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Abstract

Robust optimization models of the unit commitment problem (RUC) have been widely used for
the day–ahead calculation of power dispatches and reserves schedules under high penetration of re-
newable generation. Typically proposed uncertainty sets, as budget–based sets, control the level of
robustness of the solutions by the selection of a certain set of parameters. However, the procedures
for its calculation are often considered part of a preprocess, ignoring the possible benefits of the
dynamic determination of it. In this work, a solution scheme for the RUC problem is proposed,
using data–driven–based uncertainty sets, where robustness control parameters are dynamically
calculated as a function of previous operation results. The determination of the adaptive robust-
ness level is made using a reinforcement learning approach, resulting in a closed–loop data–driven
framework. Besides, an experimental framework that simulates real–time operation is proposed
and used to test the proposal. Out–of–sample experiments shown the effectiveness of the proposed
scheme against well–known robust formulations with fixed robustness levels, by improving system-
atic indicators as operational costs, non–served energy, and renewable energy curtailment. Two
systems of different scales are analyzed, showing the concept effectiveness and the scalability of
the present proposal.
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Chapter 1

Introduction

The present chapter gives an overall summary of the whole project. Global
and national contexts of the operation of power systems under high renewable
generation penetration levels are first presented. Then, the state–of–the–art of
the disciplines related to the core of the thesis is shortly reviewed. Finally, the
central hypothesis, objectives, used methodologies, and contributions of the
present project are described.

1.1 Context and motivation

Nowadays, the global concern about environmental safety, besides the constant decrease in costs
of technologies used by non-conventional renewable energies (NCRE), has contributed to their
progressive inclusion in the electrical power systems (EPS). These new technologies and policies
have provided the EPS with new features, making them liable to experiment with new phenomena
and, therefore, increasing the complexity of the planning and operation tasks.

In the global context, at the beginning of 2007, the installed capacity of NCRE generation
reached up to 182 GW in the world, being equivalent to 4% of the total installed capacity at that
moment (4100 GW). For its part, in Chile, the growth and implementation of these technologies
arise in 2004, when the government began to motivate the development of NCRE with the creation
of the named Ley Corta I. Afterward, the promulgation of law N◦ 20.256 gave place to a series
of modifications that strengthened the inclusion of NCRE into the system until its current level
and, with the promulgation of law N◦20.698, also called Ley 20/25, a 20% of NCRE penetration
is expected in the year 2025. Fig. 1.1 shows the evolution of the installed power on the Sistema
Internectado del Norte Grande (SING) for each generation technology.

The high variability and the intermittent nature of the NCRE are hard to manage when an
economic and reliable operation of the system is required at the same time. Due to this diffi-
culty, in October of 2012, the Load Economic Dispatch Center of SING (CDEC-SING) published
a Technical-Economic study about Wind and Solar integration in the SING, whereby establish
that the incorporation of both sources in a moderate way allows the system, in its current state,
administrate the NCRE in an efficient and safe way. However, for bigger levels of penetration,
modifications will have to be made, both as the development of new software for the operation and
the use of new electrical devices, as energy storage ones and active control systems.

According to this, a series of challenges appears looking towards the deep integration of NCRE,
especially in the context of short–term planning and real-time operation, both extensively discussed
in the literature [4, 5, 6]. In this context, the unit commitment (UC) problem is one of the most
impacted. The UC is a mathematical programming problem that defines the state of the generation
units (on or off) and their reserve levels within a certain period, which can be a single day until
several weeks, in order to achieve an economic operation and meet the operational constraints of
the system [7]. Especially in the independent system operator (ISO) managed electricity markets,
it becomes essential to have effective methodologies to efficiently account for REG resources in the
UC and produce robust decisions that ensure system reliability, specifically on generators setpoints
and reserve levels. REG variability, especially from wind units, has very complex dynamics that
are hard to predict. Inadequate management of this variability could conduce the system to high–
risk level operation, where the computed generators’ schedules could be excessively costly or even
infeasible [8].
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Figure 1.1: Evolution of the installed capacity accumulated of ERNC between 2009 and June 2021.
Source: ACERA (https://acera.cl/estadisticas/)

The deterministic version of the UC problem, i.e., using fixed values for every uncertainty
quantity in the problem, is still an active field of research, and is far to be a well–solved problem.
Given the operational requirements and generator features, the UC is a large-scale, non–convex
problem, that is required to be solved in a relatively small time, in order to make feasible the
implementation of the solution in the real–time operation. This lead to a series of approximations
needed to become the problem tractable, raising the well–known trade-off in engineering between
the tractability of the problem and an accurate description. Most of the current approaches seek
the design of tight and compact mixed-integer linear programming (MILP) formulations, on which
remarkable works have been developed [3, 9, 10].

In that regard, considering the difficulties of the solely deterministic version of the UC problem,
adding uncertainty to the problem could increase even more its complexity. Most of the current
approaches to modeling uncertainty on the UC problem can be categorized into three major cate-
gories. The first one is based on stochastic programming (SP), the second on chance-constrained
programming (ChCP), and the third on robust optimization (RO). SP approaches principally use
scenario trees to capture the underlying distribution of the unknown variables. With this, the
uncertainty is discretized and assumed to be known for every scenario, resulting in a large–scale
deterministic UC problem[11, 12]. Nevertheless, a typical problem of SP models is the appropriate
construction of scenario trees that be able to accurately capture the underlying distributions, which
can be very hard, inspiring works that have proposed strategies to tackle it [13, 14]. Concurrently,
ChCP models seek to minimize systems costs while ensuring with a certain probability the fea-
sibility of the solution across a set of scenarios. This approach allows for balancing the trade-off
between total costs and solution robustness by varying the required probability level of feasibility.
However, the major drawback of ChCP models is the non-convexity of probabilistic constraints
and its complexity to be evaluated, which has been addressed [15, 16, 17].

On the other way, the RO paradigm applied to the UC, usually called robust unit commitment
(RUC) models, appear as an opportunity to handle both tractability and risk management, espe-
cially two-stage formulations that have been widely used. Those formulations are characterized
for the statement of a three-level optimization problem, where the first level decides the optimal
schedule, dispatch and reserves levels for generators, the second level selects the worst-case realiza-
tion of the uncertainty, contained in the so-called uncertainty set, and third-level decisions define
the best re-dispatch of generators. In this way, the construction of the uncertainty set is a key
task in the development of RUC models since it defines the complexity of the problem and the
robustness of the solution. Due to resolution purposes, most of the proposed uncertainty sets are
polyhedral, where the often solution approaches rely on two well–known decomposition algorithms,
namely the Benders decomposition and column and constraint generation (C&CG) [18]. However,
the design of uncertainty sets with appropriated robustness levels and other desired properties is

8

https://acera.cl/estadisticas/


still ongoing research.
Concurrently with the development of mathematical programming techniques, a remarkable

enhancement of data acquisition and data management has taken place. The increasing amount of
available data and the ongoing improvement of hardware technologies have motivated the creation
of a new discipline, namely data science, extending its applications over a large spectrum of fields,
including mathematical programming. In particular, the data-driven paradigm in optimization
models with parameters subject to uncertainty has meant the incorporation of data manipulation
techniques, leaving aside the need for previous assumptions about the uncertainty involved. For
traditional SP and ChCP models, probability distributions are needed, which are commonly derived
from the available data and some assumptions of the underlying random process. Nowadays, the
amount of data allows researchers to use it directly for the construction of mathematical structures
embedded into the optimization models. This results in models that optimize over the data, where
statistical requirements on the solution can be directly included into the model as new constraints,
changing the typical way of using the SP, ChCP, and RO approach.

Concerning RO models, the data–driven paradigm naturally results in constructing uncer-
tainty sets from the data. One of the most conventional and used uncertainty sets is the budget-
constrained set, proposed in [4], where each component is contained in a fixed interval around
a nominal point, and the budget constraint controls the deviation from the center by imposing
some linear inequalities. Some variations of the conventional budget–set were proposed in [5], in
which affine policies were used to model wind variability and the uncertainty set containing the
prediction errors. In these formulations, the model robustness is controlled by selecting the bud-
get, eliminating realizations allocated in the set corners, with a very low probability of occurrence.
This procedure generates extreme points from the intersection between the box and the linear in-
equalities, which number grows exponentially with the dimension of the set. Other approaches use
scenario-based uncertainty sets, on which the uncertainty set is constructed directly from recent
observations. Recent successful implementations of these sets are found in [19, 20], on which the
uncertainty sets are constructed as the convex hull of recent observations. An important partic-
ularity of the above is that each point of the set represents the observations of a defined number
of consecutive hours for each uncertainty parameter. The benefits of this approach are threefold;
in the first place allows capturing the intrinsic correlations of wind dynamics on each point, both
spatial and temporal. Besides, the convex hull description is well suited for the use of the C&CG
algorithm since the number of extreme points can be controlled. Finally, the moving window of
recent observations matches with the adaptive construction of the uncertainty sets. The robustness
of those sets is controlled by selecting the number of scenarios; if a large number is selected, a more
robust solution is expected.

In all of the above-presented methods, the robustness level selection is part of the pre-processing
stage and does not change across time. The work [21] shows the differences between different
robustness levels for three methods, where an optimal level is found for each method in terms
of out–of–sample results. However, these optimal levels are obtained for a particular out–sample
dataset and could be inappropriate for others. This fact opens the possibility of dynamically
determining the system’s appropriate robustness level, given the experience of past operational
results.

In this way, this thesis explores the potential benefits of the dynamic determination of the
robustness level, constructing a closed–loop framework of data-flow, similar to those widely used
in control problems. Besides, the construction of closed-loop frameworks embedding mathematical
programming models and machine learning techniques has been already identified in [22] as po-
tentially powerful tools, giving more foundation to the present proposal. In the following section,
the principal guidelines of the developed work are presented.

1.2 Summary

This section comprises the principal foundations and methods of the present thesis, from basis
hypothesis to main contributions.

1.2.1 Hypothesis of work

Based on the extensive evidence collected from the literature, non–studied topics for dynamical
adaptation of uncertainty management policies were identified. Furthermore, existing evidence
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suggests possible non–discovered benefits of including real–time data in the definition of uncertainty
management policies. In this line, the central hypotheses that support the present work are the
following:

1. There exist efficient computational implementations of UC data–driven based models, where a
desirable risk–averse level in terms of out–of–sample results exists, obtained by the dynamical
adaptation to the real–time data.

2. An adaptive method for the determination of the risk–averse level of a data–driven UC model,
based on the historical data and real–time results, could generate planning solutions with
better performance in the real–time operation than existing non–adaptive schemes.

1.2.2 Problem statement and objectives

A solution scheme for the RUC problem is proposed in the present work, addressing two primary
functions. Firstly, it is used for the dynamic determination of the robustness level of the uncertainty
sets. Secondly, it is also used as an experimental framework to simulate real–time operation and
evaluate different short–term planning policies. The proposed RUC model uses data–driven–based
uncertainty sets with parameters that regulate its sizes. The level of robustness is dynamically
obtained as a function of previous real-time results, which constitute a closed-loop data-driven
framework, similar to the study in control theory. To this, reinforcement learning techniques are
used for the robustness level determination.

In that regard, the main objective of this thesis is to design an adaptive solution scheme for
the problem of UC, founded on a two–stage, data–driven based model, where the policies for the
determination of the desirable risk–averse level be given by an adaptation to the data and real–time
results, in the same philosophy of a closed–loop control architecture. The specific objectives are
the following:

1. Design a two-stage, data–driven based UC model, which has a set of parameters that regulate
the risk–averse level of the decision.

2. Design a methodology for the online determination of the risk–averse level, based on an
adaptation of the data and real–time results, constituting a closed–loop control framework.

3. Evaluate the performance of the proposed scheme through extensive out–of–sample compu-
tational experiments, made in a simulation platform for real–time operation in EPS, over
IEEE instances of different scales.

1.2.3 Methodology

The above presented specific objectives are addressed by applying the following methodology:

1. Construction of a two–stage RUC model, using as a base the deterministic 3–bin model [3],
and a modified version of the scenario–based sets presented in [20, 23] for the uncertainty
sets, on which a parameter controls the size of the set and, therefore, the robustness of the
commitment solution.

2. Construction of an experimental framework to simulate real–time operation of an electric
power system. This framework gives place to formulating of a sequential–decision problem
for the rolling horizon RUC, using the formalism of dynamic programming. Subsequently,
the dynamic programming equations of optimal control are approximately solved using a
reinforcement learning agent, resulting in the dynamic adaptation of the robustness level of
the uncertainty set used in the RUC model.

3. Conduction of extensive numerical experiments on two different scale power systems, en-
suring the better performance of the proposal against current approaches, besides checking
scalability. To this end, out-of-sample experiments are performed, comparing operational in-
dexes of the real-time operation simulation model, namely, generation costs, bus imbalances,
and violations on bus voltage levels.
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1.2.4 Contributions
The contributions of the present thesis are summarized below:

1. This work proposes a closed–loop framework for the resolution of a two–stage RUC problem.
To this, a data–driven scenario–based uncertainty set with a variable level of robustness
is proposed, which is obtained from the evaluation of real–time operational indexes. The
presented scheme is general and can be used in several engineering contexts.

2. A sequential decision–making formulation for the rolling horizon RUC is presented, using the
formalism of dynamic programming, allowing the use of several well–studied approximated
methods for its resolution. Particularly in this work, an RL agent is used to the dynamic
adaptation of the robustness level of the uncertainty set used in the RUC model.

3. This thesis presents extensive numerical experiments on two different scale power systems,
both for ensuring the proposal’s performance against current approaches and check the scal-
ability of the proposal. Out-of-sample experiments demonstrate the superior performance of
the closed–loop scheme over the open–loop version by comparing different operational indexes
of the real-time operation simulation model, namely, generation costs and demand–supply
violations.

