π), Hres is the resonant field. γ′ and Meff

were left as free parameters. The results are shown in Fig. 4.4.
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Figure 4.4: Fitted values of µ0Meff vs: (a) number of repetitions, (b) thickness of Pd and
(c) thickness of CoFeB, obtained from the FMR measurements:

4.3 Interpretation of the results

4.3.1 Preisach model

The hysteresis cycles obtained by the AGM measurements were fitted by the
Preisach-type model of magnetic hysteresis. This model describes a magnetic body as
were made up by an infinite set of elemental components called “hysterons”. Each
hysteron has a square hysteresis like the shown in Fig. 4.5 , so they can be only be in
“up” or “down” state. The interaction field HB and the coercive field HC define the
magnetic behavior of each hysteron and these parameters are assumed to follow some
statistical distribution p (HB, HC) among the hysterons, namely the Preisach
distribution. The magnetization of the body for a certain value of H is the integration
of the distribution of magnetic states from the hysterons for such magnetic field:

M

Ms

=

∞∫
0

dHC

 b(HC)∫
0

p (HB, HC) dHB −
∞∫

b(HC)

p (HB, HC) dHB
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Figure 4.5: Hysteresis loop of an hysteron with interaction field HB and coercive field HC

where Ms is the magnetization of saturation, and:

b (HC) = H ±HC .

where the + and the − signs stand for the up cycle and down cycle respectively. We
assume that HB and HC are statistically independent, so the Preisach distribution is the
product of the distributions of the coercive fields f (HC) and the distribution of the
interaction fields g (HB).

p (HB, HC) = f (HC) g (HB) .

In the classical Preisach model f and g follows well-known probabilistic distributions
(gaussian for example). For the interpretation of or experiments we employed a variable
variance Preisach model, in which the distributions of collectivities are given by:

f (HC) =
(1− pd)√

2πσC
exp

[
−
(
HC −HC

)2

2σ2
C

]
+

pd√
2πσD

exp

[
−
(
HC −HD

)2

2σ2
D

]
where HC is the average of coercive fields and σC is its variance. Additionally Eq. above
includes the effect of the defects within the samples. They have a proportion given by pd,
average coercive field HD and variance σD. These defects may have been originated by
the substrate roughness and the discontinuity of the CoFeB layers due to their thinness.
On the other side, the distribution of interactions is given by:

g (HB) =
pd√
2πσB

exp

[
−H

2
B

2σ2
B

]
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We employed a variable variance Preisach model, in which the variance of is σB is given
by:

σB = σa + σb |m|k (4.1)

The explicit functional dependence of σa, σb and k is given on Appendix A. In summary,
they take specific values for each stage of the magnetization reversal. Here is a
qualitative description of such stages listed sequentially as H increases:

• Small domains nucleate at random locations due to thermal stochastic
magnetization reversal events.

• The above mentioned nucleation centers propagate in the form of labyrinth
domains.

• The labyrinth domains propagate by the motion of domain walls.

• Finally the magnetization reversal is completed by the annihilation of the
remaining labyrinth domains.

Fig. 4.2 shows the above mentioned sequence of mechanisms imaged by Kerr microscopy
for the sample [CoFeB(3Å)/Pd(10Å)]5. The external field was H = 60.2 Oe, applied to
the previous negatively saturated sample.

4.3.2 FMR measurements

A.- CoFeB thickness

From Figs. 4.4 and 4.1 we can infer that the intensity of the PMA decreases with the
CoFeB thickness. This is consistent with the fact that the PMA is an interfacial
phenomenon. At this point is convenient to define the PMA energy density Ks:

Ks =
µ0MsHs

2

Where Hs is the PMA field already referred in the previous chapters. Ks follows the
next relation with the thickness of the FM [50]:

Ks = Kb +
Ki

tCoFeB

(4.2)

where Kb are Ki the bulk and the interfacial of the PMA energy density, respectively.
We can obtain the value of Ki by fitting the data with the formula:

