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Abstract

This thesis is concerned with modeling and identification of linear dynamic systems with
uncertainties. In order to adequately represent the behavior of real processes, identified mod-
els must include a quantification of their uncertainties. This thesis presents identification
methods where the uncertainty model is assumed to be a linear filter and its corresponding
parameters are random variables. This modeling framework is known in the literature as
Stochastic Embedding and it has been traditionally developed under the assumption that the
parameters that define the uncertainty are Gaussian distributed latent variables. In this the-
sis we extend this framework in order to consider that the distribution of the parameters that
define the uncertainty is an unknown non-Gaussian distribution, which is approximated by
a Gaussian mixture. Thus, in the first part of this thesis, we develop identification method-
ologies for systems that consider non-Gaussian latent variables. In the second part of this
thesis, we develop identification methodologies driven by non-Gaussian noise. Based on these
results, we develop identification methodologies in a Stochastic Embedding framework in the
third part of this thesis.

The first part of the thesis addresses an estimation problem where latent variables are
modeled as a Gaussian Mixture Model, and Maximum Likelihood estimation algorithms with
data augmentation approach are developed. The associated estimation problem is solved
iteratively based on the Expectation-Maximization algorithm. To address the uncertainty
modeling estimation problem, we firstly present a Maximum Likelihood estimation algo-
rithm expressing the likelihood function in terms of an infinite mixture utilizing a Gaus-
sian Mixture Model. A systematic procedure to construct an auxiliary function with finite
Gaussian mixtures is developed in order to solve the expectation step of the iterative algo-
rithm. This approach provides closed form expressions for the Gaussian mixture estimators
in the maximization step. In addition, the proposed estimation procedure is used to address
the problem of stellar rotational velocities estimation with a finite mixture of Maxwellian
distributions. This approach provides an accurate estimation of the mixture distribution and
closed form expressions for the estimators of the proposed iterative algorithm.

The second part of the thesis addresses systems in which the measurements are subject
to non-Gaussian noise. We focus on linear dynamic systems with non-minimum-phase noise
transfer function and a Gaussian mixture noise distribution. An iterative algorithm with
Gaussian Mixture Models is developed based on the corresponding prediction error. The
prediction error is obtained using anti-causal and causal filtering techniques. The proposed
iterative algorithm also provides closed form expressions for the Gaussian mixture estimators
of the noise distribution. In general, the simulation results show accurate estimations of the
system model parameters when the stochastic description is appropriately modeled as a
finite Gaussian mixture, even if the non-Gaussian distribution does not correspond to a
finite Gaussian mixture but can be approximated by one.

Finally, in order to consider structural and parametric uncertainty quantification, a
Stochastic Embedding framework is used. In this approach, a nominal model and a Gaussian
mixture distributed error-model are considered. The error-model parameters are selected as
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Abstract

hidden variables and the likelihood function is obtained by marginalizing the hidden vari-
ables. We jointly use the measurements of independent experiments to solve the expectation
step of the iterative algorithm. The proposed algorithm results in closed form expressions for
the Gaussian mixture estimators of the error-model distribution. This framework provides
an accurate estimation of both the nominal model and the error-model distribution when
the number of experiments is high. Moreover, this identification approach shows similar per-
formance for modeling error-model in continuous-time linear systems utilizing sampled data.

Key words: Maximum Likelihood, Stochastic Embedding, Gaussian Mixture Models, Non-
minimum-phase noise transfer function, Expectation-Maximization.
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Resumen
En esta tesis se aborda el problema de modelado e identificación de sistemas dinámicos lin-
eales con incertidumbres. Con el propósito de representar adecuadamente el comportamiento
de procesos reales, es necesario que los modelos estimados incorporen un modelo de la incer-
tidumbre. En este trabajo se desarrollan metodologías de identificación en donde el modelo
de la incertidumbre es considerado como un filtro lineal cuyos parámetros son variables es-
tocásticas. Este enfoque de modelado es conocido en la literatura como Stochastic Embedding,
donde típicamente ha sido usado considerando que los parámetros que definen el modelo de
la incertidumbre son variables latentes con distribución de probabilidad gaussiana. En esta
tesis se hace una extensión de este paradigma de modelado, considerando que la distribución
de los parámetros que definen la incertidumbre es desconocida y puede ser aproximada por
una suma finita de distribuciones gaussianas.

En la primera parte de esta tesis se considera un problema de estimación en donde las
variables latentes son modeladas como una suma de distribuciones gaussianas, desarrollando
algoritmos de estimación por máxima verosimilitud con el enfoque de datos aumentados. El
problema de estimación se resuelve de forma iterativa usando un algoritmo basado en el
algoritmo que maximiza la esperanza. Con el objetivo de poder abordar el problema de esti-
mación de modelos con incertidumbre, se desarrolla un algoritmo de estimación por máxima
verosimilitud en donde la función de verosimilitud se expresa como una mezcla infinita de
distribuciones utilizando suma de distribuciones gaussianas. Se desarrolla un procedimiento
sistemático para construir una función auxiliar con una suma de distribuciones gaussianas
con el objetivo de desarrollar un algoritmo iterativo basado en maximizar la esperanza. Bajo
este enfoque, al maximizar la función auxiliar, se puede obtener expresiones cerradas para
los estimadores de la suma de distribuciones gaussianas. Adicionalmente, este procedimiento
es usado para resolver el problema de estimación de velocidades de rotación estelar usando
una suma finita de distribuciones maxwellianas. Este enfoque permite obtener una buena
exactitud en la estimación de la suma de distribuciones, y además expresiones cerradas para
los estimadores del algoritmo propuesto.

En la segunda parte de esta tesis se consideran sistemas dinámicos donde las mediciones
están sujetas a fuentes de ruido con distribución no-gaussiana, en particular, sistemas dinámi-
cos lineales con funciones de transferencia de ruido de fase no-mínima y distribución de
probabilidad dada por la suma de distribuciones gaussianas para el ruido. Se desarrolla un
algoritmo iterativo con suma de distribuciones gaussianas basado en el error de predicción. El
error de predicción se obtiene usando técnicas de filtrado causal y anti-causal. El algoritmo
iterativo propuesto permite obtener expresiones cerradas para los estimadores de la suma de
distribuciones gaussianas que definen la distribución de probabilidad del ruido. En general,
los resultados de simulación muestran buena exactitud en la estimación de los parámetros
del sistema cuando el comportamiento estocástico del ruido es modelado o aproximado de
forma apropiada con una suma de distribuciones gaussianas.

Finalmente, el enfoque de Stochastic Embedding es usado para cuantificar incertidumbres
paramétricas y estructurales en un sistema dinámico lineal. Bajo esta idea, se considera que
el comportamiento del sistema viene definido por un modelo nominal y un modelo de la
incertidumbre con una distribución de probabilidad dada por una suma de distribuciones
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gaussianas. Los parámetros del modelo de la incertidumbre se escogen como variables la-
tentes y la función de verosimilitud se obtiene con la marginalización de dichas variables. Se
considera el manejo simultáneo de las mediciones de experimentos independientes para for-
mular un algoritmo iterativo. Para el algoritmo propuesto, se obtienen expresiones en forma
cerrada para cada uno de los estimadores de los parámetros que definen la suma de distribu-
ciones gaussianas. Bajo este paradigma se obtiene una gran exactitud en la estimación del
modelo nominal y del modelo del error cuando el número de experimentos es alto. Además,
este enfoque de identificación muestra un desempeño similar para modelar la incertidumbre
en sistemas lineales en tiempo continuo utilizando datos que se obtienen del muestreo.

Palabras clave: Máxima verosimilitud, Stochastic Embedding, Suma de distribuciones
gaussianas, Función de transferencia de fase no-mínima, Maximizar la esperanza.
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Nomenclature

The notation and abbreviations used in this thesis are the following:

Notation:

R: Real number set.
N: Natural number set.
N : denotes the number of sampled data
M : denotes the number of experiments.
κ: denotes the number of a mixture model distribution components

xt: denotes the measurement t of a signal x.
εt: prediction error sequence.

εt(θ): prediction error sequence parameterized by θ.
x1:N : denotes de signal xt for t = 1, ..., N .

N (x; µx, Σx): denotes a normal distribution of a random variable x with mean value µx and
covariance matrix Σx.

ϕM(x; σ): Maxwellian probability density function with dispersion parameter σ.
β: vector of parameters to be estimated.
β̂: estimate of a vector of parameters β.

z−1: denotes the backward shift operator or the z-transform variable.
s: denotes the time derivative operator d

dt
or the Laplace transform variable.

E {a|b}: expected value of the random variable a given the random variable b.
L(β): likelihood function with the vector of parameters β.
ℓ(β): log-likelihood function with the vector of parameters β.
tr(·): denotes the trace operator.
∥·∥: Euclidean norm.
| · |: denotes the determinant operator.

p(a|b): probability density function of the random variable a given the random variable
b.

p(a, b): joint probability density function of random variables a and b.

Abbreviations and Acronyms:

AIC: Akaike information criterion.
ARMA: Auto-regressive moving average.

BF: Basis function.
CT: Continuous-time.
DT: Discrete-time.
EM: Expectation-Maximization.
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Nomenclature

FIR: Finite impulse response.
FSS: Feasible system set.

GMM: Gaussian mixture model.
HOM: High order moments.
i.i.d.: Independent and identically distributed.
MA: Moving average.
MC: Monte Carlo.

MEM: Model error modeling.
ML: Maximum likelihood.

MSA: Maxwellian mixture model.
MSE: Mean square error.
PEM: Prediction error method.
PDF: Probability density function.

SE: Stochastic embedding.
SM: Set membership.
s.t.: Subject to.

TRM: Tikhonov regularization method.
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Chapter 1
Introduction

1.1 Motivation

System identification is a scientific area that provides methodologies to model and estimate
dynamic systems from a set of experimental data, i.e., a model is fitted to the measured data
by estimating its corresponding system model parameters [1, 2]. The formulation of identi-
fication algorithms is basically a statistical problem, i.e., we consider the disturbances and
measurements errors as realizations of stochastic processes. Then, the accuracy of estimated
system models depends of the random behavior of these processes.

Because of its valuable statistical properties [1–3], many identification algorithms in the
literature involve the Maximum Likelihood (ML) principle with particular scenarios in the
field of system modeling, such as dynamic systems [4–6], static systems [7], systems with
quantized output data [8–11], and communications [12, 13], to mention a few. In particular,
the ML estimators are asymptotically unbiased, that is, the estimates approach the true
value when the number of measurements is large. However, if the number of measurements
is small, then the estimates can be far from the true value due to the measurement noise
variance [1, 2]. On the other hand, there are scenarios where the number of sampled data
is large and the estimated system model can considerably change from one estimation to
another, i.e, there are uncertainties in the system model that cannot be accounted for by
the noise measurements and a large variance.

To illustrate this behavior, we consider the system models shown in Figure 1.1, where
yt is the output signal, ut is the input signal, z−1 denotes the backward shift operator
(z−1ut = ut−1), ωt is a zero-mean Gaussian white noise with variance σ2. The main goal is
to obtain an ML estimation of β = [θT σ2]T , where G0(z−1, θ) is parameterized by θ. The
estimation is performed utilizing the corresponding set of measurements {u1:N , y1:N} for both
Model A and Model B, where N is the data length. For simplicity of the presentation, we
adopt finite impulse response (FIR) system models for all transfer functions in Figure 1.1 as
follows:

G0(z−1, θ) = g0 + g1z
−1, Gϵ(z−1, η) = η0 + η1z

−1, (1.1)

where θ = [g0 g1]T is a deterministic vector of parameters, and η = [η0 η1]T is a stochastic
vector of parameters with a known probability density function (PDF). For Model A, an

G0(z
−1, θ) +

ωt

ut yt

(a) Model A

G0(z
−1, θ) + Gϵ(z

−1, η) +

ωt

ut yt

(b) Model B

Figure 1.1: Models for linear dynamic system identification.
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Figure 1.2: Frequency response of the magnitude of the estimated system for Model A using
PEM.

additive noise sequence ωt is considered. Similarly, for Model B, structural and parametric
uncertainties are incorporated using an additive error-model, Gϵ(z−1, η), parameterized by
a random vector η.

We perform 50 simulations to obtain a data set {u1:N , y1:N} considering that ut is a zero-
mean Gaussian distributed input signal with variance σ2

u = 10, and ωt is zero-mean Gaussian
distributed with variance σ2 = 8 for each scenario. In addition, for Model B, η is Gaussian
distributed with mean value µη = [0 − 1] and covariance matrix Ση = diag[0.2]. We then
estimate a system model G0(z−1, θ), for Model A and Model B, utilizing the data set of each
simulation and the classical prediction error method (PEM) [2]1. In Figure 1.2 and Figure 1.3
the gray shaded regions represent the area in which the magnitude of the frequency response
of 50 estimations of the system lie, for both Model A and Model B. In Figure 1.2, we observe
biased estimations (dotted lines) since the number of measurements used to obtain the ML
estimations is small (N = 250). The bias in the estimated models is reduced when the number
of measurements is increased (N = 104). In contrast, in Figure 1.3, since structural and

1In this case the PEM estimations are computed using pem() function of Matlab®.
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Figure 1.3: Frequency response of the magnitude of the estimated system for Model B using
PEM.

parametric uncertainties are added by Gϵ(z−1, η), biased estimated models (dotted lines) are
obtained utilizing both small and large data measurements set. This means that a different
system is estimated for each data set. Hence, it is desirable that from system identification
techniques provide a quantification of the estimation uncertainty, that is, modeling the error-
model that comes from structural and/or parametric uncertainties [14–16].

An alternative to modeling structural and/or parametric uncertainties is to combine a
nominal model with an error-model, i.e., the uncertainty modeling is part of the estimation
algorithm. This idea can be used for robust control design, where optimization methods
are used in order to minimize the expected variation (variance) of the true system in the
control performance [17], or to obtain a probabilistic solution for robust control design [18,
19]. This approach of uncertainty modeling has been addressed in different frameworks, such
as Set Membership [20], Model Error Modeling [21], and Stochastic Embedding [14, 22]. In
[20] the Set Membership (SM) approach was used to deal with the problem of uncertainty
modeling in dynamic systems. The authors of [20] considered the error-model estimation in a
deterministic framework in which it is unknown-but-bounded, and obtained a set of possible
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solutions. However, this method does not guarantee a small set of solutions to properly
describe the system model uncertainty. In [21] classical prediction error methods (PEMs) [2]
were used to obtain an estimation of the nominal model. Then, the unmodeled dynamics were
estimated from the residuals dynamics using PEM and obtaining the corresponding model
error modeling (MEM). This methodology assumes that the nominal model is available.

In [14, 22] a Stochastic Embedding (SE) approach was used to describe the model un-
certainty by considering the model as a realization drawn from an underlying probability
space, where the parameters that define the error-model are characterized by a PDF. In this
approach, a flexible error-model distribution is needed to obtain a correct description of the
system model uncertainty. The uncertainty can be quantified by using ML estimation consid-
ering the parameters of the error-model as hidden variables [23,24] and solving the associated
estimation problem using the Expectation-Maximization (EM) [25] algorithm under Gaus-
sian assumptions for the error-model distribution. However, when the error-model distribu-
tion is not Gaussian, these techniques perform poorly under Gaussian assumptions. In [24,26]
a Bayesian perspective was adopted, where the parameters that define both the nominal
model and the error-model can be modeled as realizations of random variables with certain
prior distributions, and the posterior densities of the parameters can be estimated. There are
works closely related with this framework [27, 28] based on the kernel approach for system
identification. Under this Bayesian framework, it is possible to obtain a unified system model
of both the nominal model and error-model if all system models are FIR systems. However,
this approach does not allow for obtaining the nominal model and the error-model separately
when more complex model structures are involved in the true system.

On the other hand, classical ML algorithms have been tailored for estimating linear dy-
namic systems where measurements are subject to noise. In particular, Gaussian distributed
noise sources are considered to attain the corresponding PEM estimators to obtain models
for linear systems [1, 2]. Based on this noise distribution, the estimation is improved when
the number of sample data is increased. However, when a Gaussian distribution for the noise
is assumed and the actual distribution is not Gaussian, the estimates can be far from the
true value, since the number of samples required to achieve consistency and efficiency tends
to be large.

In contrast, in [29–31] non-Gaussian assumptions have been used to obtain identifica-
tion methodologies for dynamic systems. Particularly, the identification of purely stochastic
non-minimum-phase systems under non-Gaussian assumptions is a problem that arises in
many applications such as communications [32], signal processing [33], and deconvolution
problems [34]. Typically, the identification of non-minimum-phase noise transfer functions
requires the use of high-order statistics [35] due to the fact that second-order statistics of the
output observations do not include sufficient information to differentiate minimum-phase ze-
ros from non-minimum-phase zeros [36,37]. In [37,38] an ML estimation algorithm for purely
stochastic non-minimum-phase linear dynamic systems was developed. In [36,39,40] an ML
estimation algorithm using an approximation of the likelihood function was considered. This
approximated likelihood function is obtained by using a truncation in the representation of
the innovations in terms of the observed data, assuming that i) the noise sequence distri-
bution is known, and ii) a specific system model structure is given (moving average (MA)
models [36] or auto-regressive moving average (ARMA) models [39]). Under this approach,
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the estimation accuracy is improved when the number of samples is large.
In [41] a traditional EM algorithm to obtain an exact ML estimator for a non-minimum-

phase MA system with non-Gaussian noise was developed. The initial conditions of the sys-
tem are considered as hidden (unobserved) variables. The authors of [41] showed that, when
the initial conditions are included as parameters to be estimated, the estimation accuracy
is better than when the initial conditions are fixed to zero (conditional ML estimation). On
the other hand, non-Gaussian assumptions have been used in the literature, specially for
error-in-variables systems (see e.g. [42,43] and the references therein). Moreover, most of the
techniques found in the literature for the identification of systems with non-minimum-phase
zeros utilize the Method of Moments [35,44–46], which is known to require a large number of
samples to yield accurate estimators [47]. In addition, these high-order estimation techniques
are restricted for non-Gaussian noise distributions such that the fourth-order cumulant is
non-zero [44].

In this thesis, we develop an ML estimation methodology for modeling the error-model in
linear dynamic systems under non-Gaussian assumptions. For structural and parametric un-
certainties, we consider the Stochastic Embedding approach, obtaining an estimation of both
a nominal model and a non-Gaussian distributed error-model. We also established an ML
estimation algorithm for linear dynamic systems where the output signal measurements are
subject to non-Gaussian noise, specifically, system models with non-minimum-phase noise
transfer functions driven by an exogenous input signal. For both scenarios, the non-Gaussian
distributions are modeled utilizing finite mixture distributions, specially, Gaussian Mixture
Models (GMMs). GMMs have been utilized in filtering [48, 49], tracking [50, 51], communi-
cations [52, 53], Bayesian estimation [54, 55], linear dynamic systems [56], and estimation
of stellar rotational velocities [57], to mention a few. Moreover, some of these authors use
GMMs to approximate non-Gaussian-sum distributions based on the Wiener approximation
theorem, which establishes that any PDF with compact support can be approximated by a
finite sum of Gaussian distributions [58, Theorem 3].

The main contributions of this thesis can be summarized as follows:

Main contributions

(i) We develop a Maximum Likelihood methodology for modeling structural and
parametric uncertainties in linear dynamic systems utilizing a Stochastic Embed-
ding approach with GMMs. We obtain a system model that combines the nominal
model and an error-model distribution defined by a GMM.

(ii) We develop a Maximum Likelihood method for estimating linear dynamic systems
with a Gaussian mixture noise distribution. We focus on the identification of the
parameters of linear systems with non-minimum-phase noise transfer functions
and the parameters of Gaussian mixture noise distributions.

(iii) We propose Expectation-Maximization algorithms to solve the associated Maxi-
mum Likelihood estimation problems with GMMs, obtaining the system model
parameters and closed form expressions for the GMM parameter estimators that
describe the non-Gaussian distributions.
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1.2 Thesis organization
This thesis is organized in chapters as follows:

In Chapter 2 the basic concepts of Finite mixture distributions and the approximation
properties of the GMMs are presented. We also show the ML formulation for estimation prob-
lems in which the likelihood function can be expressed as infinite mixtures with GMMs. An
iterative EM-based algorithm to solve the corresponding ML estimation problem with GMMs
is developed. We also use the proposed ML methodology with GMMs to address the stel-
lar rotational distribution estimation problem. In this problem, the true distribution of the
rotational velocities is modeled as a finite mixture of known distributions, specifically, a
finite mixture of Maxwellian distributions. These results are the baseline to develop the ML
estimation algorithms for uncertainty modeling in linear dynamic systems.

In Chapter 3 the identification of linear dynamic systems with non-Gaussian noise dis-
tribution is addressed, namely, dynamic systems with non-minimum-phase noise transfer
functions driven by an exogenous input signal. The noise sequence distribution is modeled
as a GMM. An ML estimation algorithm with GMMs to obtain both the system model and
the GMM estimators is developed. An EM algorithm with GMMs is developed to solve the
associated ML estimation problem.

In Chapter 4 the problem of model error modeling for linear dynamic systems is ad-
dressed. We focus on the Stochastic Embedding approach using GMMs for modeling the
error-model distribution for dynamic systems with structural and/or parametric uncertain-
ties. The estimation problem is addressed using the ML method with GMMs. An iterative
EM-based algorithm to estimate the nominal model and the error-model distribution is pro-
posed. In addition, the Stochastic Embedding approach using GMMs is extended to address
the problem of uncertainty modeling for continuous-time linear dynamic systems using sam-
pled data.

Finally, in Chapter 5, we present the conclusions and future research directions.

1.3 Associated publications
This thesis is supported by a set of publications in which the candidate is a joint author. Re-
lated publications made during the research period are also included.

Journal papers
J.1 R. Carvajal, R. Orellana, D. Katselis, P. Escárate and J. C. Agüero. A data augmen-

tation approach for a class of statistical inference problems. PLoS ONE, vol. 13, no.
12, e0208499, 2018. doi: 10.1371/journal.pone.0208499

J.2 R. Orellana, P. Escárate, M. Curé, A. Christen, R. Carvajal and J. C. Agüero. A
method to deconvolve stellar rotational velocities III. The probability distribution func-
tion via maximum likelihood utilizing finite distribution mixtures. Astronomy & As-
trophysics, vol. 623, A138, 2019. doi: 10.1051/0004-6361/201833455

J.3 R. Orellana, R. Carvajal, P. Escárate and J. C. Agüero. On the Uncertainty Identifica-
tion for Linear Dynamic Systems Using Stochastic Embedding Approach with Gaussian
Mixture Models. Sensors, vol. 21, no. 11, 3837, 2021. doi: 10.3390/s21113837
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J.4 R. Orellana, G. Bittner, R. Carvajal and J. C. Agüero. Maximum Likelihood esti-
mation for non-minimum-phase noise transfer function with Gaussian mixture noise
distribution. Automatica, Accepted for publication, 2021.

Conference papers
C.1 R. Orellana, R. Carvajal and J. C. Agüero. “Maximum Likelihood Infinite Mixture

Distribution Estimation Utilizing Finite Gaussian Mixtures”, in 18th IFAC Symposium
on System Identification, (SYSID), Sweden. IFAC-PapersOnline, vol. 51, no. 15, pp.
706-711, 2018. doi: 10.1016/j.ifacol.2018.09.200

C.2 R. Orellana, R. Carvajal, J. C. Agüero and G. C. Goodwin. “Model Error Modelling
using a Stochastic Embedding approach with Gaussian Mixture Models for FIR sys-
tems”, in 21th IFAC World Congress, Berlin, Germany. IFAC-PapersOnline, vol. 53,
no. 2, pp. 845-850, 2020. doi: 10.1016/j.ifacol.2020.12.841

C.3 R. Orellana, M. Coronel, R. Carvajal, R. Delgado, P. Escárate and J. C Agüero. “On
the Uncertainty Modelling for Linear Continuous-Time Systems Utilising Sampled
Data and Gaussian Mixture Models”, in 19th IFAC Symposium on System Identifi-
cation, (SYSID), Italy, 2021.

Other conference and journal publications
O.1 R. Orellana, R. Carvajal and J. C. Agüero. “Empirical Bayes estimation utilizing

finite Gaussian Mixture Models”, in 2019 IEEE CHILEAN Conference on Electrical,
Electronics Engineering, Information and Communication Technologies (CHILECON),
Valparaíso, Chile, 2019, pp. 1-6. doi: 10.1109/CHILECON47746.2019.8987584.

O.2 G. Bittner, R. Orellana, R. Carvajal and J. C. Agüero. “Maximum Likelihood identi-
fication for Linear Dynamic Systems with finite Gaussian mixture noise distribution”,
in 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Infor-
mation and Communication Technologies (CHILECON), Valparaíso, Chile, 2019, pp.
1-6. doi: 10.1109/CHILECON47746.2019.8987642.

O.3 M. Coronel, R. Orellana, L. Mora, R. Rojas and J.C. Agüero. A Sliding Mode Control
Strategy for Cascade Systems. IEEE Latin America Transactions, vol. 17, no. 9, pp.
1410-1417, 2019. doi: 10.1109/TLA.2019.8931133.

O.4 A. Cedeño, R. Orellana, R. Carvajal and J. C. Agüero. “EM-based identification of
static errors-in-variables systems utilizing Gaussian Mixture models”, in 21th IFAC
World Congress, Berlín, Germany. IFAC-PapersOnline, vol. 53, no. 2, pp. 863-868,
2020. doi: 10.1016/j.ifacol.2020.12.844.

In conference paper O.1, we use the proposed methodology for error-model estimation to
address the prior distribution estimation problem in the classical Bayesian inference state-
ment. An Empirical Bayes estimation approach with GMMs was used with the measure-
ments of independent experiments. In O.2, the ML estimation of linear dynamic systems
with Gaussian mixture noise distribution is addressed. A general class of linear system with
minimum-phase noise transfer functions was considered, solving the associated ML estima-
tion problem utilizing a global optimization technique. In O.3 a variable structure control
with sliding modes is proposed for cascade systems with dead time. However, these results are
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Chapter 1. Introduction

out of the scope of this thesis. Finally, in O.4, the ML estimation of static Error-in-Variables
systems is addressed. GMMs are used for modeling the noise-free input distribution, and also
to approximate non-Gaussian-sum noise-free input distributions.

The diagram in Figure 1.4 summarizes the thesis organization.
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Chapter 2
Maximum Likelihood Estimation of

Mixture Distributions with Data
Augmentation Approach

Problems in statistics and system identification often involve variables for which mea-
surements are not available. In the ML framework this difficulty is traditionally avoided
by the utilization of iterative algorithms, where an auxiliary function that includes both
the available data and the non-available data as random variables is used. However, this
approach typically involves a cost function in terms of an infinite mixture distribution that
comes from marginalizing the measurements with respect to the non-available data. In this
chapter the ML parameter estimation is discussed for problems where the likelihood function
can be expressed as an infinite mixture distribution that includes a finite Gaussian Mixture
Model. The parameter estimation technique is based on the EM algorithm, which provides
an iterative framework to solve the ML estimation problem. The benefits of the proposed al-
gorithm are illustrated via simulation examples. In addition, we show how this approach can
be used in Astronomy problems, specifically for estimating stellar rotational velocities with
real data from three sets of measurements. This chapter summarizes the results presented
in the journal publications J.1 and J.2, and also in the conference paper C.1.