1.2.5 Document structure
In chapter 2, the presentation of the state–of–the–art of UC models with uncertainty management
and dynamic adaptivity is made. Consequently, deterministic versions of the UC, optimization
paradigms for uncertainty management, and approximations of optimal control methods for the
sequential decision–making problems are reviewed. Lately, chapter 3 contains the core of the
proposal, beginning with a motivational example that illustrates the scheme’s spirit. Then, the
proposed closed–loop framework under analysis is decomposed and analyzed in four parts. A two–
stage UC model is presented in the first one, besides the dynamic uncertainty sets of the proposed
two–stage RUC model. The formulation of the sequential decision–making problem is presented in
the second part, adapting the components of the proposed scheme with a dynamic programming
description. Lately, the platform for the simulation of real–time operation is presented, describing
the models used to test and evaluate the UC methodologies. Lastly, the strategies used to the
resolution of the robust UC model are presented, besides a proposal for the construction of the
feedback loop based on reinforcement learning techniques. Chapter 4 contains the computational
experiments performed. Evaluation methodologies and algorithm settings are firstly described.
Then, results of the experiments over an illustrative 4–bus system and the IEEE 118–bus system
are exposed. Finally, chapter 5 presents the conclusions of the present thesis, and some discussion
about future research directions is developed.
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Chapter 2

Background

In the present chapter, the main topics related to the thesis work are reviewed.
To better understand the relevance of the unit commitment problem, a brief
description of the structure of electricity markets is given. Then, determin-
istic optimization models of the unit commitment are presented, focusing on
mixed–integer linear formulations. Subsequently, optimization under uncer-
tainty approaches are described, analyzing classical and novel paradigms of
uncertainty management in optimization, under the variations given by the
use of multiple stages, rolling horizon schemes, and data–driven approaches.
Finally, short descriptions of dynamic programming formulations and rein-
forcement learning basics are given, focusing on Q–learning algorithms, and
finishing with an overall review of the existing applications of reinforcement
algorithms in the context of power management problems.

2.1 Electricity markets fundamentals
In few words, an electricity market is an arrangement constructed to transfer electric energy from
producers to consumers. This transmission is made via a power system, which is a specialized
infrastructure on which several market agents are connected. Even considering that most of the
electricity consumption has to be made at low voltage levels, varying from some hundreds of volts
to some tens of kilovolts, generation stations and electricity customers are usually placed at very
long distances. This fact makes necessary a transmission system operating at high voltage levels,
generally of the order of hundreds of kilovolts, keeping the power losses due to Joule heating at
minimum values. This spatial location generates a primary natural subdivision of power systems
into the named distribution and transmission levels, respectively, depicted in Fig. 2.1.

Figure 2.1: Power system basic schema. Different market agents are connected at differ-
ent levels of the power system. Source: https://electrical-engineering-portal.com/
electric-power-systems

In addition to generators and customers, others agents also participate in the electricity mar-
ket, accomplishing different functions that vary from system to system. However, some of the
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functions are widely shared between different power systems, particularly energy production, en-
ergy consumption, system owning, and system operation, where an agent can fulfill more than one
function.

Concerning the system operator, this agent is responsible for maintaining a safe and economical
operation of the power system, by assuming the technical task of coordinating the balance between
the generation and consumption of energy. Since the economical facet of the task, system operators
are independent of the rest of the agents, and are often referred to as independent system operators
(ISO).

In this sense, among other obligations as keeping the real–time balance of consumption and
generation, ISOs have to manage a trading system that guarantees that producers are paid for
the energy they deliver into the system, and consumers pay for the energy they extract from it.
This procedure has to be formal, known by every agent, where many possibilities exist in large–
scale systems. As an example, Fig. 2.2 shows different interactions between different agents of
the wholesale market of energy of Chile, where G1 to G3 refer to generators. In the diagram,
three kinds of interaction are observed: regulated contracts, contracts under direct negotiation,
and buy–sell trading into the spot market, which the ISO manages.

Figure 2.2: Diagram of Chile’s market structure. Source: https://mercadoernc.minenergia.cl/

Generally, long–term contracts between generators and distributors are regulated for control-
ling and stabilizing the price paid for the consumed energy by regulated clients, e.g., residential
consumers. In many systems, as in Chilean, the adjudication of the contracts is made via public
auctions. The entity in charge looks for obtaining economic deals while satisfying supply objec-
tives. As the prices agreed in the contracts are regulated for a considerable amount of years, they
help reduce the volatility and uncertainty of the energy price on the spot market.

The spot market of energy is one of many systems used for managing the real–time trading
of energy. Every buyer and seller of energy interact with a pool of power on which every bid is
presented. This market solves the imbalances not covered by contracts. The resolution of which
offers are selected is generally based on the marginal utility theory. In the particular case of Chile,
all generators are forced to participate by publishing their generation costs, able to be audited
by the ISO. Then, based on forecasts of future power demanded by system loads and forecasts
of renewable–based generation, the ISO decides the generation schedule of generators for different
periods, pursuing the most economical possible operation restricted by the physical limitations of
the system.

In general, two types of sub–markets are present in the operation of power systems, namely the
day–ahead (DA) and the real–time (RT) market, both characterized by the different periodicity
of resolution. In the DA market, offers are made daily. In contrast, in the RT market, offers are
presented in minutes or hours, resulting in different levels of uncertainty and then different levels
of risk. Fig. 2.3 shows the timeline of the above–mentioned markets.

On this basis, the ISO solves short-term planning problems based on bids submitted in both
trading stages, and the power system is dispatched according to the solution of those problems.
In particular, the UC problem decides the ON–OFF schedule of generators and the reserve levels
using the information delivered in the ahead trading. The economic dispatch (ED) problem decides
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Figure 2.3: Timeline of trading periods for DA and RT markets.

real–time generators setpoints using the information proportioned in the RT market. It is essential
to highlight that all imbalances between what was planned before and what happened during the
trading period must be cleared when a dispatch is applied. Each player in the electricity market
must either be balance responsible or agree with somebody else to be balance responsible for him.
The ISO calculates this balance every time t where the operation is determined and for every
market participant:

balancet = total_generationt + energy_purchaset - total_consumptiont - energy_salest

In this context, mathematical programming problems for the short–term planning of the system
are crucial for its operation and the resolution of the markets. Both the UC and ED are far away
to be well–solved problems and are still a matter of interest for private and public institutions.
This work focuses on the UC problem, where a detailed description is given in the section below.

2.2 Deterministic models of the UC

2.2.1 Brief review of typical methods

The UC is a mathematical programming problem that seeks the least cost generators schedule
and its dispatch levels to meet the system demand during a specific period. UC problems involve
different types of generators connected to the network, being the most usual hydro and thermal
generators. Features of thermal generators are typically the hardest to deal with since they in-
clude time coupling between variables and non–linear functions. Some of the features commonly
considered in UC problems are minimum–maximum power limits, minimum on/off periods, power
ramps, non-linear generation costs, start-up costs as a function of the previous operation of the
generators, among others.

Four significant categories group most of the existing methods for the deterministic unit com-
mitment, namely dynamic programming, decomposition methods, meta-heuristics approaches, and
MILP approaches [24, 25, 13]. Before introducing specific MILP formulations, a review of the rest
of the approaches is presented for completeness.

Dynamic programming (DP) represents one of the classical approaches to deal with the UC
problem. Early uses of DP had to combine it with heuristics and operator’s criteria to overcome
possible drawbacks of its use, as the known curse of dimensionality [26, 27]. However, most recent
contributions that include DP techniques use it to solve subproblems of the UC, usually derived
from decomposition techniques as Lagrangian-decomposition ones. Typically on those approaches,
side constraints that link the different generator operations schedules, as demand and reserves
requirements, are relaxed, resulting in subproblems of single–UC (1UC), which are scheduling
problems where the unit behavior responds to price signals [28, 29, 30, 31].

In the same line, decomposition approaches take advantage of the structure of the problem,
which can be exploited via suitable resolution algorithms. As said in the paragraph above, one
of the methods is the Lagrangian–decomposition (LR), via the relaxation of demand and reserves
requirements. In this way, the crucial points in LR methods are resolving the maximization problem
involved (dual problem) and recovering feasible solutions [30, 32, 33]. Another decomposition
technique is Benders’ decomposition, which calculates complicated variables [13] and generates
structures that allow different decompositions Problems often suitable for this decomposition are
security-constrained UC (SCUC) and UC problems with network constraints. [34, 35, 36].

Concurrently, meta–heuristic-based methods can be described as attempting to solve the UC
without giving optimality guarantees on the solution [37, 38]. Priority lists–based methods are
popular heuristics methods that include operator’s criteria in searching the solution [39, 40]. Other
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approaches use typical algorithms of guided random exploration such as taboo search, simulated
annealing, and genetic algorithms, which have been shown to provide feasible solutions [41, 42, 43].

With the development of new computational and mathematical advances, resulting in the im-
provement of off–the–shelf solvers, these kinds of formulations were deprecated, giving new methods
based on mathematical programming.

2.2.2 MILP formulations

MILP formulations for the UC took the researcher’s attention due to the continuous improvement
of the area’s theoretical results and computational tools. Early applications of these models can be
found in the ’70s decade by Garver [44] and Muckstadt J. and Wilson R. [45], and other posterior
proposals based principally on exhaustive searching and complete enumeration [46, 47, 24], which
was able to solve only small instances. However, the most significant progress has been reached in
the last 20 years [13], allowing them to overcome these initial difficulties.

The usual approach to model the UC through a MILP formulation is considering binary vari-
ables for the generators’ states and continuous variables for the quantities related to the network’s
power flow, namely, dispatch levels, bus voltages, and bus angles. A general structure for a MILP-
UC model is the following:

min
x,y

cTx+ dTy (2.1)

s.t. Ax ≤ b (2.2)
Hy ≤ h (2.3)
Gx+ Ey ≤ g (2.4)

x ∈ {0, 1}|G|×|T | (2.5)

The binary variable vector x corresponds to the commitment decisions of units, containing
the on/off states of conventional generators and other related variables. The vector of continuous
variables y includes the dispatches and reserves decisions, besides bus voltage variables. T is the
set containing the indexes of each period considered in the planning horizon, while G is the set of
indexes for conventional generators.

The objective function (2.1) seeks to minimize the total operation cost for the whole planning
horizon, composed of the start–up/shutdown costs and the dispatch costs. Equation (2.2) groups
the minimum up/down times constraints for generators and the logical relations between binary
variables. Equation (2.3) includes power ramps constraints, and equation (2.4) contains load system
balance requirements, reserves requirements, and generation limits.

Recent advances in MILP formulations have been showing somewhat two trends, apparently
opposites. One of them focuses on developing accurate models, trying to incorporate the real–
world behavior and characteristics of the units, and, therefore, looking for the obtaining of better
operational decisions able to be applied in practice. For example, technical constraints of hydro
units and the modeling of the water–to–produced–energy is addressed in [32, 48], and for thermal
units, detailed descriptions of start–up and shut–down trajectories have been made in [49, 50]

On the other side, tight formulations are pursued, improving the efficiency of the models and
allowing them to solve big instances. As the UC models used in this proposal are part of this
stream, tight models are detailed in the paragraphs below.

Tight formulations and polyhedral study of the UC

The importance of obtaining good polyhedral descriptions in big-scale problems, as the UC, resides
principally in reducing the computation times. Besides, since the UC is an operational problem,
it has to be solved continuously. Its solutions have to be implemented according to the schedule
of the system operator, setting a limit to the maximum computation time available.

In this line, tight and compact formulations seek the reduction of computation time by devel-
oping efficient models. Tightness is related to descriptions of feasible regions closest to the convex
hull of feasible integer points, whereas compactness does with the number of variables used in the
description. Since most of the solution approaches used for MIP/MILP problems are based on
branch and cut algorithms, tight formulations are relevant to obtain stronger lower bounds and
accelerate the algorithm’s convergence [51].
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The description of feasible schedules on thermal generators is one of the most challenging tasks
due to the intertemporal relationships between variables. In the first place, the formulation of
minimum up/down constraints was studied firstly by Lee et al. [52] and lately by Takriti et al.
[53]. The main result of this series of contributions is the convex hull description for min up/down
time inequalities, given by:

ugt − ugt−1 = vgt − wgt ∀t ∈ T (2.6)
t∑

i=t−TUg+1

vgi ≤ ugt ∀g ∈ G,∀t ∈ [TUg, T ] (2.7)

t∑
i=t−TDg+1

wgi ≤ 1− ugt ∀g ∈ G,∀t ∈ [TDg, T ] (2.8)

where ugt represents the state of the generator g at time t, vgt takes the value of 1 if generator
g was turned on at time t and 0 if not, and wgt has the same definition as vgt but considering
shutdowns. TUg and TDg are the minimum up and down times of generator g, respectively.

A few years later, other works took these contributions to build specific UC models. For ex-
ample, in [54] the 1–bin model was developed for the thermal generators, including a piecewise
linear description for startup costs. Lately, based on the results obtained by Takriti et al. [53], the
works [3, 55] developed more efficient descriptions, namely 3–bin models, including new formula-
tions for ramp constraints and novel approximations for startup costs and non-linear production
costs. In the same line, the work developed by Bendotti et. al. [56] provides an extension of [53]
by constructing a new set of valid inequalities. In [57] the computational complexity of the UC
is analyzed, founding that UC is strongly NP–hard and NP–hard even for instances with a time
horizon T = 1.

On the other hand, network–flow-based formulations use a slightly different approach. In [28],
Guan et al. described the generation schedule of each unit is as an acyclic network. Fig. (2.4)
shows a graph representation of a generator schedule. The number of on/off states is defined by
the minimum up/down times, respectively, and a feasible path represents a feasible operation.
The method’s key idea is to use a Lagrangian Decomposition (LR) scheme for solving the multi-
generator problem with relaxed side constraints. In contrast, the individual schedule for each
generator is solved independently by using Dynamic Programming (DP). This approach did not
include ramping constraints because of the time–coupling that those insert in the single generator
problems, making the DP algorithm no longer helpful.
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Figure 2.4: Graph representation of a generator schedule

The incorporation of ramping constraints was addressed lately by the same authors in [29],
but only considering piecewise linear cost functions for the generators and showing expensive
computation cost when dealing with general convex functions. Frangioni and Gentile solve this
issue[30], where a method to solve the single UC (considering a single unit) with ramps constraints
and general convex costs functions is presented. The main idea of this proposal is constructing
interval graphs, where each node represents a feasible on/off cycle for each unit in the sense of
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meeting minimum up/down times, and lately solving the economic dispatch (ED) for every node.
This approach allows introducing ramps constraints in the problem without affecting the typical
structure of a DP problem since the costs obtained by solving the individual ED’s for every feasible
operation are introduced in the graph as fixed costs. The resulting problem has the structure of
the shortest path problem, which is solvable in polynomial time for acyclic graphs [51].

Although this approach showed being helpless when dealing with multi-generator UC compared
to other tights and compact formulations (as 3-bin and related models), the single generator
network–flow description has inspired the development of new tools in the representation of the
polyhedral structure of the UC. In this line, Ostrowski and Knueven [58] constructed a compact
extended formulation for a single generator. Then, a cut-generating linear program uses this
extended formulation that can be used as a callback in a UC mixed-integer programming model.

Other recent works also have developed a polyhedral study of the UC. In [59, 60], a convex
hull description of the minimum up/down polytope with ramping constraints is formulated for
exceptional ramp rates values and different planning horizon lengths, showing good theoretical
results but still ineffective for general instances.

This series of contributions, both in the polyhedral study and linear approximations, were
collected and gave birth to the 3-bin model presented in 2013 by Morales-España et al. This is
considered one of the best MILP formulations in the literature at the moment, showing remarkable
performance against previous formulations [3]. A specific description of the 3–bin model is made
in the below subsection.