Meff = C0 −
C1

tCoFeB

where C0 and C1 are the fitting constants. Assuming a negligible contribution of Kb to
Ks [50], we obtain Ms and Ki from:

Ms = C0

Ki =
C1

tCoFeB

58



The values obtained were Ms = 4.5± 0.6× 105 A/m and Ki = 5.7± 1.4× 105 J/m.
Although the formula 4.2 does not take into account the variation of Ms with tCoFeB,
and the fitting was done with only 3 experimental points, the adjusted value of Ms must
be quite realistic for the tCoFeB = 4Å . The later is confirmed in the work of Ngo el al.
[51], which obtained a value of Ms (∼ 4.5× 105A/m) in CoFeB(4Å)/Pd(10Å)
multilayers of similar characteristics. The obtained value Ki in the above mentioned
work is quite larger than ours (∼ 4.5× 105A/m), however, this is given the extreme
sensitivity of the PMA intensity on the fabrication conditions.

B.- Pd thickness

From Figs. 4.4 and 4.1 it can be seen an increase of the PMA with the Pd thickness in
the range from 6 to 10Å. This has been attributed to the need of achieving a critical
thickness of Pd to form PMA in the CoFeB/Pd interface. Our results show that the
critical thickness of Pd to achieve net PMA is around 8 Å. After reach such critical
thickness of Pd, the PMA increases with tPd, due to the improvement of the continuity
of the CoFeB/Pd interface as more Pd is deposited.
The work of Ngo et al. [52] reports the opposite trend: PMA decreases with tPd.
However, notice that the range of tPd for that study is from 10 to 60Å, thus not
contradicting our results.
For tPd = 10 Å we only account with the AGM measurements. Although, we can not
quantify PMA from them, we may infer that the sample with tPd=15 Å has a PMA
intensity comparable to the sample with tPd=10 Å, while for the tPd=60 Å PMA is
undoubtedly smaller than for the sample with tPd=10 Å. Our results are in concordance
with the ones reported by Ngo et al. [52] . We may infer from all these results, that
there is an optimal value of tPd at which the PMA is maximum and decreases if tPd is
above or below such value.
Unfortunately, the samples with tPd > 10Å did not give measurable FMR signals that
would have confirmed this hypothesis. This may be due to two reasons:

• For tPd = 15Å, the PMA intensity is high enough to make µ0Meff fall out of the
range of the spectrometer. Notice that the sample with tPd = 10Å is just on the
detection limit of our FMR spectrometer (∼ µ0Meff = −0.4T), so if the net PMA
is slightly below that value, will not be measurable.

• For the sample with tPd = 60 Å, the net PMA may be low enough to be detectable
by our FMR spectrometer, however in this case the Pd layers are so thick that the
increased damping arising from the spin sink effect of Pd extinguish the FMR
signal [53, 54].

C.- Number of repetitions

We see an increment of the PMA with the number of repetitions. This behavior has also
been reported recently in the work from Ngo et al. [51], also in CoFeB/Pd multilayers.
We attribute this behavior to the lower intensity of the PMA of the bottom layer
respect to the subsequent ones. The work of Ngo et al. [51] showed that the Ta seed
layer promotes fcc structure on the adjoining Pd, while all the subsequent CoFeB layers
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are amorphous. Thus, there is a difference between the value of the anisotropy constant
of the bottom Pd/CoFeB interface Kb

s and the value for the rest of the interfaces: Ks. If
Kb
s < Ks the overall PMA intensity of the structure will increase with n, gradually

approaching the limit value associated with Ks.
Currently, my group is working on a model that predicts the value of µ0Meff from the
values of Ks

b , Kb, the exchange coupling JEX between the adjacent CoFeB layers and the
number of repetitions. Preliminary results seems to be consistent with the experimental
data. Despite this, the assumption that the PMA intensity is larger in amorphous than
in structured materials deserves a more detailed analysis. This issue is very interesting
from the physics point of view and new experiments must be carried out in order to get
further insight about it.