Contribution

We propose a methodology to solve the Maximum Likelihood estimation problem for
infinite mixture distributions utilizing Gaussian Mixture Models. We develop a system-
atic procedure to generate an auxiliary function and to solve the estimation problem
based on an iterative structure of an EM algorithm. This methodology provides closed
form expressions for the finite Gaussian mixture estimators.

2.1 Motivation
Data augmentation algorithms in inference problems are based on the construction of the
augmented data and its many-to-one mapping from the sample space of the complete data
(observed and unobserved data) to the sample space of observed data. This augmented data
is assumed to describe a model from which the observed data set, y, is obtained via marginal-
ization [59]. That is, a system with a likelihood function, p(y|β), can be understood to arise
from

p(y|β) =
∫ ∞

−∞
p(y|x, β)p(x|β)dx, (2.1)

where β is the vector of parameters that defines the marginal distributions, p(y|x, β) and
p(x|β), the augmented data corresponds to (y, x), and x is the latent data. Notice that
(2.1) is a common representation of an infinite mixture distribution used in a plethora of
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engineering and statistical inverse problems. For example, the likelihood function in (2.1) is
closely related with the ML formulation where the y corresponds to the measurements and
x may correspond to the internal state (in state-space representation). Another common
mixture distribution can be found in Empirical Bayes method [60], in which the goal is
the attainment of the ML estimator of the hyperparameters that define the PDF of the
parameters that in turn define the likelihood function. The mixture distribution in (2.1) can
also be interpreted as a kernel function in a Bayesian framework [61,62].

On the other hand, this kind of inverse problems appears in several practical prob-
lems. One of the many problems in Astronomy deals with is the estimation of rotational
velocities of stars. This particular problem is of great importance, since it allows astronomers
to describe and model the stars formation, their internal structure and evolution, as well
as how they interact with other stars, see e.g. [57, 63, 64]. Modern telescopes allow for the
measurement of the rotational velocities from the telescope point of view, that is, a projec-
tion of the true rotational velocity. Then, (2.1) can be used to deconvolve stellar rotational
velocities where p(x|β) is the true rotational velocity PDF to be estimated (for more details
see e.g. [63]). Similar approaches have been used in channel modeling in wireless communica-
tions [65] and neutrino mass search in particle physics [66]. In particular, the authors of [24]
used the data augmentation approach in (2.1) to obtain a description of the uncertainty in
linear dynamic systems.

In this chapter, we propose an identification algorithm to obtain estimates of the parame-
ters that define p(x|β) in (2.1). Here, we consider the ML principle to develop an estimation
algorithm where p(x|β) corresponds to a finite mixture Gaussian distribution. We propose a
systematic procedure to build a surrogate function in order to obtain an iterative algorithm
for solving the associated ML estimation problem. This procedure is the baseline to de-
velop the estimation algorithms presented in Chapters 3 and 4 for estimating linear dynamic
systems with GMMs.

2.2 Finite mixture distributions

2.2.1 General description
Many statistical models involve finite mixture distributions in order to determine subgroups
in a population when individual observations of each subgroup are not available [67, 68]. In
Figure 2.1 a simple finite mixture distribution with three components is shown. It is assumed
that the measurements of an ny dimensional random variable y are drawn from a density,
p(y|β), modeled by a linear combination of probability density functions, pi(y|γi), as follows:

p(y|β) =
κ∑

i=1
αipi(y|γi), (2.2)

where κ is the number of components of the mixture model, pi(y|γi) is the i-th density
function parameterized by γi, αi is the mixing weight subject to ∑κ

i=1 αi = 1, 0 ≤ αi ≤ 1,
and the vector of parameters β is given by

β = [α1 γ1︸ ︷︷ ︸
β1

· · · ακ γκ︸ ︷︷ ︸
βκ

]. (2.3)
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Figure 2.1: Example of a finite mixture of three Gaussian distributions.

In general, it is considered that all the mixture components pi(y|γi) arise from the same
parametric family of distributions [67, 68]. However, there are some applications in which a
linear combination of different parametric distribution family is considered (see e.g. [69]).

2.2.2 Gaussian mixture models (GMMs) approximation

There is a particular case in which the mixture component pi(y|γi) in (2.2) is given by a
normal distribution, that is a Gaussian Mixture Model (GMM). For the mixture distribution
in (2.2), the GMM is defined as follows:

p(y|β) =
κ∑

i=1
αiN (y; µi, Σi), (2.4)

where κ ∈ N (κ ≥ 2), 0 ≤ αi ≤ 1, ∑κ
i=1 αi = 1, N (y; µi, Σi) corresponds to an ny-dimensional

normal (Gaussian) distribution given by:

N (y; µi, Σi) = 1
(2π)ny/2|Σi|1/2 exp

{
−1

2
(y − µi)T Σ−1

i (y − µi)
}

, (2.5)

where µi ∈ Rny×1 is the mean value, Σi ∈ Rny×ny is the covariance matrix, and |·| corresponds
to the determinant operator.

GMMs have been utilized to approximate non-Gaussian distributions (see e.g. [70] and
the references therein) in a variety of problems such as tracking [71], classification [72, 73],
and estimation of rotational velocities of stars [57], to mention a few. Based on the Wiener
approximation theorem, it is known that any PDF with compact support can be approxi-
mated by a finite sum of Gaussian distributions [58,74]. For completeness of the presentation,
the Gaussian sum approximation approach is summarized as follows (See [58, Theorem 3]):
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Lemma 1. Any probability density function, p(x|β) , of an n-dimensional random variable
x with compact support can be approximated as closely as desired in the space L1(Rn) by a
distribution of the form

p(x|β) ≈
κ∑

i=1
αiN (x; µi, Σi), (2.6)

where 0 ≤ αi ≤ 1, ∑κ
i=1 αi = 1, and N (x; µi, Σi) represents an n-dimensional normal

distribution with mean value µi and covariance matrix Σi. ▽

Remark 1. Based on the Tauberian theorems, the result of Lemma 1 can be extended using a
linear combination of translated density functions [74,75]. Then, the Wiener problem shows
that for a certain set M in the space L of all measurable functions in the interval (−∞,∞),
every function of the form ∑

i,k

ci,kfi(x + ξi,k) (2.7)

where ci,k are any real numbers, ξi,k are any real numbers and fi ∈ M, lies in L and these
functions generate a linear manifold in the space L. ▽

2.3 Maximum Likelihood estimation for infinite mix-
tures using GMMs

2.3.1 The Maximum Likelihood (ML) method
Maximum Likelihood (ML) is a common method to estimate parameters of a system using
the information provided by observations that can be described as realizations of stochastic
variables [2]. We can think that the observations (data) are more likely under some members
of an arbitrary family of probability distributions than under others [3]. Then, in the ML
framework, the probability distribution that makes more likely the given data in the sense
of maximizing the likelihood function is chosen.

Suppose that the measurements are represented by a random variable y1:N = [y1 · · · yN ],
then the likelihood function corresponds to the PDF given the vector of parameters β, denoted
by p(y1:N |β). Hence, the ML estimator is given by:

βML = arg max
β

p(y1:N |β). (2.8)

Under mild conditions, the ML estimators have the following properties [1, 2]:
(a) Consistency: ML estimators are consistent. That is, they tend to the true values in a

probabilistic or almost sure sense as the number of measurements N tends to infinity,
i.e., N →∞.

(b) Efficiency: Efficiency is concerned with the variance of the estimator. Then, ML es-
timators are efficient, since their covariance is equal to the Cramér-Rao lower bound
(CRLB) [76].

(c) Invariance: If there exists a transformation of the parameters, defined as a function,
such as β = f(θ̃), the principle of invariance states that the ML estimator of β is given
by βML = f(θML).
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2.3. Maximum Likelihood estimation for infinite mixtures using GMMs

(d) Bias: The ML estimator is in general biased, i.e., the expected value is not equal to the
true value of the parameters. Given the property (a), ML estimators are asymptotically
unbiased.

For more details on the ML principle, we refer to the reader the classical literature on
statistics and system identification, see e.g. [1–3,77].

2.3.2 Likelihood function from infinite and finite mixtures with
augmented data

Consider the infinite mixture distribution in (2.1). Here, p(y|β), is a function of a variable
accessible to observation, y, and p(x|β) is the PDF to be estimated. The conditional PDF
p(y|x) is known. Then, the problem to solve is to obtain an estimation of p(x|β) from
measurements of y using the GMM in (2.6) as follows:

p(x|β) =
κ∑

i=1
αiN (x; µi, Σi), (2.9)

with ∑κ
i=1 αi = 1, 0 ≤ αi ≤ 1. Typically, (2.9) is expressed as an approximation (see e.g.

[78]). Nevertheless, the problem of interest is formulated with the equality assumption. Thus,
the vector of parameters to be estimated, β, is given by

β = [ α1 µ1 Σ1︸ ︷︷ ︸
β1

· · · ακ µκ Σκ︸ ︷︷ ︸
βκ

]T . (2.10)

On the other hand, if we assume that the available data y1:N and also x1:N are independent
and identically distributed (i.i.d) random variables, we obtain:

p(y1:N |β) =
N∏

t=1
p(yt|β), (2.11)

p(x1:N |β) =
N∏

t=1
p(xt|β), (2.12)

with
p(yt|β) =

κ∑
i=1

αi

∫ ∞

−∞
p(yt|xt)N (xt; µi, Σi)dxt. (2.13)

The likelihood function, L(β), can then be expressed as:

L(β) =
N∏

t=1
p(yt|β), (2.14)

=
N∏

t=1

κ∑
i=1

αi

∫ ∞

−∞
p(yt|xt)N (xt; µi, Σi)dxt.

Obtaining the ML estimator in (2.8) using the likelihood function in (2.14) is usually a
difficult task due to the likelihood function nature and it can be even more difficult when
the number of unknown parameters is high. A way to reduce the complexity is by considering
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a strictly increasing function that, when applied to the likelihood function, yields the same
maximum value, such as the logarithmic function. This nonlinear function often simplifies
the computation of the maximum of the likelihood function, by turning products into sums
and eliminating exponential terms and functions [77]. Then, the log-likelihood function, ℓ(β),
is given by:

ℓ(β) =
N∑

t=1
log

{
κ∑

i=1
αi

∫ ∞

−∞
p(yt|xt)N (xt; µi, Σi)dxt

}
. (2.15)

Finally, using (2.15), the ML estimator is given by the following constrained optimization
problem:

βML = arg max
β

ℓ(β) s.t.
κ∑

i=1
αi = 1, 0 ≤ αi ≤ 1. (2.16)

Notice that the ML estimation problem with GMMs in (2.16) involves an incomplete data
problem, i.e., measurements of the random variable x are not available (see e.g. [79]). This
fact can hinder the computation of the log-likelihood function. In addition, the likelihood
function in (2.15) involves a logarithm of a sum that depends on the number of components
κ of the GMM, and it may be difficult to solve when the number of components in the GMM
increases [80]. An EM algorithm provides an elegant solution to the ML estimation problem
with incomplete data and GMMs.

2.4 Expectation-Maximization (EM) methods for finite
mixture distributions

2.4.1 The EM algorithm description

The iterative EM algorithm is a popular tool for identifying linear and non-linear dynamic
systems in the time domain (see e.g. [81,82]) and the frequency domain [83]. The key idea of
the EM algorithm is to obtain the ML estimation in (2.16) utilizing the data augmentation
approach or complete data [25], that is, the information given by the observed data y and
the hidden variable x. The iterative algorithm consists in obtaining a succession of estimates
β̂(m), m = 1, 2, ..., of the parameter β, alternating between computing an auxiliary function,
Q(β, β̂(m)), with the current estimate β̂(m) (E-step), and obtaining a new estimate β̂(m+1) by
maximizing the auxiliary function Q(β, β̂(m)) (M-step) [25,79]. Figure 2.2 depicts the behav-
ior of the EM algorithm in terms of the auxiliary function. Here, at the m-th iteration, an
auxiliary function Q(β, β̂(m)) is obtained (blue dashed line). After that, it is maximized with
respect to β, yielding a new estimate, β̂(m+1). This procedure continues until a convergence
criterion is achieved or a number of EM iterations is reached.

2.4.2 Classical formulation of EM algorithms with GMMs

The EM method has been successfully tailored for finite Gaussian mixtures (see e.g. [67,68]
and the references therein). In this approach, the observed data, y1:N = {y1, ..., yN}, are
drawn from a density modeled as a convex combination of Gaussian density functions, i.e.,
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ℓ(
β
)

ℓ(β)

Q(β, β̂(m))

Q(β, β̂(m+1))

Q(β, β̂(m+2))

β̂(m+3)β̂(m+2)β̂(m+1)β̂(m)

Figure 2.2: Iterative procedure of the EM algorithm.

the log-likelihood function has the form [67]:

ℓ(β) =
N∑

t=1
log

{
κ∑

i=1
αiN (yt; µi, Σi)

}
. (2.17)

In this context, the key idea of the EM algorithm is to define a label as a hidden discrete
random variable, ζt ∈ {1, ..., κ}, and then maximizing at each iteration the conditional
expectation of the complete log-likelihood function, ℓc(β, ζ) = p(y1:N , ζ1:N),

ℓc(β, ζ) =
N∑

t=1

κ∑
i=1

ζti log(αiN (yt; µi, Σi)), (2.18)

given the observed measurements and the current value of the vector of parameters to be esti-
mated [68]. This hidden random variable ζt is an indicator that determines if an observation
yt arises from the ith component of the GMM. The formulation of the EM algorithm with
GMMs takes advantage of the relationship between the observed and complete likelihood
functions as follows [25]:

ℓ(β) = ℓc(β, ζ)−
N∑

t=1

κ∑
i=1

ζti log[p(yt|ζt = i)], (2.19)

where p(yt|ζt = i) is the conditional probability that yt arises from the i-th Gaussian mixture
component given the parameter value β. Then, the log-likelihood function in (2.19) can be
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rewritten in the following form [25,68]:

ℓ(β) = Q̄(β, β̂(m))− H̄(β, β̂(m)), (2.20)

where
Q̄(β, β̂(m)) = E

{
ℓc(β, ζ)|y1:N , β̂(m)

}
, (2.21)

H̄(β, β̂(m)) = E
{

N∑
t=1

κ∑
i=1

ζti log[p(yt|ζt = i)]|y1:N , β̂(m)
}

, (2.22)

E {·|·} denotes the conditional expectation, and β̂(m) is the parameter value at the current
iteration. From Jensen’s inequality [84], the function H̄(β, β̂(m)) in (2.22) is a decreasing
function, i.e., H̄(β, β̂(m)) ≤ H̄(β̂(m), β̂(m)). Thus, if Q̄(β, β̂(m)) ≥ Q̄(β̂(m), β̂(m)) then ℓ(β) ≥
ℓ(β̂(m)) and the likelihood value increases [79].

Therefore, the EM algorithm for GMMs can be summarized as follows1:

Q̄(β, β̂(m)) = E
{
ℓc(β, ζ)|y1:N , β̂(m)

}
, (2.23)

β̂(m+1) = arg max
β
Q̄(β, β̂(m)), s.t

κ∑
i=1

αi = 1, 0 ≤ αi ≤ 1, (2.24)

where (2.23) and (2.24) correspond to the E-step and the M-step for the EM algorithm,
respectively [25].

The solution of the optimization problem in (2.24) provides closed form expressions for
the estimators of the GMM. The M-step solution is given by the following expressions [68,79]:

α̂
(m+1)
i =

∑N
t=1 ζ̂

(m)
ti

N
, (2.25)

µ̂
(m+1)
i =

∑N
t=1 ytζ̂

(m)
ti∑N

t=1 ζ̂
(m)
ti

, (2.26)

Σ̂(m+1)
i =

∑N
t=1 ζ̂

(m)
ti (yt − µ̂

(m+1)
i )2∑N

t=1 ζ̂
(m)
ti

, (2.27)

where

ζ̂
(m)
ti = α̂

(m)
i N (yt; µ̂

(m)
i , Σ̂(m)

i )∑κ
l=1 α̂

(m)
l N (yt; µ̂

(m)
l , Σ̂(m)

l )
. (2.28)

Notice that the M-step resulted in closed form expressions. However, for the problem of
interest in (2.16), the likelihood function is an infinite mixture and the auxiliary function is
difficult to compute. That is the case, for instance, of categorical variables in classification
problems or system identification with quantized data, where the integral of the infinite
mixture should be computed and optimized at every EM iteration. In the next section, we
will show a systematic procedure to obtain an EM-based algorithm with GMMs when the

1E {a|b} denotes the expected value of the random variable a given the random variable b.
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likelihood function is given by an infinite mixture distribution as (2.15).

2.5 An EM-based algorithm for ML estimation of infi-
nite mixture of GMMs

2.5.1 Constructing the auxiliary function Q(β, β̂(m))

In order to formulate an iterative algorithm to solve the ML optimization problem in (2.16),
we construct an auxiliary function, Q(β, β̂(m)), from the log-likelihood function in (2.15)
using the following expressions:

K(xt, βi) = αiN (xt; µi, Σi), (2.29)

dµ(xt) = p(yt|xt)dxt. (2.30)

Then, the log-likelihood function in (2.15) can be expressed as:

ℓ(β) =
N∑

t=1
log[Vt(β)], (2.31)

Vt(β) =
κ∑

i=1

∫ ∞

−∞
K(xt, βi)dµ(xt). (2.32)

Finally, the ML estimator is obtained from:

βML = arg max
β

N∑
t=1

log[Vt(β)], s.t.
κ∑

i=1
αi = 1, 0 ≤ αi ≤ 1. (2.33)

From the optimization problem in (2.33), the term log[Vt(β)] can be expressed as follows [85]:

log[Vt(β)] = Qt(β, β̂(m))−Ht(β, β̂(m)), (2.34)

where

Qt(β, β̂(m)) =
κ∑

i=1

∫ ∞

−∞
log[K(xt, βi)]

K(xt, β̂
(m)
i )

Vt(β̂(m))
dµ(xt), (2.35)

Ht(β, β̂(m)) =
κ∑

i=1

∫ ∞

−∞
log

[
K(xt, βi)
Vt(β)

]
K(xt, β̂

(m)
i )

Vt(β̂(m))
dµ(xt), (2.36)

are auxiliary functions. As in the EM algorithm, we have the following result in order to
obtain an iterative EM-based algorithm:

Lemma 2. The function Ht(β, β̂(m)) in (2.36) is a decreasing function for any value of β

and satisfies the following:

Ht(β, β̂(m))−Ht(β̂(m), β̂(m)) ≤ 0. (2.37)
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Proof. Using Jensen’s inequality [84, pp.24–25] we have:

Ht(β, β̂(m))−Ht(β̂(m), β̂(m)) =
κ∑

i=1

∫ ∞

−∞
log

[
K(xt, βi)
Vt(β)

]
K(xt, β̂

(m)
i )

Vt(β̂(m))
dµ(xt)− (2.38)

κ∑
i=1

∫ ∞

−∞
log

K(xt, β̂
(m)
i )

Vt(β̂(m))

 K(xt, β̂
(m)
i )

Vt(β̂(m))
dµ(xt),

=
κ∑

i=1

∫ ∞

−∞
log

K(xt, βi)Vt(β̂(m))
Vt(β)K(xt, β̂

(m)
i )

 K(xt, β̂
(m)
i )

Vt(β̂(m))
dµ(xt),

≤
κ∑

i=1
log

∫ ∞

−∞
log

[
K(xt, βi)
Vt(β)

]
dµ(xt),

= 0.

Hence, for any value of β, the function Ht(β, β̂(m)) in (2.36) is a decreasing function.

From Lemma 2 and inspired in the EM algorithm, we can formulate the following iterative
algorithm:

Q(β, β̂(m)) =
N∑

t=1
Qt(β, β̂(m)), (2.39)

β̂(m+1) = arg max
β
Q(β, β̂(m)), s.t.

κ∑
i=1

αi = 1, 0 ≤ αi ≤ 1. (2.40)

Notice that (2.39) and (2.40) correspond to the E-step and the M-step of the EM algorithm,
respectively [25].

Remark 2. If we consider a finite mixture of the form

p(y|β) =
N∏

t=1

κ∑
i=1

αiN (yt; µi, Σi), (2.41)

we can utilize the same approach described here to solve the problem of estimating parameters
in (2.39) and (2.40). In this case, we define K(yt, βi) as:

K(yt, βi) = αiN (yt; µi, Σi). (2.42)

Utilizing the expression derived in (2.35) we obtain the following auxiliary function:

Qt(β, β̂(m)) =
κ∑

i=1
log[K(yt, βi)]

K(yt, β̂
(m)
i )∑κ

l=1K(yt, β̂
(m)
l )

, (2.43)

and the auxiliary function Q(β, β̂(m)) can be computed substituting (2.43) in (2.39). The
ML estimator for the finite mixture in (2.41) can be then locally obtained from the iterative
algorithm (2.39) and (2.40). ▽
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2.5.2 Optimizing the auxiliary function Q(β, β̂(m))
In order to obtain a new estimate β̂(m+1), we solve the optimization problem in (2.40). For
the optimization of the auxiliary function Q(β, β̂(m)) in (2.39), we can obtain closed form
expressions for the estimate of β. Specifically, the optimization with respect to β can be
carried out as follows:

Lemma 3. The vector of parameters β̂ that optimizes the auxiliary function Q(β, β̂(m)) in
(2.39) with respect to β subject to ∑κ

i=1 αi = 1, 0 ≤ αi ≤ 1 is given by:

α̂
(m+1)
i = P(xt, β̂

(m)
i )∑κ

l=1P(xt, β̂
(m)
l )

, (2.44)

µ̂
(m+1)
i = M(xt, β̂

(m)
i )

P(xt, β̂
(m)
i )

, (2.45)

Σ̂(m+1)
i = S(xt, β̂

(m)
i )

P(xt, β̂
(m)
i )
− [µ̂(m+1)

i ]2, (2.46)

with

P(xt, β̂
(m)
i ) =

N∑
t=1

∫ ∞

−∞

K(xt, β̂
(m)
i )

Vt(β̂(m))
dµ(xt), (2.47)

M(xt, β̂
(m)
i ) =

N∑
t=1

∫ ∞

−∞
xt
K(xt, β̂

(m)
i )

Vt(β̂(m))
dµ(xt), (2.48)

S(xt, β̂
(m)
i ) =

N∑
t=1

∫ ∞

−∞
x2

t

K(xt, β̂
(m)
i )

Vt(β̂(m))
dµ(xt), (2.49)

where Vt(β̂(m)) corresponds to (2.32) evaluated at the current value β̂(m).

Proof. See Appendix 2.A

The integrals of the proposed algorithm can be carried out with numerical integral approx-
imations using global adaptive quadrature, e.g., Gauss-Kronrod quadrature. This method
uses algebraic transformations and high-order global adaptive quadrature to solve problems
on infinite intervals, see e.g. [86] and the references therein.

Finally, the iterative estimation procedure is summarized in Algorithm 2.1.

2.6 Numerical simulations
In this section we show three numerical examples of weighting PDF estimation utilizing the
proposed algorithm. For the examples, let us consider the following system:

yt = xt + ωt, (2.50)

where ωt ∼ N (0, σ2
ω), σ2

ω = 1 and p(yt|xt) ∼ N (xt, σ2
ω). We consider the weighting distri-

bution p(xt|β) is modeled as a GMM parameterized by β. The vector of parameters to be
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Algorithm 2.1 (Iterative algorithm for infinite mixtures with GMMs)
Inputs y1:N , κ, β̂(0).
Outputs β̂.

1: m← 0.
2: Compute Vt(β̂(m)) from (2.29), (2.30) and (2.32).
3: Estimate α̂

(m+1)
i from (2.44) for i = 1, ..., κ.

4: Estimate µ̂
(m+1)
i from (2.45) for i = 1, ..., κ.

5: Estimate Σ̂(m+1)
i from (2.46) for i = 1, ..., κ.

6: if stopping criterion is not satisfied then
7: m← m + 1,
8: return to 2
9: else

10: α̂(m+1) ← α̂
(m+1)
i , µ̂(m+1) ← µ̂

(m+1)
i , Σ̂(m+1) ← Σ̂(m+1)

i for i = 1, ..., κ.
11: β̂ ← [α̂(m+1) µ̂(m+1) Σ̂(m+1)].
12: end if
13: End

estimated is β = {αi, µi, Σi}κ
i=1. In a first example, the true weighting distribution (but

unknown) is given by a two component overlapped GMM. In a second example, a bimodal
GMM is considered. Finally, a third example is considered where the true weighting distri-
bution does not correspond to a GMM but can be approximated by one.

The simulation setup is as follows:

(1) The initial value β̂(0) is given by the average of yt for each mean value µ̂
(0)
i , sampling

variance of yt for each Σ̂(0)
i , and equal mixing weights α̂

(0)
i = 1/κ.

(2) The data length is N = 5000.
(3) The number of Monte Carlo (MC) simulations is 100.
(4) The stopping criterion is satisfied when:∥∥∥β̂(m) − β̂(m−1)

∥∥∥∥∥∥β̂(m)
∥∥∥ < 10−6,

or when the maximum number of EM iterations of 80 has been reached.

Remark 3. Notice that this kind of problem can be solved in a simple manner when the
conditional PDF of the mixture, p(yt|xt), is Gaussian (see e.g. [70, 87, 88]). However, this
would not be the case for more complex distributions or functions that arise in problems such
as system identification with quantized data (see e.g. [9, 10]) and estimation of rotational
velocities of stars [57]. In those cases, the approach proposed can be directly utilized, yielding
simple and closed form expressions that are, in general, not difficult to compute. ▽
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Figure 2.3: Estimation of bimodal distribution p(xt|β) using two Gaussian mixture components.

Table 2.1: Estimated Gaussian mixture parameters of MC simulations for the Example 1

GMM component αi µi Σi

i = 1 0.503± 5.20× 10−3 −2.976± 3.72× 10−2 1.934± 1.02× 10−1

i = 2 0.497± 5.20× 10−3 2.949± 3.37× 10−2 1.919± 1.03× 10−1

2.6.1 Example 1: Estimation of an overlapping Gaussian mixture
distribution

In this example, the unknown random variable xt is drawn from a finite Gaussian mixture
distribution using the Slice Sampler [89], where:

p(xt)(True) = α1N (xt; µ1, Σ1) + α2N (xt; µ2, Σ2), (2.51)

with α1 = α2 = 0.5, µ1 = −3, µ2 = 3, Σ1 = Σ2 = 2.