The 3–bin model

In this subsection, a detailed presentation of the 3-bin model is made to use it in the next chapter.
These equations describe the feasible operation of thermal generators and a piece–wise approxi-
mation of the startup costs. Variables ugt, vgt, and wgt have the same meaning that in equations
(2.6) - (2.8).

1. Generation limits:

pgt + rgt ≤ (P g − P g)ugt − (P g − SUg)vgt, ∀g ∈ G1, t (2.9)

pgt + rgt ≤ (P g − P g)ugt − (P g − SDg)wg,t+1, ∀g ∈ G1, t (2.10)

pgt + rgt ≤ (P g − P g)ugt − (P g − SUg)vgt − (P g − SDg)wg,t+1 ∀g /∈ G1, t (2.11)

2. Ramps constraints:

(pgt + rgt)− pg,t−1 ≤ RUg ∀g, t (2.12)
− pgt + pg,t−1 ≤ RDg, ∀g, t (2.13)

3. Minimum up/down times:
(2.6), (2.7) and (2.8).

4. Start–up costs:

δgst ≤
TSUg,s+1−1∑
i=TSUgs

wg,t−i ∀g, t ∈ [TSUg,s+1, T ], s ∈ [1,Sg) (2.14)

∑
s∈Sg

δgst = vgt ∀g, t (2.15)

The above equations model the startup costs of thermal generators. These costs often have
an exponential dependence on the offline time of the unit, usually modeled via a piecewise
linear approximation. Variable δgst represents the startup type s of the generator g in the
time t, TSUg,s+1. Equation (2.14) determines the time since the last shutdown, and (2.15)
activates at most one startup cost CSUsg .
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5. Total costs: ∑
g∈G

∑
t∈T

[CNLg ugt + CLVg (P gugt + pgt)

+
∑
s∈Sg

CSUsg δgst + CSDg wgt + CNSEnset] (2.16)

The production costs (2.16) are formulated as linear functions of the dispatched power,
however, there exists tighter approximations [61]. CNLg ugt and CLVg represent the no–load
costs and the linear production cost, respectively. The second part of the costs in equation
(2.16) is composed of 3 parts: CSUsg δgst is the startup cost, CSDg wgt the shutdown costs and
CNSEnset the cost for non–served demand.

The performance of the 3–bin model was tested for different variations of equations (2.9)-(2.16)
against the well–known 1–bin model [54]. In particular, in [3], extensive computational experiments
were developed, showing the better performance of the 3bin model against the 1bin one: tables
2.1 and 2.2 show tables extracted in their entirety from [3]. Experiments were developed for
four different formulations, namely 1bin, 3bin, P1, and P2. 1bin formulation is the same as the
presented in [54], and 3bin uses the equations of 1bin but considering minimum up/down times
formulated by equations (2.6)-(2.8). P1 is the same as 3bin, but using start–up costs definition as
in (2.14)-(2.15), and P2 is the complete formulation (2.6)-(2.16).

On the other hand, test cases were separated into two groups of different scales. Cases 01-10
posses several total generators varying from 28 to 54, while the number of generators in cases 11-20
vary from 132 to 187. Finally, x7–day and x10–gen refer to different methodologies to evaluate the
cases. The first run a UC problem for 7 days with variable demand values. In contrast, the second
methodology replicates 10 times the existing generators, allocating the copies at the same buses
as the original instances and solving for a single day.

As can be seen, both tables show that all models involving the generator’s operation description
using three binary variables over–perform the 1bin model. It is interesting to appreciate that only
by describing minimum up/down constraints with three binary variables, computational times im-
prove by 40% on average. Then, working on this base, P1 and P2 models add more reformulations,
improving, even more, the presented indexes, with P2 resulting the better formulation concerning
computational times.

CPU Time Integrality Gap Opt. Tolerance Nodes Iterations
3bin P1 P2 3bin P1 P2 3bin P1 P2 3bin P1 P2 3bin P1 P2

x7-day
Cases 01-10 120.9 33.7 9.7 73.3 59.8 45.8 97.3 59.9 47.0 88.9 105.6 57.7 42.9 33.0 14.5
Cases 11-20 140.6 15.4 4.9 75.3 58.1 38.5 130.1 5.1 5.4 169.8 69.1 96.2 72.4 21.4 11.7
Cases 01-20 130.4 22.8 6.9 74.3 59.0 42.0 112.5 17.4 16.0 122.8 85.4 74.5 55.7 26.6 13.0

x10-gen
Cases 01-10 36.3 22.0 12.2 64.0 47.6 34.7 71.2 8.0 11.1 136.5 122.6 121.7 56.2 45.8 35.7
Cases 11-20 45.4 8.4 4.2 74.5 55.2 42.1 57.0 0.6 0.7 189.7 99.1 160.4 56.9 19.5 15.6
Cases 01-20 40.6 13.6 7.1 69.1 51.3 38.3 63.7 2.3 2.9 160.9 110.2 139.7 56.6 29.9 23.6

Table 2.1: Table V of [3]. Computational performance compared with 1bin (%).

3bin over
1bin

P1 over
1bin

P2 over
1bin

P1 over
3bin

P2 over
3bin

P2 over
P1

Cases 01-10 1.5 3.7 9.2 2.4 6.1 2.5
Cases 11-20 1.3 8.8 22.1 7.0 17.7 2.5
Cases 01-20 1.4 5.7 14.3 4.1 10.4 2.5

Table 2.2: Table VI of [3]. Overall speedups.

Given these results, the present study on the UC problems uses the P2 formulation as a base
for the analysis considering parameters subject to uncertainty. As is shown in the exposition
made above, the study of better every time formulations of the UC is an active field of research.
The development of tighter polyhedral descriptions and cutting planes generator algorithms are
still of great interest since UC is the core of even more complex problems used in industry. For
example, problems considering possible system contingencies or with the presence of parameters
with unknown values could need the resolution of several instances of the deterministic UC, making
the chosen base formulation more dramatic.
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2.2.3 The rolling horizon solution scheme

As was seen, the UC problem gives the solution of units schedules and reserves levels for a period
that can go from few hours to several days. This calculation needs the generation of values for the
uncertain parameters at every planning hour, usually obtained by forecasting models, which use
observed stored values.

When dealing with systems with massive penetration of non–conventional REG sources, i.e.,
with a considerable level of uncertainty, two main problems take place when calculating and im-
plementing schedule solutions for a significant number of hours. [62]. Firstly, the current solution
could not capture the dynamics of the uncertainty values during the implementation period. Then,
it is mandatory to wait until the next calculation stage to incorporate the new information. In the
second place, the forecasting errors grow with the number of prediction steps, even with perfect
knowledge of the random process [63], resulting in high prediction errors for the values of the most
distant hours.

Therefore, if the forecast errors are significant, the probability of having big differences between
planned and actual generators dispatches is considerable, increasing the use of system reserves,
producing high costs of operation, and even compromising its security [62].

In such wise, the rolling horizon scheme takes over these drawbacks by increasing the frequency
of the calculation process and by diminishing the number of hours on which solutions will be
implemented.
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Figure 2.5: Rolling horizon UC schedules vs classical UC schedules. In this case, rolling horizon
UC models are solved each 8 hours, obtaining solutions for 24 hours ahead, where only the first
eight are implemented. Implementation delays are also show, being lower for the rolling horizon
scheme since its higher solving frequency.

In Fig. 2.5, solutions calculation and implementation are illustrated for both classical and
rolling horizon solution schemes. As can be seen, the rolling horizon scheme keeps the original
horizon of planning for the UC, in this case, equal to 24 hours, but only the solutions of the first
eight hours are implemented. In this sense, 3 UC instances have to be carried out to obtain the
daily schedule, representing a more intensive use of computational resources. Notwithstanding,
the benefits are three-fold: updating data is more often, errors on values forecast of distant hours
have less impact on the solutions, and the delay between calculation and implementation stages is
reduced.

Rolling horizon’s schemes have been studied in control problems on dynamic systems [64], the
same as in the context of the UC problem [62, 65, 66].
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2.3 Optimization under uncertainty
Reviewed the importance of choosing a suitable formulation for the UC problem. In general, for
every optimization problem, let us analyze what happens when some problem parameters have
unknown values. Optimization under uncertainty, classically referred to as stochastic optimiza-
tion (SO), is a branch of mathematics that studies optimization problems involving parameters
described as random variables. As reviewed in [67], a general enough framework to include all the
existing explored branches of study on optimization under uncertainty does not exist. Just for the
mention, topics such as optimal control, stochastic dynamic programming and multistage optimiza-
tion are only three of many approaches that can be taken to model a system subject to uncertain
events. Generally speaking, each branch uses different modeling approaches, resulting in different
solution techniques that often diverge from one to another. Therefore, the engineer or mathe-
matician who models a particular system chooses one or combines various existing approaches to
capture the system’s behavior and the decisions that have to be made.

In power systems planning and operation, uncertainty can come from different sources, namely
fuel prices, components failure rates, renewable sources, demand levels, and others. In particular,
the present thesis is focused on the analysis of the last two elements in the context of the UC
problem, where the typical approach to include the uncertainty is through stochastic programming
(SP), which study the case when random variables describe the parameters of a standard optimiza-
tion problem. Therefore, objective functions and left/right–hand side of constraints also becomes
random variables, making necessary the incorporation of some criteria for defining appropriately
the new objective and new constraints that will give helpful solutions. For a better understanding,
consider a general linear problem:

min cTx (2.17)
s.t. Ax ≤ b (2.18)

xmini ≤ xi ≤ xmaxi , ∀i (2.19)

If c, A and b are random variables, the problem (2.17)-(2.19) turns ambiguous since the inter-
pretation of the objective and constraints is unclear. This ambiguity occurs because probabilistic
distributions now describe cTx, Ax and b. Then, even fixing x to some value x∗, the values of
cTx∗, Ax∗ and b could differ with different probabilities. At this point, the mathematician or
engineer solving the problem has to decide, with some criteria, how to interpret the new problem
and give it some sense to make it clear and well defined. Then, concerning the objective function,
it is often decided to focus on some probabilistic cost indicator, e.g., the expected cost. Concerning
the constraints, they are usually forced to be met with a certain level of probability 1 − ε, with
ε ∈ [0, 1] often small. With this considerations, the problem (2.17)-(2.19) becomes:

min E[cTx] (2.20)
s.t. P[Ax ≤ b] ≥ 1− ε (2.21)

xmini ≤ xi ≤ xmaxi , ∀i (2.22)
(c, A, b) ∼ D (2.23)

This problem has a precise meaning, with both expressions. E[cTx] and P[Ax ≤ b], being deter-
ministic functions of x, and depending on the density probability function of D. The formulation
above represents a general case in which every parameter is a random variable. In general, problem
(2.20)-(2.23) is tough to solve, motivating the allocation of the parameters subject to uncertainty
either in the objective function or on some constraints. Different mathematical programming
structures are generated depending on the selected criteria, needing special care and attention
for each separated case. These structures have been widely studied, giving place to the classical
paradigms in optimization under uncertainty, namely SP and chance-constrained programming
(ChCP). On the other hand, more novel approaches with other interpretations and mathematical
structures have been proposed, specifically robust optimization (RO) and distributionally robust
optimization (DRO), which will be addressed correspondingly in subsection 2.3.2.

Most of its applications in engineering systems are used on the framework of sequential–decision
optimization problems. There, the main task is sequentially deciding how to act in light of the
sequential realization of unknown parameters. One of the branches of mathematical optimization
that study this problem is called multistage optimization, widely used in power systems planning
and operation.
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2.3.1 Multistage optimization

In planning problems, when decisions have to be made sequentially, multistage optimization raises
as a powerful tool for decision-makers, especially when data uncertainty is involved. In the UC
problem, generator statuses and dispatches levels are determined without knowing the future values
of demand and renewable generation levels. Then, after observing these values, the system has to
be re-dispatched due to the discrepancies between predicted and actual values, keeping a safety
balance between energy generation and consumption.

The most typical framework used is the two-stage formulation, composed of three principal
elements: the first stage variables x, also called "here and now" decisions, the parameters subject
to uncertainty ξ, and the second stage variables y, informally known as "wait and see" decisions.
The philosophy behind this structure tries to represent a dynamic decision-making process as
a function of the available information. "Here and now" decisions have to be made before the
realization of the uncertainty. Lately, when complete information is available, "wait and see"
decisions fulfill the role of corrective actions.

here and now→ observation of data→ corrective actions
first stage (x) −→ data realization (ξ) −→ second stage (y)

The critical point of the formulation is how to determine a good value for the first stage vari-
ables only with previous data or limited information of the uncertainty parameters and anticipating
possible future decisions. Many criteria can be chosen to measure the importance of future de-
cisions. Usually, these criteria have a relationship with the objectives pursued and the risk level
accepted by the decision-maker. However, a typical mathematical structure is shared, and a gen-
eral formulation can be stated, which is following presented for a linear problem considering two
stages:

min
x∈X
ξ∈Ξ

cTx+ ρ (Q(x, ξ)) (2.24)

where Q(x, ξ) is the optimum value of the second stage problem:

min
y∈Y (x,ξ)

dTy (2.25)

In this setting, the set Ξ contains all the possible realizations of the uncertainty vector parameter
ξ. X is a polyhedron containing the feasible values of x and Y (x, ξ) is the polyhedron of the feasible
second–stage values, which depends on x and ξ. The function ρ represents the criteria taken by
the decision-maker to measure the impact of second stage costs, accordingly with the possible
realizations of the uncertainty and the selected first–stage variables.
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Figure 2.6: Diagram of a two–stage decision sequence for a problem with discrete number of
scenarios.

In order to see the structure of a two-stage problem graphically, Fig. 2.6 shows a diagram of
decision three for a two–stage problem with a discrete number of scenarios. As can be seen, the
first stage decision x holds for every scenario k, in which everyone has a second stage variable
yk associated. In this case, every scenario is defined by a parameter value ξξξk and a probability
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value pk. Every second–stage decision yk is optimal, given the values x and ξξξk, resulting in a
second–stage cost dTyk.

This formulation can be extended to more stages when the uncertainty information is revealed
sequentially, and more sequential decisions must be made. The resulting model consists of a series
of nested problems with the following structure:

min
x0∈X0

cT0 x0 + ρ

(
min

x1∈X1(x0,ξ1)
cT1 x1 + ρ (....+ ρ (Q(xT−1, ξT )))

)
(2.26)

Considering the structure of the problem (2.26), detailed formulations and specific solution
methods are strongly dependent on the function ρ. Besides, uncertainty modeling is crucial since
the computational complexity. Considering continuous probability distributions is generally in-
tractable, being necessary discretizations of the underlying random process. To this end, scenario
trees are usually constructed, depicting all the possible sequences of the random process and for-
mally formulating the multistage problem. Fig. 2.7 shows an extension of Fig. 2.6 for a multi–stage
problem. As can be seen, the number of variables grows exponentially with the number of stages.
A deep analysis of these problems is made in [68].
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Figure 2.7: Diagram of a two–stage decision sequence for a problem with discrete number of
scenarios.