4.4 Summary

A systematic study of the PMA intensity and magnetic hysteresis features have been
carried out in CoFeB/Pd multilayers by means of alternating field gradient and Kerr
magnetometry and broadband ferromagnetic resonance spectroscopy. The parameters
varied were the thickness of both CoFeB and Pd layers as well as the number of
repetitions.
Respect to the features of the hysteresis loops, a variable variance Preisach model been
successful to fit the experimental curves and is consistent with a sequence of different
magnetization reversal process during the reversal of the field. This was also observed
by Kerr microscopy.
Respect to the PMA intensity, experimental results confirm that is of interfacial origin,
demonstrated by its decreasing with the CoFeB thickness. Moreover it was found that
there is a critical thickness of Pd for which net PMA appear (∼ 8 Å).
More intriguing is the fact that PMA intensity increased with the number of repetitions.
This has been attributed to the lower interfacial anisotropy of the first deposited
CoFeB/Pd interface respect to the subsequently ones. A theoretical model that accounts
this and the exchange coupling between the CoFeB layers seems to be consistent with
the experimental data, however new experiments must be carried out to further validate
this hypothesis.

60



Appendix A

Definition of the VVPM variances

Each stage follows the general expression given by and the continuity of σB is ensured
for −1 < m < 1. Then σB is given by:

σuB =


σLa + σLbm m < m

LW
,

σWa + σWb |m|
0.1 m

LW
< m < m

WA
,

σAa + σAb |m|
5 m > mWA,

for the up cycle, and:

σuB =


σLa + σLbm m < −m

LW
,

σWa + σWb |m|
0.1 m

LW
> m > −m

WA
,

σAa + σAb |m|
5 m < −mWA,

for the down cycle. σL,W,Aa and σL,W,Ab are given by:

σLa = σ0, σLb = σ1,

σWa = σ0 + σ1mLW
− σ1s (mLW ) |mLW |0.1 ∆um

WA
LW

,

σWb = σ1s (m) ∆mWA
LW

,

σAa = σ0 + σ1 − σ2 (mWA) |mWA|5 ∆um
1
WA,

σAb = σ2s (m) ∆m1
WA
,

with

∆mWA
LW

=
(1−mLW )

s (mWA) |mWA|0.1 − s (mLW ) |mLW |0.1

∆m1
LW

=
1

1− s (mWA) |mLW |5
,

where s (x) is the sign function and the variances are:

σ1 = σ0 − σst, σ2 = −2σ0 + σst + σnd.
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Appendix B

DC magnetron sputtering

Sputtering is a physical vapor deposition method in which the particles of the material
to deposit are ejected by momentum transfer in collisions with gas ions.
The experimental setup is depicted in figure B.1. The target of the material to be
sputtered is located onto a plate (cathode) which contains a set of magnets arranged to
maximize the intensity of the magnetic field close to the surface of the target. All of the
above is inside a UHV vacuum chamber, which is pumped down to pressure levels
around ∼10−8 Torr, and then filled with a noble gas, typically Ar at pressures in the
order of mTorr. When the cathode is put at a negative voltage, a chain of processes
starts to occur:

• B.1(a):the always present free electrons on the chamber accelerate away from the
cathode and in the way the collide with the neutral Ar atoms.

• B.1(b): these collisions make the Ar atoms lose one of their outer shell electrons,
turning them into positively charged Ar+ ions. This process also leaves two
available electrons to participate in new collisions, therefore a plasma of charged
particles is formed above the target.

• B.1(c): the Ar+ ions accelerate to the target and collide with it.

• B.1(d): neutral atoms of the target are ejected, following a straight path up to the
first surface they encounter on their way or colliding with other Ar atoms. As
result, many of the ejected atoms will go directly from the target to the substrate,
forming the desired capping layer.