The estimation results are shown in Figure 2.3. The gray-shaded region corresponds
to the area in which all the estimated GMMs lie. The blue line represents the average
GMM for all MC realizations. We observe that the average of the estimated GMM is very
similar to the true distribution. In Table 2.1 we show the mean value and standard deviation
of the estimated parameters. We observed that, in general, the estimated parameters are
“close to” the true values. However, the estimated variances of the corresponding Gaussian
distributions, Σi, exhibit a greater dispersion with respect to the other parameters.
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Figure 2.4: Estimation of overlapped distribution p(xt|β) using two Gaussian mixture
components.

Table 2.2: Estimated Gaussian mixture parameters of MC simulations for the Example 2

GMM component αi µi Σi

i = 1 0.262± 3.00× 10−4 −6.86± 2.68× 10−2 4.17± 1.17× 10−1

i = 2 0.738± 3.01× 10−4 6.99± 1.55× 10−2 4.01± 6.29× 10−2

2.6.2 Example 2: Estimation of a non-overlapping Gaussian mix-
ture distribution

In this example, the unknown data xt in (2.51) is generated from a bimodal Gaussian mixture
distribution, also using the Slice sampler [89], with parameters α1 = 0.25, α2 = 0.75, µ1 =
−7, µ2 = 7, Σ1 = Σ2 = 4. In Figure 2.4 the average GMM estimated for all MC realizations
is shown (blue line). The gray-shaded region represents the area in which all the estimated
GMMs lie. We observe that the difference between the true bimodal distribution and the
average of the estimated PDFs is negligible.

In Table 2.2, we show the mean value and standard deviation of the estimated param-
eters. We observed, in general, accurate estimations for the GMM parameters. However,
the estimated variances of the corresponding Gaussian distributions, Σi, exhibit a greater
dispersion with respect to the other parameters.

2.6.3 Example 3: Approximation of a Maxwellian distribution us-
ing GMMs

In this example, we consider that xt in (2.51) is drawn from a Maxwellian distribution given
by:

p(xt)(True) =
√

2
π

x2
t

σ3 exp
{
− x2

t

2σ2

}
, (2.52)
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Figure 2.5: Approximation of a Maxwellian distribution p(xt|β) using two Gaussian mixture
components.

Table 2.3: Estimated Gaussian mixture parameters of MC simulations for the Example 3

GMM component αi µi Σi

i = 1 0.476± 6.55× 10−2 9.44± 4.94× 10−1 10.74± 1.38
i = 2 0.524± 6.55× 10−2 15.83± 3.93× 10−1 25.73± 1.38

where xt > 0, and σ is the dispersion parameter that defines the Maxwellian distribu-
tion. This distribution has been used to address estimation problems related with stellar
rotational velocities in astronomy and astrophysics (see e.g. [57,63,64]). We consider a GMM
in (2.9) with κ = 2 to approximate the PDF in (2.52).

Figure 2.5 shows the approximation of the Maxwellian distribution using a GMM. The
blue line represents the estimated average GMM for all MC simulations. The gray-shaded
region corresponds to the area in which all the estimated GMMs lie. We observe that the
average of all the estimated GMMs fits the true probability distribution. In Table 2.3 it is
shown the mean value and standard deviation of the estimated GMM parameters. As in the
previous examples, we observed accurate estimations for the GMM parameters. However, the
estimated variances, Σi, exhibit a greater dispersion with respect to the other parameters.

In the next section, we will show how the proposed methodology can be used to obtain
an iterative algorithm to address the stellar rotational distribution estimation problem when
the true distribution of the rotational velocities is modeled as a finite mixture of known
distributions. Specifically, we consider a sum of Maxwellian distributions.
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Figure 2.6: Stellar rotational velocities description.

2.7 Deconvolving stellar rotational velocities with data
augmentation approach

The estimation of the probability distribution of rotational velocities of stars is essential
to describe and model many aspects of stellar evolution. Figure 2.6 shows a description
of the stellar rotational problem. From observations, y, it is only possible to obtain the
projected velocity, (ve sin i), where i is the inclination angle with respect to the line of sight
and ve is the true (non-projected) rotational velocity. These measurements are assumed to
be realizations of a random variable drawn from a PDF, p(y|β), that satisfies (2.1). Notice
that the expression in (2.1) corresponds to the Fredholm integral of the first kind.

Many inverse problems in physics and astronomy are given in terms of the Fredholm
integral of the first kind [90, 91]. In [63] a method to deconvolve the inverse problem given
by (2.1) was developed, obtaining the cumulative distribution function (CDF) for stellar
rotational velocities extending the work of [57]. Assuming a uniform distribution of stellar
axes over the unit sphere, this integral equation reads as follows (see [63] for more details):

p(y|β) =
∫ ∞

y

y

x
√

x2 − y2︸ ︷︷ ︸
p(y|x)

p(x|β)dx, (2.53)

where x = ve, is the true rotational speed, y = x sin i, is the projected rotational speed, and
i, is the (unknown) inclination angle. Furthermore, p(y|β) represents the PDF of projected
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rotational velocities and p(x|β) is the density of true rotational velocities. The function p(y|x)
in this integral is related to the distribution of projected angles [63].

The distribution of rotational velocities has been studied in the literature, providing
strong evidence for the occurrence of Gaussian and Maxwellian distributions in astrophysical
systems. In [92,93] it was proved (analytically) that a Maxwellian distribution corresponds to
the rotational speed distribution when the distribution of stellar axes is uniformly distributed
over the unit sphere (random axes orientations). For non-Gaussian statistics, [94] proved that
the Tsallis distribution (with the k parameter) corresponds to the distribution of rotational
velocities, and in the limit case when k → 0, the Maxwellian distribution is recovered. In this
section, we focus on showing how the ML estimator in (2.16) can be used to obtain the true
rotational velocity PDF in (2.53) as a finite mixture of Maxwellian distributions (MSA).

2.7.1 An EM-based algorithm with Maxwellian mixture distribu-
tions

The unknown true rotational velocities distribution function in (2.53) can be expressed as
the following finite mixture model:

p(x|β) =
κ∑

i=1
αiϕM(x; σi), (2.54)

ϕM(x; σi) =
√

2
π

x2

σ3
i

exp
{
− x2

2σ2
i

}
, (2.55)

where x > 0, ϕM(x; σi) represents a Maxwellian PDF, and σi > 0 is the dispersion parameter
that defines the Maxwellian PDF. The vector of parameters to be estimated is defined as
follows:

β = [α1 σ1︸ ︷︷ ︸
β1

· · · ακ σκ︸ ︷︷ ︸
βκ

]. (2.56)

From (2.15), the ML estimator is given by

βML = arg max
β

ℓ(β), s.t.
κ∑

i=1
αi = 1, 0 ≤ αi ≤ 1, (2.57)

with

ℓ(β) =
N∑

t=1
log

 κ∑
i=1

αi


∫ ∞

yt

yt

x
√

x2
t − y2

t

ϕM(xt; σi)dxt


 . (2.58)

Finally, from the iterative algorithm in (2.39) and (2.40), the estimators are given by

α̂
(m+1)
i =

∑N
t=1PM(xt, β̂

(m)
i )∑N

t=1
∑κ

l=1PM(xt, β̂
(m)
l )

, (2.59)

σ̂i
(m+1) =

 ∑N
t=1 SM(xt, β̂

(m)
i )

3∑N
t=1PM(xt, β̂

(m)
i )

 1
2

, (2.60)
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where
K(xt, βi) = αiϕM(xt; σi), (2.61)

dµ(xt) = yt

x
√

x2
t − y2

t

dxt, (2.62)

Vt(β) =
κ∑

i=1

∫ ∞

yt

K(xt, βi)dµ(xt), (2.63)

PM(xt, β̂
(m)
i ) =

∫ ∞

yt

K
(
xt, β̂

(m)
i

)
Vt

(
β̂(m)

) dµ(xt), (2.64)

SM(xt, β̂
(m)
i ) =

∫ ∞

yt

x2
t

K
(
xt, β̂

(m)
i

)
Vt

(
β̂(m)

) dµ(xt). (2.65)

More details of the EM-based formulation with a mixture of Maxwellian distributions are
presented in Appendix 2.B.

Remark 4. Notice that an MSA does not approximate every PDF unless a translation term
is included in the Maxwellian distribution. Nevertheless, as shown in the following sections,
an MSA, even without translation, may provide an adequate fit to the PDF of the stellar
rotational velocities. ▽

2.7.2 Deconvolving real samples
Here, we consider: i) to apply the proposed iterative algorithm to a sample of measured
(v sin i) data of stars in order to estimate the PDF of the true rotational velocities; and
ii) to compare the performance of this proposed algorithm with the Tikhonov regularization
method (TRM) proposed by [64] (see Appendix 2.C). We consider real data from three sets
of measurements: Coma Berenice, Tarantula, and Geneva.

From the catalog [95], we select the Coma Berenice cluster (Melotte 111) data which has
N = 60 values of v sin i > 0 from 0 km/s up to 50 km/s for F-K dwarf stars. The estimated
parameter using MSA algorithm with one Maxwellian distribution is σ1 = 7.5675. In addition,
the estimated parameters using two Maxwellian distributions (κ = 2) are σ1 = 2.7903, σ2 =
11.9939, α1 = 0.6364, and α2 = 0.3636. Similarly, we obtain the results considering a three
Maxwellian mixture distribution (κ = 3), where the estimated parameters are σ1 = 2.7902,
σ2 = 11.9934, σ3 = 11.9954, α1 = 0.6364, α2 = 0.2810 and α3 = 0.0827. We can observe that
the mixing weight of the third component (α3) of Maxwellian mixture distribution is close
to zero. In this sense, for simplicity and clarity on the presentation, we analyze the case for
κ = 2.

We also select the Tarantula sample for single O-type stars from the VLT Flames Taran-
tula Survey presented in [96], where the authors deconvolved the rotational velocity distri-
bution using the method in [90] and TRM. This sample contains 216 stars with v sin i data
from 40 km/s up to 610 km/s. The estimated parameter using the MSA algorithm with
one Maxwellian distribution (κ = 1) is σ1 = 131.39. The parameters estimated for the two
Maxwellian mixture distribution (κ = 2) are σ1 = 64.54, σ2 = 185.67, α1 = 0.568 and
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Figure 2.7: Estimated PDF of rotational velocities for real samples cases using κ = 2 (Coma
Berenice and Tarantula samples) and κ = 3 (Geneva sample) for MSA algorithm.

α2 = 0.432. The estimation results using three Maxwellian mixture distribution (κ = 3) are
σ1 = 64.54, σ2 = 185.67, σ3 = 64.54, α1 = 0.568, α2 = 0.432 and α3 = 8.03 × 10−17. It
is evident that the third component is not relevant in the Maxwellian mixture distribution
model since α3 is almost equal to zero. We also focus on the results we obtained with κ = 2.

For the third data set, we selected a large sample data of measured v sin i data of the
Geneva-Copenhagen survey of the solar neighborhood [97, 98], which contains information
about 16.500 F and G main-sequence field stars. We observed that this data sample presents
important uncertainties showing velocities of 0 km/s, in consequence, we only selected stars
with 0 < v sin i ≤ 30 km/s, obtaining a sample of 11685 stars. The estimated parameter using
MSA algorithm with one Maxwellian distribution is σ1 = 7.13. Additionally, the estimated
parameters for κ = 2 are σ1 = 3.32, σ2 = 10.26, α1 = 0.578 and α2 = 0.422. The estimation
results using three Maxwellian mixture distribution are σ1 = 4.21, σ2 = 10.66, σ3 = 2.41,
α1 = 0.40, α2 = 0.37 and α3 = 0.23. In this case, we focus on the estimation obtained with
three mixture components.

2.7.3 Analysis of the estimation results

For the analysis of the estimation of the rotational velocities for the three data sets, we
consider the following: from the estimated PDF of the rotational velocity, using MSA and
TRM, we obtain an estimation of the projected rotational velocity PDF, p̂(y), by solving the
integral in (2.53), that is,

p̂(y) =
∫ ∞

y

y

x
√

x2 − y2 p̂(x)dx, (2.66)

where p̂(x) = p̂(x|β̂) for MSA and p̂(x) is the estimated PDF using TRM.
In Figure 2.7 from a large number of samples (Tarantula and Geneva samples) both

estimation methods show similar results, except for very low rotational speeds, where TRM
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Figure 2.8: Contrasting projected and observed rotational velocities for the real samples using
κ = 2 (Coma Berenice and Tarantula samples) and κ = 3 (Geneva sample) for MSA algorithm.

yields wrong estimation with non-zero probability for nought rotational velocities, that is,
p̂(x = 0) > 0. In contrast, our proposed method correctly provides a zero probability for
nought rotational velocities, that is, p̂(x = 0) = 0. In addition, the estimated projected
rotational velocities are expected to provide a zero probability to nought projected rotational
velocities. Our method provides the correct estimation as shown in Figure 2.8. On the
other hand, similarly to the rotational velocities estimation, the result provided by TRM is
incorrect for zero projected rotational velocities. For a small number of samples (i.e., Coma
Berenice sample), the rotational velocity (Figure 2.7) and the projected rotational velocity
(Figure 2.8) PDFs differ. However, the estimated projected rotational velocities we obtained
with MSA closely resembles the histogram from collected data (see Figure 2.8). These results
suggest that our method provide better estimate of the rotational velocity.

2.8 Conclusions
In this chapter, we developed a system identification algorithm for the estimation of a proba-
bility density function in terms of a Gaussian sum approximation using the ML approach. We
formulated an EM-based algorithm with GMMs to solve the corresponding ML estimation
problem. We obtained an auxiliary function for the problem of interest, which allowed us
the attainment of closed form expressions to estimate parameters of the GMM. We illus-
trated the performance of the proposed identification algorithm via numerical simulations,
where we used numerical approximations to compute the integrals on infinite intervals, as
proposed in [86]. The proposed algorithm was also used to approximate a non-Gaussian-sum
distribution with good accuracy.

In addition, this estimation methodology was utilized to obtain the estimated PDF of
rotational stellar velocities. The advantage of this algorithm is that we were able to use the
sample data from the experiments to obtain an estimated PDF of the projected rotational ve-
locities p(y). This algorithm allowed us to use the sample data directly, without intermediate
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2.8. Conclusions

steps, unlike the estimation using TRM that requires the utilization of kernel density estima-
tor, a non-parametric estimation technique. Finally, the iterative estimation algorithm was
tested in a set of real observed data from the Coma Berenice, Tarantula clusters and Geneva
samples. The results yielded an adequate statistical description of the projected rotational
velocities.
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Appendix
2.A Proof of Lemma 3

Taking the derivative of Q(β, β̂(m)) in (2.35) with respect to µi and making it equal to zero
yields:

∂Q(β, β̂(m))
∂µi

=
N∑

t=1

∫ ∞

−∞
xt
K(xt, β̂

(m)
i )

Vt(β̂(m))
dµ(xt)−

∫ ∞

−∞
µ̂

(m+1)
i

K(xt, β̂
(m)
i )

Vt(β̂(m))
dµ(xt) = 0. (2.67)

Using the definition of (2.47) and (2.48) we obtain

N∑
t=1

∫ ∞

−∞
xt
K(xt, β̂

(m)
i )

Vt(β̂(m))
dµ(xt) = µ̂

(m+1)
i P(xt, β̂

(m)
i ), (2.68)

µ̂
(m+1)
i = M(xt, β̂

(m)
i )

P(xt, β̂
(m)
i )

. (2.69)

Then, taking the derivative of Q(β, β̂(m)) in (2.35) with respect to ρ = Σ−1
i and equating to

zero:

∂Q(β, β̂(m))
∂ρ

= [ρ̂(m+1)]−1
N∑

t=1

∫ ∞

−∞

K(xt, β̂
(m)
i )

Vt(β̂(m))
dµ(xt)−

∫ ∞

−∞
(xt − µ̂

(m+1)
i )2K(xt, β̂

(m)
i )

Vt(β̂(m))
dµ(xt) = 0. (2.70)

Expanding the quadratic term (xt − µ̂
(m+1)
i )2 and using (2.47) and (2.49) we obtain:

Σ̂(m+1)
i = 1

P(xt, β̂
(m)
i )

N∑
t=1

∫ ∞

−∞
x2

t

K(xt, β̂
(m)
i )

Vt(β̂(m))
dµ(xt)−

[
µ̂

(m+1)
i

]2
, (2.71)

Σ̂(m+1)
i = S(xt, β̂

(m)
i )

P(xt, β̂
(m)
i )
− [µ̂(m+1)

i ]2. (2.72)

For the parameter αi, we define R(αi) as follows:

R(αi) =
κ∑

i=1
log [αi]

{
P(xt, β̂

(m)
i )

}
, (2.73)

subject to
κ∑

i=1
αi = 1. (2.74)

Using a Lagrange Multiplier and optimizing with respect to αi, we then obtain:

J (αi, ϵ) =
κ∑

i=1
log [αi]

{
P(xt, β̂

(m)
i )

}
− ϵ

(
κ∑

i=1
αi − 1

)
. (2.75)
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Taking the derivative of J (αi, ϵ) with respect to αi and ϵ, then equating to zero we obtain:

∂J (αi, ϵ)
∂αi

= P(xt, β̂
(m)
i )

α̂
(m+1)
i

− ϵ = 0, (2.76)

∂J (αi, ϵ)
∂ϵ

=
κ∑

i=1
αi − 1 = 0. (2.77)

Then,

α̂
(m+1)
i = P(xt, β̂

(m)
i )

ϵ
. (2.78)

If we sum over κ in (2.78) and use (2.77) we have:

κ∑
i=1

α̂
(m+1)
i =

κ∑
i=1

P(xt, β̂
(m)
i )

ϵ
= 1, (2.79)

ϵ =
κ∑

i=1
P(xt, β̂

(m)
i ). (2.80)

Finally we obtain:

α̂
(m+1)
i = P(xt, β̂

(m)
i )∑κ

l=1P(xt, β̂
(m)
l )

. (2.81)

This completes the proof.

2.B EM-based algorithm formulation with Maxwellian
mixture distributions

2.B.1 Computing the Auxiliary function Q(β, β̂(m))

From (2.61) and (2.62) we obtain the likelihood function in (2.15) as follows:

ℓ(β) =
N∑

t=1
log [Vt(β)] , (2.82)

with
Vt(β) =

κ∑
i=1

∫ ∞

yt

K(xt, βi)dµ(xt). (2.83)

By defining Bt(β) = log [Vt(β)], we can follow a similar analysis as in Section 2.5, obtaining

Bt(β) = Qt(β, β̂(m))−Ht(β, β̂(m)), (2.84)

where

Qt(β, β̂(m)) =
κ∑

i=1

∫ ∞

yt

log [K(xt, βi)]
K(xt, β̂

(m)
i )

Vt(β̂(m))
dµ(xt), (2.85)
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Ht(β, β̂(m)) =
κ∑

i=1

∫ ∞

yt

log
[
K(xt, βi)
Vt(β)

]
K(xt, β̂

(m)
i )

Vt(β̂(m))
dµ(xt). (2.86)

From Lemma 2, the function Ht(β, β̂(m)) is a decreasing function for any value of β and
satisfies the following:

Ht(β, β̂(m))−Ht(β̂(m), β̂(m)) ≤ 0. (2.87)

From this inequality inspired by the EM algorithm, we can formulate the following iterative
algorithm:

Q(β, β̂(m)) =
N∑

t=1
Qt(β, β̂(m)), (2.88)

β̂(m+1) = arg max
β
Q(β, β̂(m)), s.t.

κ∑
i=1

αi = 1, 0 ≤ αi ≤ 1. (2.89)

Notice that (2.88) and (2.89) correspond to the E-step and M-step of the EM algorithm,
respectively.

2.B.2 Optimizing the auxiliary function Q(β, β̂(m))

Taking derivative of Q(β, β̂(m)) with respect to ρ = 1/σ2
i and equating to zero we obtain

∂Q(β, β̂(m))
∂ρ

= 3
2ρ̂(m+1)

N∑
t=1

∫ ∞

yt

K
(
xt, β̂

(m)
i

)
Vt

(
β̂(m)

) dµ(xt)−
1
2

∫ ∞

yt

x2
t

K
(
xt, β̂

(m)
i

)
Vt

(
β̂(m)

) dµ(xt) = 0.

(2.90)

Using PM(xt, β̂
(m)
i ) and SM(xt, β̂

(m)
i ) from (2.64) and (2.65) in (2.90), we have:

σ̂2(m+1)

i = 1
3∑N

t=1PM(xt, β̂
(m)
i )

N∑
t=1

∫ ∞

yt

x2
t

K
(
xt, β̂

(m)
i

)
Vt

(
β̂(m)

) dµ(xt), (2.91)

σ̂
(m+1)
i =

 ∑N
t=1 SM(xt, β̂

(m)
i )

3∑N
t=1PM(xt, β̂

(m)
i )

 1
2

. (2.92)

For the parameter αi we define R(αi) as follows:

R(αi) =
N∑

t=1

κ∑
i=1

log [αi]
{
PM(xt, β̂

(m)
i )

}
, (2.93)

subject to
κ∑

i=1
αi = 1, 0 ≤ αi ≤ 1. (2.94)

Then, using a Lagrange multiplier we define:

J (αi, ϵ) =
N∑

t=1

κ∑
i=1

log [αi]
{
PM(xt, β̂

(m)
i )

}
− ϵ

(
κ∑

i=1
αi − 1

)
. (2.95)

Rafael Orellana 35



Chapter 2. ML estimation of mixture distributions with data augmentation approach

Algorithm 2.2 (Estimation algorithm for stellar velocities using MSA)
Inputs y1:N , κ, β̂(0).
Outputs β̂.

1: i← 1
2: while (i ≤ κ) do
3: m← 0
4: Compute α̂

(m+1)
i from (2.59).

5: Compute σ̂i
(m+1) from (2.60).

6: if stopping criterion is not satisfied then
7: m← m + 1,
8: return to 4.
9: else

10: α̂i = α̂
(m+1)
i , σ̂i = σ̂

(m+1)
i .

11: end if
12: β̂i = [α̂i σ̂i].
13: i← i + 1
14: end while
15: β̂ ← [β̂1 · · · β̂κ].
16: End

Taking the derivative of J (αi, ϵ) with respect to αi and ϵ, then equating to zero we obtain

∂J (αi, ϵ)
∂αi

=
∑N

t=1PM(xt, β̂
(m)
i )

α̂
(m+1)
i

− ϵ = 0, (2.96)

∂J (αi, ϵ)
∂ϵ

=
κ∑

i=1
αi − 1 = 0. (2.97)

Then,

α̂
(m+1)
i =

∑N
t=1PM(xt, β̂

(m)
i )

ϵ
. (2.98)

If we sum over κ in (2.98) and use (2.97) we have

κ∑
i=1

α̂
(m+1)
i =

κ∑
i=1

∑N
t=1PM(xt, β̂

(m)
i )

ϵ
= 1, (2.99)

ϵ =
N∑

t=1

κ∑
i=1
PM(xt, β̂

(m)
i ). (2.100)

Finally, substituting (2.100) in (2.98), we obtain

α̂
(m+1)
i = PM(xt, β̂

(m)
i )∑N

t=1
∑κ

l=1PM(xt, β̂
(m)
l )

. (2.101)

Notice that 0 ≤ α̂
(m+1)
i ≤ 1 holds, even though we did not explicitly consider it in (2.95).

Finally, the proposed estimation procedure is summarized in Algorithm 2.2.
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2.C Estimation with Tikhonov regularization method
In this section, we show the TRM proposed in [64] to estimate the PDF of the true stellar
rotational velocities directly from the Fredholm integral (2.53). The integral equation (2.53)
can be expressed in matrix form as follows:

Y = AX, (2.102)

where A is a matrix that represents the kernel p(y|x), Y is a vector representing the density of
projected rotational velocities p(y), and X is the unknown vector representing the density of
true rotational velocities p(x). A kernel density estimator is used to obtain an estimation of
p(y) [99], that is, it is used to obtain a non-parametric representation of the PDF of projected
velocities. This estimation is sensitive to the smoothing of the function and the bandwidth
value since these features control the smoothness of the resulting density distribution.

A standard method to solve (2.102) is to apply ordinary Least Squares (OLS), that is,
min{∥AX − Y ∥2}, where ∥·∥ represents the euclidean norm. However, for ill-posed problems,
this method fails in the sense that it can produce unstable estimators. In order to avoid this
problem the TRM imposes a regularization term to be included in the minimization problem
as follows:

min
X
∥AX − Y ∥2 + λ2∥L(X −X0)∥2, (2.103)

where λ is the Tikhonov factor. The standard definition for the L matrix is L = IX , where
IX is the identity matrix and X0 is an initial estimation, setting X0 = 0 when there is no
previous information. There exist different quantitative approaches to obtain the Tikhonov
factor such as Generalized Cross-Validation (GCV), L-curve Method, Discrepancy Principle,
and Restricted Maximum likelihood (see e.g. [91, 100, 101] and the references therein). In
particular, in [64] an iterative procedure to obtain the value of the Tikhonov factor was
proposed, which provided a Tikhonov estimator unbiased and consistent in the case of smooth
solutions.

Remark 5. Since the observed data y in (2.53) are measured with error, the matrix form
(2.102) is an example of a discrete ill-conditioned problem, that is, small errors in the mea-
sured data can produce large variations in the recovered function which makes the solution
unstable (see e.g. [102] and the references therein). ▽
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Chapter 3
Maximum Likelihood Estimation of

Linear Dynamic Systems with
Gaussian Mixture Noise Distribution

In this chapter, a Maximum Likelihood estimation algorithm for a linear dynamic sys-
tem driven by an exogenous input signal, with non-minimum-phase noise transfer function
and a Gaussian mixture noise is developed. We propose a flexible identification technique
to estimate the system model parameters and the Gaussian mixture parameters based on
the EM algorithm with GMMs. The benefits of the proposed algorithm are illustrated via
numerical simulations. This chapter summarizes the results of the journal paper J.4.

Contribution

We obtain the likelihood function using the prediction error for a general class of
linear system driven by an exogenous input signal, with a non-minimum-phase noise
transfer function and a Gaussian mixture noise. The prediction error is computed by
using causal and anti-causal filtering techniques considering its corresponding initial
conditions as deterministic parameters to be estimated. We propose an EM algorithm
to solve the associated ML estimation problem with GMMs, obtaining the estimates
of the system model parameters and closed form expressions for the GMM estimators.