Given the interpretation of the above formulations, applications of multistage formulations
are extensive in sequential decision problems. A well–known approach is the Stochastic Dual
Dynamic Programming (SDDP), widely used in the context of hydrothermal coordination [69, 70,
71, 72]. On the other hand, a two-stage formulation often addresses the UC problem considering
uncertain demand and renewable generation values. As was reviewed in section 2.1, in the day
ahead calculations, i.e., the UC resolution, generators schedules, and reserves levels are calculated
based on the available information. However, in the RT market, new offers are made to supply the
imbalances given by prediction errors. In this way, two-stage UC selects schedules and reserves
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levels based on different possible values of future renewable generation. To this end, different
modeling approaches are reviewed in the context of two-stage formulations.

2.3.2 Traditional paradigms in optimization under uncertainty
As described in the formulation of problem (2.20)-(2.23), is necessary to include some criteria
when working uncertainty data. Each criterion will produce different problem interpretations and
formulations, which require different resolution methods, producing different solutions. In this
section, traditional methods for handling the uncertainty into short–term planning problems are
presented. This presentation will be made using two-stage formulations.

Stochastic programming

aims to optimize the expected value of the cost function across all the possible realizations of
the unknown parameter. The principal feature of SP is using probability distributions to include
uncertainty into the problem, usually discretized in scenario trees. The structure of a two–stage
stochastic problem is the following:

min
x∈X

cTx+ E[Q(x, ξ)] (2.27)

Accordingly, the first-stage variable is calculated to minimize the costs of the first stage plus
the expected costs of the second stage. In terms of solvability, the problem is convex if the recourse
variable is linear. If the probability distribution is discrete, the general structure for a two-stage
linear stochastic problem is the following:

min cTx+
∑
i∈S

pid
Tyi (2.28)

s.t. Ax ≤ b (2.29)
Hiyi ≤ hi ∀i ∈ S (2.30)
Gix+ Eiyi ≤ gi ∀i ∈ S (2.31)

with S the scenario set and pi the associated scenario probabilities. As can be seen, the objective
costs involve the calculation of the second stage cost for every scenario, which could be problematic
when the number of them grows. This issue has inspired the design of decomposition algorithms
[73] or scenario reduction algorithms [74], which are often needed.

Chance–constrained programming

ChCP models were proposed for the first time by Charnes and Cooper in [75], and as the SO
approach, the randomness of uncertainty parameters are managed with probability distributions.
The main difference is that ChCP models seek to minimize the objective function while meeting
a certain number of constraints with a given degree of probability. The structure of a single-stage
linear ChCP model is the following:

min
x∈X

cTx+ E[dTy] (2.32)

s.t. P[G(x,y(ξξξ)) ≤ 0] ≥ 1− ε (2.33)
ξ ∼ P (2.34)

In the model above, equation (2.33) ensures that the solution satisfies at least, with probability
1 − ε, under probability function P, that the set of constraints G(x,y(ξξξ)) ≤ 0 are jointly meet.
ChCP is often used since it gives flexibility to the decision-maker to control the balance between
the cost and the reliability through ε.

Despite the flexibility and advantages of modeling, the framework possesses serious drawbacks
in computational implementation and resolution. Firstly, the probability calculation in equation
(2.33) involves the computation of a multivariate integral, which is generally computationally
intractable. In the second place, (2.33) in non-convex, even for discrete probability distributions,
X convex and the polyhedron defined by G(x,y(ξ)) ≤ 0 being convex in x [76].

In light of the facts, a large amount of the associated literature has focused on reformula-
tions, approximations, and solution algorithms for chance-constrained problems. In [77, 78], a
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ChCP formulation is solved by using the sample average approximation (SAA) method. In [79],
a conservative reformulation of the chance constraint (2.33) is made for the single constraint case.
The conditional value–at–risk (CVaR) measure is used to achieve a convex relaxation. However
this convexification has been proved to single chance–constraints, where the application to joint
constraints is an active field of research [19].

Robust optimization

One of the most novel and promising approaches to deal with uncertainty in optimization prob-
lems is RO. The first big difference with previously described paradigms is that RO avoids using
probability distributions. Instead, RO focuses on designing uncertainty sets containing all the pos-
sible realizations of the unknown parameters. Depending on the context and the decision-maker’s
desire, the robustness sense can vary. It can be the realization that provokes the largest constraint
violation, the one producing the biggest cost function value, or the realization that produces the
lowest asset return [80]. A two-stage robust formulation can be stated as follows:

min
x∈X

{
cTx+ max

ξξξ∈Ξ
Q(x, ξξξ)

}
(2.35)

A remarkable feature of RO is the high dependence of the solution’s quality on selecting the un-
certainty set, turning its design into a critical point. A set containing unlike-to-happen realizations
could produce over-conservative solutions, i.e., with high reliability and high cost [80, 4]. A typical
example of an over–conservative choice of uncertainty set is the conventional box uncertainty set,
which is defined as follows [81]:

Ξbox =
{
ξ : ξi ∈ [ξLi , ξ

U
i ], ∀i ∈ I

}
(2.36)

The box uncertainty set Ξbox contains all the values of ξ such that every component ξi, with
i ∈ I the set of indexes of the parameters subject to uncertainty, is bounded between a mini-
mum and maximum value, ξLi and ξUi respectively. In this case, the extreme points of Ξbox are
unlike–to–happen scenarios that give rise to costly solutions. Moreover, with this kind of set, the
conservativeness of the solution can barely be controlled. Motivated by this issue, Bertsimas and
Sim [82] proposed the budget uncertainty set:

Ξbudget(γ) =

{
ξi :

∑
i∈I

|ξi − ξ̄i|
ξ̂i

≤ |I|γ, ξi ∈ [ξ̄i − ξ̂i, ξ̄i + ξ̂i], ∀i ∈ I
}

(2.37)

In this case, ξ̄i is the nominal or expected value for the ith component, while ξ̂i is the maximum
deviation of the measures from ξ̄i. The parameter γ, also called uncertainty budget, controls the
size of Ξbudget(γ) and concedes to the decision–maker to move from a full robust box set (γ = 1)
to the deterministic case (γ = 0).

Distributionally robust optimization

The distributionally robust optimization (DRO) approach uses similar criteria to robust optimiza-
tion, considering that the uncertainty is present in the probability distribution. In this way, DRO
assumes that the real distribution belongs to a set called ambiguity set, defined by specific proba-
bilistic requisites.

For example, consider that the only available information about a multidimensional random
variable ξξξ is its expected value ξ̄ξξ and its covariance matrixK. In this case, the unknown distribution
P can be modeled as belonging to an ambiguity set P defined by:

P :=
{
P ∈M | EP[ξξξ] = ξ̄ξξ, EP

[
(ξi − ξ̄i)(ξj − ξ̄j)

]
= Kij

}
(2.38)

Then, similar to RO, DRO seeks the works case distribution in P, optimizing a specific cost
function. In particular, a two–stage DRO model is usually formulated as:

min
x∈X

{
cTx+ max

P∈P
EP[Q(x, ξξξ)]

}
(2.39)
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At first sight, the problem (2.39) is very similar to (2.35) since the max–min relationship
between the unknown parameters and decision variables. Indeed, the same as RO, the complexity
of solving (2.39) heavily depends on the definition of P. However, reformulations and solution
approaches could be very different due to the different nature of uncertainty and ambiguity sets.

The four above–mentioned paradigms are fundamental, and each one has its limitations. How-
ever, these paradigms serve as a base for constructing more complex approaches, involving combi-
nations of them or implementing other techniques. In the next section, more complex development
of the presented methods is described in the context of the vast amount of data availability.

2.4 Data–driven optimization models

The explosion of the available data witnessed in the last decade has motivated the development
of new procedures in operation research. In the particular field of optimization under uncertainty,
data–driven optimization raises as a powerful paradigm for the modeling of uncertainty on opti-
mization problems. Unlike the conventional mathematical programming approaches, data-driven
techniques do not presume the existence of an exact pre–given model for the unknown parameters.
Instead, they all focus on the practical setting using only uncertainty available data.

Fig. 2.8 shows how the available data is used in classical optimization models versus the
use in data-driven models. The first use the data to construct probability distributions, needing
assumptions that could not relate to with the underlying random process. Conversely, data-driven
models directly use the data to construct mathematical structures embedded in the optimization
model. This methodology leads to solutions heavily dependent on the in–sample data and the
intern criteria selected to evaluate it.

Data-Driven

Optimization

Model

Classical

Optimization

Model

Figure 2.8: Two paradigms in optimization models with uncertainty management.

Consequently, the data-driven paradigm could be used along with each of the three previously
described methods of uncertainty management. Therefore, a review of the data-driven versions of
SO, ChCO, and RO models is made in the following lines.

2.4.1 Data–driven stochastic optimization and distributionally robust
optimization

The core of SO is the use of probability distributions to model the behavior of uncertain parame-
ters. As studied in [83], estimating the true probability distribution from the data is challenging,
and considering a single distribution could drive poor out-of-sample performance. In this line, SAA
methods are suitable solution approaches that can help to overcome these drawbacks. SAA pro-
duces a series of problems and solutions, on which a convergence criterion defines when a solution
is optimal [84, 85, 86]. Another famous approach is distributionally robust optimization (DRO),
which assumes a particular grade of uncertainty on the empirical distribution obtained from the
data. To this end, consider a set of probabilities distributions P that share some properties. Then,
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the DRO approach, applied to a two-stage model, can be stated in the following form:

min
x∈X

cTx+ max
P∈P

EP[Q(x, ξξξ)] (2.40)

As can be seen, DRO combines RO and SO paradigms by considering the work–case of the
probability distribution on the set P, also called the ambiguity set. Then, the decision-maker can
include partial information of distribution from the data while maintaining the tractability of the
formulation. As in RO, the selection of the ambiguity set is a critical point in the performance of
DRO. According to [87], the decision-maker needs to consider tractability, statistical meaning, and
performance. Tractability accounts for a solvable structure of the problem. On the other hand,
the statistical meaning is accounted for by various proposals of ambiguity sets. For example, DRO
approaches using mean and second–moment matrix information is solvable in polynomial time [88],
where P is defined as:

P =

{
P ∈M

∣∣∣∣∣ P[ξ ∈ Ξ] = 1
(EP[ξ]−µµµ)TΣ−1(EP[ξ]−µµµ) ≤ ψ1

EP
[
(ξ −µµµ)(ξ −µµµ)T

]
≤ ψ2Σ

}
(2.41)

In the above definition,M is the set of all probability distributions, ξξξ is the uncertainty vector, Ξ
is the support set, i.e., the set containing the historical observations, and µµµ and Σ are the empirical
mean vector and covariance matrix, respectively. The first constraint ensures that the probability
distribution is supported by Ξ. The inequality constraints define the sizes of the first and second
moment confidence regions, respectively, controlled by the parameters ψ1 and ψ2. As can be
seen, the moment–based ambiguity set achieve tractability and statistical meaning. However, it
has been reported that a considerable amount of data is necessary to ensure convergence to the
real probability distribution, resulting in conservative solutions for a moderate amount of data.
Conversely, other kinds of sets, based on metric between probability distributions, could be defined
as is showed below:

P := {P ∈M | d(P,P0) ≤ δ} (2.42)

In (2.42), P0 is a referential distribution, which usually is selected as the empirical, d(. , .) is
some metric between probability distributions, and δ is a constant controlling the distance from
the referential distribution. A novel metric in the context of power systems is the Wasserstein
metric dW :M(Ξ)×M(Ξ)→ R+, defined as follows:

dW (P1,P2) = inf
πππ

{
Eπππ[d(ξξξ1, ξξξ2)] : ξξξ1 ∼ P1 , ξξξ2 ∼ P2

}
(2.43)

Here,M(Ξ) represents the space of probability distributions supported by the dataset Ξ, d(ξξξ1, ξξξ2) =
||ξξξ1−ξξξ2|| is the 2–norm of the difference of the random vectors ξξξ1 and ξξξ2, and πππ the joint distribution
of ξξξ1, ξξξ2, and πππ, with marginals P1 and P2. Tractable reformulations and performance guarantees
have been studied in [89]. In this way, based on a historical dataset Ξ = {ξ̂ξξ1

..., ξ̂ξξ
N}, the decision–

maker can derive an empirical distribution by associating P0 =
∑N
i=1

1
N δξ̂ξξi , where δξ̂ξξ is the Dirac

distribution concentrating unit mass at ξ̂ξξ.
Ambiguity sets based on the Wasserstein metric have been used in the context of the UC in

[90, 91], using two–stage formulations (2.40).

2.4.2 Data–driven chance–constrained optimization

As was reviewed in past sections, SO approaches are similar to ChCO since the use of probabil-
ity distributions. In this way, SAA methods for ChCO has also been applied [77, 92]. In the
case of DRO, the application to chance–constrained models results straightforward by introduc-
ing the concept of worst–case probability distribution appropriately, as in the following two–stage
formulation:

min
x∈X

cTx+ EP0
[Q(x, ξξξ)] (2.44)

s.t. inf
P∈P

P[G(x,y(ξξξ)) ≤ 0] ≥ 1− ε (2.45)
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Is needed to say that the formulation above is not unique for data–driven ChCO models, e.g.,
the definition of the second stage costs may vary from one approach to another. The core of
the formulation is the probabilistic constraint (2.45), where the robustness principle applies in
finding the worst probability distribution P that achieves the minimum probability of satisfying
G(x,y(ξξξ)) ≤ 0. Reformulations and approximations for ambiguity sets using the Wasserstein
metric are addressed in [93, 94]. Other proposals are present in [95, 96].

2.4.3 Data–driven robust optimization

As a fundamental element of robust optimization models, uncertainty sets implicitly determine the
optimal solutions for robust optimization problems. Therefore, a correct design is a critical task.
The earliest proposals of uncertainty sets that use fixed shapes, as ellipsoidal or box sets, result
in shallow capabilities of capturing the structure and behavior of the historical data since strong
assumptions are needed [22]. As an example, consider the sets shown in (2.36) and (2.37). In this
case, any modification on the data that satisfies ξi ∈ (ξLi , ξ

U
i ),∀i ∈ I, does not change the shape

of the set.
This lack of flexibility prompts the design of more sophisticated sets capable of capturing the

complexity of the data. In this way, in [97], sets based on the CVaRγ(·) function are devised, and
lately applied in [98]. Concurrently and in the same line, in [20] an uncertainty set constructed
as the convex hull of the data points is proposed, showing better performance than budget–based
sets (2.37).
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Figure 2.9: Examples of uncertainty sets. O–CH is the convex hull of original data points, CVAR–
US is the CVaR–based uncertainty set, and B–US is the uncertainty set defined in (2.37).