Additionally, some of the Ar+ ions trap free electrons and emit a photon in the process
B.1(e), generating the characteristic glow of the plasma. Notice that, in order that the
process be efficient, the role of the magnetic field is fundamental: the electrons describe
much larger trajectories than without it, increasing the time that the they are close to
the target, and consequently the chances of the above described process be triggered.
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Figure B.1: Sketch of the magnetron sputtering deposition technique.
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Appendix C

System for thermal evaporation of
multilayers

Thermal evaporation is one of the simplest PVD deposition methods. The material to
evaporate is heated in a vacuum chamber until the atoms on its surface get sufficient
energy to leave it. Then, the material starts to irradiate such atoms and they travel in
straight paths until they collide with another atoms or find a surface to settle down, like
the wall of the chambers or the substrate were the sample is growth.
In order to avoid the atoms of the material to collide with other particles, the chamber
must be at pressure levels low enough so that the mean free path for the atoms be fairly
larger than the distance between the material and the substrate. This is typically
achieved at 10−4 torr.
During the realization of my thesis I designed and built a system that permits to
fabricate thin films of multilayers of different material by thermal deposition without
break the vacuum.
The system is depicted in figure C.1. The whole system is pumped by a turbomolecular
pump supported by a membrane pump. Typical final pressures after one night
pump-down starting from atmosphere, are below 2×10−7 Torr.
Thermal evaporation is carried out on tungsten baskets connected to a DC power supply
model 2260B-30-72, capable of deliver up to 72A at 720W. The two materials to
evaporate is put directly on their respective tungsten baskets, which can be uncoated or
coated with Al2O3 depending on whether the material form alloys with W during the
evaporation or not. The current is raised up to the value at which the material begins to
deposit on the substrate and then, the deposition rate is controlled by varying the value
of the DC current.
The sample holder is fixed to a moving arm that can be moved forward and backward so
that the substrate can be in the line of sight of one or other of the W baskets. Thickness
is monitored with quartz micro-balances, conveniently located in places that are not
obstructed by the sample holder during evaporation.
The sample holder is also a hot plate than permits to make in-situ annealing and
depositions with variable substrate temperature. To accomplish this, the arm has a
tunnel inside, which allows to drive 4 cables to the sample holder, two of them are for
electrical feeding of the hot plate and the other two are for temperature measurement.
The system includes two right angle and two gate UHV valves, letting us open any of
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Figure C.1: Sketch of the 2-material thermal evaporation chamber built during my thesis.
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the 3 sub-chambers (W basket 1, W basket 2 and moving arm) to the atmosphere
without breaking the vacuum in the other 2. This allows to deposit more than 2
materials on a single substrate or also fabricate a set of samples without exposing the
materials to atmosphere.
The system has been employed successfully to deposit Au/Cr bilayers on Mica with
variable substrate temperature, which have been employed in studies of the electron
scattering mechanisms on thin films. The possibility to fabricate Au/Cr bilayers, have
opened the possibility to study the electron-surface scattering mechanisms in more
detail, since these films reach the electrical percolation at lower thickness than the
monolayers of Au.
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Appendix D

Alternating field gradient
magnetometry

Typical experimental set-up of an AGM is depicted in Fig. D.1. The sample is attached
to the extreme of a semi-rigid bar, placed between the magnetic poles and subjected to
two simultaneous and parallel magnetic fields: an uniform, continuous magnetic field
generated by the electromagnet and an oscillating gradient magnetic field generated
from a pair of coils attached to the poles of the electromagnet. The DC field magnetizes
the sample, while the AC field generates an oscillating force on it, thus making the
system bar- sample oscillate. The force is proportional to the total magnetic moment of
the sample and hence to the amplitude of the oscillations of the bar, which are sensed at
the other extreme by a piezoelectric sensor that transforms such movements into an
electric voltage vΩ.
The frequency of the oscillating magnetic field gradient is set to Ω, the natural mechanic
frequency of oscillation of the system bar-sample, which is usually at few hundreds of
Hz. At this condition, the system bar-sample enters in resonance, enhancing greatly the
amplitude of the oscillations and thus improving the sensitivity of the magnetic
moment. Furthermore, the voltage captured by the piezoelectric transducer is injected
into a lock-in amplifier tuned to Ω , to further to increase the signal to noise ratio.
In case one wants to obtain absolute values of the magnetic moment, rather than simply
proportional to it, a reference sample of known magnetic moment must be previously
measured for calibration.