3.1 System of interest
The system of interest is as follows:

yt = G(z−1, θ)ut + H(z−1, θ)ωt, (3.1)

where θ is the vector that parameterized the system model, z−1 should be understood as the
backward-shift operator (z−1ut = ut−1) or the z-transform variable, ut ∈ R is a deterministic
input signal, yt ∈ R is the output signal of the system, and ωt ∈ R is an independent and
identically distributed noise sequence with a Gaussian mixture distribution given by:

p(ωt) =
κ∑

i=1
αiN (ωt; µi, Σi), (3.2)

where κ ≥ 2 (κ ∈ N) is assumed in order to have non-Gaussian noise ωt, 0 ≤ αi ≤ 1,∑κ
i=1 αi = 1 and N (ωt; µi, Σi) represents a Gaussian PDF with mean value µi and covariance

matrix Σi > 0. The system transfer function in (3.1) is given by:

G(z−1, θ) = B(z−1, θ)
A(z−1, θ)

, (3.3)
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where

A(z−1, θ) = 1 + a1z
−1 + · · ·+ anaz−na , (3.4)

B(z−1, θ) = b1z
−1 + · · ·+ bnb

z−nb . (3.5)

Similarly, the noise transfer function in (3.1) is given by:

H(z−1, θ) = Hs(z−1, θ)Hu(z−1, θ), (3.6)

where Hs(z−1, θ) and Hu(z−1, θ) are the minimum-phase and non-minimum-phase transfer
functions of H(z−1, θ) respectively, and they are given by:

Hs(z−1, θ) = Cs(z−1, θ)
D(z−1, θ)

, (3.7)

Hu(z−1, θ) = Cu(z−1, θ), (3.8)

with

Cs(z−1, θ) = 1 + cs1z−1 + · · ·+ csrz−r, (3.9)
Cu(z−1, θ) = 1 + cu1z−1 + · · ·+ cupz−p, (3.10)
D(z−1, θ) = 1 + d1z

−1 + · · ·+ dnd
z−nd , (3.11)

nc = r + p, all zeros corresponding to Cs(z−1, θ) are inside the unit circle, and all zeros
corresponding to Cu(z−1, θ) lie outside the unit circle.

3.2 Estimation approaches for linear dynamic systems

The problem of interest is to estimate the vector of parameters β that defines the parameters
of the system model and the GMM in (3.1). In addition, we consider that β0 is the true vector
of parameters that defines the true model. In order to formulate the ML estimation algorithm
with GMMs, we introduce the following standing assumptions:

A1 The general system in (3.1) is operating in open loop and the input signal ut is an
exogenous deterministic signal.

A2 The vector of parameters β0, the input ut and the noise ωt in (3.1) satisfy regularity
conditions, guaranteeing that the ML estimate β̂ML converges (in probability or a.s.)
to the true solution β0 as N →∞.

A3 The orders na, nb, r, p, and nd of the polynomials of system (3.1), and the number of
components κ of the noise sequence distribution (3.2) are known.

A4 System (3.1) is asymptotically stable, its transfer functions G(z−1, θ) and H(z−1, θ)
have no poles-zeros on the unit circle and have no pole-zero cancellations.

Assumption A2 is necessary to develop an estimation algorithm that holds the asymptotic
properties of the ML estimator. The non-under-modeling restriction (Assumption A3) can
be relaxed using an information criteria to determine the correct number of both minimum-
phase zeros and non-minimum-phase zeros for the noise transfer function in (3.1). In this
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approach, if the number of zeros nc = r + p of the noise transfer function is given, the
number of combinations of minimum-phase zeros and non-minimum-phase zeros that must
be tested is nc + 1. Assumption A4 is necessary to obtain an asymptotically unbiased ML
estimator [103] and a system model that is controllable, for example, using adaptive control
techniques for non-minimum-phase systems [104].

In addition, we consider the following estimation approaches for the system of interest
in (3.1):

3.2.1 Prediction Error Method (PEM)
In general, most systems in nature are stochastic, that is, the output of the system at time t

cannot be determined exactly from the measurements available at time t− 1 [1–3]. In many
applications, the model is used for prediction. Then, it makes sense that to estimate the
vector of parameters θ of a model such that the prediction error, εt(θ), is small [1]. The
prediction error can be defined as follows:

εt(θ) = yt − ŷt|t−1, (3.12)

where ŷt|t−1 denotes the prediction of the output signal yt given the data up to and including
the time t − 1 (e.g. for a system driven by exogenous input signal ut, ŷt|t−1 corresponds
to {yt−1, ut−1, yt−2, ut−2, ...}). Notice that the predictor ŷt|t−1 also depends on the vector of
parameters θ.

For system (3.1) a general linear predictor is given by [1, 2]:

ŷt|t−1 = L1(z−1, θ)yt + L2(z−1, θ)ut, (3.13)

where the predictor ŷt|t−1 is a function of the past measurements only if the predictors filters,
L1(z−1, θ) and L2(z−1, θ), satisfy the following:

L1(0, θ) = L2(0, θ) = 0. (3.14)

The predictor ŷt|t−1 in (3.13) can be obtained based on the system model structure of
(3.1). Then, the predictor filters L1(z−1, θ) and L2(z−1, θ) can be chosen such that (3.13)
is the optimal mean-square predictor [1]. For system (3.1) the prediction error εt(θ) is given
by [1, 2]:

εt(θ) = 1
H(z−1, θ)

yt + G(z−1, θ)
H(z−1, θ)

ut. (3.15)

Finally, the criterion which maps the sequence of prediction errors, {ε1, ε2, ...εN}, into a
scalar-valued function can be chosen as follows [2]:

VN(θ) = 1
N

N∑
t=1

εt(θ)2. (3.16)

The PEM estimator can be then obtained as follows:

θ̂(PEM) = arg min
θ

VN(θ). (3.17)
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Algorithm 3.1 (PEM algorithm for linear dynamic systems)
Inputs y1:N , u1:N .
Outputs θ̂(PEM).

1: Compute the prediction error εt(θ) in (3.15).
2: Compute the cost function VN(θ) in (3.16).
3: Solve the optimization problem in (3.17) to obtain θ̂(PEM).
4: End

In most cases the estimation problem in (3.17) cannot be solved analytically. Then, the
minimization problem in (3.17) can be performed by using classical optimization algorithms
such as Gauss-Newton algorithm or Newton-Raphson algorithm, to mention a few. The PEM
estimation is summarized in Algorithm 3.1.

Remark 6. Notice that the predictor ŷt|t−1 is a mean square optimal predictor when the
noise sequence ωt in (3.1) is zero-mean Gaussian distributed [1, 2], i.e., the PEM estimator
(3.17) is asymptotically statistically efficient. In addition, the prediction error εt(θ) needs to
be stable, i.e., the noise transfer function H(z−1, θ) in (3.1) should only have minimum-phase
zeros (H(z−1, θ) = Hs(z−1, θ), with Hu(z−1, θ) = 1). ▽

3.2.2 High Order Moments (HOM) method
A particular class of the system of interest corresponds to ARMA models. In order to analyze
the benefits of our proposal, here we consider the High Order Moment (HOM) method
proposed in [44] for comparison purposes. The authors in [44] consider ARMA system models
with non-minimum-phase zeros since they have been used in many applications (see e.g.
[32, 33]). The key idea is to estimate the system model parameters which yields the best
least-squares match between the theoretical cumulant function and the sampled cumulant
function obtained from the measurements. In addition, the authors in [44], assume that the
model order is known, and a non-minimum-phase purely stochastic system is considered as
follows:

yt = H(z−1, θ)ωt + vt, (3.18)

where yt ∈ R is the system output, H(z−1, θ) is a non-minimum-phase transfer function
(see (3.6)), ωt ∈ R is a zero-mean, independent and identically distributed (i.i.d.) non-
Gaussian sequence with variance Σω, and vt ∈ R is a zero-mean i.i.d. Gaussian sequence
with variance Σv. For the problem of interest, the distribution of ωt is given by a GMM
(3.2). The noise transfer function, H(z−1, θ), can be expressed as follows:

H(z−1, θ) = 1 + c1z
−1 + · · ·+ cncz

−nc

1 + d1z−1 + · · ·+ dnd
z−nd

. (3.19)

The HOM estimation procedure is carried out in two steps as follows [44]:
(1) Estimation of an spectrally equivalent model: Although one may use any method that

yields consistent estimates of an spectrally equivalent model, a PEM estimation, θ̂(PEM),
is used to obtain an spectrally equivalent model with all the poles inside the unit circle
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from the data measurements y1:N . The power spectral density (PSD) of the noise-free
system in (3.18) is given by:

Φ̄(z) = Σω(θ̂(PEM))H(z, θ̂(PEM))H(z−1, θ̂(PEM)). (3.20)

Therefore, there are at most 2nc possible combinations of the zeros which yield, up to
a constant, the same PSD in (3.20). Let Θ denote the set of all possible combinations
of the vector of parameters derived from θ̂(PEM) by considering all possible locations of
the zeros for the spectrally equivalent model. Notice that the elements of Θ differ in the
coefficients ci in (3.19) and Σω since the estimation of Σω depends on the estimation
of the coefficients ci in order to obtain an identical PSD in (3.20).
Summarizing, a finite set Θ containing at most 2nc elements is obtained. It can be
defined as follows:

Θ = {θ : Φ(z, θ) = Φ(z, θ̂(PEM))}, (3.21)

where
Φ(z, θ) = Σω(θ)H(z, θ)H(z−1, θ) + Σv(θ). (3.22)

(2) Determination of the correct zeros: Let λ denotes an arbitrary element of Θ. All λ’s
lead to the same set of poles and measurement noise variance Σv. The key idea is
to obtain a λ from the set Θ which yields the best least square error between the
theoretical cumulant function and the sampled cumulant function obtained from the
measurements y1:N . In [105] is presented estimators to compute the high-order cumu-
lant functions of sampling distributions. These estimators of the cumulant functions
are asymptotically unbiased and consistent, i.e., a large number of measurements are
needed in order to obtain accurate estimations [44,56]. Based on this fact, the authors
in [44] consider the fourth-order cumulant, ν4, to formulate a least square minimization
problem as follows:

{λ̂, ν̂4} = min
λ,ν4

J(λ, ν4), (3.23)

with
J(λ, ν) =

0∑
t1=−L

0∑
t2=−L

0∑
t3=−L

[
C4(t1, t2, t3|λ, ν4)− Ĉ4(t1, t2, t3)

]2
, (3.24)

Ĉ4(t1, t2, t3) = 1
N

[
N∑

t=n

ytyt+t1yt+t2yt+t3

]
− R̂2(t1)R̂2(t3 − t2)− (3.25)

R̂2(t2)R̂2(t3 − t1)− R̂2(t3)R̂2(t2 − t1),

where L >> 2nc, ν4 is fourth order cumulant, C4(t1, t2, t3|λ, ν4) is the theoretical
fourth order cumulant function, and Ĉ4(t1, t2, t3) is the fourth order cumulant function
estimated as follows where n = max(0,−t1,−t2,−t3), t1, t2, t3 ≤ 0, and

R̂2(k) = 1
N

N∑
t=−k

ytyt+k, k ≤ 0. (3.26)

The theoretical fourth-order cumulant, C4(t1, t2, t3|λ, ν4), in (3.24) can be obtained
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from the impulse response function of the system model (3.18) (see e.g. [106,107]). Then,
for the fourth-order cumulant, ν̂4, we take the derivative in (3.24) with respect to ν4,
with λ fixed, and equating to zero a closed form expression for ν̂4(λ) is obtained as
follows:

ν̂4(λ) =
∑L

t1=0
∑L

t2=0
∑L

t3=0 Ĉ4(t1, t2, t3)C̄4(t1, t2, t3|λ)∑L
t1=0

∑L
t2=0

∑L
t3=0[C̄4(t1, t2, t3|λ)]2

, (3.27)

where
C̄4(t1, t2, t3|λ) = C4(t1, t2, t3|λ, ν4)

ν4
. (3.28)

Then, substituting (3.27) in (3.24) and concentrating the cost function on the parameter λ,
we can obtain an estimate λ̂ solving the estimation problem in (3.23).

Remark 7. An extension of the HOM for a general class of system with an exogenous
input signal as (3.1) was addressed in [56]. First, an spectrally equivalent model using PEM
is obtained. Then, the location of the zeros is obtained utilizing the system y

(aux)
t = yt −

G(z−1, θ̂(PEM))ut with the procedure described in the second step of the HOM. ▽

3.2.3 Maximum Likelihood method with GMMs
In this section, we develop an ML estimation algorithm for system (3.1) which includes
the computation of its corresponding prediction error [1, 2]. A procedure to compute the
prediction error for purely stochastic non-minimum-phase systems was presented in [37].
Here, we extend this result in order to consider an exogenous input signal. The prediction
error, εt(θ), is obtained using causal recursive filtering followed by anti-causal recursive
filtering that involves time-reversing operations, that is, the time-reversed sequence xR

1:N of
a sequence x1:N is obtained by flipping x1:N [108]. That is, xR

1:N = {xN , xN−1, ..., x1}.
In order to compute the prediction error, the system (3.1) is expressed as follows [37]:

yt = G(z−1, θ)ut + Hs(z−1, θ)H̄u(z, θ)vt, (3.29)

where
H̄u(z, θ) = 1 +

cup−1

cup

z + · · ·+ 1
cup

zp, (3.30)

and the PDF of the noise sequence vt = cupωt−p is given by a GMM in (3.2) with mixing
weight αi, mean µ̃i, and covariance matrix Σ̃i given by

µ̃i = cupµi, Σ̃i = c2
up

Σi. (3.31)

For system (3.29), it is well known that the prediction error εk(θ) is given by [37]:

εt(θ) =
[

1
H̄u(z, θ)

]
︸ ︷︷ ︸

anti-causal filter

[
1

Hs(z−1, θ)

]
︸ ︷︷ ︸

causal filter

[
yt −G(z−1, θ)ut

]
, (3.32)

where the anti-causal filtering can be computed using the following steps:
(i) Time-reverse the output response of the causal filter in (3.32) with [yt −G(z−1, θ)ut],
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obtaining ε̄R
t (θ).

(ii) Filter the signal ε̄R
t (θ) with [H̄u(z−1, θ)]−1, obtaining εR

t (θ).
(iii) Time-reverse the output response εR

t (θ) to obtain εt(θ).
This procedure is based on the fact that if [H̄u(z, θ)]−1 in (3.32) is an anti-causal filter,

then [H̄u(z−1, θ)]−1 is a causal filter, that is, H̄u(z−1, θ) is a monic polynomial with zeros
equal to the zeros in (3.30) reflected into the unit disc (see e.g. [108, Chapter 4], [37]). In
addition, time-reversing operations are used based on the fact that if the Z-transform of a
real sequence xt is X(z), then the Z-transform of the time-reversed sequence x−t is X(z−1).

In our formulation, and inspired in [41], we include the initial conditions of the recursive
filters in (3.32) as deterministic parameters to be estimated. We define the vector of param-
eters to be estimated as β = [θT γT ηT ]T in order to formulate the ML estimator for the
system (3.1):

θ = [a1 b1 cs1 cu1 d1 . . . ana bnb
csr cup dnd

]T , (3.33)

γ = [α1 µ1 Σ1 . . . ακ µκ Σκ]T , (3.34)

η = [ηgT

ηsT

ηuT ]T , (3.35)

where θ is the vector of parameters of the system model, γ is the vector of parameters of
the Gaussian mixture distribution of the noise sequence ωk, and η defines the initial condi-
tions of the corresponding prediction error recursive filters in (3.32) with ηg ∈ Rmax(nb,na)×1,
ηs ∈ Rmax(r,nd)×1 and ηu ∈ Rp×1. Initial conditions η are computed from the state-space repre-
sentation {As,Cs,Ks,Ds}, {Ag,Cg,Kg,Dg} and {Au,Cu Ku,Du} of [Hs(z−1, θ)]−1, G(z−1, θ)
and [H̄u(z−1, θ)]−1, respectively. That is, [Hs(z−1, θ)]−1 = Ds +Cs(zI−As)−1Ks, G(z−1, θ) =
Dg +Cg(zI−Ag)−1Kg and [H̄u(z−1, θ)]−1 = Du +Cu(zI−Au)−1Ku, where I denotes the iden-
tity matrix with appropriate dimensions. Given the above, the corresponding ML estimation
algorithm using GMMs is obtained as follows:

Lemma 4. Consider the vector of parameters to be estimated as β = [θT γT ηT ]T in (3.33)–
(3.35). Under the standing assumptions, the ML estimator for system (3.1) is given by

β̂ML = arg max
β

ℓ(β), s.t. 0 ≤ αi ≤ 1,
κ∑

i=1
αi = 1, (3.36)

where the log-likelihood function is given by

ℓ(β) =
N∑

t=1
log

{
κ∑

i=1
αiN (εt(θ, η); µ̃i, Σ̃i)

}
, (3.37)

and µ̃i and Σ̃i are defined in (3.31).
The prediction error, εt(θ, η), in (3.37) is obtained using the following steps:

(i) Compute a causal filter using G(z−1, θ) and Hs(z−1, θ):

f g
t (θ) = CgA

t
g, f s

t (θ) = CsA
t
s, (3.38)
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Time
Reversal

1

H̄u(z−1,θ)
+

fu
t (θ)ηu

Time
Reversal

ε̄t(θ, η) ε̄Rt (θ, η) εRt (θ, η) εt(θ, η)

Figure 3.1: Processing scheme to address the anti-causal filtering to obtain εt(θ, η).

ȳt = G(z−1, θ)ut + f g
t (θ)ηg, (3.39)

ε̄t(θ, η) = [Hs(z−1, θ)]−1(yt − ȳt) + f s
t (θ)ηs, (3.40)

where {Ag,Cg} and {As,Cs} are obtained from the state-space representation of G(z−1, θ)
and [Hs(z−1, θ)]−1, respectively.

(ii) Time-reverse the sequence ε̄t(θ, η) in (3.40) and solving an anti-causal filter using
H̄u(z−1, θ):

fu
t (θ) = CuA

t
u, (3.41)

εR
t (θ, η) = [H̄u(z−1, θ)]−1ε̄R

t (θ, η) + fu
t (θ)ηu, (3.42)

where {Au,Cu} is obtained from the state-space representation of [H̄u(z−1, θ)]−1.
(iii) Time-reverse the sequence εR

t (θ, η) in (3.42) to obtain the prediction error εt(θ, η).

Proof. See Appendix 3.A.

Remark 8. We can obtain the prediction error for noise transfer functions with only minimum-
phase zeros considering H̄u(z−1, θ) = 1 in (3.42). Then, the prediction error is obtained using
(3.40) straightforwardly with causal recursive filtering [1,2], i.e., we have εt(θ, η) = ε̄t(θ, η).▽

The result obtained in Lemma 4 differs from the results shown in [37], where ARMA
system models are considered with initial conditions fixed to zero and the ML estimation
algorithm is developed considering a non-Gaussian noise distribution that is not modeled
as a GMM. In contrast, from Lemma 4, the terms f g

t (θ), f s
t (θ), and fu

t (θ) introduce the
effect of initial conditions on the output filter responses in (3.39), (3.40), and (3.42), respec-
tively. Figure 3.1 shows a block diagram of the anti-causal filtering utilized to obtain εt(θ, η),
where the sequence ε̄t(θ, η) from (3.40) is time-reversed to obtain ε̄R

t (θ, η), and then filtered
by using [H̄u(z−1, θ)]−1 to obtain εR

t (θ, η). Thus, the prediction error, εt(θ, η), is computed
by time-reversing the sequence εR

t (θ, η).
As in the previous chapter, the optimization problem in (3.36) may be difficult to solve us-

ing gradient-based methods when the number of components in the GMM increases [80]. The
EM algorithm [25] can provide a solution to overcome this difficulty due to the fact that the
EM algorithm for GMMs typically provides closed form estimators for the Gaussian mixture
parameters [67,68].
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3.3 An EM estimation algorithm with GMMs for lin-
ear dynamic systems

3.3.1 EM algorithm formulation
In this section, we consider the classical EM formulation with GMMs presented in Section
2.4.2 in order to solve the ML estimation problem in (3.36). To solve the estimation problem
in (3.36), and inspired in [68], an EM algorithm [25, 70] with GMMs is developed from
the definition of the likelihood function using the observed data y1:N and a hidden discrete
random variable, ζ1:N , that is, defining the likelihood function using the complete data1

[68]. Hence, the EM algorithm is given by (see e.g. [25, 68]):

Q(β, β̂(m))=E
{
log[p(y1:N , ζ1:N |β)]|y1:N , β̂(m)

}
, (3.43)

β̂(m+1) = arg max
β
Q(β, β̂(m)), s.t.

κ∑
i=1

αi = 1, 0 ≤ αi ≤ 1, (3.44)

where β̂(m) is the current estimate, p(y1:N , ζ1:N |β) is the joint PDF of y1:N and ζ1:N , and
Q(β, β̂(m)) is the auxiliary function of the EM algorithm.

In order to develop the EM algorithm in (3.43) and (3.44), we first obtain the following
result. This will be used to compute the auxiliary function in (3.43):

Lemma 5. Consider the vector of parameters to be estimated β = [θT γT ηT ]T defined in
(3.33)–(3.35) for system (3.1). The joint log-PDF, log[p(y1:N , ζ1:N |β)], in (3.43) is given by

log[p(y1:N , ζ1:N |β)] =
N∑

t=1

κ∑
i=1

log[p(ζt = i|β)] + log[N (εt(θ, η); µ̃i, Σ̃i)], (3.45)

where µ̃i, Σ̃i and εt(θ, η) are given by (3.31) and (3.42) respectively.

Proof. See Appendix 3.B

In order to obtain a new estimate in (3.44), we solve the optimization problem using
coordinate descent algorithm [109]. First, we fix the parameters {θ, η} at its value from the
current iteration {θ̂(m), η̂(m)} to optimize (3.43) with respect to the GMM parameters γ.
Then, we fix the GMM parameters at its value from the iteration γ̂(m+1) and to solve the
optimization problem in (3.44) to obtain {θ̂(m+1), η̂(m+1)}. From Lemma 5, the proposed EM
algorithm can be computed using the following:

Theorem 1. Consider the vector of parameters to be estimated β = [θT γT ηT ]T defined
from (3.33)–(3.35) for the system in (3.1). Substituting (3.45) in (3.43), the E-step in the
EM algorithm is given by

Q(β, β̂(m))=
N∑

t=1

M∑
i=1

ζ̂
(m)
ti log

[
αiN (εt(θ, η); µ̃i, Σ̃i)

]
, (3.46)

1The complete data {y1:N , ζ1:N} corresponds to the set defined by the observed data and the unobserved
data. The discrete random variable ζ1:N is defined as ζt ∈ {1, . . . , M} for t = 1, . . . , N .

Rafael Orellana 47



Chapter 3. ML etimation of linear dynamic systems with GMMs

where µ̃i and Σ̃i are given by (3.31), and

ζ̂
(m)
ti = α̂

(m)
i N (εt(θ̂(m), η̂(m)); ˆ̃µ(m)

i , ˆ̃Σ(m)
i )∑M

l=1 α̂
(m)
l N (εt(θ̂(m), η̂(m)); ˆ̃µ(m)

l , ˆ̃Σ(m)
l )

. (3.47)

Consider the maximization problem stated in (3.44) using (3.46). The M-step in the EM
algorithm is carried out using the following steps:

(i) Solving (3.44) using (3.46) with θ = θ̂(m) and η = η̂(m):

α̂
(m+1)
i =

∑N
t=1 ζ̂

(m)
ti

N
, (3.48)

µ̂
(m+1)
i =

∑N
t=1 ζ̂

(m)
ti εt(θ̂(m), η̂(m))

ĉ
(m)
up

∑N
t=1 ζ̂

(m)
ti

, (3.49)

Σ̂(m+1)
i =

∑N
t=1 ζ̂

(m)
ti (εt(θ̂(m), η̂(m))− ĉ(m)

up
µ̂

(m)
i )2[

ĉ
(m)
up

]2∑N
t=1 ζ̂

(m)
ti

. (3.50)

(ii) Solving (3.44) using (3.46) with αi = α̂
(m+1)
i , µi = µ̂

(m+1)
i and Σi = Σ̂(m+1)

i :

{θ̂(m+1), η̂(m+1)} = arg min
θ,η
B(θ, η), (3.51)

where

B(θ, η) =
N∑

t=1

M∑
i=1

ζ̂
(m)
ti

(
εt(θ, η)− ĉ(m)

up
µ̂

(m+1)
i

)2

[
ĉ

(m)
up

]2
Σ̂(m+1)

i

. (3.52)

Proof. See Appendix 3.C

Remark 9. The iterative algorithm in Theorem 1 is developed from defining Q(β, β̂(m))
in terms of the complete log-likelihood function in (3.45). That differs from the procedure
proposed in Section 2.5, where an auxiliary function is built without explicitly defining a
hidden variable. However, the auxiliary function obtained in Section 2.5 is equal to (3.46)
and the estimators are obtained from to (3.48)–(3.51) (see Appendix 3.D). ▽

Finally, the estimation procedure is summarized in Algorithm 3.2.

3.3.2 An initialization procedure for the EM algorithm with GMMs
Initialization techniques for EM algorithms with GMMs have been studied in many research
works (see e.g. [110–113]), showing that a careful initialization of the GMM parameters is
important to obtain accurate estimates and to improve the rate of convergence. However,
these approaches consider that a GMM describes the probabilistic model of the observed
data. The problem we address here is different since we consider that a GMM describes
the noise sequence distribution. From system (3.1), the prediction error in (3.42) provides
statistical information of the Gaussian mixture noise distribution that can be used to obtain
an initialization of the GMM parameters for the EM algorithm.
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Algorithm 3.2 (EM algorithm with GMMs)
Inputs y1:N , u1:N , κ, θ̂(0), γ̂(0) and η̂(0).
Outputs θ̂, γ̂ and η̂.

1: m← 0
2: E-step:
3: Compute εt(θ̂(m), η̂(m)) from (3.42).
4: M-step:
5: Estimate γ̂(m+1) from (3.47)–(3.50).
6: Estimate {θ̂(m+1), η̂(m+1)} by solving (3.51).
7: if stopping criterion is not satisfied then
8: m← m + 1,
9: return to 2

10: else
11: θ̂ ← θ̂(m+1), γ̂ ← γ̂(m+1), η̂ ← η̂(m+1)

12: end if
13: End

To illustrate our initialization procedure, we consider a simple MA system in (3.1) with
Hs(z−1, θ) = 1 and Hu(z−1, θ) = 1− 1.5z−1. The distribution of ωk is given by a GMM with
two components with α1 = α2 = 0.5, variances Σ1 = Σ2 = 1 and mean values µ1 = −2 and
µ2 = 2. Then, the corresponding GMM parameters µ̃i and Σ̃i are given by Σ̃1 = Σ̃2 = 2.25,
µ̃1 = −3 and µ̃2 = 3. The PEM [1, 2] is used to estimate the system model parameters,
obtaining θ̂(PEM). In Figure 3.2 the gray bars represent the histogram of the prediction error
obtained from (3.42) with θ = θ̂(PEM) and fixing initial conditions to zero. The red line is the
true Gaussian mixture noise PDF and the black dashed line describes a Gaussian mixture
PDF with parameters computed as follows:

(1) The initial value for the system model parameters, θ̂(0), is obtained using PEM.
(2) The initial values for the initial conditions, η̂(0), are fixed to zero.
(3) The initial guess of mean values µ̂

(0)
i are evenly spaced between the maximum and

minimum value for the prediction error εt(θ̂(PEM)).
(4) The variances Σ̂(0)

i for each component of the GMM are equal to the sample variance
of εt(θ̂(PEM)).