Fig. 2.9 contains plots of three different uncertainty sets constructed from the same data,
obtained from the random generation of 30 two-dimensional points uniformly distributed between
0 and 1. The green line represents the budget-based set with γ = 0.7, the red line the CVaR-based
set with γ = 0.97, and the blue line represents the convex hull set. The blue dots are representing
the original data, and the orange x is the average of it. It is clear from the Fig., that both CVaR-
based and convex hull sets visually follow the shape of the data better than the budget-based set,
where out-of-sample experiments made in [98, 20] show its superior performance for different values
of γ.

Also, uncertainty sets based on Dirichlet processes and kernel density functions were studied
in [99, 100, 101], where principal analysis methods were applied to decompose the correlations
involved and then construct the sets based on confidence intervals. Concurrently, in [19], a deep
study on uncertainty sets based on hypothesis testing is made, besides the relationship between
probabilistic constraints and uncertainty sets.
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The conclusions extracted from Fig. (2.9) and the diversity of proposed data–driven uncer-
tainty sets are twofold. In the first place, many types of sets can be constructed from the same
dataset, and the performance, statistical inference, and tractability could differ drastically. For ex-
ample, budget–based sets are constructed from linear inequalities, constituting easy–to–implement
formulations, resulting in a model suitable to be solved with Benders decomposition methods [4].
On the other hand, CVaR–based uncertainty sets are constructed from the definition made in
[98], which results in costly computational calculations when the number of samples grows. For
scenario–based uncertainty sets, implementations are straightforward, and solutions algorithms
rely on the column–and–constraint generation technique [102, 20]. Secondly, the variations of the
parameters associated with each set definition could significantly change the model’s performance
without adding mathematical or computational complexity and with similar statistical meaning.

In conclusion, methods for uncertainty management in sequential–decision problems have been
extensively studied, and efficient reformulations and solutions algorithms are available for its im-
plementation. However, design parameters that control the solution’s robustness are usually deter-
mined in the pre–processing stage, ignoring the possible benefits of its dynamical determination.

2.4.4 Illustrative example of optimization under uncertainty applied to
power systems operation

A simple and practical example is analyzed to appreciate how the above-described methods to
model the uncertainty into optimization problems work. To this, consider the problem of deciding
the optimal dispatch of a conventional thermal generator in a single bus system, depicted in Fig.
2.10. A variable load and a wind generator are also connected to the bus.

Conventional

generator

Wind

generator

Variable

load

Figure 2.10: Illustrative single bus system, composed by a conventional generator, a wind generator
and a variable load.

The problem here is that the decision has to be made without knowing the exact values of
demanded power and the renewable generation that will take place when the dispatch be applied.
Consider that only there is information of the historical values both of demanded power dpi and
renewable wind generation rwi , with i ∈ S the set of observed scenarios. To simplify the analysis,
consider the equivalent demanded power di = dpi − rwi that has to be supplied entirely by the con-
ventional generator. The variable cost of the conventional generator is cp, and the cost associated
to non–served demand and power spillage are c+ and c−, respectively. With this, the cost function
is given by:

c(p, d) = cpp+ c+[d− p]+ + c−[p− d]+

where [z]+ = max(0, z). Then, given the set of observed data S = {di}Ni=1, and the maximum
dispatch level of the conventional generator pmax, a two–stage problem modeling the optimal
dispatch is:

min
0≤p≤pmax

cpp+ ρS
(
Q(p, d)

)
(2.46)

with Q(p, d) the second–stage problem:

min
s+,s−≥0

c+s
+ + c−s

− (2.47)

s.t. p+ s+ + s− = d (2.48)

The problem above seeks for the dispatch p that minimizes the dispatch costs, plus some
measure ρS(·) of the imbalances costs, measured over the set of observed equivalent demand S. To
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observe how the reviewed paradigms of optimization under uncertainty work and the data-driven
paradigm, the problem (2.46)-(2.48) will be addressed using each one.

Firstly, consider the SP approach. To model the probability distribution of d, the sample set
S will be considered as its approximation, i.e., all samples are modeled to be equiprobable. Then,
the same as (2.28)-(2.31), the resulting formulation is the following:

min cpp+
1

N

N∑
i=0

(c+s
+
i + c−s

−
i ) (2.49)

s.t. p+ s+
i + s−i = di i = 1...N (2.50)

s+
i , s
−
i ≥ 0 i = 1...N (2.51)

0 ≤ p ≤ pmax (2.52)

For the statement of an ChCP model, an additional constraint will be considered. In particular,
it will be required that PS [s+ +s− ≤ smax] ≥ 1− ε, i.e., the sum of non–served demand and power
spillage has to be less than smax, with at least probability 1− ε. Then, considering the empirical
distribution as uniform distributed, the ChCO model can be stated as follows:

min cpp+
1

N

N∑
i=0

(c+s
+
i + c−s

−
i ) (2.53)

s.t. p+ s+
i + s−i = di i = 1...N (2.54)

s+
i + s−i ≤ smaxzi +M(1− zi) i = 1...N (2.55)
N∑
i=1

zi
N
≥ 1− ε (2.56)

s+
i , s
−
i ≥ 0 i = 1...N (2.57)

zi ∈ {0, 1} i = 1...N (2.58)
0 ≤ p ≤ pmax (2.59)

where zi is a binary variable representing the scenarios on which constraint s+
i + s−i ≤ smax is

meet, and M a constant with a high value, used for the description of a disjunctive inequality
that model the chance constraint (2.55)-(2.56). Note that if zi = 1, then (2.55) is equivalent
to s+

i + s−i ≤ smax, whereas for zi = 0, the right–hand side is M , which is equivalent to relax
the condition. Concurrently, (2.56) accounts for the number of scenarios where the condition
s+
i + s−i ≤ smax is meet, and forces the empirical probability be at least 1− ε.

On the other hand, concerning a RO model, the second stage cost will be equal to the worst–
case scenario. In this particular case, the uncertainty set is considered exactly the same as the
scenario set S:

min cpp+ η (2.60)

s.t. η ≥ c+s+
i + c−s

−
i i = 1...N (2.61)

p+ s+
i + s−i = di i = 1...N (2.62)

s+
i , s
−
i ≥ 0 i = 1...N (2.63)

0 ≤ p ≤ pmax (2.64)

where the variable η captures the worst case cost of c+s+
i +c−s−i , imposed by the inequality (2.61).

Finally, for the statement of the DRO model, is necessary describe the ambiguity set at first. It
will consider every discrete distribution of N values that has a mean equals to d̄ and variance σ2,
just as the same of the one–dimensional case of (2.38). This can be write explicitly imposing the
conditions over the probability values of the distribution, by:

P :=

{
{ki}Ni=1

∣∣∣∣∣
N∑
i=1

kidi = d̄;

N∑
i=1

ki(di − d̄)2 = σ2;

N∑
i=1

ki = 1; ki ∈ [0, 1],∀i
}

(2.65)
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Thus, the DRO model can be explicitly formulated as:

min cpp+ max
ki

{
N∑
i=0

ki(c+s
+
i + c−s

−
i )

}
(2.66)

s.t. p+ s+
i + s−i = di i = 1...N (2.67)

(α)

N∑
i=1

ki = 1 (2.68)

(β)

N∑
i=1

kidi = d̄ (2.69)

(γ)

N∑
i=1

ki(di − d̄)2 = σ2 (2.70)

(δi) 0 ≤ ki ≤ 1 i = 1...N (2.71)

s+
i , s
−
i ≥ 0 i = 1...N (2.72)

0 ≤ p ≤ pmax (2.73)

In this formulation, the second stage problem seeks maximizing the expected value of the failure
cost, by founding the worst–case values of ki, with i ∈ {1, 2, ..., N}, where ki are the probabilities
associated of the sample i. In this sense, optimizing over the weights ki is equivalent to optimize
over probability distributions. Besides, constraints (2.68)-(2.72) define explicitly the ambiguity
set (2.65). Then, to recast the model (2.66)-(2.73) to a standard optimization problem, is useful
obtaining the dual of the second stage problem, and write the reformulation on p, s+

i , s
−
i , and dual

variables α, β, γ and δi, for i = 1...N . The equivalent DRO model results:

min cpp+ α+ βd̄+ γσ2 +

N∑
i=1

δi (2.74)

s.t. p+ s+
i + s−i = di i = 1...N (2.75)

α+ βdi + γ(di − d̄)2 + δi ≥ c+s+
i + c−s

−
i i = 1...N (2.76)

s+
i , s
−
i , δi ≥ 0 i = 1...N (2.77)

0 ≤ p ≤ pmax (2.78)
α, β, γ ∈ R (2.79)

which is now a linear problem. Even looking for the same objective, these four models employ
different policies to deal with the uncertainty present in d. Moreover, using the same set of scenarios
S, the way of how measure the importance of the future operation conditions, i.e., the values of
non–served demand and power spillage, and the criteria for the consideration of the uncertainty
vary on each one. In particular, typical arguments used to choose one approach or another are
computational tractability, statistical meaning, and out–of–sample performance [22]. However,
there is no single correct answer.

To empirically tests the models, a set of observed samples S is defined:

i 1 2 3 4 5 6 7 8 9 10
di 11 12 9 10 13 8 7 13 7 10

with defined values of di, now is possible to solve each model, however, is still necessary define
the values of some parameters in ChCO and DRO models. In the ChCO model, smax and ε will
be defined as 3 and 0.1, respectively, imposing the chance constraint that the sum of non–served
demand s+

i and power spillage s−i should be less than 3 in the 90% of the cases. On the other
hand, the values d̄ and σ2 of the DRO problem will be fixed as 10 and 5.11, respectively, being
exactly the sample mean and variance of S. Finally, problem parameters were fixed as pmax = 20,
cp = 1, c+ = 1.5, c− = 1. Then, solving each model, optimal results of p, the second–stage cost,
and the total cost are presented below:
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Model p ρ(Q(p, d)) Obj. Cost
SO 8 3.5 11.5
ChCO 10 2.25 12.25
RO 10.6 3.6 14.2
DRO 7 4.5 11.5

Table 2.3: In–sample results using the set S under different policies of uncertainty management,
with problem parameters pmax = 20, cp = 1, c+ = 1.5, c− = 1.

From the previous analysis, it is clear that the ChCO model would give a higher optimal cost
than SO since it is more constrained. It can be seen that the RO model produces both the higher
optimal value p and the higher optimal cost, which can be associated with a higher risk–averse
level.

It is important to highlight that the order relationship between the different objectives costs
could be somehow deduced before solving the models since each is a deterministic function of
pmax, cp, c+, c−, S, and specific parameters. However, the results shown in table 2.3 have no
practical relevance since they were obtained using past observations. An effective evaluation of the
methods has to be made via out-of-sample experiments, i.e., evaluating the operation cost on a set
of instances of demand not contained in the original scenario set. Therefore, consider three test
sets, namely S1, S2 and S3, showed below:

i 1 2 3 4 5 6 7 8 9 10 Mean Variance
S1 11 13 11.5 9 9.5 11.5 13 7.8 7.6 12 10.59 3.99
S2 9 12 13 11.5 9.4 11.2 8.7 14.5 12.6 8.3 11.02 4.36
S3 12 8 12.3 9.4 8.1 9.6 10 11.6 7.6 12 10.06 3.30

Applying the solutions of table 2.3 on the three evaluation sets, the obtained out–of–sample
values of Ck = 1

N

∑
i∈Sk(c+s+

i + c−s−i ) are showed below:

Model S1 S2 S3

SO 12.04 12.53 11.19
ChCO 12.41 12.68 11.92
RO 12.71 12.98 12.52
DRO 12.39 13.03 11.59

Table 2.4: Out–of–sample average costs of applying solutions of table 2.3 under realization of sets
S1, S2 and S3.

Table 2.4 show the average out–of–sample costs of applying each p value to each test set Si.
As can be checked, SO formulation achieves the lowest values of Ck for the three tests sets. In
contrast, the RO solution results being the most expensive. However, this evidence is not enough
to make any conclusion about what method is the best. In this regard, it is interesting to make
some sensitivity analyses on some of the parameters. In particular, keeping the in-sample set S
and the values of every parameter, but increasing the value of c+ from 1.5 to 3, the new results
are:

Model p ρ(Q(p, d)) Obj. Cost
SO 10 3.6 13.6
ChCO 10 3.6 13.6
RO 11.5 4.5 16
DRO 8 8 16

Table 2.5: Results using the set S under different policies of uncertainty management, with problem
parameters pmax = 20, cp = 1, c+ = 3, c− = 1.

With this modification, SP and ChCP methods give the same solutions and constitute the
cheapest ones for the in–sample set S. On the other hand, RO and DRO approaches result in the
same value on the objective function, but with different values of the dispatch solution p, with the
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RO case being the most conservative. Hence, applying these new solutions on the test sets, the
new obtained out–of–sample average costs are:

Model S1 S2 S3

SO 14.21 14.9 13.1
ChCO 14.21 14.9 13.1
RO 13.81 14.42 13.7
DRO 16.01 17.06 14.34

Table 2.6: Out–of–sample average costs of applying solutions of table 2.5 under realization of sets
S1, S2 and S3.

With these new configuration, the RO approach results in the best out–of–sample performance
on sets S1 and S2, whereas DRO achieves the overall worst. These examples demonstrate three
relevant aspects that have to be considered when treating optimization problems subject to uncer-
tainty.

1. It is not correct to account for the performance of a method through in–sample results. In
this sense, out–of–sample evaluation is mandatory when dealing with problems subject to
uncertainty.

2. The performance of each method is strongly dependent on the problem parameters and
evaluation sets.

3. Using policies of this kind in real-time operation could result in optimal policies dynamically
changing.

To appreciate the meaning of the third point, consider that sets S1, S2, and S3 constitute sequential
realizations of real values. Suppose the operator fixes the operation under the RO model’s solutions
and keeps the in-sample set s. In that case, it fails to operate with the lower cost policy when
the realization of S3 would occur. In this sense, the concept of dynamic adaptation of uncertainty
management policies could be profitable.

On the other hand, a feature that is not appreciated in the above examples is the computational
complexity of each method, since the simplicity of the tested instance. By contrast, computational
times could be higher enough to become a method inapplicable in big instances, making it necessary
to either develop dedicated solution algorithms or change the method.

As is reviewed in this section, optimization under uncertainty is a wide branch of mathematics
that is still in continuous development. The construction of unified frameworks for studying data-
driven optimization problems has been explored [67, 19, 103], but is far to be a well–established
theory. The present section has given an overall overview of one approach for modeling systems
subject to uncertainty, and the approaches described are usual in the context of power systems
operation and planning.