67



  

Piezoelectric 
transducer

Electromagnet poles

Coils to generate 
magnetic field 

gradient

sample

Mechanic natural 
frequency of oscillation

Lock-in
amplifier

Function 
generator

referencesinuidal voltage

amplifier

Figure D.1: Experimental setup of the alternating field gradient magnetometer.
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Appendix E

Generalized magneto-optical
ellipsometry

E.1 Introduction

Generalized magneto-optical ellipsometry (GME) [55] is a powerful, nondestructive
technique that combines in a single experimental setup and sequence magneto-optical
Kerr effect (MOKE) magnetometry and ellipsometry. It is therefore capable of
determining by means of a single measurement sequence the complex index of refraction
N = n+ ik, the magneto-optical coupling constant Q = Qr + iQi, as well as the
magnetization orientation of a ferromagnetic material [56, 57].
It was also demonstrated that GME can be extended to variable wavelength and
temperature dependent measurement types [58, 59]. Some recent works have
furthermore improved the efficiency of data acquisition [60]. and used GME to
characterize purely optical anisotropy effects [61].
It is known that the sensitivity of a conventional, non-magneto-optical ellipsometer is in
general better for higher incidence angles [62] (as measured from the sample normal),
with recommended angles being typically larger than 40◦. Until now, no significant
attention has been given to the incidence angle of the light in GME experiments, which
could affect the precision and accuracy of results in a significant way.
In this work we present a thorough study of error propagation for N and Q at different
incidence angles of the light ϕ0 and we compare these theoretical results with GME
measurements on polycrystalline cobalt films for different values of ϕ0 .

E.2 Theory

For simplicity, we restrict our analysis here to the assumption of a bulk material, that is
optically isotropic and has isotropic magneto-optical response in that it can be described
by a single magneto-optical coupling constant Q. The light used in the GME
experiment is assumed to be a fully polarized plane wave. The electric field of such a
light wave can be expressed as the superposition of components that are perpendicular
and parallel to the plane of incidence, as shown in Fig. E.1.
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Figure E.1: Reflection of light at the surface of a magnetized medium with arbitrary
direction of the magnetization. m represents the unit vector of the magnetization. n is
vector normal to plane and lies in POI. mx, my, mz are the longitudinal, longitudinal and
polar components of m respectively

E =

(
Es

Ep

)
. (E.1)

The surface acts as a transformation matrix

R =

(
rss rsp
rps rpp

)
(E.2)

for the incoming beam. The diagonal components of R, rss and rpp are the conventional,
nonmagnetic reflection coefficients of the perpendicular and parallel components,
respectively, i. e. the Fresnel reflection coefficients, which are known to follow [63]

r̃s =
rss
rpp

= −cos (ϕ0 − ϕ1)

cos (ϕ0 + ϕ1)
, (E.3)

with

tan (ϕ1) = cot (ϕ0)

(
r̃s + 1

r̃s − 1

)
, (E.4)

where ϕ1 is the complex angle of refraction. The non-diagonal components of matrix R
are terms that appear if the sample material is magnetized. In the case studied here, we
restrict ourselves to magnetization orientations along the longitudinal axis only, so that

R =rpp

(
r̃s α̃
−α̃ 1

)
(E.5)

with[57]

α̃ = − ibQ sin (2ϕ0) sin2 (ϕ1)

sin (ϕ0 + ϕ1) cos (ϕ1) [sin (2ϕ0)− sin (2ϕ1)]
(E.6)
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Figure E.2: Scheme of the GME setup

for a bulk like sample, where Q is defined via the dielectric tensor

ε = εr

1 0 0
0 1 0
0 0 1

+ iQεr

 0 mz −my

−mz 0 mx

my −mx 0

 , (E.7)

with εr being the permittivity of the medium in the absence of magnetization. For a
GME set-up like the one shown[60] in Fig. E.2, the polarizers are described by the
transformation matrix

P =

(
cos2 (θ) sin (θ) cos (θ)

sin (θ) cos (θ) sin2 (θ)