(5) The mixing weight α̂
(0)
i for each component are set all equal as α̂

(0)
i = 1/M .

Using the prediction error histogram (see Figure 3.2), one could (intuitively) initialize the
parameters of the Gaussian mixture noise model. It can be obtained, for example, using
a classical EM algorithm with finite mixture models [68]. Our experience shows that this
procedure provides an estimation of the system (3.1) with less EM iterations than using the
initialization procedure previously described. However, this alternative initialization requires
extra computation. The accuracy of the estimates of system (3.1) is very similar using both
initialization procedures (see Appendix 3.E).
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Figure 3.2: Histogram of the prediction error εt(θ̂(PEM)) obtained by using PEM.

3.4 Akaike information criterion for model structure
determination

In the area of system identification both the model structure determination and model
validation are important aspects, due to an over-parameterized model structure can lead
unnecessarily computations in order to obtain the parameter estimates or well the system
model obtained can be very inaccurate [1, 2]. In the following sections, we show how an
information criterion is used to determine the correct number of both minimum-phase zeros
and non-minimum-phase zeros for the noise transfer function in (3.1).

Akaike information criterion (AIC) [114] is a popular technique for evaluating how well a
model fits the data it was generated from. In particular, if the ML method is used to estimate
the system model parameters from a set of candidate system models and the models are
non-nested or nested, AIC can provide a system model that explains the data measurements
with good accuracy [115, Chapter 2], [116]. AIC can be utilized for the estimation problem
in (3.36) as follows:

{β̂, M̂} = arg min
β,M

1
N

[−ℓ(β) + dM] , (3.53)

where M is the model index, and dM is the dimension of the vector of parameters β in the
model M.

In particular, the proposed algorithm can be used to estimate (3.1) with a non-minimum-
phase noise transfer function when the standing assumptions are relaxed as follows: i) the
noise sequence distribution does not correspond to a GMM, but can be approximated by
one with known κ, and ii) the polynomials orders r and p in (3.1) are unknown, but their
sum nc = r + p is known. We define nc + 1 candidate system models that correspond to the
number of all possible combinations of minimum-phase zeros and non-minimum-phase zeros
of the noise transfer function, and we select the model according to AIC. Despite AIC is
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not asymptotically consistent, it can be used to select a system model from a set of nested
or non-nested system models in which the true system does not lie [115, 116]. This fact
represents an advantage to obtain an estimation of the system (3.1) when a GMM is used
to approximate a non-Gaussian noise distribution.

3.5 Numerical examples
Consider the following system:

yt = bo
1z

−1

1 + ao
1z

−1 ut + 1 + co
1z

−1

1 + do
1z

−1 ωt, (3.54)

where the true parameters are bo
1 = 1, ao

1 = −0.5, do
1 = 0.8, ut ∼ N (0, σ2

u), σ2
u = 10 and the

noise signal ωt is Gaussian mixture distributed.
We focus on two scenarios for (3.54) considering: i) a minimum-phase noise transfer

function with co
1 = 0.1, and ii) a non-minimum-phase noise transfer function with co

1 = 1.5.
The vector of parameters to estimate is given by β = [θT γT ηT ]T , with θ = {b1, a1, c1, d1},
γ = {αi, µi, Σi}κ

i=1 and η = {ηg ηs ηu}.
The simulation setup is as follows:

(1) The data length is N = 5000.
(2) The number of Monte Carlo (MC) simulations are 100.
(3) The stopping criterion is satisfied when:∥∥∥β̂(m) − β̂(m−1)

∥∥∥∥∥∥β̂(m)
∥∥∥ < 10−6,

or when 2000 iterations of the EM algorithm have been reached.
In order to show the benefits of the proposed algorithm, we consider three examples with
different approaches to increment the difficulty to estimate the system (3.54). In a first
example, a non-minimum-phase noise transfer function is considered in (3.54) holding all
standing assumptions. We consider a three components Gaussian mixture noise with mean
values well separated (non-overlapping Gaussian distributions). For comparison purposes,
we also estimate the system model parameters using the methodology proposed for non-
minimum-phase systems in [44] based on the HOM method.

In a second example, we show how the proposed EM algorithm can be used to estimate
(3.54) with a non-minimum-phase noise transfer function when Assumption A3 is relaxed
as follows: i) the noise sequence distribution does not correspond to a GMM, but can be
approximated by a GMM, and ii) the polynomials orders r and p in (3.54) are unknown,
but their sum nc = r + p is known. We compare our estimation results with the estimation
obtained using HOM. For our proposed algorithm, AIC [114] is used to obtain the correct
number of both minimum-phase zeros and non-minimum-phase zeros of the noise transfer
function.

Finally, a third example shows how our proposal can be used to estimate (3.54) with a
minimum-phase noise transfer function and a Gaussian mixture noise. We consider a five

Rafael Orellana 51



Chapter 3. ML etimation of linear dynamic systems with GMMs

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

ωt

p
(ω

t
)

p̂(ωt)
(GMM) p(ωt)

(True)

(a) Example 1

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

ωt

p
(ω

t
)

p̂(ωt)
(GMM) p(ωt)

(True)

(b) Example 2

−8 −6 −4 −2 0 2 4 6
0

0.2

0.4

ωt

p
(ω

t
)

p̂(ωt)
(GMM) p(ωt)

(True)

(c) Example 3

Figure 3.3: Estimated noise distribution using Gaussian mixture models.

components overlapped Gaussian mixture noise. Assumption A3 is also relaxed considering
that the polynomials orders r and p in (3.54) are unknown, but their sum nc = r + p

is known. AIC is used to obtain the correct number of minimum-phase zeros of the noise
transfer function in (3.54). For comparison analysis, we compare the outcome of the proposed
method with PEM estimation [2].

3.5.1 Example 1: Non-minimum-phase dynamic system with a
non-overlapped Gaussian mixture noise distribution

In this example we consider a non-minimum-phase noise transfer function in (3.54) holding
all standing assumptions. The noise sequence ωt is drawn from a GMM in (3.2) with M = 3,
mean values µ1 = −4, µ2 = 0, µ3 = 4, variances Σ1 = Σ2 = Σ3 = 1 and mixing weights
α1 = α3 = 0.25, α2 = 0.5. Figure 3.3(a) shows the estimated average PDF for all MC
realizations. The gray shaded region represents the area in which all the estimated probability
density functions lie. We can observe that the average of the estimated GMM probability
density functions fits the true noise signal distribution. Figure 3.4 shows the estimation
results for the estimated system model. The large red cross indicates the true value for θ.
We observe that the estimation using our proposal, namely EM–GMM, is better than using
HOM algorithm. Table 3.1 shows the estimation results of the system model parameters
for both EM–GMM and HOM algorithms. We observe that our proposal exhibits better
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Figure 3.4: System model parameters estimated for the Example 1.

Table 3.1: Estimated system model parameters for numerical Example 1

Method
Parameters

â1 b̂1 ĉ1 d̂1

HOM −0.5009± 1.4× 10−2 0.9992± 1.7× 10−2 1.5081± 8.6× 10−2 0.7994± 2.9× 10−2

EM–GMM −0.5001± 5.4× 10−3 1.0001± 8.5× 10−3 1.5001± 1.1× 10−2 0.8002± 3.6× 10−3

accuracy than HOM algorithm.

3.5.2 Example 2: Non-minimum-phase dynamic system with uni-
form distributed noise signal

In this example we show how our proposal can be used to estimate system (3.54) with a
non-minimum-phase noise transfer function when the noise sequence distribution does not
correspond to a GMM, but can be approximated by a GMM. We also consider that the
polynomials orders r and p in (3.54) are unknown, but their sum nc = r + p is known. The
noise input signal ωt is distributed as follows:

p(ωt)(True) = 1
lb − la

I[la,lb](ωt), (3.55)

where la = −2, lb = 2, and I[la,lb] is an indicator function given by

I[la,lb](ωt) =
{ 1, la ≤ ωt ≤ lb,

0, otherwise.

To approximate the noise sequence distribution, we consider κ = 7 components for the
GMM. Table 3.2 shows the AIC results for different orders of Cs(z−1, θ) and Cu(z−1, θ). We
observe that the correct orders of the polynomials correspond to r = 0 and p = 1, i.e., one
non-minimum-phase zero.

Figure 3.3(b) shows the estimated average PDF for all MC realizations. As in the previous
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Figure 3.5: System model parameters estimated for the Example 2.

Table 3.2: AIC values for the numerical Examples 2 and 3

Order
AIC

Example 2 Example 3

r = 1, p = 0 1.9474 1.7993
r = 0, p = 1 1.7893 1.8751

example, the gray shaded region represents the area in which all the estimated probability
density functions lie. We can observe that the average of the estimated GMM probability
density functions fits the true noise signal distribution.

Figure 3.5 shows the estimation results for the estimated system model. The large red
cross indicates the true value for θ. We observe that the estimation using EM–GMM exhibits
better accuracy than using HOM. Table 3.3 shows the estimation results, confirming the
benefits of our proposal in the estimation accuracy for the model parameters with respect
to HOM algorithm. These results confirm that our proposed technique performs well even
when the noise PDF is not a GMM, but can be approximated by one.

Remark 10. The convergence properties of the EM algorithm have been discussed in [117]
and for finite mixture models in [67,110,111]. The proposed iterative algorithm is developed
from the classical definition of an EM algorithm with GMMs and then it holds the same
convergence properties if the noise sequence distribution corresponds to a GMM. However, it
can converge to good estimates if a GMM with an appropriate number of mixture components

Table 3.3: Estimated system model parameters for numerical Example 2

Method
Parameters

â1 b̂1 ĉ1 d̂1

HOM −0.5007± 4.9× 10−3 0.9990± 7.3× 10−3 1.5114± 8.6× 10−2 0.7982± 2.9× 10−2

EM–GMM −0.4998± 1.3× 10−3 0.9999± 1.7× 10−3 1.5000± 5.9× 10−3 0.8000± 2.3× 10−3
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Figure 3.6: System model parameters estimated for the Example 3.

is used to approximate a non-Gaussian-sum noise sequence distribution. ▽

3.5.3 Example 3: Minimum-phase dynamic system with an over-
lapped Gaussian mixture noise distribution

In this example we consider a minimum-phase noise transfer function in (3.54) relaxing the
Assumption A3. We assume that the polynomials orders r and p in (3.54) are unknown,
but their sum nc = r + p is known. The noise sequence ωt is drawn from a GMM in (3.2)
with κ = 5, mean values µ1 = −4.4, µ2 = −2.4, µ3 = −1, µ4 = 1, µ5 = 2.4, variances
Σ1 = 0.2, Σ2 = 0.11, Σ3 = 0.13, Σ4 = 0.15, Σ5 = 0.1, and mixing weights α1 = α3 = 0.1,
α2 = 0.2, α4 = α5 = 0.3. To approximate the noise signal distribution, we consider κ = 5
components for the GMM. Table 3.2 shows the AIC results for different orders of Cs(z−1, θ)
and Cu(z−1, θ). We observe that using AIC the correct orders r = 1 and p = 0 are obtained,
i.e. one minimum-phase zero. Figure 3.3(c) shows the results of the estimation of the noise
distribution. The gray shaded region corresponds to the region in which the corresponding
PDF of all the estimates from the MC simulations lie. The blue line corresponds to the
average of all the estimates as a GMM. It is clear that the average of all the estimated
probability density functions is “close to” the true PDF. The results of the estimation of
the system model parameters are shown in Figure 3.6. In both figures, the large red cross
indicates the true value for θ. We observe that the estimation using the proposed method is
more accurate than using PEM algorithm. Table 3.4 shows the mean and the corresponding
standard deviations of all the estimated system model parameters obtained with both PEM
and our proposed method. We observe an accurate estimation of the parameters using our
proposal.
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Table 3.4: Estimated system model parameters for numerical Example 3

Method
Parameters

â1 b̂1 ĉ1 d̂1

PEM −0.4990± 4.6× 10−3 1.0011± 7.2× 10−3 0.0960± 1.8× 10−2 0.7980± 1.1× 10−2

EM–GMM −0.4999± 9.3× 10−4 0.9999± 1.2× 10−3 0.0994± 3.1× 10−3 0.7999± 2.1× 10−3

3.6 Conclusions
In this chapter, we have addressed the estimation of a general class of linear dynamic system
driven by an exogenous input signal, with non-minimum-phase noise transfer function and
a Gaussian mixture noise. We proposed an identification algorithm using ML to estimate
the system model parameters and the GMM parameters of the noise distribution. The ML
algorithm was formulated using the prediction error for systems with non-minimum-phase
noise transfer functions that is computed using causal filtering and anti-causal filtering. We
included the initial conditions of the filters of the prediction error as deterministic parameters
to be estimated. The proposed EM algorithm utilizes closed form expressions to estimate the
parameters of the GMM. In the simulation examples, we considered two scenarios: i) a non-
minimum-phase noise transfer function holding all standing assumptions, and ii) relaxing
the standing assumptions for a minimum-phase and a non-minimum-phase transfer func-
tions with Gaussian mixture distributed noise signal and an uniform distributed noise signal,
respectively. We obtained the correct number of minimum-phase zeros and non-minimum-
phase zeros using AIC for all possible combinations of the orders r and p of the noise transfer
function. For all cases, our proposal exhibited an accurate estimation of the system model
parameters, specially in the estimation of the parameters of the noise transfer function. We
also showed that GMMs can be used to approximate a non-Gaussian-sum noise distribution,
obtaining accurate estimations of the system model parameters. Finally, the proposed EM
algorithm and HOM method performed similarly when the signal to noise ratio is high, whilst
the proposed EM algorithm exhibited better accuracy of the estimations than HOM when
the signal to noise ratio is low.
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Appendix
3.A Proof of Lemma 4

The prediction error in (3.32) can be obtained using causal recursive filtering followed by
anti-causal recursive filtering [37] including the effect of initial conditions. From (3.32), the
causal recursive filtering is obtained as follows:

ȳt = G(z−1, θ)ut + f g
t (θ)ηg, (3.57)

where ηg is the initial state of the state-space representation {Ag,Kg,Cg,Dg} of G(z−1, θ),
and the term f g

t (θ) in (3.57) is given by f g
t (θ) = CgA

t
g.

Using (3.32) and (3.57), we obtain ε̄t(θ, η) as follows:

ε̄t(θ, η) =
[

1
Hs(z−1, θ)

]
(yt − ȳt) + f s

t (θ)ηs, (3.58)

where ηs is the initial state of the state-space representation {As,Ks,Cs,Ds} of [Hs(z−1, θ)]−1,
and the term f s

t (θ) in (3.58) is computed as f s
t (θ) = CsA

t
s.

Then, the anti-causal recursive filtering is obtained using the time-reversed sequence of
(3.58), ε̄R

t (θ, η), as follows:

εR
t (θ, η) =

[
1

H̄u(z−1, θ)

]
ε̄R

t (θ, η) + fu
t (θ)ηu, (3.59)

where ηu is the initial state of the state-space representation {Au,Ku,Cu,Du} of [H̄u(z−1, θ)]−1,
and the term fu

t (θ) in (3.59) is obtained as fu
t (θ) = CuA

t
u. Then, the prediction error εt(θ, η)

is obtained by reversing the sequence εR
t (θ, η) in (3.59).

Assuming that ωt in (3.1) is an independent and identically distributed noise sequence
and using (3.33)–(3.35) to define the vector of parameters β = [θT γT ηT ]T , the likelihood
function L(β) is obtained from (3.29) as follows:

L(β) = p(y1:N |β, u1:N), (3.60)

=
N∏

t=1

κ∑
i=1

αiN (εt(θ, η); µ̃i, Σ̃i),

where µ̃i and Σ̃i are given by (3.31). Therefore, the log-likelihood function is given by

ℓ(β) =
N∑

t=1
log

{
κ∑

i=1
αiN (εt(θ, η); µ̃i, Σ̃i)

}
. (3.61)

Rafael Orellana 57



Chapter 3. ML etimation of linear dynamic systems with GMMs

3.B Proof of Lemma 5
From the likelihood function in (3.60) we have:

p(yt|β) =
κ∑

i=1
αiN (εt(θ, η); µ̃i, Σ̃i), (3.62)

where µ̃i, Σ̃i and εk(θ, η) are given by (3.31) and (3.42) respectively. Let consider

p(ζt = i) = αi, i = 1, . . . , κ, (3.63)

where ζ1:N is a discrete random variable (hidden variable) such that ζt is an indicator that
determines if an observation yt arises from the ith component of the GMM, that is

ζt ∈ {1, . . . , κ}, t = 1, . . . , N. (3.64)

Then, (3.62) can be obtained by marginalizing the hidden variable, ζt, as follows:

p(yt|β) =
κ∑

i=1
p(yt|ζt = i, β)p(ζt = i|β), (3.65)

where
p(yt|ζt = i, β) = N (εt(θ, η); µ̃i, Σ̃i). (3.66)

Defining the complete data set as {y1:N , ζ1:N} and utilizing Bayes’ rule, the complete likeli-
hood function is obtained as follows:

p(y1:N , ζ1:N |β) =
N∏

t=1
p(yt|ζt, β)p(ζt|β). (3.67)

The complete log-likelihood function is given by:

log[p(y1:N , ζ1:N |β)] =
N∑

t=1
log[p(ζt|β)] + log[p(yt|ζt, β)]. (3.68)

Using (3.63) and (3.65) in (3.68) we obtain:

log[p(y1:N , ζ1:N |β)] =
N∑

t=1

κ∑
i=1

log[p(ζt = i|β)] + log[N (εt(θ, η); µ̃i, Σ̃i)]. (3.69)

3.C Proof of Theorem 1
Computing the auxiliary function Q(β, β̂(m))
Using (3.69) in (3.43) we obtain:

Q(β, β̂(m)) =
N∑

t=1

κ∑
i=1

E
{
log[p(ζt = i|β)]|y1:N , β̂(m)

}
+ E

{
log[N (εt(θ, η); µ̃i, Σ̃i)]|y1:N , β̂(m)

}
.

(3.70)
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Solving the expected value in (3.70) and substituting (3.63) into (3.70) we have:

Q(β, β̂(m)) =
N∑

t=1

κ∑
i=1

log[αi]ζ̂(m)
ti + log[N (εt(θ, η); µ̃i, Σ̃i)]ζ̂(m)

ti , (3.71)

where
ζ̂

(m)
ti = p(ζt = i|y1:N , β̂(m)). (3.72)

Using the Bayes’ Theorem, (3.62), (3.63) and (3.65) to compute (3.72) we obtain:

ζ̂
(m)
ti = p(ζt = i|β̂(m))p(yt|ζt = i, β̂(m))

p(yt|β̂(m))
,

= α̂
(m)
i N (εt(θ̂(m), η̂(m)); ˆ̃µ(m)

i , ˆ̃Σ(m)
i )∑κ

l=1 α̂
(m)
l N (εt(θ̂(m), η̂(m)); ˆ̃µ(m)

l , ˆ̃Σ(m)
l )

. (3.73)

Optimization of the auxiliary function Q(β, β̂(m))

Taking the derivative of (3.71) with respect to µ̃i and equating to zero we obtain:

∂Q(β, β̂(m))
∂µ̃i

=
N∑

t=1

(
εt(θ̂(m), η̂(m))− ˆ̃µ(m+1)

i

)
ζ̂

(m)
ti = 0. (3.74)

Substituting (3.31) in (3.74), we obtain:

N∑
t=1

ζ̂
(m)
ti εt(θ̂(m), η̂(m)) = ĉ(m)

up
µ̂

(m+1)
i

N∑
t=1

ζ̂
(m)
ti , (3.75)

µ̂
(m+1)
i =

∑N
t=1 ζ̂

(m)
ti εt(θ̂(m), η̂(m))

ĉ
(m)
up

∑N
t=1 ζ̂

(m)
ti

. (3.76)

Taking the derivative of (3.71) with respect to ρ = Σ̃−1
i and equating to zero yields:

N∑
t=1

ζ̂
(m)
ti

(
εt(θ̂(m), η̂(m))− ˆ̃µ(m)

i

)2
= ˆ̃Σ(m+1)

i

N∑
t=1

ζ̂
(m)
ti . (3.77)

Substituting (3.31) in (3.77) we obtain:

Σ̂(m+1)
i =

∑N
t=1 ζ̂

(m)
ti (εt(θ̂(m), η̂(m))− ĉ(m)

up
µ̂

(m)
i )2[

ĉ
(m)
up

]2∑N
t=1 ζ̂

(m)
ti

. (3.78)

For the parameter αi we define R(αi) as follows:

R(αi) =
N∑

t=1

κ∑
i=1

log[αi]ζ̂(m)
ti , (3.79)

subject to ∑κ
i=1 αi = 1. Notice that, we initially do not consider the constraint 0 ≤ αi ≤ 1.
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Then, using a Lagrange multiplier to deal with the constraint on αi we define:

J (αi, ϵ) =
N∑

t=1

κ∑
i=1

log[αi]ζ̂(m)
ti − ϵ

(
κ∑

i=1
αi − 1

)
. (3.80)

Taking the derivative of (3.80) with respect to αi and ϵ and equating to zero we obtain:

∂J (αi, ϵ)
∂αi

=
∑N

t=1 ζ̂
(m)
ti

α̂
(m+1)
i

− ϵ = 0, (3.81)

∂J (αi, ϵ)
∂ϵ

=
κ∑

i=1
αi − 1 = 0. (3.82)

Then, α̂
(m+1)
i = ∑N

t=1 ζ̂
(m)
ki /ϵ. Taking a summation over i = 1 . . . κ and using (3.82) we have:

κ∑
i=1

α̂
(m+1)
i =

κ∑
i=1

N∑
t=1

ζ̂
(m)
ti /ϵ = 1, (3.83)

ϵ =
κ∑

i=1

N∑
t=1

ζ̂
(m)
ti . (3.84)

Notice that ∑κ
i=1 ζ̂

(m)
ti = 1, then we have ϵ = N . Finally, we obtain:

α̂
(m+1)
i =

∑N
t=1 ζ̂

(m)
ti

N
. (3.85)

Notice that 0 ≤ α̂
(m+1)
i ≤ 1 holds, even though we did not explicitly consider it in (3.80).

3.D An alternative EM formulation with GMMs for
linear dynamic systems

Let us define the following:

K(yt, βi) = αiN (εt(θ, η); µ̃i, Σ̃i), (3.86)

Vt(β) =
κ∑

i=1
K(yt, βi). (3.87)

Then, the log-likelihood function in (3.37) can be expressed as:

ℓ(β) =
N∑

t=1
log [Vt(β)] . (3.88)

Defining Bt(β) = log [Vt(β)], we can obtain:

Bt(β) = Qt(β, β̂(m))−Ht(β, β̂(m)), (3.89)
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where the functions Qt(β, β̂(m)) and Ht(β, β̂(m)) are given by

Qt(β, β̂(m)) =
κ∑

i=1
log [K(yt, βi)]

K(yt, β̂
(m)
i )

Vt(β̂(m))
, (3.90)

Ht(β, β̂(m)) =
κ∑

i=1
log

[
K(yt, βi)
Vt(β)

]
K(yt, β̂

(m)
i )

Vt(β̂(m))
. (3.91)

The function Ht(β, β̂(m)) is a decreasing function for any value of β. This result is directly
obtained from Jensen’s inequality (see Lemma 2). Then, the log-likelihood function in (3.88)
satisfies the following:

ℓ(β̂(m+1)) ≥ ℓ(β̂(m)). (3.92)

Substituting (3.89) in (3.88) and using (3.86) and (3.87), the auxiliary function Q(β, β̂(m))
is obtained as follows (E-step):

Q(β, β̂(m)) =
N∑

t=1

κ∑
i=1

log
[
αiN (εk(θ, η); µ̃i, Σ̃i)

]
ζ̂

(m)
ti , (3.93)

where

ζ̂
(m)
ti = α̂

(m)
i N (εt(θ̂(m), η̂(m)); ˆ̃µ(m)

i , ˆ̃Σ(m)
i )∑κ

l=1 α̂
(m)
l N (εt(θ̂(m), η̂(m)); ˆ̃µ(m)

l , ˆ̃Σ(m)
l )

. (3.94)

The M-step is then given by

β̂(m+1) = arg max
β
Q(β, β̂(m)), s.t 0 ≤ αi ≤ 1,

M∑
i=1

αi = 1. (3.95)

Finally, the auxiliary function, Q(β, β̂(m)), in (3.93) is equal to (3.46) and the estimators are
obtained from to (3.48)–(3.51).

3.E Initialization procedures for the EM algorithm with
GMMs

For comparison purposes, we consider the Example 1 and Example 2 using our proposed
algorithm (EM–GMM) with N = 5000, 50 Monte Carlo (MC) simulations, our initialization
procedure for the GMM components (ini(1)), and an initialization based on the classical EM
algorithm with GMMs [68] (namely ini(2)) using the prediction error from the Prediction
Error Method (PEM), εt(θ̂(PEM)). We run the simulations using Matlab® with an Intel(R)
Core(TM) i5-8300H CPU @ 2.30GHz, RAM 12GB.

In Figure 3.7 we show the histogram of the prediction error and the proposed initialization
for the noise distribution. In Table 3.5 we compare the estimation results using both initial-
ization procedures considering the number of EM–GMM iterations and the Mean Square
Error (MSE) of the estimates of the vector of parameters. We also included the average
running time for each MC simulation for both Example 1 and Example 2. That is, the time
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Figure 3.7: Histogram of the prediction error εt(θ̂(PEM)) obtained by using PEM for the
Example 1 and Example 2.

involved in the GMM initialization plus the time for the EM estimation (Total time). We
clearly observe that ini(2) corresponds to a better fit of the prediction error histogram than
the one corresponding to ini(1). In addition, we also observe that the EM–GMM yields an
optimal solution with less iterations when we use the ini(2) than using ini(1). Our experience
shows that using ini(2) spends around 40% less total time than ini(1) to yield the estimates
for each MC estimation. However, for both initialization procedures, the accuracy of the
estimates is very similar.

Table 3.5: MSE and EM–GMM iterations for Examples 1 and 2

Initialization

procedure

Example 1 Example 2

Iterations MSE Total time [s] Iterations MSE Total time [s]

ini(1) 68 2.5243× 10−4 18.61± 2.49 1477 1.2564× 10−5 103.22± 12.24

ini(2) 39 2.5239× 10−4 8.30± 1.77 1057 1.2453× 10−5 56.68± 15.38
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Chapter 4
Model Error Modeling Using

Stochastic Embedding Approach with
GMMs

Most System Identification techniques available in the literature are developed under the
assumption that the system lies in the model set when estimating the corresponding vector
of parameters (see e.g. [1–3]). However, real systems have arbitrary complexity and using
a complex model structure can lead to large estimation variance errors [24]. An alternative
view of Modeling and System Identification of dynamic systems combines a nominal model
with an error-model. Among popular alternatives for uncertainty modeling we find Stochastic
Embedding and Set Membership. In this chapter, an ML estimator for uncertainty modeling
in linear dynamic systems with Stochastic Embedding approach is developed. The PDF of
the vector of parameters that define the error-model is given by a GMM. An estimation
algorithm to estimate the vector of parameters that define both the nominal model and the
PDF of the GMM based on the EM algorithm is proposed. In this chapter we summarize
the results presented in the journal paper J.3, and the conference papers C.2 and C.3.