An interesting fact evidenced in the developed example is the possible benefits of changing
the uncertainty management policy dynamically, as new data and real operational results are
measured. Then, formulations able to capture the dynamic evolution of the systems could be
suitable to adapt the uncertainty management policies. The dynamic programming approach
is reviewed in the next section, which constitutes another strategy to model systems and deals
with uncertainty. In conjunction with the above-presented theory, the special features of dynamic
programming will be used to construct the central methodology of the present thesis.

2.5 Dynamic programming and reinforcement learning

2.5.1 Basic concepts

Dynamic programming (DP) can be described as a mathematical framework that models sequential
decision–making problems involving discrete–time dynamic systems. This structure generates a
sequence of states on which its values are influenced by control. At every stage, the decision-
maker takes a control decision, balancing the immediate and future expected costs. In the below
presentation, the stochastic DP approach is addressed, where a random process is present in the
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system dynamic, and the horizon of examination is considered infinite. In this way, the system
evolution is described through the transition function:

st+1 = ft(st,ut,wt), t = 0, 1, 2, ... (2.80)

where t is the time index, st ∈ S is the state of the system, ut ∈ U(st) is the control vector to
be selected at time t, wt is a random process, and ft is a function that describes the evolution of
the system from time t to t+ 1. As is depicted in Fig. 2.11, equation (2.80) defines the resultant
state that the system reaches st+1 if a control action ut is taken at the state st, and the random
variable takes the value wt.

Control actions ut are assumed to belong to some set U(st), also called action space, and are
obtained from a policy function of the current state ut = µµµt(st), widely known as control or action
policy. This function represents some knowledge about the system, which indicates the optimal
control action to be taken if the state st is reached. The sense of optimality is originated from
the definition of transition costs gt(st,ut,wt) associated with costs incurred due to the system’s
evolution from st to st+1.

Then, suppose the problem has a time horizon associated. In that case, the total cost incurred
is defined as the weighted sum of the costs of the individual transition. Therefore, considering a
pre–defined set of policies π = {µµµt}t∈T that dictate how to act when certain states are reached,
the expected total cost of the process starting at the initial state s0 is given by

Jπ(s0) = E

[ ∞∑
t=0

γtgt(st,µµµt(st),wt)

]
(2.81)

In equation (2.81), the parameter γt ∈ [0, 1] is the so–called discount factor, which accounts for
the importance of the future costs. With γt = 0, a greedy policy is selected, i.e., the decision–maker
is focused on minimizing the immediate transition cost, without caring about the future implication
of the current decision. The quantity Jπ(s) is commonly called as the cost–to–go function, which
is an estimation of the future expected total cost of starting from the state s, and acting according
to the policies set π.

s0

wt

st

μt

st+1

wt+1

... ...

ut
ut+1

s =f (x ,u ,w )t+1 t t t t

g (x ,u ,w )t t t t

μt+1

Figure 2.11: System dynamics from the DP approach.

Thus, the objective of the DP approach is finding the optimal set of policies that minimizes
the total expected cost, i.e.

Jπ∗(s0) = minπ Jπ(s0) (2.82)

One of the key aspects of this formulation is the capacity to obtain decompositions of problem
(2.82), based on the principle of optimality of the tail subproblems. The principle states that, given
a starting state s0, and full knowledge of the series of the uncertainty realization {w1,w2,w3, ...},
an optimal control sequence {u∗0,u∗1,u∗2, ...} can be deduced, which determines the future state
sequence {s∗1, s∗2, s∗3, ...} via equation (2.80). Then, consider the subproblem of minimizing the
expected future cost (2.81) from the state s∗k, over the set of policies {uk,uk+1,uk+2, ...}. The
truncated optimal control sequence {u∗k,u∗k+1,u

∗
k+2, ...} is optimal for this subproblem, i.e., we

can keep with only the final portion of the optimal sequence. Briefly, the principle says that the
tail of an optimal sequence is optimal for the tail subproblem [104].

This result gives rise to the Bellman equation, where its derivation can be found in [104]. Then,
considering the sequence of optimal total expected costs J∗ = (J∗(s0), J∗(s1), ..., J∗(st), ...), the
following recursion is achieved

J∗(st) = min
ut∈U(st)

E [gt(st,ut,wt) + γJ∗(st+1)] (2.83)
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The above result states that the optimal control u∗t of the equation (2.83) belongs to the optimal
sequence of the tail subproblem, allowing the individual calculation of it rather than the calculation
of the whole sequence.

Alternative formulations of the Bellman equation are also stated in terms of the Q–function,
which definition is given by:

Q(st,ut) = E [gt(st,ut,wt) + γJ∗(st+1)] (2.84)

where Q(st,ut) can be interpreted as the cost of starting at the state st, applying the control ut,
and then acting optimally. Therefore, the same as equation (2.83), the above definition permits
isolating the calculation of single control action instead of calculating the whole sequence. In this
way, the optimal control action at the state st is given can be obtained from:

µ∗(st) ∈ arg min
ut∈U(st)

Q(st,ut) (2.85)

And then, the recursion of the Bellman equation can be recovered by stating

Q∗(st,ut) = E
[
gt(st,ut,wt) + γ min

v∈U(st)
Q∗(st+1,v)

]
(2.86)

According to the information available of the system under study, these equations constitute
the basics of DP formulations, where several solution algorithms and approximations have been
proposed to solve them. It is well known that solving DP equations to optimality could be very
difficult for many systems, as some instances of the shortest path problem (SPP) with resource
constraints [105].

Consequently, many approximation techniques and algorithms have been developed to approxi-
mately solve the problem of optimal control stated by DP (reference). In particular, reinforcement
learning (RL) algorithms have reached significant popularity given the constant growth of the com-
putation power, and the performance showed in some systems, as the AlphaGo Zero agent [106].
In the next section, the basics of RL and its principal algorithms are described.

2.5.2 Reinforcement learning basics and Q–learning algorithms

RL is a machine learning (ML) method which, according to [107], consists of giving an agent
the capacity to learn what to do, how to map states to actions, to maximize a numerical reward
signal. Every RL framework has two principal elements: (i) the agent and (ii) the environment,
corresponding to the object the agent interacts with [107]. The dynamic between them can be
summarized as follows: given a particular state of the environment, the agent takes actions and the
environment responds by presenting a new state and giving rise to rewards, which are numerical
values that the agent aims to maximize over time through its choice of actions [107]. In the
optimal control context, the agent is the controller, and the environment is given by the system
under control. The controller is given by a parametric set of policies µµµt(st, rt), on which rt is a
vector parameter that is somehow updated (depending on the specific RL method) on each stage,
accordingly with some principle of optimality. This is illustrated in Fig. (2.12).

Controller

(Agent)

System

(Environment)

Disturbance

wt

Cost

Current

state st

Control
u=μ(s ,r )t t t

μ(. ,r )t

Figure 2.12: Interaction scheme between the agent and the environment
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Accordingly, RL methods seek an approximation of the optimal control sequence of problem
(2.83). Before introducing specific RL methods, it is needed to say that most of the algorithms
rely on the accomplishment of the Markov property on the system definition. This property states
that all the information of past control actions and past states is contained in the current state
st, which means that past information is irrelevant to the choices of future controls as long we
know st. The name of Markov property is related to the similarity with the definition of states
of Markov chains, where by definition, the conditional probability distribution of the future states
depends on the history of the chain only through the present state, i.e. :

P (st+1|s0,u0, .., st,ut) = P (st+1|st,ut), ∀t = 1, 2, ... (2.87)

This property is not strictly applied in RL algorithms, but the concept is always desired in the
states’ definitions. On the other hand, the state domain S and the control actions domain U(s) are
considered to be discrete in the RL context. In that sense, both sets can be defined as S = {si}i∈I ,
and U(s) = {uj}j∈J , ∀s ∈ S, with S = {1, 2, ..., N}, and U(s) = {1, 2, ..., N}. Then, without loss
of generally, DP equations can be expressed in terms of the states and control actions indices, i.e.,
sit → it and u

j
t → jt, giving place to cost–to–go functions and Q–values definitions J(sit)→ J(it),

and Q(sit,u
j
t )→ Q(it, jt), respectively.

Roughly speaking, RL methods are divided accordingly to the knowledge available of the sys-
tem. In this way, methods are classified as model–based or model–free methods. The last ones
do not need an explicit description of the system dynamics and are often used when dealing with
complex dynamic equations.

Besides, the approximate resolution of the Bellman equation can also be classified into two
main types for both model–based and model–free methods. In the first place, policy iteration
algorithms are designed to construct a sequence of policies, each one better than its predecessor.
The algorithm starts with an initial policy µµµ0, and in the first stage iteration, the cost–to–go
function acting under that policy is evaluated. This process is also called policy evaluation, and
consist of the solution of the following system of Bellman equations:

Jµµµk(it) = E [gt(it,µµµk(it),wt) + γJµµµk(it+1)] , ∀i ∈ I (2.88)

Lately, the new policy µµµk+1 is obtained as

µµµk+1(it) ∈ arg min
jt∈U(it)

E [gt(it, jt,wt) + γJµµµk(it+1)] , ∀i ∈ I (2.89)

and the process is repeated until Jµµµk+1(i) − Jµµµk(i) ≤ ε, ∀i ∈ I, with ε a fixed small tolerance.
Additionally, under some conditions convergence is proved [104].

Secondly, value iteration algorithms iterate, getting better approximations of cost–to–go func-
tions, based on the Bellman equation formulated as a recursive definition:

Jk+1(it) = min
jt∈U(it)

E [gt(it, jt,wt) + γJk(it+1)] (2.90)

where Jk(it) is the approximation of the optimal cost–to–go function of the state it, at the iteration
k. In this way, given any initial conditions {J0(i)}i∈I , the convergence of algorithm (2.90) to the
optimal cost–to–go function is guaranteed [104].

As a type of value iteration algorithm, Q–learning methods directly approximate the Q–values
of the optimal policy and then avoid the multiple policy evaluation steps of the policy iteration
methods. One great feature of them is that can be implemented in model–free fashion and its
implementation is quite straightforward. The original Q–learning algorithm was proposed by
Watkins [108], and is based on equation (2.86). Accordingly, a sequence of state–control pairs (i, j)
are generated, and using a step–size αt ∈ (0, 1], the Q–values are updated according to:

Q̃t+1(i, j) = (1− αt)Q̃t(i, j) + αt(Ft(Q̃t, v))(i, j) (2.91)

where Q̃t+1(i, j) is the optimal Q–value approximation at iteration t, and Ft(Q̃t, v) is the updating
operator, defined as:

(Ft(Q̃t, v))(i, j) =

{
gt(it, jt, ξξξt) + γQ̃t(it+1, v) (i, j) = (it, jt)

Q̃t(i, j) (i, j) 6= (it, jt)
(2.92)
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where v is obtained from v ∈ arg minj∈U(it+1) Q̃t(it+1, j). Concerning to the convergence of
the Q–learning algorithm, it has been proved that exist necessary conditions on the stepsize [109].
Specifically, the sequence αt should accomplish

∑∞
t=0 αt =∞, and

∑∞
t=0(αt)

2 ≤ ∞. For example,
a stepsize of the form αt = c1

t+c2
addresses both conditions, for c1 and c2 some positive constants.

One drawback of the above–mentioned Q–learning algorithm is that the approximations are
made over biased estimators of the cost-to-go function, leading to slow convergence to the optimal
policy and poor performance in some stochastic systems. Van Hasselt [110] solved this by using two
different estimators for the Q–values, namely Q̃1

t and Q̃2
t , constructed from different sample sets.

Then, to update the value of Q̃1
t in the equation (2.91), the value of v used in the updating operator

Ft(Q̃
1
t , v) is obtained from the second estimator as v ∈ arg minj∈U(it+1) Q̃

2
t (it+1, j). In that work,

it is proved that this method generates unbiased estimators of the cost–to–go functions. Besides, as
the samples on each estimator have to be independent, only one estimator can be updated at each
iteration of the algorithm, which can be done by using some random policy selection. However,
both estimators can be used to determine the optimal control value that will be applied in the
system. These modifications give place to the Double Q–learning algorithm, which can be roughly
described in the pseudo–code below:

Algorithm 1: Double Q–Learning

1 Initialization: Q̃1
0, Q̃2

0, s0 ;
2 while t ≤ |T | do
3 Obtain jt based on Q̃1

t and Q̃2
t ;

4 Observe gt(it, jt, ξξξt) and it+1 ;
5 Select either update Q̃1

t or Q̃2
t ;

6 if update Q̃1
t then

7 Select v ∈ arg minj∈J Q̃1
t (it, j) ;

8 Update Q̃1
t+1(i, j) = (1− αt)Q̃1

t (i, j) + αt(Ft(Q̃
2
t , v))(i, j);

9 else
10 Select v ∈ arg minj∈J Q̃2

t (it, j) ;
11 Update Q̃2

t+1(i, j) = (1− αt)Q̃2
t (i, j) + αt(Ft(Q̃

1
t , v))(i, j);

12 end
13 t← t+ 1 ;
14 end

Despite the effectiveness of the Q–learning and the double Q–learning algorithms in some con-
texts, their applicability is limited to domains in which useful features can be extracted or with
too low dimensional state spaces. In 2015, the recent breakthroughs on the development of deep
neural networks were combined with reinforcement learning to overcome these limitations. This
conjunction originated agents capable of capturing features from high dimensional spaces and map-
ping them to concrete actions [111]. The resultant framework was called Deep Q–Network (DQN),
which is illustrated in Fig. (2.13). Results showed that the agent reached professional human per-
formance across 49 games, using the same algorithm, network architecture, and hyperparameters.

The key idea of DQN algorithms is to approximate the Q–function (2.86) using a deep con-
volutional neural network, namely, Q(st,ut;θθθi), in which θθθi are the parameters or weights of the
Q–network at the iteration i. As was reported in [112], Q–learning algorithms suffer from instabil-
ity or even diverge when non–linear functions are used to approximate the Q–function, principally
due to several classes of correlations between observations and estimators. To this end, the DQN
algorithm relies on two protocols, named experience replay and periodic update. Experience replay
is based on storing agent’s experiences et = (st,ut, gt, st+1) at each time–step, constructing a set
of experiences Dt = {ek}tk=1. Then, the Q–table update is made over samples of experiences,
obtained from a uniform distribution over the set of stored transitions (sk,uk, gk, sk+1) ∼ U(Dt),
eliminating the correlations between consecutive observations. This results in an update iteration
that minimize the following loss function:

Li(θθθi) = E(s,u,g,s′)∼U(Dt)

[(
g + γ min

v∈U(s′)
Q(s′,v;θθθ−i )−Q(s,u;θθθi)

)2]
(2.93)

where θθθ−i is are the network weights used to compute the target. Finally, the periodic update
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ensures that the update of the parameters from θθθ−i to θθθi is made only every a specific amount of
steps, and kept fixed between them. Remarkably, the design of deep network architecture could be
adapted to address different tasks in different contexts. However, finding an adequate structure is
often a complex procedure.
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Figure 2.13: Deep Q–Network scheme.