)
(E.8)

acting upon the incoming electric field vector. Hereby, θ is the angle between the
polarizer transmission axis and the s-polarization orientation. The electric field vector
ED arriving at the photodetector is then given by

ED = P (θ2) ·R ·P (θ1) · E0, (E.9)

with E0 being the electric light field produced by the laser. Correspondingly, the
intensity of the light at the photodetector is

ID = ED·E∗D. (E.10)

The analysis of light intensity changes at the detector upon magnetization state
inversion, while varying the angles of the polarizers θ1 and θ2 , enables now the
determination of R, which in turn allows for the extraction of N and Q, in both their
real and imaginary parts. We define here the fractional intensity change

δI

I
(θ1, θ2) = 2

I↑ − I↓
I↑ + I↓

, (E.11)
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where I↑ and I↓ are the light intensities for inverted magnetization states of the sample.
It has been shown[55] that

δI

I
=

B1f1 +B2f2

B5f5 + 2B6f4 + f3

(E.12)

with

B1 = < (α̃) ,

B2 = < (r̃sα
∗) ,

B5 = |r̃s|2 ,
B6 = < (r̃s) (E.13)

and1

f1 = sin θ2 cos θ2 sin2 θ1 − sin θ1 cos θ1 sin2 θ2,

f2 = sin θ1 cos θ1 cos2 θ2 − sin θ2 cos θ2 sin2 θ1,

f3 = sin2 θ1 sin2 θ2,

f4 = sin θ1 cos θ1 sin θ2 cos θ2,

f5 = cos2 θ1 cos2 θ2. (E.14)

From Eq. (13) we obtain

r̃s = B6 + i
√
B5 −B2

6 (E.15)

The relation between rs and the index of refraction is given by[63]

r̃s =
sin2 (ϕ0) + cos (ϕ0)

√
N2 − sin2 (ϕ0)

sin2 (ϕ0)− cos (ϕ0)
√
N2 − sin2 (ϕ0)

. (E.16)

Thus we obtain

N = tan(ϕ0)

(
2

(
B5 + i

√
B5 −B2

6

)
cos(2ϕ0)

+ 1 +

(
B5 + i

√
B5 −B2

6

)2
)1/2

×
(
i
√
B5 −B2

6 +B5 + 1

)−1

. (E.17)

We derive an expression for Q as a function of Bi by replacing Eqs. (E.4), (E.13) and
(E.15) in Eq. (E.6). We find

Q = i

(
B1 +

i (B2 −B1B6)√
B5 −B2

6

)
q0 (E.18)

1If the orientation of magnetization is arbitrary, the numerator in right part of Eq. (E.12) will have
four additional terms describing the transversal and polar components of magnetization[59]
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with

q0 = tan(ϕ0) sec(ϕ0)

(
i
√
B5 −B2

6 +B5 − 1
)

(
i
√
B5 −B2

6 +B5 + 1
)2

×

(
2

(
1 +

(
B5 + i

√
B5 −B2

6

)2
)

cos(2ϕ0)

+

(
B5 + i

√
B5 −B2

6

)
(cos(4ϕ0) + 3)

)

×

(
2

(
B5 + i

√
B5 −B2

6

)
cos(2ϕ0)

+

(
B5 + i

√
B5 −B2

6

)2

+ 1

)−1

. (E.19)

E.3 Error Analysis

E.3.1 Error propagation for the refractive index N

Using Eqs. (E.15) and (E.16) we derive the error propagation from the measured B5,6

values to the analyzed

∂N

∂B5

= gng5,

∂N

∂B6

= gng6 (E.20)

with

gn =

√
N2 − sin2 (ϕ0)

2N cosϕ0

×
(

sinϕ0 − cotϕ0

√
N2 − sin2 (ϕ0)

)2

,

g5 =
1

2
√
B5 −B2

6

,

g6 = 1− B6

2
√
B5 −B2

6

. (E.21)

N is given in terms of B5,6 by Eq. (E.17). The total variance in N is then

∆N =

√(
∂N

∂B5

∆B5

)2

+

(
∂N

∂B6

∆B6

)2

, (E.22)

where ∆B5,6 are the corresponding variances in each of the experimentally accessible
Bi-factors. As a way to sketch the variance amplification from B5,6 to N as function of
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incidence angle, . Fig. E.3a shows the variance in N assuming a 1% variance of B5,6

each, which are reasonable values based upon our exemplary experimental study of Co.
As is evident from Fig. E.3a, all curves show a very pronounced growth of the variance
as ϕ0 decreases.