Contribution

We obtain the likelihood function for a linear dynamic system modeled with Stochastic
Embedding approach and a finite Gaussian mixture distribution. The likelihood function
is computed by marginalizing the vector of parameters of the error-model as a hidden
variable. We propose an EM-based algorithm to solve the associated ML estimation
problem with GMMs, obtaining the estimates of the vector of parameters that define
the nominal model and closed form expressions for the GMM estimators of the error-
model distribution.

4.1 Motivation

In control and monitoring of manufacturing processes, it is key to understand model uncer-
tainty in order to achieve the required levels of consistency, quality, and economy, among
others. In aerospace applications, models need to be very precise and able to describe the
entire dynamics of an aircraft [118]. In addition, the complexity of modern real systems has
turned deterministic models impractical, since they cannot adequately represent the behavior
of disturbances in sensors and actuators, and tool and machine wear, to name a few. Thus, it
is necessary to deal with model uncertainties in the dynamics of the plant by incorporating
a stochastic behavior.

In Figure 4.1, a typical representation of a real process and measured experimental data
is shown, where ut is the input measurements, yt denotes the output measurements, and ωt
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Figure 4.1: Representation of a real dynamic system with data measurements for
system identification.

denotes a measurement noise. The real process (true system) is represented by the interac-
tion of three components: (i) an actuator, (ii) a plant, and (iii) a sensor. This representation
has been used to develop system identification methodologies for flight vehicle development
in order to obtain accurate models and to validate mathematical models of the flight vehi-
cle [119]. These system models are required, for example, to perform fault-diagnosis and adap-
tive control, to analyze handling qualities specification compliance, to develop high-fidelity
aerodynamic databases for flight simulators, among others [120]. However, the quality of
these results can be affected by the uncertainties incorporated by the (unknown) dynamics
that are not modeled, the instrumentation, model simplifications, and measurement noise
and sensor errors [121]. For these reasons, a suitable formulation of a model that incor-
porates uncertainties is an important aspect to consider in system identification methods,
in order to obtain system models that represent as closely as possible the actual process
behavior [1, 2, 119]. Determining suitable dynamic system models of real processes is essen-
tial to obtain effective process control strategies and accurate fault detection and diagnosis
methodologies that deliver good performance [122].

In the next sections, we will show an identification methodology to address the uncer-
tainty modeling problem in a general class linear dynamic system using SE approach. That
is, we aim at obtaining an estimation of a nominal model with an error-model in which its
vector of parameters are Gaussian mixture distributed.

4.2 General system description
Consider the linear dynamic system given by:

y
[r]
t = G[r](z−1)u[r]

t + H(z−1, θ)ω[r]
t , (4.1)
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where r = 1, ..., M denotes the r-th realization of the system, M corresponds the number of
independent experiments or batches, z−1 denotes the backward shift operator (z−1xt = xt−1),
y

[r]
t ∈ R is the output signal, u

[r]
t ∈ R denotes the input signal, ω

[r]
t ∈ R is a zero-mean white

Gaussian noise with variance σ2, and H(z−1, θ) is the noise model parameterized by θ. Notice
that u

[r]
t and ω

[r]
t describe, respectively, a different input signal and noise realizations for each

independent experiment. We consider that the system G[r](z−1) can be described as follows
(see e.g. [14, 26]):

G[r](z−1) = G0(z−1, θ)(1 + G∆(z−1, η[r])), (4.2)

where G0(z−1, θ) is the nominal model parameterized by θ, G∆(z−1, η[r]) is a multiplicative
error-model (4.2) parameterized by η[r]. Here, we also consider that the PDF of the vector
of parameters of the error-model, η[r], is given by a finite Gaussian mixture distribution as
follows:

p(η[r]|γ) =
κ∑

i=1
αiN (η[r]; µi, Γi), (4.3)

γ = [α1 µ1 Γ1︸ ︷︷ ︸
γ1

· · · ακ µκ Γκ︸ ︷︷ ︸
γκ

]T , (4.4)

where αi > 0, ∑κ
i=1 αi = 1 and N (η[r]; µi, Γi) represents a Gaussian PDF with mean value

µi and covariance matrix Γi. Note that we consider that H(z−1, θ) in (4.1) is part of the
nominal model1, i.e., it is only parameterized by θ.

The nominal system model, G0(z−1, θ), for the system model (4.1) is given by:

G0(z−1, θ) = B(z−1, θ)
A(z−1, θ)

, (4.5)

where

B(z−1, θ) = b1z
−1 + · · ·+ bnb

z−nb , (4.6)
A(z−1, θ) = 1 + a1z

−1 + · · ·+ anaz−na . (4.7)

Similarly, the noise system model in (4.1) is given by

H(z−1, θ) = C(z−1, θ)
D(z−1, θ)

, (4.8)

with
C(z−1, θ) = 1 + c1z

−1 + · · ·+ cncz
−nc , (4.9)

D(z−1, θ) = 1 + d1z
−1 + · · ·+ dnd

z−nd . (4.10)

We also consider that the error-model G∆(z−1, η[r]) in (4.2) is a linear regression as follows:

G∆(z−1, η[r]) = η
[r]
0 + η

[r]
1 z−1 + · · ·+ η[r]

n∆
z−n∆ , (4.11)

1We use the term nominal model to refer to the system model G0(z−1, θ) and the noise system model
H(z−1, θ).
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where η[r] ∈ Rn∆×1.

4.2.1 System model as a linear regression
We consider that the observed data Y [r] = [y[r]

1 · · · y
[r]
N ] is a collection of measurements for

each experiment. Then, the system (4.1) can be described as follows2:

Y [r] = G(θ)U [r] + Ψ[r](θ)η[r] + W [r], (4.12)

where Y [r], U [r], W [r] ∈ RN×1, θ ∈ Rn0×1, η[r] ∈ Rn∆×1, G(θ)U [r] ∈ RN×1, Ψ[r](θ) ∈ RN×n∆ .
The term G(θ)U [r] corresponds to the output response corresponding to the nominal model
structure G(θ), Ψ[r](θ)η[r] corresponds to the output signal due to the error-model structure
in (4.2), and W [r] ∼ N (0, σ2IN) (IN ∈ RN×N is the identity matrix). Notice that G(θ)
involves the nominal model structure utilized for G0(z−1, θ) and H(z−1, θ) in (4.1). The
term Ψ[r](θ) describes the model structure given by the product G0(z−1, θ)G∆

(
z−1, η[r]

)
in

(4.2).

Remark 11. The system model in (4.12) is constructed under the assumption that the error-
model structure Ψ[r](θ)η[r] is a linear regression and the nominal model structure G(θ) can
have an arbitrary structure [26]. The fact of considering the error-model as a linear regression
can provide flexibility, lower computational complexity and contain FIR model of arbitrary
orders, Laguerre, and Kautz models (see e.g. [123]). ▽

4.2.2 Standing assumptions
The problem of interest is to estimate the vector of parameters, β = [ θT γT σ2 ]T , that defines
the parameters of the nominal model, error-model and the noise variance. In addition, we
consider that β0 is the true vector of parameters that defines the true model. In order to
formulate the ML estimation algorithm, we introduce the following standing assumptions:

A1 The system in (4.1) is operating in open loop and the input signal u
[r]
t is an exogenous

deterministic signal for each r independent experiment.
A2 The nominal model does not change from one experiment to another, whilst the error-

model G∆(z−1, η[r]) may change for each experiment and all the realizations of η =
{η[r]}M

r=1 are drawn from the same PDF parameterized by γ.
A3 The vector of parameters β0, the input signal u

[r]
t and the noise ω

[r]
t in (4.1) satisfy

regularity conditions, guaranteeing that the ML estimate βML converges (in probability
or a.s.) to the true solution β0 as N →∞.

A4 The orders na, nb, nc, nd and n∆ of the polynomials of system (4.1) and the number
of components κ of the error-model distribution (4.3) are known.

A5 The system (4.1) is asymptotically stable, its models G(z−1, θ) and H(z−1, θ) have no
poles-zeros on the unit circle and have no pole-zero cancellations. The noise system
model H(z−1, θ) is also a minimum-phase system.

Assumption A2 is needed to develop an ML methodology based on the uncertainty modeling
with SE approach. Assumption A3 is necessary to develop an estimation algorithm that holds

2In this chapter we use capital letters to denote the vector of signals, ut or ωt for t = 1, ..., N .
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the asymptotic properties of the ML estimator. Assumption A4 can be relaxed by considering
a dynamic system model that includes parametric uncertainties with a different error-model
structure that we assume in (4.2). We will address this case in Section 4.6. Assumption A5
is necessary to obtain an asymptotically unbiased ML estimator [103] and a system model
that is controllable [104].

In the following section we consider different approaches for modeling the error-model
for linear dynamic systems.

4.3 Uncertainty modeling frameworks for linear dynamic
systems

4.3.1 Set Membership (SM) approach

A paradigm to describe the uncertainty in a system model on a deterministic hypothesis is
to consider that the error-model is unknown-but-bounded (UBB). A typical technique to
address this approach is Set Membership (SM) identification [20,124]. SM method provides
efficient algorithms for estimating the set of feasible models, compatible with the available
data and the UBB error assumption [20]. The choice of the nominal model is usually per-
formed by minimizing a cost function related to the feasible set. The feasible set itself gives
the size of the uncertainty associated with the nominal model.

Let consider a linear dynamic system as follows:

yt = GT (z−1)ut + ωt, (4.13)

where GT (z−1) denotes the true system model, yt ∈ R denotes the output signal, ut ∈ R is
the input deterministic signal, and ωt ∈ R is a noise sequence. The true system, GT (z−1),
belongs to a set K (prior information of the system) and the noise sequence ω1:N is bounded
in some norm Y. i.e., ∥ω1:N∥Y ≤ δ, δ > 0 [20, 125, 126]. Based on these assumptions, it is
possible to define the feasible system set (FSS) as follows:

FSS = {S ∈ K : ∥y1:N − S(u1:N)∥Y ≤ δ}, (4.14)

which is the set of systems that are compatible with the measured data and the prior as-
sumptions [126]. Notice that S(u1:N) is the output of the system model S evaluated with the
input u1:N . In addition, the definition of the FSS involves a difficulty based on the system
structure of K and the definition of the norm ∥·∥Y (e.g. non-linear systems or linear variant
time systems).

Since the FSS contains the information provided by the measurement data, it is natural
to evaluate the quality of a nominal model, G0(z−1, θ), according to its worst-case error with
respect to the elements of FSS. Then, the identification error associated with G0(z−1, θ),
E(G0(z−1, θ)), is given by [126]:

E(G0(z, θ)) = sup
S∈FSS

∥∥∥S −G0(z−1, θ)
∥∥∥
D

, (4.15)
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where ∥·∥D is a suitable norm in the system space and θ is the vector of parameters that
defines the nominal model.

In order to obtain an estimation of G0(z−1, θ), a model structure for the nominal system
model needs to be chosen. A common criterion is to consider a simple structure for the
nominal model, e.g. FIR filters, low dimensional, linearly parameterized [20]. If we consider
M as a set of nominal models parameterized by θ ∈ Rn0 , the problem of choosing a model
in M according to the criterion in (4.15) can be solved the conditional central estimate as
follows [125]:

Ĝ0(z−1, θ) = arg inf
G0(z−1,θ)∈M

max
S∈FSS

∥∥∥S −G0(z−1, θ)
∥∥∥
D

. (4.16)

Since the min-max optimization problem in (4.16) may be computationally infeasible, sub-
optimal estimators are considered [125, 126]. For example, in the case that the noise is
ℓ∞-bounded and the FSS is a polytope in Rn0 , it can be recursively approximated by simpler
regions such as ellipsoids or parallelotopes [127] and the center of this approximating sets may
be chosen as an estimate of the nominal model. More sophisticated set approximation strate-
gies, based on inner and outer bounding via polytopes, have been proposed in [128]. They
provide a viable computational complexity, which is a key issue in SM identification.

4.3.2 Model error modeling (MEM)

Model error modeling (MEM) [21] is a framework used for modeling the uncertainty in linear
dynamic systems. The key idea is to use standard PEM algorithms to estimate a nominal
model, Ĝ0(z−1, θ), from input-output measurements in time domain [1, 2] in (4.13). The
estimated nominal model is then used to obtain the residuals, εt, as follows [21,126]:

εt = yt − Ĝ0(z−1, θ)ut. (4.17)

Then, a model structure for the residuals is chosen as follows:

εt = F (z−1, ϑ)ut + H(z−1, ϑ)vt, (4.18)

where F (z−1, ϑ) and H(z−1, ϑ) are rational transfer functions parameterized by ϑ and vt is
a zero-mean Gaussian white noise with variance σ2

v . The parameter of the error-model in
(4.18) can be estimated by using classical PEM algorithms [1,2]. This procedure provides an
error-model description that captures the reliability of the nominal model. This result can
be used, for example, to generate a confidence set for model validation or for other specific
applications, such as robust control [23].

Finally, the MEM methodology can be summarized as follows [126]:
(i) Compute the residuals, εt, from (4.17).

(ii) Compute the error-model in (4.18) using a PEM algorithm with input data ut and, as
output data, the residuals, εt.

(iii) Compute the uncertainty region by adding frequency by frequency the error-model to
the nominal model. This gives a region where the true system is supposed to be found.
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4.3.3 Stochastic embedding (SE) approach
Stochastic Embedding (SE) describes model uncertainty in a stochastic framework. The key
idea is to think of the model as a realization drawn from an underlying probability space,
where the parameters that define the error-model are characterized by a PDF [14, 22]. The
original work on SE assumed that the true system GT (z−1) in (4.13) could be described as
follows [14,22]:

G
[r]
T (z−1) =

{
G0(z−1, θ) + Gϵ(z−1, η[r]), (4.19a)
G0(z−1, θ)(1 + G∆(z−1, η[r])), (4.19b)

where G0(z−1, θ) is the nominal model parameterized by θ, Gϵ(z−1, η[r]) is an additive error-
model, and G∆(z−1, η[r]) is a multiplicative error-model both parameterized by η[r]. The
error-model is viewed as a realization of a stochastic vector of parameters η[r]. In addition,
the PDF that models η[r] is parameterized by γ.

To illustrate the stochastic embedding approach, the magnitude of the frequency response
of a linear dynamic system (assumed to be the true system) is shown in Figure 4.2, where
G

[r]
T (z−1) is given by

G
[r]
T (z−1) = G0(z−1) + G0(z−1)G[r]

∆ (z−1), (4.20)

where G0(z−1) is a fixed nominal model, and G
[r]
∆ (z−1) denotes the rth realization of a relative

error-model for the true system. The red-shaded region represents the area in which possible
true systems, G

[r]
T (z−1), i.e, realizations of the true system (represented by black dotted

lines), can lie. The error-model can introduce model parameter uncertainties at low-frequency
range and model structure uncertainties at high-frequency range [119]. This system model
behavior can be encountered, for instance, in an aeroservoelastic system model (see e.g.,
[118]). Aeroservoelastic systems include dynamic coupling due to structural, control, sensor,
and actuator dynamics that cover both the low-frequency and high-frequency range. This
means that, in an ML framework, the estimates can change considerably from one experiment
to another, even if the number of measurements used to obtain an ML estimation is large,
due to the structural and parametric uncertainties in the true system model.

There are authors which address this approach using ML estimation or a Bayesian per-
spective under Gaussian assumptions for the error-model distribution [23, 24, 26]. In the
following section, we consider to address an estimation of the system (4.1) using the ML
method with SE approach.

4.4 Maximum Likelihood estimation using SE approach
with GMMs

4.4.1 Maximum Likelihood formulation with SE approach
In this section, we develop an ML estimation algorithm for system (4.1) using the SE ap-
proach with GMMs to estimate the parameters that define the nominal model, the PDF
of the error-model, and the measurement noise. We consider that system (4.1) can be de-
scribed as a linear regression in (4.12). We define the vector of parameters to be estimated
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Figure 4.2: Magnitude of the frequency response for the linear dynamic system in (4.20).

as β = [ θT γT σ2 ]T in order to formulate the ML estimator for the system (4.12):

θ = [b1 a1 c1 d1 · · · bnb
ana cnc dnd

]T , (4.21)

where θ is the vector of parameters of the nominal model, γ is the vector of parameters
of the error-model distribution as a GMM in (4.3), and σ2 is the noise variance. For the
model in (4.12) using the GMM in (4.3), the likelihood function, L(β), can be obtained by
marginalizing the hidden variable, [η[1] · · · η[M ]], as follows3:

L(β) = p(Y [1], . . . , Y [M ]|β), (4.22)

=
M∏

r=1
p(Y [r]|β), (4.23)

=
M∏

r=1

∫ ∞

−∞
p(Y [r]|η[r], β)p(η[r]|β)dη[r], (4.24)

where
p(Y [r]|η[r], β) = N (Y [r];G(θ)U [r] + Ψ[r](θ)η[r], σ2IN), (4.25)

p(η[r]|β) =
κ∑

i=1
αiN (η[r]; µi, Γi), (4.26)

with αi > 0, ∑κ
i=1 αi = 1.

3Typical methods of ML estimation for GMMs do not consider the presence of hidden variables.
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Figure 4.3: Log-likelihood function using SE approach with GMMs.

The log-likelihood function, ℓ(β), is then given by

ℓ(β) =
M∑

r=1
log

{
κ∑

i=1
αi

∫ ∞

−∞
p(Y [r]|η[r], β)p(η[r]|β)dη[r]

}
. (4.27)

Finally, the ML estimator is given by

β̂ML = arg max
β

ℓ(β), s.t.
κ∑

i=1
αi = 1, 0 ≤ αi ≤ 1. (4.28)

Remark 12. The classical ML formulation considers the measurement data of one experi-
ment to obtain an estimate of a system model (see e.g. [1,2]). In contrast, the ML estimator
in (4.28) simultaneously considers the measurements of M independent experiments to obtain
an estimation of the system model with SE approach, i.e, the nominal model and error-model
distribution as a GMM. ▽

4.4.2 Likelihood function with GMMs

The ML estimation problem is solved by maximizing the log-likelihood function in (4.27). The
optimization problem is typically solved using gradient-based methods. However, as ex-
plained in Chapter 3, the solution may be difficult to obtain when the number of components
κ in the GMM and/or the number of independent experiments M increases. To illustrate
this behavior, we consider the system model (4.2) with a simple FIR structures as follows:

G0(z−1, θ0) = g0 + g1z
−1, H(z−1, θ0) = 1, (4.29)

G∆(z−1, η[r]) = η
[r]
0 − η

[r]
0 z−1, (4.30)

where θ0 = [1 0.5]T , ω
[r]
t ∼ N (0, σ2), σ2 = 1, u

[r]
t ∼ N (0, σ2

u), σ2
u = 10 and N = 100. The

error-model is parameterized by η[r] = [η[r]
0 − η

[r]
0 ]T and it is Gaussian mixture distributed

with α1 = α2 = α3 = α4 = 0.25, Γ1 = Γ2 = Γ3 = Γ4 = 10, µ1 = −5, µ2 = 5, µ3 = −15
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and µ4 = 15. In Figure 4.3(a) we show the log-likelihood function for two mean values of the
GMM (µ1 and µ4) when the remainder of the parameters are fixed at their corresponding
true values. We observe local maxima in the log-likelihood function. Moreover, we observe
the difficulty to obtain the true values of the error-model distribution when the number of
realizations (experiments) is low (e.g. M = 1), i.e., there is not enough statistical information
to describe the corresponding error-model distribution. In contrast, in Figure 4.3(b) we show
the log-likelihood function behavior when the number of realizations is increased (e.g. M =
20). We observe that the true values of the GMM correspond to the maximum values of the
log-likelihood function. However, there are several local maxima and to solve the optimization
problem in (4.28) using standard gradient-based methods may be cumbersome. An iterative
procedure based on the EM algorithm [25] can provide a simpler technique to deal with this
difficulty since it typically provides closed form estimators for the GMM parameters [67,68].

4.4.3 A comparison analysis with SE approach and Bayesian esti-
mation

The estimation of the system in (4.12) can be handled in a variety of approaches [24]. One
aspect to consider for the formulation of the estimation problem with SE approach is the selec-
tion of the complexity of the system model for both the nominal model and the error-model,
i.e., the vector of parameters θ and η[r] that we use to address the uncertainty modeling
problem. A Bayesian view is to consider that both vector of parameters, {θ, η[r]}, can be
modeled as realizations of random vectors with certain prior distributions [24, 26]. Under
this Bayesian framework, it is possible to obtain an unified system model of both the nom-
inal model and error-model if all system models are considered FIR systems. To illustrate
the latter idea, we consider the true system in (4.2) with (4.29) and (4.30) as follows:

G
[r]
T (z−1) = (g0 + g0η

[r]
0 )︸ ︷︷ ︸

θ̄
[r]
0

+ (g1 − g0η
[r]
0 + g1η

[r]
0 )︸ ︷︷ ︸

θ̄
[r]
1

z−1 − (g1η
[r]
0 )︸ ︷︷ ︸

θ̄
[r]
2

z−2. (4.31)

Then, the system model in (4.1) can be expressed as follows:

y
[r]
t = φ

[r]
t θ̄[r] + ω

[r]
t , (4.32)

where

φ
[r]
t = [u[r]

t u
[r]
t−1 u

[r]
t−2]T , (4.33)

θ̄[r] = [ θ̄
[r]
0 θ̄

[r]
1 θ̄

[r]
2 ]T . (4.34)

This formulation, then, becomes a standard Bayesian estimation problem that can be for-
mulated with the Maximum a posteriori (MAP) approach as follows [129,130]:

θ̄
[r]
MAP = arg max

θ̄[r]
ℓ̄(θ̄[r]), (4.35)

where
ℓ̄(θ̄[r]) = −N

2
log[σ2]− 1

2σ2

N∑
t=1

(yt − φ
[r]
t θ̄[r])2 + log[p(θ̄[r])], (4.36)
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Figure 4.4: Frequency response of the magnitude of the true system models and the uncertainty
region.

and p(θ̄[r]) is a given prior distribution of the vector of parameters, θ̄[r]. Notice that this
Bayesian framework is closely related with SE approach for uncertainty quantification in
linear dynamic systems. In particular, we can obtain an error-model, G

[r]
∆ (z−1), in (4.20) as a

stochastic system in (4.31), considering a nominal model equals to one (G0(z−1) = 1). In this
sense, there are different system model structures that can describe the same uncertainty
region of the true system with SE approach. In Figure 4.4 we show the magnitude of the
frequency response of the true system for different nominal model structures. The red-shaded
regions (uncertainty regions) represent the area in which realizations of the true system (black
dotted lines) can lie. In this case, we observe that there is more than one representation of
the uncertainty region for the same true system, i.e., there is a trade-off between choosing a
nominal model and an error-model structure with SE approach. Notice that in the method
proposed in this thesis, the complexity and structure of both the nominal model and error-
model is defined by the user. Notice that our proposed technique is not limited to a particular
model structure, providing more flexibility to obtain more suitable models. This flexibility
might result in identifiability issues. However, we select in this thesis the system model
structure that can better describe the uncertainty region of the true system with the smallest
number of parameters for the error-model.

4.5 An EM algorithm using SE approach with GMMs
The log-likelihood function in (4.27) is closely related with the optimization cost given in
(2.15). Then, we can formulate an EM-based algorithm to solve the estimation problem with
the systematic procedure described in Chapter 2.

4.5.1 EM-based algorithm formulation
From (4.25) and (4.26), we define the following:

K(βi, η[r]) = αiN (Y [r];G(θ)U [r] + Ψ[r](θ)η[r], σ2IN)N (η[r]; µi, Γi). (4.37)
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Then, the log-likelihood function in (4.27) can be expressed as

ℓ(β) =
M∑

r=1
log

[
V [r](β)

]
, (4.38)

with
V [r](β) =

κ∑
i=1

∫ ∞

−∞
K(βi, η[r])dη[r]. (4.39)

The logarithm of the expression in (4.39) can be written as follows:

log
[
V [r](β)

]
= Q[r](β, β̂(m))−H[r](β, β̂(m)), (4.40)

where

Q[r](β, β̂(m)) =
κ∑

i=1

∫ ∞

−∞
log[K(βi, η[r])]K(β̂(m)

i , η[r])
V [r](β̂(m))

dη[r], (4.41)

H[r](β, β̂(m)) =
κ∑

i=1

∫ ∞

−∞
log

[
K(βi, η[r])
V [r](β)

]
K(β̂(m)

i , η[r])
V [r](β̂(m))

dη[r], (4.42)

where β̂(m) is the current estimate. From Lemma 2, the function H[r](β, β̂(m)) is a decreasing
function for any value of β.

In order to develop the estimation algorithm, we first obtain the following result. This
will be used to compute the auxiliary function Q[r](β, β̂(m)) in (4.41).

Lemma 6. The expression in (4.37) evaluated at the m-th estimate, β̂(m), can be written as
follows:

K(β̂(m)
i , η[r]) = α̂

(m)
i N (Y [r]; µ̄

(m)
ir , Σ̄(m)

ir )N (η[r]; µ̃
(m)
ir , Σ̃(m)

ir ), (4.43)

with
µ̄

(m)
ir = Ψ[r](θ̂(m))µ̂(m)

i + G(θ̂(m))U [r], (4.44)

Σ̄(m)
ir = [σ̂2](m)IN + Ψ[r](θ̂(m))Γ̂(m)

i

[
Ψ[r](θ̂(m))

]T
, (4.45)

P(m)
ir = Γ̂(m)

i

[
Ψ[r](θ̂(m))

]T (
Σ̄(m)

ir

)−1
, (4.46)

µ̃
(m)
ir = µ̂

(m)
i + P(m)

ir

(
Y [r] − µ̄

(m)
ir

)
, (4.47)

Σ̃(m)
ir =

(
In∆ − P

(m)
ir Ψ[r](θ̂(m))

)
Γ̂(m)

i . (4.48)

Proof. The result is directly obtained from (4.37) by using the following identities:[
A B

C D

]
=
[

I 0
CA−1 I

][
A 0
0 D − CA−1B

][
I A−1B

0 I

]
, (4.49)

(I + BD−1C)−1 = I −B(D + CB)−1C, (4.50)
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det(A) det
(
D − CA−1B

)
= det(D) det

(
A−BD−1C

)
. (4.51)

Let us consider the following identity for a random variable x:

E
{
(b− Ax)T (b− Ax)

}
= (b− Ax̂)T (b− Ax̂) + tr

{
AΣAT

}
, (4.52)

where x̂ = E {x} and Σ = E
{
(x− x̂)(x− x̂)T

}
.