It is important to highlight that Q–learning algorithms represent only a single branch of RL
methods. The published applications of RL on power systems planning, operation and control are
numerous, using different algorithms, and solution schemes. In the following subsection, a brief
review of RL applications on power systems is made.

2.5.3 Reinforcement learning on energy management applications
RL applications in power systems cover a wide range of decision, control, and optimization prob-
lems. Besides, the number of RL methods applied to solve these problems is also huge. The
diagram of Fig. 2.14, extracted in its entirety from [1] shows a classification of the algorithms
usually used in power systems problems. In the following lines, some applications on energy man-
agement, demand response, and operational control are presented, to establish the state of the art
of the inclusion of RL in power systems operation and control, based on a recent review [113].
Finally, proposals pointing in the same direction of the present thesis are listed, fulfilling the base
on power management models involving closed–loop frameworks.
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Figure 2.14: Diagram of most known RL methods [1]

Energy Management

The growing inclusion of distributed energy resources (DERs) and storage devices across microgrids
has settled the problem of the optimal exploitation of renewable resources. In this sense, the
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generation levels of DERs, battery storage levels, and demand consumption are now degrees of
freedom on the system, which can be determined following some sense of optimality. Accordingly,
these energy management problems can be formulated as sequential decision-making problems
and, therefore, can be solved using RL methods. In the literature can be founded applications on
residential appliances [114, 115], optimal energy management of electric vehicles [116, 117], and
optimal operation of microgrids [118, 119, 120].

Demand Response

Demand response is a problem in smart grids, which keep the balance of the consumed power of
customers and supply of utility companies, using the energy price as an incentive. In this sense,
the consumption of energy is motivated by its price, being necessary to incorporate the consumers’
behavior into the control loop to achieve grid stability. Here, deep RL techniques have been used
to create data–driven models to solve these kinds of problems [121, 122].

Operational Control

Given the natural relationship between RL and optimal control, RL methods have been considered
in different electric power system control–decision problems: Transient angle stability [123, 124],
oscillatory angle instability [125, 126], voltage control [127], automatic generation control (AGC)
[128, 129], economic dispatch [130, 131], wide-area control, households control [132, 133], and wind
generation control [134, 135]. Concurrently, the relation between model predictive control (MPC)
and RL has been investigated [136], and its relationships have been explored formally in [137]
[124]. Some ideas that have combined the RL and MPC fields are: Addressing infinite-horizon
optimization in MPC via Q-learning [138] and employment of the value function (stage cost) in
economic MPC as a parametrization approximator in Q-learning [139].

Cloosed–Loop Frameworks on Power Management

The construction of closed-loop frameworks embedding mathematical programming models and
machine learning is a novel approach, as has been described in [22], identifying potentially power-
ful tools. A framework of this kind has been implemented in the context of refinery procurement
and production planning [140]. In the context of energy management, in [141], recurrent neural
networks are used for the construction of uncertainty sets, in [142] a closed-loop scheme was pro-
posed for the UC problem on which neural networks are used to approximate cost–to–go functions.
Finally, establishing a closed-loop architecture, without using RL, in [143], the AC optimal power
flow (OPF) problem is solved using a feedback scheme, keeping optimal operation into the power
flow manifold. In the same direction, the works [144, 145] follow the construction of closed–loop
controllers for the optimal dispatch problem.
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Chapter 3

Mathematical formulations

The present chapter minutely describes the core of the thesis work. The de-
veloped framework is firstly presented, introducing its principal features and
components, along with a motivational example that helps foresee the frame-
work’s potential benefits by analyzing a simple case. Then, the different com-
ponents of the framework are introduced, stating the assumptions taken and
deriving the corresponding mathematical expressions. Optimization models for
the unit commitment subject to uncertainty are formulated in the first place.
Later, the generation of scenarios for the probabilistic distributions approxima-
tions, besides the construction of uncertainty sets, are presented. Subsequently,
the dynamic programming formulation that gives place to the adaptation of the
risk–aversion level is stated, followed by the presentation of the framework used
for the simulation of the real–time operation of the power system. Ultimately,
the solution methodologies for the formulated problems and the corresponding
solution algorithms are described.

3.1 Problem statement

The objective of the present proposal is to generate a solution framework for the UC problem
subject to uncertainty, able to achieve better operational results than existing methods while
keeping scalability to be applicable in big systems and generate practical, real–world solutions.

As reviewed in the previous chapter, the most recent approaches to managing the UC problem’s
uncertainty rely on classical optimization under uncertainty techniques, namely SP, ChCP, RO, or
DRO approaches, and using a data-driven methodology [4, 20, 6, 12, 146, 14, 17, 98, 91].

The present proposal is constructed over this approaches, adding and adaptation layer based on
the feedback of operational results. In [98], uncertainty management policies with different levels of
risk-aversion were tested, identifying that different risk-averse levels reach minimum out-of-sample
costs for each method and each test data set. This evidence suggests that operating in real-time
with this kind of policy, its optimal risk–aversion level is dynamically changing. Concurrently, in
[22], the idea of constructing closed–loop data–driven frameworks, machine learning algorithms, to
feedback mathematical programming models is foreseen as a promising proposal.

In this line, the proposed adaptation layer is designed for the dynamical calculation of the
optimal risk–averse level through an RL agent, which is fed with real–time operational results. To
this end, a two–stage RUC model is used, where the uncertainty set is defined by the existing data
and the calculated risk–averse level. Then, the operational decisions calculated are applied to the
power system, giving place to new real–time results, defining a new risk-aversion level for the next
period. The proposed adaptation schema is depicted in Fig. 3.1.
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Figure 3.1: Schematic diagram of the proposed framework. Operational results feedback the
construction of robust uncertainty sets through a RL agent, achieving a closed–loop data–driven
framework.

3.2 Motivational example

The example of section 2.4.4 is analyzed using the proposed adaptive approach to illustrate the
spirit of the present proposal.

Firstly, for the sake of comparison, let us review an analytical result. If d has a normal
distribution N (µ, σ), then the solution for the stochastic problem, i.e., minimizing over x the
expected value E[c(x, d)], is equal to x∗ = F−1( c+−cxc++c−

), with F the cumulative distribution function
of the above–mentioned normal distribution.

Consider that the operation problem has to be solved sequentially, i.e., each day k it has to
be decided the amount of power to be dispatched by the conventional generator, knowing the
information of past days. In this way, the demand of the day k is represented now by a stochastic
process dt. Therefore, the daily cost now is indexed by k, ck(xk, dk) = cxxk + c+[dk − xk]+ +
c−[xk − dk]+, where xk is the amount of power dispatched by the conventional generator on the
day k. Then, for a horizon of |K| days, using the results of DP formulations (see section 2.5), the
overall cost is given by J∗(x0) = min

xt
E[
∑|K|
k=k0

ck(xk, dk)]

As was seen, this problem accomplishes the tail–optimality principle, expressed by Bellman’s
equation (2.83). To simplify the analysis, consider that there are no dynamics involved, or equiv-
alently, there are no constraints between xt and xt+1. Hence, the total solution can be obtained
simply by solving the stage–wise problem, i.e.,

J∗(x0) =

T∑
t=t0

min
xt

E

[
ct(xt, dt)

]
(3.1)

Then, two different methods for the resolution of the sequential optimal dispatch (3.1) will
be compared, considering the data set of the historical observed demand at day k as Ok =
{dk, ..., dk−1}. The first method obtains the xk solutions by solving a two–stage robust model,
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which uses box uncertainty sets, centered in the observed mean d̄k, Uk = [d̄k − d̂k, d̄k + d̂k], where
d̂k is the maximum observed deviation, the same as in (2.36). The model is described below:

min
xk

cxxk + max
d∈Uk

min
s+d ,s

+
d ≥0

c+s
+
d + c−s

−
d (3.2)

s.t. xk + s+
d + s−d = d ∀d ∈ Uk (3.3)

The second method uses the same model, but with a modified uncertainty set Uk(λk) = [d̄k −
λkd̂k, d̄k + λkd̂k], where λk ∈ [0, 1.5] is a parameter controlling the robustness of the set. The
value of λ is determined at every day k as an output of a proportional–integral (PI) controller
λk+1 = λk + βpek + βi

∑k
j=k0

ej , with ek = x∗k − dk the difference between the dispatched and the
demanded power at day k, and βp, βi, constants. This second method adds some flexibility in the
definition of the uncertainty set, allowing more robust solutions than the obtained from the first
method for λk > 1, and less robust for λk < 1.

To compare both methods, the dynamics of dk will be described by an autoregressive–moving
average process of order (p, q), ARMA(p, q) for short, defined as:

dk = α+ εk +

p∑
i=1

φidk−i −
q∑
i=1

θiεk−i (3.4)

where εk is the error at time k, which is assumed to be distributed as white noise with variance σ2
ε .

Coefficients φi and θi are the coefficients of the autoregressive and moving–average polynomials,
respectively, and α is a constant.

ARMA models are one of the most simple stochastic linear processes, which combines the
dependence on past observations with the influence of some perturbation, described by the white
noise. The objective is to compare both above–presented methods, in the light of the performance
of an agent with complete information of the process. As is developed in [63], for an ARMA
process, the h–step–ahead forecast density of dk+h, for h = 1, 2, ..., is given by dk+h|d1, ..., dk ∼
N (d̂k+h|k,MSFE(ek+h|T )), with d̂k+h the minimum mean square error forecast of dk+h, obtained
recursively by: (

1−
p∑
i=1

φiL
i

)
dk+h|k = d̄+

(
1−

q∑
i=1

θiL
i

)
εk+h|k (3.5)

where Li is the lag operator of order i, Lidk = dk−i, εk+j|k = 0 for j > 0, εk+j|k = εk+j , and
dk+j|k = dk+j for j ≤ 0. In the other hand, MSFE(ek+h|k) is the mean square forecast error for
the h–step–ahead forecast error, ek+h|k = dk+h − d̂k+h|k, given by MSFE(ek+h|k) = σ2

ε

∑h−1
i=0 ψ

2
i ,

where ψi are the coefficients of the polynomial Ψ(L) =
1−

∑q
i=1 φiL

i

1−
∑p
i=1 θiL

i .
For the case of the optimal power dispatch, the forecast is needed only for 1 step ahead,

resulting in a normal distribution with mean d̂k+1|k and variance σ2
ε for the demand of the day

k + 1. Hence, having complete information of the ARMA process, the optimal solution of the
stage–wise stochastic problem minxkE[ct(xk, dk)] is x∗k = F−1

k

(
c+−cx
c++c−

)
, with Fk the cumulative

distribution function of the normal distribution N (d̂k|k−1, σε).
Hereafter, the two robust methods, with limited information contained in Ok, are compared

in terms of a backtest examination of the daily costs. The method using the robust set Uk =
[d̄k − d̂k, d̄k + d̂k] is hereinafter referred as Fixed, and the method considering the parameter λk
will be referred as Adaptive. In Fig. 3.2, the costs of the two methods are shown for 300 days
of backtest simulation. Besides, the solution obtained from the 1–step forecast distribution with
full knowledge of the process is also depicted, which is referred as Analytical. In this example, an
ARMA(2, 2) process with mean equal to 10 was selected to describe dk, the number of scenarios
considered for the construction of both Uk and Uk(λk) was 5, and different initial conditions where
tested for the second method, namely λ0 = 1.5 and λ0 = 0. Concurrently, the costs parameters
involved are defined as cx = 1, c+ = 1.5 and c− = 1.

The summary of the results is shown in table (3.1). As can be seen, the Adaptive method over–
perform the Fixed method for both initial conditions, in average cost and variance. No method
was used for the determination of the controller parameters, only by examination. The Adaptive
method even reaches a lower variance than the Analytical method when using an initial condition
λ0 = 0. In this way, this example reveals instances where the adaptation on uncertainty sets
improves the performance over fixed approaches.
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Figure 3.2: Daily costs for the three methods. In right and left plots, the value of λ0 was set for
the Adaptive method as 0 and 1.5, respectively.

Method Fixed Adaptive(λ0 = 0) Adaptive(λ0 = 1.5) Analytical
Average Cost [-] 16.831 12.420 13.915 10.717
Std. Deviation [-] 3.290 1.825 3.243 2.470

Table 3.1: Average and standard deviation of the three methods across the 300 days of backtest
simulation.

In the context of control problems, the superior performance of closed-loop architectures is
well-known over the open-loop ones. However, in energy management problems, as the UC, this
relationship has been barely explored. This example serves as a motivation for developing a
closed–loop scheme for the resolution of the UC. Before any claim, it is necessary to note that
the differences between the newsvendor and the UC problems are huge, and these results may
not be extendable. However, as the spirit of both problems is the same, there is doubt about
the effectiveness of this concept in more complex systems. Nevertheless, this example states a
precedent.

3.3 Proposed framework of study

The present study is made in the context of the real-time operation of electric power systems,
considering the penetration of renewable generation. To that end, an analysis framework is pro-
posed, which has a threefold purpose: (i) modeling the sequential decision–making process from
which the operation is determined, (ii) evaluating the quality of the operation based on system
indicators, and (iii) use the evaluation to apply corrective actions in the next period. As the focus
is the design of efficient policies of uncertainty management on the UC problem, the framework is
divided into three major components, depicted in Fig. (3.3).

The first is the short-term planning model, namely the UC model with uncertainty management
policies. The second component is the power system environment, involving the dynamics for a
fixed status of generators. On that basis, this component considers the calculation of generators
dispatch levels, besides the corrective actions given by discrepancies derived from the realization
of the uncertainty. Those deviations and the system responses give place to an evaluation of
the operation based on operational indicators. Finally, the third component represents a module
designed to modify the uncertainty management policies of the planning model, following the
results obtained from the evaluation.