E.3.2 Error propagation for the magneto-optical constant Q

Using Eqs. (E.18) and (E.19) we derive the error propagation of the measured B1,2,5,6

values to the analyzed magneto-optical coupling constant Q. Here, we find

∂Q

∂B5

= qsg5 + q5q0,

∂Q

∂B6

= qsg6 + q6q0,

∂Q

∂B1

= q1q0,

∂Q

∂B2

= q2q0 (E.23)

with

qs =(
(r̃s − 3)

(
(r̃s − 1)4 tan(ϕ0) sec(ϕ0)− r̃s2 sin(5ϕ0)

)
+ (r̃s(r̃s(r̃s(−2(r̃s − 6)r̃s − 43) + 63)− 29) + 3) sin(ϕ0)

+ (r̃s(9− 2r̃s((r̃s − 6)r̃s + 7)) + 1) sin(3ϕ0)

)
× 2

(
(r̃s + 1)3

(
r̃s

2 + 2r̃s cos(2ϕ0) + 1
)2
)−1

,

q1 = i+
B6√

B5 −B2
6

,

q2 =
−1√

B5 −B2
6

,

q5 =
B2 −B1B6

2 (B5 −B2
6)

3/2
,

q6 =
B1B5 −B2B6

(B5 −B2
6)

3/2
. (E.24)

The total variance in Q is correspondingly given by

∆Q =

((
∂Q

∂B1

∆B1

)2

+

(
∂Q

∂B2

∆B2

)2

+

(
∂Q

∂B5

∆B5

)2

+

(
∂Q

∂B6

∆B6

)2
)1/2

(E.25)
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with B1,2,5,6 being the variances of each of the GME parameters Bi. Fig. E.3b shows the
variance in Q as function of incidence angle, assuming a constant variance of 1 % for all
coefficients B1,2,5,6. Again there is a very strong growth in variance as the incidence
angle decreases. An analysis of each individual term contributing to the sum under the
square root in Eq. (E.25) (not showed here) shows that the main contributions to Q are
the two terms with B5,6, namely the GME parameters related to the conventional
Fresnel coefficients, which are not related to magneto-optical activity.
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Figure E.3: Variance of the complex index of refraction N (a), and the complex magneto-
optical constant Q (b) as a function of the angle of incidence. The specific values used
for this calculation are n = 2.20, k = 3.42, Qr = 2.25× 10−2 and Qi = 0.80× 10−2, which
are typical values for Co.

E.4 Meassurements and Discussion

In order to test our theoretical results, we performed measurements on a 150 nm thick
cobalt film in longitudinal geometry for four distinct values of ϕ0: 15◦, 30◦, 45◦ and 60◦.
As a light source, we used a polarization stabilized He-Ne laser (λ=633nm). We
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measured the experimental δI/I values following the work of Arregi et al [60] using a
diagonal grid of (θ1, θ2)-pairs around the light extinction condition. The intensities of
the light I↑ and I↓, were taken at the largest experimentally accessible magnetic field
values (approx. +/- 2500 Oe) in order to saturate the magnetization in the longitudinal
direction. We repeated this grid of measurements at least 20 times for each of the four
ϕ0 values and analyzed all experimental data by least-squares fitting of the δI/I maps
to Eq. (E.12). From the collection of these multiple data sets, we then obtained the
averages and variances of the fitting constants B1,B2, B5, and B6. The corresponding
results are shown in Table E.1. Table E.2 lists the average and the variance of the