Using (4.49)–(4.52) we can express log[K(βi, η[r])] in (4.41) as follows:

log[K(βi, η[r])] = N

2
log[σ2]− 1

2
log[det(Γi)]−

1
2σ2

[
(Y [r] − G(θ)U [r] −Ψ[r](θ)µ̃(m)

ir )T

(Y [r] − G(θ)U [r] −Ψ[r](θ)µ̃(m)
ir ) + tr

(
Ψ[r](θ)Σ̃(m)

ir [Ψ[r](θ)]T
)]
− (4.53)

1
2
[
tr(Γ−1

i Σ̃(m)
ir ) + (µ̃(m)

ir − µi)T Γ−1
i (µ̃(m)

ir − µi)
]

.

From Lemma 6, substituting (4.53) in (4.41), the auxiliary function Q[r](β, β̂(m)) can be
expressed as:

Q[r](β, β̂(m)) =
κ∑

i=1
log[K(βi, η[r])]ζ̂(m)

ir , (4.54)

with

ζ̂
(m)
ir =

α̂
(m)
i N

(
Y [r]; µ̄

(m)
ir , Σ̄(m)

ir

)
∑κ

l=1 α̂
(m)
l N

(
Y [r]; µ̄

(m)
lr , Σ̄(m)

lr

) . (4.55)

Finally, we can formulate the following iterative algorithm:

Q(β, β̂(m)) =
M∑

r=1
Q[r](β, β̂(m)), (4.56)

β̂(m+1) = arg max
β
Q(β, β̂(m)), s.t.

κ∑
i=1

αi = 1, 0 ≤ αi ≤ 1. (4.57)

Notice that (4.56) and (4.57) are closely related to the E-step and the M-step, respectively
[25].

4.5.2 Optimization of the auxiliary function Q(β, β̂(m))

In order to solve the optimization problem in (4.57), we consider the coordinate descent
algorithm [109] using the following steps:

(I) Fix the vector of parameters θ at its value from the current iteration θ̂(m) to optimize
(4.56) with respect to the GMM parameters γ and the noise variance σ2.

(II) Fix the GMM parameters and the noise variance at their values from the iteration
γ̂(m+1) and [σ̂2](m+1) and solve the optimization problem in (4.57) to obtain θ̂(m+1).
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For the maximization problem in (4.57), we can obtain closed form expressions for γ and
σ2. The optimization of the auxiliary function Q(β, β̂(m)) can be carried out as described
below.

Lemma 7. Consider the maximization problem stated in (4.57) using (4.56). Under the
standing assumptions, the M-step in (4.57) is computed using the following steps:

(i) Solve (4.57) using (4.56) with θ = θ̂(m):

α̂i
(m+1) =

(
M∑

r=1
ζ̂

(m)
ir

)
/M, (4.58)

µ̂
(m+1)
i =

(
M∑

r=1
µ̃

(m)
ir ζ̂

(m)
ir

)
/

(
M∑

r=1
ζ̂

(m)
ir

)
, (4.59)

Γ̂(m+1)
i =

(
M∑

r=1

[
(µ̃(m)

ir − µ̂
(m)
i )(µ̃(m)

ir − µ̂
(m)
i )T + Σ̃(m)

ir

]
ζ̂

(m)
ir

)
/

(
M∑

r=1
ζ̂

(m)
ir

)
, (4.60)

σ̂2(m+1) =
(

M∑
r=1

κ∑
i=1
M(m)

ir ζ̂
(m)
ir

)
/NM, (4.61)

with

M(m)
ir =

(
Y [r] − G(θ̂(m))U [r] −Ψ[r](θ̂(m))µ̃(m)

ir

)T (
Y [r] − G(θ̂(m))U [r] −Ψ[r](θ̂(m))µ̃(m)

ir

)
+

tr
(
Ψ[r](θ̂(m))T Σ̃(m)

ir Ψ[r](θ̂(m))
)

. (4.62)

(ii) Solve (4.57) using (4.56) with γ = γ̂(m+1):

θ̂(m+1) = arg min
θ

M∑
r=1

κ∑
i=1

ζ̂
(m)
ir Bir(θ, θ(m)), (4.63)

where

Bir(θ, θ(m)) =
(
Y [r] − G(θ)U [r] −Ψ[r](θ)µ̃(m+1)

ir

)T (
Y [r] − G(θ)U [r] −Ψ[r](θ)µ̃(m+1)

ir

)
+

tr
(
Ψ[r](θ)T Σ̃(m+1)

ir Ψ[r](θ)
)

. (4.64)

Proof. See Appendix 4.A

From Lemma 7, we obtain closed form expressions for the GMM and noise variance esti-
mators. They are computed using the procedure described in Section 2.5 where an auxiliary
function is built without explicitly defining a hidden variable. An alternative solution is to
formulate a classical EM algorithm with GMMs in which a hidden variable, modeled as an
indicator, is considered to determine from which GMM component a set of observations
comes from [68]. However, when the integral equation in (4.41) has closed form solution, the
auxiliary function resulting is equal to (4.56) and the estimators are obtained from (4.58)–
(4.63).

Finally, the estimation algorithm is summarized in Algorithm 4.1.
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Algorithm 4.1 (EM algorithm using SE with GMMs)
Inputs Y [1:M ], U [1:M ], M , κ , θ̂(0), γ̂(0) and σ̂2(0) .
Outputs θ̂, γ̂ and σ̂2.

1: m← 0
2: E-step:
3: Compute µ̄

(m)
ir and Σ̄(m)

ir from (4.44) and (4.45).
4: Compute µ̃

(m)
ir and Σ̃(m)

ir from (4.47) and (4.48).
5: Compute ζ̂

(m)
ir from (4.55).

6: M-step:
7: Estimate γ̂(m+1), σ̂2(m+1) from (4.58)–(4.61).
8: Compute Bir(θ, θ(m)) from (4.64) using γ̂(m+1) and θ̂(m).
9: Estimate θ̂(m+1) by solving (4.63).

10: if stopping criterion is not satisfied then
11: m← m + 1,
12: return to 2
13: else
14: θ̂ ← θ̂(m+1), γ̂ ← γ̂(m+1), σ̂2 ← σ̂2(m+1)

15: end if
16: End

4.6 Numerical examples
In this section, we present two numerical examples with different approaches to illustrate
the benefits of our proposal for modeling both the nominal model and the error-model. In
the first example, we consider a variant of the example used in [26] holding all standing
assumptions stated in Section 4.2.2. The nominal system model (G0(z−1, θ) and H(z−1, θ))
corresponds to a Box-Jenkins model. For simplicity, we also consider that the error-model
(G∆(z−1, η[r])) corresponds to a second-order FIR system in (4.11) with an overlapped Gaus-
sian mixture error-model distribution. We assume that there are not dynamic uncertainties
at low frequencies, i.e., the error-model has zero static gain. In this case, we do not establish
a comparison analysis with other approaches since the simulated data is generated using our
proposed framework with SE and GMMs.

In contrast, we consider a second example to illustrate the flexibility of our proposed
algorithm for modeling the error-model for system (4.1). Assumption A4 is relaxed and the
model structure does not correspond to (4.2). Instead, we consider (4.1) with an output-
error (OE) model structure where the system model, G[r](z−1, θ), is given by the discrete-
time model of a simple continuous-time Resistor-Capacitor system model. Here, we consider
that the time constant τ is given by τ = τ0(1 + δ[r]), where τ0 represents the time constant
computed with the nominal values of the resistor and capacitor, and δ[r] denotes the tolerance
(uncertainty) with a non-Gaussian-sum distribution. For comparison purposes, we consider
a MEM approach described in Section 4.3.2 to obtain an uncertainty quantification of the
corresponding system model.

For both examples, the simulation setup is as follows:
(1) The data length is N = 100.
(2) The number of experiments is M = 100.
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(3) The number of Monte Carlo (MC)4 simulation is 25.
(4) The stopping criterion is satisfied when:∥∥∥β̂(m) − β̂(m−1)

∥∥∥∥∥∥β̂(m)
∥∥∥ < 10−6,

or when 2000 iterations of the EM algorithm have been reached.
The initialization of the estimation algorithm is as follows: For the nominal model initial-
ization, we estimate a system model for each independent experiment using PEM and a
sufficiently flexible (high order) structure. Then, we choose the estimated system model and
the corresponding estimated noise variance with the smallest number of parameters that bet-
ter described all the previously estimated models. For the error-model FIR transfer function,
we adopt a similar approach for different FIR filter orders (n∆). Here, we choose a suffi-
ciently complex FIR system by assuming the nominal model is equal to one (G0(z−1, θ) = 1).
The number of Gaussian mixture model components (κ) is defined by the user, and it is
typically a large number. Once the parameters have been estimated, it is possible to discard
the Gaussian component with a small estimated weight (e.g., 1/(100κ)). Finally, for a given
κ, the initial distribution of the parameters of the error-model is chosen as follows:

(1) From all the estimated FIR models, compute the average value of the coefficient cor-
responding to each tap.

(2) Evenly space the initial mean values of the n∆-dimensional GMM between the esti-
mated maximum and minimum values of each tap.

(3) Set the variances of the n∆-dimensional GMM equal to a diagonal covariance matrix
with the sample variance of each tap on the diagonal.

(4) Set the mixing weight for each GMM component equal to 1/κ.

4.6.1 Example 1: A general system with a Gaussian mixture error-
model distribution

Consider the true system G[r](z−1) in (4.1) with a nominal system model as follows:

G0(z−1, θ) = b0
1z

−1

1 + a0
1z

−1 , H(z−1, θ) = 1 + c0
1z

−1

1 + d0
1z

−1 , (4.65)

and the error-model (4.11) given by

G∆(z−1, η[r]) = η
[r]
0 + η

[r]
1 z−1, (4.66)

where b0
1 = 1, a0

1 = −0.5, c0
1 = 0.1 and d0

1 = 0.8. The input signal is u
[r]
t ∼ N (0, σ2

u),
σ2

u = 10, and the noise source ω
[r]
t ∼ N (0, σ2), σ2 = 0.1. In this example, we focus on

uncertainties in the system model at high frequencies, i.e., η1 = −η0. We also consider
that in each experiment, η[r] = [η0 η1]T is drawn from a Gaussian mixture distribution (4.3)
with α1 = α2 = 0.5, Γ1 = Γ2 = 0.2, µ1 = −1 and µ2 = 1. The vector of parameters to

4Each MC simulation corresponds to an estimation obtained using the data from M independent experi-
ments.
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Table 4.1: Nominal model parameters and noise variance estimated for Example 1

Parameter True value Estimated value

b1 1 0.9999± 1.10× 10−3

a1 −0.5 −0.5001± 0.60× 10−3

c1 0.1 0.1010± 1.28× 10−2

d1 0.8 0.8021± 7.20× 10−3

σ2 0.1 0.1001± 1.40× 10−3

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

η

p
(η
)

p̂(η) p(η)(True)

Figure 4.5: Estimated error-model distribution for the Example 1.

estimate is β = {θ, γ, σ2} with θ = {b0
1, a0

1, c0
1, d0

1} and γ = {αi, µi, Γi}κ
i=1 with κ = 2. The

initial values are θ̂(0) = [1.2510 − 0.4523 0.0772 0.7546]T , σ̂2(0) = 0.0612, α̂
(0)
1 = α̂

(0)
2 = 0.5,

µ̂
(0)
1 = −1.1962, µ̂

(0)
2 = 2.9673, Γ̂(0)

1 = Γ̂(0)
2 = 0.8651.

Table 4.1 shows the estimation results of the nominal model parameters and the noise
variance. Figure 4.5 shows the results of the estimation of the error-model distribution. The
blue line corresponds to the average of all the GMMs estimated. It is clear that the estimated
PDF is similar to the true PDF.

On the other hand, we note that the SE method does not directly provide an uncertainty
region. However, we compute M realizations of the model

Ĝ0(z−1, θ̂) + Ĝ0(z−1, θ̂)G∆(z−1, η[r]), (4.67)

with r = 1, ..., M , where Ĝ0(z−1, θ̂) is the estimated nominal model, and η[r] are obtained
from M different realizations using the GMM in (4.3) with the estimated parameters γ̂. In
addition, we use PEM [1, 2] to estimate the system model G[r](z−1) with a high order FIR
model. We consider the measurements of 25 independent experiments, and we estimate a
10th order FIR system model, Ĝ(z−1, θ)(FIR), for each independent experiment in order to
validate the estimated uncertainty region.

Figure 4.6 shows the magnitude of the frequency response corresponding to the average
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Figure 4.6: Estimated nominal model G0(z−1, θ) for the Example 1.

of all MC simulations for the estimated nominal model (blue line). The red-dashed line
corresponds to the nominal system model in (4.65), i.e. G0(z−1, θ). The blue-shaded region
represents the area of the corresponding estimated uncertainty region of the true system. We
observe an accurate estimation of the nominal system model. We also observe that the
estimated FIR models (black-dotted lines) lie in the uncertainty region obtained with the
proposed method.

4.6.2 Example 2: A Resistor-Capacitor system model with non-
Gaussian uncertainties

Consider the system (4.1) as follows:

G[r](z−1, τ [r]) =
z−1

(
1− e−Ts/τ [r]

)
1−

(
e−Ts/τ [r]

)
z−1

, H(z−1) = 1, (4.68)

where Ts = 0.01 is the sampled period, and τ [r] = τ0(1 + δ[r]) is the time constant with
τ0 = 10×10−3 and δ[r] is uniformly distributed as U[−0.4, 0.4]. We consider that the sampled
period Ts is known.

For the SE method, we consider an OE nominal model with a FIR error-model as follows:

G0(z−1, θ) =
z−1

(
1− e−Ts/τ0

)
1− (e−Ts/τ0) z−1 , (4.69)

G∆(z−1, η[r]) = η0 − η0z
−1. (4.70)

The distribution of the parameters η[r] of the error-model is modeled using a GMM with
γ = {αi, µi, Γi}κ

i=1, κ = 2 components. The vector of parameter to be estimated is β =
{τ0, γ, σ2}. As in the previous example, the uncertainty region is obtained from (4.67) with
r = 1, ..., M , where η[r] are obtained from M different realizations using the GMM in (4.3)
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4.7. On the uncertainty modeling for continuous-time (CT) systems

with the estimated parameters γ̂. In addition, the initial values used for our proposed EM
algorithm are given by τ̂

(0)
0 = 9 × 10−3, σ̂2(0) = 0.1247, α̂

(0)
1 = α̂

(0)
2 = 0.5, µ̂

(0)
1 = −0.0163,

µ̂
(0)
2 = 0.8025, Γ̂(0)

1 = Γ̂(0)
2 = 0.1092.

For comparison purposes, we estimate the system uncertainty and the nominal model
using MEM approach [21]. The estimated nominal model, Ĝ0(z−1, θ)(MEM), corresponds to
the average of all PEM estimations obtained using the original structure given in (4.68), i.e
na = nb = 1 and nc = nd = 0, from the all independent experiments. In order to obtain
the residuals, we compute εt = yt− Ĝ0(z−1, θ)(MEM)ut for each independent experiment. The
error-model, Gε(z−1, θε), is obtained from the residual data as follows:

εt = Gε(z−1, θε)ut + vt, (4.71)

where θε is the vector of parameters of the error-model, and vt is a zero-mean Gaussian noise
sequence which is assumed to be uncorrelated with the input signal ut. Thus, we consider a
10th order FIR system model for Gε(z−1, θε) and we use the PEM [2] to estimate the error-
model parameters θε for each experiment. The uncertainty region is computed by adding
frequency by frequency the average of the all error-model estimated to the nominal model.

Finally, we consider the measurements of 25 independent experiments and we obtain an
estimation of the system model (4.68), Ĝ(z−1, θ)(PEM), using PEM with na = nb = 1 and
nc = nd = 0 for each independent experiment in order to validate the uncertainty region
estimated for both SE and MEM approach.

Figure 4.7 shows the magnitude of the frequency response corresponding to the nomi-
nal model and the uncertainty region estimated using SE approach. The red-dashed line
corresponds to the system model (4.68) considering the time constant without uncertainty,
i.e. G(z−1, τ0). The blue line corresponds to the average of all MC simulations for the es-
timated nominal model. We observe an accurate estimation for the nominal model with
τ̂0 = 9.7× 10−3 ± 0.17× 10−3 and noise variance σ̂2 = 0.133± 5.9× 10−3. The blue-shaded
area corresponds to the uncertainty region estimated for the true system. Similarly, Fig-
ure 4.8 shows the magnitude of the frequency response corresponding to the nominal model
estimated (blue line) and the uncertainty region estimated (blue-shaded area) from the
residuals using MEM. We also observe an accurate estimation of the nominal model with
τ̂0 = 10.1 × 10−3 ± 2.30 × 10−3 and noise variance σ̂2 = 0.099 ± 2.85 × 10−3. In addition,
we observe in both Figure 4.7 and Figure 4.8 that PEM estimations, Ĝ(z−1, θ)(PEM), lie in
the uncertainty region obtained using both SE approach and MEM. However, SE method
describes better the uncertainty region than MEM method, specifically, the error-model at
low frequencies.

4.7 On the uncertainty modeling for continuous-time
(CT) systems

Several methods to identify continuous-time (CT) linear systems have been developed from
the corresponding discrete-time model (DT) assuming that the CT model structure is known.
However, when the model structure is unknown, orthonormal Basis Functions (BFs) can be
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Figure 4.7: Estimated nominal model G0(z−1, θ) using SE approach for the Example 2.
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Figure 4.8: Estimated nominal model G0(z−1, θ) using MEM for the Example 2.

used to obtain accurate models with low complexity. In this section, we use the ideas de-
scribed in previous sections for developing an error-model identification algorithm for a CT
system utilizing the SE approach with sampled data. A linear combination of orthonormal
BFs is used to model both the CT nominal model and the stochastic error-model. In particu-
lar, the distribution of the stochastic weights associated with the error-model BFs is modeled
as a GMM. Then, an ML estimation algorithm is developed to obtain an estimation of both
the CT nominal model and the error-model distribution.

4.7.1 CT system of interest with SE approach and sampled data

Here, a general description of a CT system with SE approach using orthonormal BFs is
stated. We also list the standing assumptions considered to formulate the ML estimation
algorithm. Finally, the exact DT system model is presented as a linear regression using BFs.
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General description

Consider the following CT system:

y(t)[r] = G[r](s)u(t)[r], (4.72)

where r = 1, ..., M , denotes the r-th realization of the system, with M the number of
independent experiments, y(t)[r] is the output signal, u(t)[r] is the input signal, s is the
time-derivative operator (s = d

dt
) or the Laplace transform variable, and G[r](s) is the rth

realization of the true system transfer function (TF). We assume that G[r](s) can be described
as follows:

G[r](s) = G0(s, θ) + G[r]
ϵ (s, η[r]), (4.73)

where G0(s, θ) is the nominal model and G[r]
ϵ (s, η[r]) is the additive error-model given by the

following basis expansions [131]:

G0(s, θ) =
n0∑

j=1
θjBj(s), (4.74)

G[r]
ϵ (s, η[r]) =

nϵ∑
l=1

η
[r]
l Pl(s), (4.75)

where n0 and nϵ are the number of orthonormal BFs of Bj(s) and Pl(s) used for the nominal
model and the error-model, respectively, θj is the weight associated with the j-th BF for
the nominal model and η

[r]
l is the stochastic weight associated with the l-th BF for the

error-model. A PDF that models η[r] = [η[r]
1 · · · η[r]

nϵ
]T as a GMM is given by:

p(η[r]|γ) =
κ∑

i=1
αiN (η[r]; µi, Γi), (4.76)

γ = [α1 µ1 Γ1︸ ︷︷ ︸
γ1

· · · ακ µκ Γκ︸ ︷︷ ︸
γκ

]T , (4.77)

where αi > 0, ∑κ
i=1 αi = 1 and N (η[r]; µi, Γi) represents an nϵ dimensional Gaussian distri-

bution with mean µi and covariance matrix Γi.

Remark 13. Notice that M independent realizations of system (4.73) are used to obtain
an estimation of the error-model PDF since one realization does not provide sufficient in-
formation to obtain an accurate stochastic description. This approach differs from the SE
framework in [22] where a Gaussian stochastic assumption is considered to obtain error-model
bounds from measurements of one realization of the DT true system. ▽

The exact discrete-time (DT) system model

Let us consider that the DT system model from the CT system in (4.72) is given by:

y
[r]
k = Ḡ[r](z−1)u[r]

k + ω
[r]
k , (4.78)
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where y
[r]
k ∈ R denotes the sampled output signal, u

[r]
k ∈ R is the sampled input signal5

and ω
[r]
k ∈ R is a zero-mean Gaussian white noise sequence with variance σ2. We utilized a

Zero Order Hold (ZOH) and instantaneous sampling with period Ts in order to obtain the
sampled output signal. Notice that ω

[r]
k appears for the first time in (4.78), i.e, it does not

come from the discretization of the CT system model in (4.72). The corresponding sampled
data TF can be obtained as follows [132]6:

Ḡ[r](z−1) =
(
1− z−1

)
Z

{
L−1

[
G[r](s)

s

] ∣∣∣∣∣
t=kTs

}
, (4.79)

where L−1 is the inverse Laplace transform and Z is the Z -transform. Considering the DT
model from (4.74) and (4.75), using (4.79), the system (4.78) can be written as follows:

y
[r]
k = φ

[r]
k θ + Ψ

[r]
k η[r] + ω

[r]
k , (4.80)

with
φ

[r]
k = [B̄1(z−1)u[r]

k · · · B̄n0(z−1)u[r]
k ], (4.81)

Ψ
[r]
k = [P̄1(z−1)u[r]

k · · · P̄nϵ(z−1)u[r]
k ], (4.82)

θ = [θ1 · · · θn0 ]T , (4.83)

where φ
[r]
k θ represents the output response corresponding to the nominal model, and Ψ

[r]
k η[r]

corresponds to the signal due to the error-model.
Defining the observed data as Y [r] = [y[r]

1 · · · y
[r]
N ]T , we then obtain a regression model

from (4.80) as follows:
Y [r] = Φ[r]θ + Ψ[r]η[r] + W [r], (4.84)

where Y [r], W [r] ∈ RN×1, θ ∈ Rn0×1, η[r] ∈ Rnϵ×1, Φ[r] ∈ RN×n0 , Ψ[r] ∈ RN×nϵ , and W [r] ∼
N (0, σ2IN).

4.7.2 ML estimation for CT error-model using sampled data and
GMMs

In this section, we develop an ML estimation algorithm for the CT system (4.72) utilizing
the sampled data model in (4.84). We define the vector of parameters to be estimated as
β = [θT γT σ2]T in order to formulate the ML estimator for the system (4.84), where γ is
the vector of parameters in (4.77), θ are the weights associated with the nominal model in
(4.84), and σ2 is the covariance of the noise sequence ω

[r]
k . Under the standing assumptions

and marginalizing the hidden variable, η[r], the log-likelihood function, ℓ(β), for the DT

5The input signal u
[r]
k is constant between samples for each experiment.

6X̄(z−1) denotes the exact discrete-time model of X(s) computed using (4.79).
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model (4.84) is given by:

ℓ(β) =
M∑

r=1
log

{
κ∑

i=1

∫ ∞

−∞
αip(Y [r]|η[r], β)N (η[r]; µi, Γi)dη[r]

}
, (4.85)

p(Y [r]|η[r], β) = N (Y [r]; Φ[r]θ + Ψ[r]η[r], σ2IN). (4.86)

Then, the ML estimator is given by:

β̂ML = arg max
β

ℓ(β), s.t 0 ≤ αi ≤ 1,
κ∑

i=1
αi = 1. (4.87)

Notice that the ML estimation problem in (4.87) is closely related to the ML formulation
stated in (4.28). Hence, the formulation of the estimation algorithm yields closed form expres-
sions for both nominal model and GMM estimators. The E-step in the proposed algorithm
is given by:

Q(β, β̂(m)) =
M∑

r=1

κ∑
i=1

log[K(βi, η[r])]ζ̂(m)
ir , (4.88)

where

ζ̂
(m)
ir = α̂

(m)
i N (Y [r]; µ̄

(m)
ir , Σ̄(m)

ir )∑κ
l=1 α̂

(m)
l N (Y [r]; µ̄

(m)
lr , Σ̄(m)

lr )
, (4.89)

µ̄
(m)
ir = Ψ[r]µ̂

(m)
i + Φ[r]θ̂(m), (4.90)

Σ̄(m)
ir = σ̂2(m)

IN + Ψ[r]Γ̂(m)
i Ψ[r]T , (4.91)

K(βi, η[r]) = αiN (Y [r]; Φ[r]θ + Ψ[r]η[r], σ2IN)N (η[r]; µi, Γi). (4.92)

Then, the M-step results in the following:

α̂
(m+1)
i =

(
M∑

r=1
ζ̂

(m)
ir

)
/M, (4.93)

µ̂
(m+1)
i =

(
M∑

r=1
µ̃

(m)
ir ζ̂

(m)
ir

)
/

(
M∑

r=1
ζ̂

(m)
ir

)
, (4.94)

Γ̂(m+1)
i =

(
M∑

r=1

[
(µ̃(m)

ir − µ̂
(m)
i )(µ̃(m)

ir − µ̂
(m)
i )T + Σ̃(m)

ir

]
ζ̂

(m)
ir

)
/

(
M∑

r=1
ζ̂

(m)
ir

)
, (4.95)

θ̂(m+1) =
(

M∑
r=1

κ∑
i=1

Φ[r]T Φ[r]ζ̂
(m)
ir

)−1 ( M∑
r=1

κ∑
i=1

Φ[r]T (Y [r] −Ψ[r]µ̃
(m)
ir )ζ̂(m)

ir

)
, (4.96)

σ̂2(m+1) =
(

M∑
r=1

κ∑
i=1
M(m)

ir ζ̂
(m)
ir

)
/NM, (4.97)
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Algorithm 4.2 (EM-based algorithm with GMMs for CT systems)
Inputs Y [1:M ], Φ[1:M ], Ψ[1:M ], M , κ, θ̂(0), γ̂(0) and σ̂2(0) .
Outputs θ̂, γ̂ and σ̂2.

1: m← 0
2: E-step:
3: Compute ζ̂

(m)
ir from (4.89).

4: Compute µ̄
(m)
ir and Σ̄(m)

ir from (4.90) and (4.91).
5: Compute µ̃

(m)
ir and Σ̃(m)

ir from (4.98)–(4.100).
6: M-step:
7: Estimate γ̂(m+1) from (4.93)–(4.95).
8: Estimate θ̂(m+1) and σ̂2(m+1) from (4.96) and (4.97).
9: if stopping criterion is not satisfied then

10: m← m + 1,
11: return to 2
12: else
13: θ̂ ← θ̂(m+1), γ̂ ← γ̂(m+1), σ̂2 ← σ̂2(m+1)

14: end if
15: End

with
R(m)

ir = Γ̂(m)
i [Ψ[r]]T (Σ̄(m)

ir )−1, (4.98)

µ̃
(m)
ir = µ̂

(m)
i +R(m)

ir (Y [r] − µ̄
(m)
ir ), (4.99)

Σ̃(m)
ir = (Inϵ −R

(m)
ir Ψ[r])Γ̂(m)

i , (4.100)

M(m)
ir = (Y [r] −Φ[r]θ̂(m) −Ψ[r]µ̃

(m)
ir )T (Y [r] −Φ[r]θ̂(m) −Ψ[r]µ̃

(m)
ir ) + tr

(
Ψ[r]Σ̃(m)

ir Ψ[r]T
)
.

(4.101)

Finally, the estimation algorithm for CT system error-model identification is summarized in
Algorithm 4.2 (For more details, see Appendix 4.B ).

4.7.3 Numerical simulation examples for CT error-model model-
ing

In this section we present two numerical examples to illustrate the benefits of our proposal
for the identification of the CT system in (4.72), obtaining both the nominal model and the
error-model distribution using sampled data. We consider the input signal uk ∼ N (0, σ2

u),
with σ2

u = 10, and the variance of the DT white Gaussian noise ωk in (4.78) σ2 = 0.1. We
also consider the CT Laguerre basis functions in (4.74) given by [133,134]:

Bi(s, a0) =
√

2a0

s + a0

(
s− a0

s + a0

)i−1
, (4.102)
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Pl(s, aϵ) =
√

2aϵ

s + aϵ

(
s− aϵ

s + aϵ

)l−1
, (4.103)

where {a0, aϵ} are called the time scaling factors for the Laguerre functions [135].

The simulation setup is as follows:

(1) The data length is N = 50.
(2) The sampled period is Ts = 0.1 ms.
(3) The number of experiments is M = 150.
(4) The number of MC7 simulations is 50.
(5) The stopping criterion is chosen as:∥∥∥β̂(m) − β̂(m−1)

∥∥∥∥∥∥β̂(m)
∥∥∥ < 0.5× 10−6,

or when 5000 iterations have been reached.

For comparison purposes, we estimate the nominal model and the uncertainty region (UR)
using the procedure that combines the SM and MEM approach with BFs proposed in [126].
In order to compare the models obtained by SE and SM methods, we generate M realizations
of the model G0(s, θ̂) + Gϵ(s, η[r]) with r = 1, .., M , where η[r] are obtained from M different
realizations using the PDF in (4.3) with the estimated parameters γ̂.

Example 1: A CT Laguerre basis system with an overlapped Gaussian mixture
error-model distribution

Consider the CT system (4.73) with the nominal model and the error-model in (4.74) with
n0 = nϵ = 2, a0 = 2, and aϵ = 1. The nominal model parameters (but unknown) θ are
θ0 = [5 7]T and η = [η1 −η1]T is a hidden variable. We also consider that in each experiment,
η is drawn from a Gaussian mixture distribution (4.3) with α1 = α3 = 0.25, α2 = 0.5,
µ1 = −2, µ2 = 0, µ3 = 2, and Γ1 = Γ2 = Γ3 = 0.5.

Figure 4.9(a) shows the results of the estimation of the error-model distribution. The blue-
shaded bars represent the histogram of the corresponding error-model observations. The blue
line corresponds to the average of all the estimates of the MC simulations. It is clear that
the estimated PDF is similar to the true PDF when the number of experiments is high
(M = 150). Figure 4.10(a) shows the magnitude of the frequency response corresponding
to the average of all MC simulations for the estimated nominal model using both SE and
SM approaches. The blue-shaded region represents the area of the corresponding UR of
the true system. We observe accurate estimations of the nominal model using both SE and
SM. However, the UR is small for high frequencies when our proposed algorithm is used.
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Figure 4.9: The estimated error-model distribution p(η) using GMMs.

Example 2: Approximating a CT system with a χ2 error-model distribution using
Laguerre BFs and GMMs

In this example, we show how our proposal can be used to estimate a CT system when the
nominal model (4.74) does not correspond to a finite summation of BFs but can be approxi-
mated by one. This approach has been tailored in control theory and system identification,
specifically, using Laguerre BFs [134]. We also consider that the error-model non-Gaussian
distribution does not correspond to a GMM but can be approximated by one. In this example
the CT system (4.73) is given by:

G0(s) = 5
(s + 1)(s + 2)

, (4.104)

7Each MC simulation corresponds to an estimation of the nominal model and the error-model distribution
obtained from M independent realisations of the error-model TF and the noise sequence.
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Figure 4.10: Bode magnitude plots for the estimated CT nominal system using SE and SM
approach.

with Gϵ(s, η) given by (4.75) with nϵ = 2, aϵ = 3.5, and η = [η1 − η1]T is a hidden
variable. The error-model distribution corresponds to a chi-square (χ2) distribution given by

p(η)(True) = η((ν−2)/2)e−η/2

2(ν/2)Γ̃(ν/2)
, (4.105)

where ν = 2 and Γ̃(·) is the Gamma function [136]. To approximate the nominal model
(4.104), we consider (4.74) with n0 = 5 and a0 = 1. In addition, the error-model distribution
is approximated using a GMM in (4.3) with κ = 5.

Figure 4.9(b) shows the estimated average error-model PDF for all the MC simula-
tions. The blue-shaded bars represent the histogram of the corresponding error-model ob-
servations. We observe that the average of the estimated GMM fits the error-model distri-
bution. Figure 4.10(b) shows the magnitude of the frequency response corresponding to the
average of all MC simulations for the estimated nominal model. As in the previous example,
the blue-shaded region represents the area in which the corresponding UR of the true system
lies. We observe an accurate approximation of the nominal model using the Laguerre BFs. In
addition, we observe a large UR when the SM approach is used.

4.8 Conclusions
In this chapter, we have addressed the uncertainty modeling problem by combining the SE
approach with GMMs. We proposed an identification algorithm using the ML principle to
estimate both the nominal model and the distribution of the parameters of the error-model as
a GMM. An EM-based algorithm is proposed to solve the ML estimation problem providing
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closed form expressions for the estimators of the GMM parameters and the noise variance. In
the simulation examples, we considered two scenarios: i) identification of a system model with
a structure defined using SE approach with a nominal model and an error-model as a FIR
system with Gaussian mixture distribution, and ii) identification of a system model with non-
Gaussian uncertainties in the parameters that does not correspond to the SE framework. In
both cases, we obtained accurate estimations of the nominal system model. In addition, the
proposed method provided a good description of the uncertainty region in the system for
the simulation examples. Finally, we extended this approach for uncertainty modeling of CT
linear systems using continuous-time BFs and sampled data. We also proposed an iterative
algorithm using the exact DT system model to obtain the ML estimation of the nominal
model and the error-model distribution as a GMM. In this case, the proposed algorithm
resulted in closed form expressions for the estimation of the parameters of the nominal
model, noise variance and the GMM.
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Appendix

4.A Proof of Lemma 7

Taking the derivative of (4.56) with respect to µi and equating to zero yields:

∂Q(β, β̂(m))
∂µi

=
M∑

r=1

[
Γ−1

i (µ̃(m)
ir − µ̂

(m+1)
i )

]
ζ̂

(m)
ir = 0. (4.106)

Then, we obtain:

µ̂
(m+1)
i =

∑M
r=1 µ̃

(m)
ir ζ̂

(m)
ir∑M

r=1 ζ̂
(m)
ir

. (4.107)

Taking the derivative of (4.56) with respect to Γ−1
i and equating to zero:

∂Q(β, β̂(m))
∂Γ−1

i

=
M∑

r=1

([
(µ̃(m)

ir − µ̂
(m)
i )(µ̃(m)

ir − µ̂
(m)
i )T + Σ̃(m)

ir

]
+ Γ̂(m+1)

i

)
ζ̂

(m)
ir = 0. (4.108)

From (4.108) we then obtain:

Γ̂(m+1)
i =

∑M
r=1

[
(µ̃(m)

ir − µ̂
(m)
i )(µ̃(m)

ir − µ̂
(m)
i )T + Σ̃(m)

ir

]
ζ̂

(m)
ir∑M

r=1 ζ̂
(m)
ir

. (4.109)

Similarly, taking the derivative of (4.56) with respect to ρ = σ2 and equating to zero yields:

∂Q(β, β̂(m))
∂ρ

=
M∑

r=1

κ∑
i=1

[
(Y [r] − G(θ̂(m))U [r] −Ψ[r](θ̂(m))ˆ̃µ(m)

ir )T (Y [r] − G(θ̂(m))U [r] −Ψ[r](θ̂(m))ˆ̃µ(m)
ir )

+tr
(

Ψ[r](θ̂(m)) ˆ̃Σ(m)
ir [Ψ[r](θ̂(m))]T

)
+ Nρ̂(m+1)

]
ζ̂

(m)
ir = 0. (4.110)

Using [σ̂2](m+1) = 1/ρ̂(m+1) and ∑κ
i=1 ζ̂

(m)
ir = 1 with the definition in (4.62), we have:

[σ̂2](m+1) =
∑M

r=1
∑κ

i=1M
(m)
ir ζ̂

(m)
ir

NM
. (4.111)

For the parameter αi we define R(αi) as follows:

R(αi) =
M∑

r=1

κ∑
i=1

log[αi]ζ̂(m)
ir , (4.112)

subject to ∑κ
i=1 αi = 1. Then, using a Lagrange multiplier to deal with the constraint on αi

we define:
J (αi, ϵ) =

M∑
r=1

κ∑
i=1

log[αi]ζ̂(m)
ir + ϵ

(
κ∑

i=1
αi − 1

)
. (4.113)
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Taking the derivative of (4.113) with respect to αi and ϵ and equating to zero we obtain:

∂J (αi, ϵ)
∂αi

=
M∑

r=1

ζ̂
(m)
ir

α̂
(m+1)
i

− ϵ = 0, (4.114)

∂J (αi, ϵ)
∂ϵ

=
κ∑

i=1
αi − 1 = 0. (4.115)

Then, α̂
(m+1)
i = ∑M

r=1 ζ̂
(m)
ir /ϵ. Taking summation over i = 1, ..., κ and using (4.115) we have:

κ∑
i=1

α̂
(m+1)
i =

κ∑
i=1

M∑
r=1

ζ̂
(m)
ir /ϵ, (4.116)

ϵ =
κ∑

i=1

M∑
r=1

ζ̂
(m)
ir . (4.117)

Notice that ∑κ
i=1 ζ̂

(m)
ir = 1, then we have ϵ = M . Then, we can obtain:

α̂i
(m+1) =

∑M
r=1 ζ̂

(m)
ir

M
. (4.118)

Notice that 0 ≤ α̂
(m+1)
i ≤ 1 holds even though we did not explicitly consider it in (4.113).

Finally, substituting (4.53) in (4.41) with γ = γ̂(m+1) = {α̂(m+1)
i , µ̂

(m+1)
i , Γ̂(m+1)

i } we can
directly obtain Bir(θ, θ(m)) in (4.64) for the parameter θ.

4.B EM-based algorithm for CT system error-model
estimation

To formulate an EM-based estimation algorithm, we introduce the following standing as-
sumptions:

(i) The nominal model G0(s, θ) in (4.74) does not change from one experiment to an-
other, whilst the error-model G[r]

ϵ (s, η[r]) may change for each experiment and all the
realizations of η are drawn from the same PDF parameterized by γ.

(ii) The number of CT orthonormal BFs n0 and nϵ in (4.74) and (4.75), their underlying
parameters, and the number of components κ of the error-model distribution (4.3) are
known.

(iii) The system in (4.72) is operating in open loop and the input signal, u(t)[r], is an
exogenous deterministic signal. Also, M independent experiments with different input
signals are available.

Under the standing assumptions, the iterative algorithm is computed as follows:
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4.B.1 Computing the auxiliary function Q(β, β̂(m))
From (4.85) and (4.86), we define the following:

K(βi, η[r]) = αiN (Y [r]; Φ[r]θ + Ψ[r]η[r], σ2IN)N (η[r]; µi, Γi). (4.119)

Then, the log-likelihood function (4.85) can be expressed as

ℓ(β) =
M∑

r=1
log

[
V [r](β)

]
, (4.120)

with
V [r](β) =

κ∑
i=1

∫ ∞

−∞
K(βi, η[r])dη[r]. (4.121)

The expression in (4.121) can be written as log[V [r](β)] = Q[r](β, β̂(m))−H[r](β, β̂(m)), where:

Q[r](β, β̂(m)) =
κ∑

i=1

∫ ∞

−∞
log[K(βi, η[r])]K(β̂(m)

i , η[r])
V [r](β̂(m))

dη[r], (4.122)

H[r](β, β̂(m)) =
κ∑

i=1

∫ ∞

−∞
log

[
K(βi, η[r])
V [r](β)

]
K(β̂(m)

i , η[r])
V [r](β̂(m))

dη[r]. (4.123)

From Lemma 2, the function H[r](β, β̂(m)) is decreasing function for any value of β. From
Lemma 6 using (4.119) we can directly obtain:

log[K(βi, η[r])] = N

2
log[σ2]− 1

2
log[det(Γi)]−

1
2σ2

[
(Y [r] −Φ[r]θ −Ψ[r]µ̃

(m)
ir )T

(Y [r] −Φ[r]θ −Ψ[r]µ̃
(m)
ir ) + tr

(
Ψ[r]Σ̃(m)

ir [Ψ[r]]T
)]
− (4.124)

1
2
[
tr(Γ−1

i Σ̃(m)
ir ) + (µ̃(m)

ir − µi)T Γ−1
i (µ̃(m)

ir − µi)
]

,

where
µ̄

(m)
ir = Ψ[r]µ̂

(m)
i + Φ[r]θ̂(m), (4.125)

Σ̄(m)
ir = σ̂2(m)

IN + Ψ[r]Γ̂(m)
i Ψ[r]T , (4.126)

R(m)
ir = Γ̂(m)

i [Ψ[r]]T (Σ̄(m)
ir )−1, (4.127)

µ̃
(m)
ir = µ̂

(m)
i +R(m)

ir (Y [r] − µ̄
(m)
ir ), (4.128)

Σ̃(m)
ir = (Inϵ −R

(m)
ir Ψ[r])Γ̂(m)

i . (4.129)

Substituting (4.124) in (4.122), the auxiliary function Q(β, β̂(m)) is given by:

Q(β, β̂(m)) =
M∑

r=1

κ∑
i=1

log[K(βi, η[r])]ζ̂(m)
ir , (4.130)

Rafael Orellana 93



Chapter 4. Model error modeling using SE approach with GMMs

with

ζ̂
(m)
ir = α̂

(m)
i N (Y [r]; µ̄

(m)
ir , Σ̄(m)

ir )∑κ
l=1 α̂

(m)
l N (Y [r]; µ̄

(m)
lr , Σ̄(m)

lr )
. (4.131)

4.B.2 Optimization of the auxiliary function Q(β, β̂(m))

Taking the derivative of (4.130) with respect to µi and equating to zero yields:

∂Q(β, β̂(m))
∂µi

=
M∑

r=1

[
Γ−1

i (µ̃(m)
ir − µ̂

(m+1)
i )

]
ζ̂

(m)
ir = 0. (4.132)

From (4.132) we have:

µ̂
(m+1)
i =

∑M
r=1 µ̃

(m)
ir ζ̂

(m)
ir∑M

r=1 ζ̂
(m)
ir

. (4.133)

Then, taking the derivative of (4.130) with respect to Γ−1
i and equating to zero:

∂Q(β, β̂(m))
∂Γ−1

i

=
M∑
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(µ̃(m)

ir − µ̂
(m)
i )(µ̃(m)

ir − µ̂
(m)
i )T + Σ̃(m)

ir

]
+ Γ̂(m+1)

i

)
ζ̂

(m)
ir = 0. (4.134)

From (4.134) we obtain:

Γ̂(m+1)
i =

∑M
r=1

[
(µ̃(m)

ir − µ̂
(m)
i )(µ̃(m)

ir − µ̂
(m)
i )T + Σ̃(m)

ir
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ζ̂

(m)
ir∑M

r=1 ζ̂
(m)
ir

. (4.135)

Similarly, taking the derivative of (4.130) with respect to θ and equating to zero yields:

M∑
r=1

κ∑
i=1

[Φ[r]]T (Y [r] −Ψ[r]µ̃
(m)
ir )ζ̂(m)

ir =
M∑

r=1

κ∑
i=1

[Φ[r]]T Φ[r]θ̂(m+1)ζ̂
(m)
ir . (4.136)

From (4.136) we obtain:

θ̂(m+1) =
(

M∑
r=1

κ∑
i=1

Φ[r]T Φ[r]ζ̂
(m)
ir

)−1 ( M∑
r=1

κ∑
i=1

Φ[r]T (Y [r] −Ψ[r]µ̃
(m)
ir )ζ̂(m)

ir

)
. (4.137)

Using (4.101) and taking the derivative of (4.130) with respect to ρ = 1/σ2 and equating to
zero yields:

M∑
r=1

κ∑
i=1

Nζ̂
(m)
ir =

M∑
r=1

κ∑
i=1
M(m)

ir ζ̂
(m)
ir ρ̂(m+1). (4.138)

Notice that ∑κ
i=1 ζ̂

(m)
ir = 1, then we can directly obtain:

[σ̂2](m+1) =
∑M

r=1
∑κ

i=1M
(m)
ir ζ̂

(m)
ir

NM
. (4.139)
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For the parameter αi we define R(αi) as follows:

R(αi) =
M∑

r=1

κ∑
i=1

log[αi]ζ̂(m)
ir , (4.140)

subject to ∑κ
i=1 αi = 1. Notice that, we initially do not consider the constraint 0 ≤ αi ≤ 1.

Then, using a Lagrange multiplier to deal with the constraint on αi we define:

J (αi, ϵ) =
M∑

r=1

κ∑
i=1

log[αi]ζ̂(m)
ir − ϵ

(
κ∑

i=1
αi − 1

)
. (4.141)

Taking the derivative of (4.141) with respect to αi and ϵ and equating to zero we obtain:

∂J (αi, ϵ)
∂αi

=
(

M∑
r=1

ζ̂
(m)
ir /α̂

(m+1)
i

)
− ϵ = 0, (4.142)

∂J (αi, ϵ)
∂ϵ

=
κ∑

i=1
αi − 1 = 0. (4.143)

Taking a summation over i = 1 . . . κ in (4.142) and using (4.143) we can obtain:

α̂
(m+1)
i =

(∑M
r=1 ζ̂

(m)
ir

)
M

. (4.144)

Notice that 0 ≤ α̂
(m+1)
i ≤ 1 holds, even though we did not explicitly consider it in (4.141).
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Chapter 5
Conclusions and Future work

5.1 Conclusions
In this thesis the problem of identifying linear dynamic systems i) with structural and
parametric non-Gaussian uncertainties, and ii) subject to non-Gaussian noise, has been
addressed. For both scenarios, the identification algorithms were developed using the ML
principle considering that the non-Gaussian distributions are modeled as GMMs. The main
advantage of this approach is that a GMM can be used to obtain an accurate approximation
of a non-Gaussian distribution. In general, the simulations exhibited great accuracy in the
estimation of the dynamic system parameters.

In the first part of the thesis we addressed the problem of ML estimation with data
augmentation approach when the likelihood function is expressed as an infinite mixture
distribution. We considered that the hidden variables were modeled using GMMs. An EM-
based algorithm with GMMs was developed in order to solve the associated ML estimation
problem. We presented a systematic procedure to construct an auxiliary function to solve
the expectation step of the proposed iterative algorithm. Solving the maximization step of
the EM-based algorithm resulted in closed form expressions for the GMM estimators. In
the numerical examples, we observed accurate estimations, even when a GMM is used to
approximate a non-Gaussian-sum distribution. In addition, we showed how this estimation
methodology can be used for estimating the distribution of stellar rotational velocities with
a finite mixture distribution. In this problem, the measurements have been treated as ran-
dom variables drawn from the projected rotational velocity PDF and the rotational velocity
PDF was approximated as a finite mixture of Maxwellian distributions. The performance
of the proposed algorithm was analyzed utilizing real observed data from three sets of mea-
surements. We observed that the estimated MSA yield a better statistical description of the
stellar rotational velocities than the Tikhonov Regularization Method used in the literature.

In the second part of the thesis, we addressed the identification of linear dynamic sys-
tems subject to non-Gaussian noise. In particular, we focused on the development of an ML
estimator for a general class of linear dynamic systems with non-minimum-phase noise trans-
fer function driven by an exogenous input signal when the noise PDF is a GMM. The ML
estimation algorithm was formulated utilizing the prediction error that was computed using
causal and anti-causal filtering techniques. In addition, the corresponding initial conditions
of the filters of the prediction error were incorporated as deterministic parameters to be
estimated. We proposed an EM algorithm with GMMs to solve the ML estimation problem,
and the optimization problem was solved using the coordinate descent algorithm. Based on
this approach, we obtained closed form expressions for the GMM estimators. We also showed
that the proposed algorithm provides more accurate estimations of the system model model
parameters than High-Order Moments method. Moreover, the proposed EM algorithm ex-
hibited good accuracy even when the non-Gaussian noise distribution does not correspond
to a GMM, but can be approximated by one. In addition, we showed that this proposal
can be used to estimate dynamic systems with minimum-phase noise transfer function with
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Gaussian mixture noise distributions, obtaining system model estimates more accurate than
traditional prediction errors algorithms.

Finally, for the problem of structural and parametric uncertainty modeling in linear
dynamic systems, the SE approach was used. We considered that the system model is a
realization drawn from an underlying probability space and the dynamic system behavior is
modeled with the combination of a nominal model and a Gaussian mixture distributed error-
model. In this framework, the error-model parameters were considered as hidden variables
in order to formulate an ML estimation algorithm to obtain both the nominal model param-
eters and the error-model Gaussian mixture distribution parameters. We jointly utilized the
measurements of a finite number of experiments. The likelihood function was obtained as
an infinite mixture distribution and marginalizing with respect to the hidden variable. We
showed that the likelihood function presents several local maxima and that the estimation
can be improved when the number of experiments is increased. To overcome this difficulty,
an EM-based algorithm with GMMs was developed to solve the associated ML estimation
problem. We obtained closed form expressions for the estimators of the GMM parameters
and the noise variance. The simulation results showed accurate estimations of the nominal
model including the case where a system model with non-Gaussian-sum uncertainties in the
parameters does not correspond to the SE system model assumption.

In addition, we extended the SE with GMMs approach for uncertainty modeling in CT
linear dynamic systems utilizing sampled data. In particular, a linear combination of CT
orthonormal BFs were used for modeling both the nominal model and the error-model. This
approach yield accurate models with a limited number of parameters. An ML estimation
algorithm was formulated from the exact DT system model of the CT dynamic system. To
solve the associated ML estimation problem an EM-based algorithm with GMMs was devel-
oped. The proposed algorithm resulted in closed form expressions to estimate the parameters
of the nominal model, noise variance, and the error-model distribution as a GMM. Based
on the simulation results, the proposed algorithm for modeling the error-model involved a
large computational load with respect to others uncertainty modeling approaches since high
number of experiments is needed to obtain accurate estimations of the system model. How-
ever, the proposed estimation algorithm exhibited accurate estimations when the number of
experiments is high.

5.2 Future work

In this thesis, we showed a paradigm for modeling linear dynamic systems with a nominal
model and an error-model using Stochastic Embedding approach, which results in an inherent
trade-off between the complexity of the nominal model and the complexity of the error model
to obtain suitable system models. When the nominal model is less complex than the error-
model, then systematic errors arise since the former cannot reproduce properly the dynamics
of the true system. On the other hand, choosing a more complex nominal model can lead
to large variance estimation errors. We could use regularization techniques to deal with the
complexity issue by adding a penalty term to the cost function in order to choose the system
model than can describe the true system with a limited number of parameters for the error-
model term. This framework may be addressed utilizing rank-constrained optimization.
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In addition, we also showed a systematic procedure for constructing a surrogate function
to develop an EM-based algorithm with GMMs when the cost function corresponds to an
integral equation. This scenario can be used to address the channel estimation problem
in wireless communication. It is well known in the Communications community that the
wireless channel corresponds to the superposition of different copies of the transmitted signal
that have been reflected, refracted, and scattered. It has been shown empirically that a
good model for the multi-path channel typically corresponds to either Rayleigh or Rice
distributions. However, there are scenarios in which those distributions do not provide a
good model for the channel, for example, the so called urban scenarios where the channel
exhibits different behaviors in different places. For this case, the wireless channel can be
viewed as a problem of uncertainty modeling where there is a nominal model with an error-
model that can be estimated with a SE approach. This can be done using a mixture of the
most common channel distributions such as Rayleigh, Rice, log-normal, and Nakagami.

On the other hand, there are several control strategies that have been developed from
systems in state-space representation. In particular, there are robust control strategies that
consider different uncertainty modeling frameworks for developing control techniques with
their corresponding robust stability tests. This problem can be addressed with linear frac-
tional transformation for state-space models. The uncertainty modeling framework proposed
in this thesis can be extended for linear dynamic systems in state-space representation. Then,
this approach can be used for robust control design and stability analysis. Similarly, stochas-
tic model predictive control (SMPC) has been developed for state-space system models when
the disturbances and measurement noise are described as random variables. Typically, they
are assumed unknown at the current and future instants but have known probability distri-
butions. This control strategy has been tailored for complex dynamics systems with input
and state/output constraints. In particular, SMPC exploits the probabilistic uncertainty
descriptions to define chance constraints, which require the state/output constraints to be
satisfied with at least a priori specified probability level. These constraints can also be ex-
pressed assuming multiplicative uncertainty models, i.e., state-space system models with
time-varying uncertainty elements with known PDFs. However, when the initial assumption
for the disturbances and measurement noise PDF does not match the actual PDF, the con-
trol performance can be degraded. An extension of the uncertainty modeling with GMMs for
state-space system models could be used to develop SMPC techniques in a flexible scenario
in which unknown PDFs can be modeled as GMMs, incorporating stability, computational
load, and feasibility analysis.

Finally, in the Astronomy and Astrophysics field, we can extend the methodology to
deconvolve stellar rotational velocities for the problem of mass ratio distribution estimation
of binary stars. The binary mass-ratio distribution is important to better understand the
evolution of stars in binary systems. However, in most cases, the mass ratio cannot be
measured directly, but can only be derived as the convolution of a function that depends on
the mass ratio and on the unknown inclination angle of the orbit on the plane of the sky. In
this sense, this problem can also be described as an integral equation (similar to the stellar
rotational estimation problem addressed in this thesis). We can consider the true mass ratio
as a hidden variable, from which we can formulate an ML estimation algorithm to estimate
the mass ratio distribution as a finite mixture of known distributions.
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