Figure E.4: (a) Hysteresis loop for a fixed set of polarizer angles θ1, θ2. The field dependent
light intensity is normalized to I = (I↑ + I↓)/2. (b) Color-coded δI/I(θ1, θ2)-plot for
experimental data obtained at ϕ0=60◦ via hysteresis cycles such as the one shown as in
(a). The grid of black points shows the polarizer pair orientations, for which the repeat
measurements were done to perform the statistical data analysis of Table E.1
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complex index of refraction and magneto-optical constant Q for each angle of incidence,
derived from the fitted GME parameters.
In Table E.1 we see that the uncertainty for the B5,6 values is roughly the same for both
parameters independent from the incidence angle ϕ0. However, in Table E.2 we observe
that the uncertainty for the optical and magneto-optical constants becomes significantly
lower as ϕ0 increases. At ϕ0=15◦, the error propagation is actually so problematic that
even small statistical errors cause a complete lack of reliability for the deduced optical
and magneto-optical constants.
On the other side, the uncertainly in the B1,2 parameters has acceptable variances even
for the 15◦ incidence angle. This means that at 15◦ it is still possible to measure
hysteresis cycles with good statistics. However, the measurements are not suitable for
the determination of Q, in exactly the same way, in which they are not suitable for the
determination of N anymore. This is because B5 and B6 already produce such large
inaccuracies in Q, that its measurement becomes meaningless. We expect very similar
results for materials with comparable values of N , such as for example bulk permalloy
[55] (N = 2.4 + 3.7i; Q = (7.3 + 7.8i)× 10−3), even if Q differs significantly, because the
variances of B1,2 do not make an important contribution to the uncertainty of Q, which
is dominated by the constants B5,6. So, we can conclude that in general the accuracy of
magneto-optical constant measurements decreases as ϕ0 becomes smaller.

Table E.1: Fit parameters B1,2 and B7,8 of experimental δI/I data sets, at each value of
ϕ0.

ϕ0 = 15◦ ϕ0 = 30◦ ϕ0 = 45◦ ϕ0 = 60◦

B1(10−4) -2.400±4.5% -4.372±1.4% -5.621 ± 1.4% -4.588 ± 2.6%
B2(10−4) 2.517±4.7% 5.310±1.5% 9.031 ± 1.5% 16.05 ± 1.5%

B5 1.035±1.1% 1.153±0.3% 1.395 ± 0.7% 2.019 ± 0.8%
B6 -1.016±0.5% -1.066±0.2% -1.140 ± 0.3% -1.15 ± 0.3%
R2 0.998 0.998 0.999 1.000

Table E.2: Material constants derived from Table E.1.

ϕ0 = 15◦ ϕ0 = 30◦ ϕ0 = 45◦ ϕ0 = 60◦

n 0.950 ± 46% 2.233 ± 3.3% 2.203 ± 1.1% 2.203 ± 1.5%
k 2.568 ±9.9% 3.587 ± 2.1% 3.364 ± 1.4% 3.423 ± 1.0%

Qr (10−2) 0.876 ± 33% 2.317 ± 3.6% 2.176 ± 1.8% 2.249 ±1.3%
Qi (10−2) 0.262 ± 120% -0.703 ± 12% -0.791 ± 4.0% -0.804 ±3.8%

Summary

In this study, we have demonstrated that the light incidence angle affects the GME
measurement precision for the complex index of refraction N and magneto-optical
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constant Q in a very significant way, similar to the case of conventional ellipsometry of
nonmagnetic material. If GME-data are used for simple Kerr magnetometry and not for
the purpose of complex magneto-optical constant determination, this incidence angle
sensitivity still exists, but is far less crucial, because no data interpretation based on the
diagonal reflection matrix elements is being done in this case.
In our experimental study of cobalt, GME gives especially reliable results at light
incidence angles of 45◦ and 60◦, while it becomes clearly impracticable for the
determination of optical and magneto-optical constants at 15◦ and below. Thus, we find
the light incidence angle to be very relevant, so that it must be taken in consideration
for the design of optimized measurement strategies for optical and magneto-optical
constants by means of GME.
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