Mainly, we assume that the short-term planning model possesses a set of parameters repre-
senting the risk–averse level taken by the system operator, defining the robustness of the solution,
similar to the second method presented in section (3.2). To summarize the order of the sequen-
tial actions, the decision-maker takes a value for the risk–averse level at each period, inducing a
short-term planning decision. Lately, this decision, along with the realization of the uncertainty,
defines the operation and, consequently, a set of system indicators. At last, the system indexes’
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evaluation is used to determine the risk-averse level at the next period. This scheme is very similar
to a closed-loop architecture, commonly studied in control problems.
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Figure 3.3: General proposed adaptive scheme

This framework is quite general and can be used for many problems with parameters subject to
uncertainty. In this sense, the module Database represents the stored historical information, mainly
used to extract samples for the planning problem and store the performance of the past operation.
Many works have proposed adaptive schemes making use of the closed–loop I [5, 20, 21], depicted
in Fig. (3.3). This closed–loop has the property of adapting the samples used in the planning
stage by updating them according to the last observed realizations. In contrast, the closed–loop
II considers also the behavior of the real–time operation, i.e., capturing information of the system
and the performance of past control actions. In this sense, the risk-averse level x is expected to add
more information to the planning problem, improving the indices derived from it. This risk-averse
level is assumed to be part of a specific risk measure, which accounts for the impact of the selected
samples. The exact influence of λ on the commitment decisions is addressed in the next section.

3.3.1 Two–stage UC model subject to uncertainty
For the UC problem subject to uncertainty, we use a standard two–stage formulation [147, 148],
using the deterministic 3–bin model as the base [3] for the integer region description, which is
presented in the section (2.2.2). Before introducing a specific formulation, a more general approach
is presented, introducing the risk measure ρλ(.) for the evaluation of the second–stage costs, where
λ is a parameter representing the risk–averse level of the decision–maker.

As was reviewed in section 2.3.1, the risk measure ρλ(·) is applied over the second stage costs
distribution, which is function of first stage variables values and the distribution of the parameters
subject to uncertainty. In the present work, these parameters are the values of REG availability
and demand levels, which will be comprised in the matrix U . To this end, it is considered that
a discrete set of scenarios S = {Uk}k∈K, with K the scenario indexes set, and Uk the k–th
scenario values for every parameter subject to uncertainty, is an available approximation for the
real multidimensional probability distribution function of U , where each value Uk is considered
having the same probability of occurrence. In that way, the resultant formulation is the following:

min
X∈X3bin

∑
h∈H

(cfix)Txh + ρλ
(
{z(X,Uk)}k∈K

)
(3.6)

where cfix is the cost vector associated with the generators statuses, containing the start–up,
shut–down and no–load costs, xh is first stage vector of binary variables, representing the status
of the generators at the hour h, with H the set of hours of planning, and X is the matrix that
groups the xh vectors, i.e., X = [x1 x2 . . . x|H|], belonging to the feasible region X3bin, defined
by generators start–up costs definition and minimum up/down times constraints formulated in [3]
(see sections II-A2 and II-B2). On the other hand, z(X,Uk) corresponds to the second stage costs,
depending on both the generator statuses vectors X and the scenario values Uk. Therefore, the
value of z(X,Uk) is defined by the following second stage problem:
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z(X,Uk) = min
∑
h∈H

{
(cg)Tpkh + (c+)T spkh + (c−)T smk

h

}
(3.7)

s.t.

Afkh + Bpkh + Pwk
h = dkh + spkh − smk

h ∀h ∈ H (3.8)

1Trkh ≥ Rh ∀h ∈ H (3.9)

pkh + rkh ≤ pmaxxh ∀h ∈ H (3.10)

pkh ≥ pminxh ∀h ∈ H (3.11)

fkh = Sθθθkh ∀h ∈ H (3.12)
− f̄h ≤ fh ≤ f̄h ∀h ∈ H (3.13)

pkh + rkh − pkh−1 ≤ rup(xh,xh−1) ∀h ∈ H (3.14)

pkh − pkh−1 ≤ −rdown(xh,xh−1) ∀h ∈ H (3.15)

0 ≤ spkh ≤ dkh ∀h ∈ H (3.16)

0 ≤ smk
h ≤ Pwk

h ∀h ∈ H (3.17)

The above problem defines the optimal generators dispatches given the statuses X and the
uncertainty realization Uk. In particular, the matrix Uk comprises the values of available REG
wk
h and demand levels dkh scenarios. All of the second stage variables are indexed by period,

h ∈ H, and by scenario, k ∈ K. The vector pkh represents the dispatches levels of conventional
generators, fkh is the vector of lines fluxes, spkh and smk

h denote the non–served demand and
the renewable generation spillage vectors, respectively, rkh is the vector of conventional generators
reserves levels, and θθθkh the vector of bus voltage angles. The second stage costs (3.7) consider
the dispatch costs and the costs related with the non–served demand and power spillage. Power
and reserves requirements are accounted in equations (3.8) and (3.9), respectively, where matrices
A, B, P contains the appropriate parameters accordingly with the connection of every element
into the network, and the vector 1 is the column vector with dimension equal to the number of
conventional generators, on which every entry is equal to 1. Generation limits are stated in (3.10)
and (3.11). Power fluxes definition and its limits are present in (3.12) and (3.13), respectively,
where the matrix S contains the constants that define the linear approximation of DC power flow
equations [7]. Ramp constraints are present in (3.14) and (3.15). Finally, non–served demand and
power spillage limits are defined in (3.16) and (3.17), respectively. Although existing approaches
optimize reserves levels as first–stage variables [20], our proposal is focused on highlighting the
adaptation layer of the UC problem, which is why we apply typical procedures used by different
ISOs, where a fixed value of total reserve is defined by an external method.

The above two–stage formulation determines the generator statuses in the first–stage, and
generators dispatches and reserves levels are subsequently calculated for each k ∈ K in the second–
stage. The risk measure ρλ(.) accounts for the impact of the second stage costs, and therefore, the
set of scenarios, into the first stage variables, in which the parameter λ define the robustness of
the risk–measure. Is worth note that the same scenario set S could have a different impact on the
commitment solutionX∗, depending on the definition of ρλ(.). In this sense, many approaches fit in
the above formulation, particularly every approach examined in section (2.4.1). For example, it can
be considered the stochastic case by defining ρλ(.) = Ek∈K [.], and even use a distributionally robust
optimization approach by imposing some conditions over the scenario set S. The conditional–
value–at–risk measure also fits, by simply defining ρλ(.) = CVaRλ(.), where the variation of λ
allows to transit from the stochastic case with λ = 0, to the robust case with λ = 1, according to
the definition made in [149]. The robust case also can be stated in this framework, i.e., ρλ(.) =
maxU∈Uλ(.), if Uλ = Uλ({Uk}k∈K), i.e., if the corresponding uncertainty set is constructed from
S, in which λ could have, as an example, the same interpretation as the used in section (3.2).
In this way, previous works have developed scenario–based uncertainty sets that are suitable in
this formulation [19, 20, 23]. However, the present proposal uses modified version of the above–
mentioned uncertainty, characterized by adding a degree of freedom λ, designed to control the
robustness of the solution, according to the definitions made in the following section.
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3.3.2 Uncertainty modeling

In the context of generation scheduling in systems with a high level of renewable-based generation
penetration, the parameters subject to uncertainty usually considered in the short-term planning
stage are renewable generation levels and buses’ demands level. The present proposal assumes
the availability of historical data for each of the parameters mentioned above. Concretely, the
existence of time series with an hourly resolution for each bus’s demanded active and reactive
power is considered, besides the time series of the hourly historical power availability for each
renewable generator connected to the system. Hence, the methodology applied for the scenario
generation is the same as the one used in [20], where time series are divided by hours to construct
the scenario set s. Thus, let H the set of hours of planning considered in the UC model, B the
set of buses, and R the set of renewable generators. Each scenario k will be represented as an
(|B|+ |R|)×|H| matrix, namely Uk, with k ∈ K, containing the historical values for H consecutive
hours, for both the demanded power and maximum availability for renewable generators. Note
that for |H| = 24, each scenario contains the daily profile for each uncertainty parameter, as can
be seen in Fig. 3.4.
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Figure 3.4: Scenario construction example

Consequently, if the problem (3.6)-(3.17) is solved at time t, observations from the hour t−|K||H|
until the hour t are equally divided to form the |K| scenarios. This results in a moving window,
on which recent observation updates the samples used in the planning stage, as is depicted in the
closed–loop I of the Fig. (3.3). Therefore, the extracted samples from the time series are ordered
to construct the scenario matrix Uk as is presented below:

Uk =


d1

1 d2
1 . . . d

|B|
1 w1

1 w2
1 . . . w

|R|
1

d1
2 d2

2 . . . d
|B|
2 w1

2 w2
2 . . . w

|R|
2

...
...

. . .
...

...
...

. . .
...

d1
|H| d2

|H| . . . d
|B|
|H| w1

|H| w2
|H| . . . w

|R|
|H|

 (3.18)

One of the greatest advantages of this scenario definition is the capacity to capture the under-
lying correlations between the parameters on each multivariate point. Fig. (3.4) shows this feature
graphically. Every profile bounded by two vertical bars is compacted in one matrix scenario. In
the case of RUC models, uncertainty sets constructed as the convex hull of s have been previously
used in [19, 20], taking advantage of the simple definition that allows ease implementations while
maintaining the data–driven spirit of construction. In those implementations, the robustness is
completely determined by the number of scenarios considered |K|. Therefore, a modified version of
the above-defined uncertainty set is made to incorporate another measure of the risk-averse level.
Then, consider the multivariate mean point of the scenario set S, namely U . Let Ũk(λ) the convex
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combination between the original point Uk and U :

Ũk(λ) = λUk + (1− λ)U , λ ∈ [0, 1] (3.19)

With this, let Uλ the modified uncertainty set constructed as the convex hull of the modified
points Ũ(λ).

Uλ =

{
U ∈ R(|B|+|R|)×| H|

∣∣∣∣∣U =
∑
k∈K

αkŨk(λ),
∑
k∈K

αk = 1, αk ≥ 0

}
(3.20)

Hence, for λ = 1, the scenario–based uncertainty set Uλ defines a robust approach, and for
λ = 0, the above formulation is equivalent to the deterministic approach, where the parameters
subject to uncertainty take their expected values.
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Figure 3.5: Two–dimensional proposed uncertainty sets for the renewable generation of two wind
generators at hour 5, using 30 samples extracted from [2].
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Figure 3.6: Two–dimensional proposed uncertainty sets for the renewable generation of two wind
generators at hour 13, using 30 samples extracted from [2].
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In Fig. 3.5 and 3.6, examples of two-dimensional uncertainty sets, i.e., considering two time
series and one sample per each one, for two different hours of the day, are shown, with data extracted
from [2]. That renewable generation of the past 30 days at the same hour is depicted with dots
for two buses. It can be seen that for different hours, the shape of the sets can change drastically.
The convex hull of the scenario points corresponds with the curve with λ = 1, representing the
classical full robust approach. The modified uncertainty set (3.20) with variable shape is shown
for λ = 0.8 and λ = 0.6.

As can be observed, these modified sets keep the shape of the original robust set (λ = 1)
but are contracted, being closer to the average of the scenario points. The above definition is
mainly inspired by simplicity, both in definition and implementation. Instead, the fulfillment of a
specific list of constraints with statistical meaning is not pursued. In comparison with the CVaR–
based uncertainty set, shown in Fig. (2.9), both sets regulate their robustness by changing a single
parameter in the range [0, 1]. However, CVaR–based sets have statistical interpretation but require
an expensive computational implementation when the number of scenarios grows [19]. Although
considering the lack of statistical interpretation of the proposed set, the mere integration of a
degree of flexibility into the set definition could improve the results of the fixed case (λ = 1). The
basis for the dynamic determination of λ is described in the next section.

3.4 Sequential decision–making formulation
To formulate the problem of the adaptive determination of the robustness level λ for the two–
stage UC, the formalism of DP is used, which was shown to be analogous to RL in section (2.5).
Accordingly, is necessary to construct the equivalence between the closed–loop scheme (3.3) and a
stochastic DP description, depicted in Fig. (2.11).

In this sense, consider that at a certain time t, the operator solves the two–stage UC problem
defined by equations (3.6)-(3.17), getting optimal generator schedules X? = [x?1 x

?
2 ... x

?
|H|]. Even

though X? contains the optimal generators’ status for the next |H| periods, we consider the ISO
uses a rolling horizon scheme and only applies solutions every N∆ hours, with ∆ a minimum
reference time–step, and N∆ ≤ |H|. A previous work have showed the benefits of applying rolling
horizon frameworks with small periodicities to the UC [65]. For the sake of the feasibility of the
operation, is necessary to capture the previous operation with appropriate initial conditions. This
is achieved by fixing the values of x1 and pk1 , ∀k ∈ K to those in the operation at time t, and
by keeping track of generators’ up/down times. On the other hand, ramp constraints for the
initial period are naturally included by fixing the values of pk1 as the ones obtained in the previous
operation. The solutions obtained by this methodology correspond to the commitment solution
x(λ) described in Fig. 3.3.

0 Δ 2Δ 3Δ 4Δ 5Δ 6Δ 7Δ 8Δ 9Δ 10Δ 11Δ 12Δ ....

RUC1- Horizon

RUC1- Applied Solution

RUC2- Horizon

RUC1- Applied Solution

RUC2- Applied Solution

RUC3- Horizon

RUC3- Applied Solution

Figure 3.7: Calculation and implementation schedules for RUC solutions under the rolling horizon
methodology. For this case N = 4, impliying that the implementation of UC solutions is made
every 4∆, while the horizon of the UC calculation is 10∆.

In the Fig. 3.7 an schema of the calculation and application of UC solutions is given. In this
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case, N = 4, resulting in a delay of 4∆ between the calculation and the application of the UC
solution. Besides, it can be seen that the time of application of the solution i, and the beginning of
the calculation of the solution i+1 are the same, where the last one includes as an initial condition
the schedule according with the solution i.

Subsequently, the obtained solution is applied to the power system module of Fig. (3.3). In
this module, dispatches levels for conventional generators are calculated, using a method that
will be soon into the next section. Finally, given the realization of the uncertainty ξξξt, corrective
actions are taken. Note that ξξξt is referring to REG availability and demand values measured
with a periodicity equal to ∆, whereas wk

h/d
k
h make reference to hourly measures, i.e., wk

h/d
k
h

are obtained by the aggregation of ξξξt. Operational indexes that account for these corrections
are also evaluated here, allowing for the computation of the next value of λ. Consider the index
t(n) = ∆Nn, accounting for the periodicity of the RUC calculation and, without loss of generality,
let express us express the equation in terms of n. Given the system state at time n, sn, the
function defined by the solution of (3.6)–(3.17) along with the uncertainty realization, define the
next period state sn+1 = fn(sn, λn,ΞΞΞn), incurring in an operating cost cn = gn(sn, λn,ΞΞΞn), with
ΞΞΞn = [ξξξt(n−1)+1, ξξξt(n−1)+2, ..., ξξξt(n)]. Lastly, a mapping function µn defines the next robustness
level λn+1 = µn+1(sn+1).

In order to make a formal statement of the definitions made above, the elements of the dynamic
programming formulation are presented below:

1. State variables sn ∈ S: tuple composed of the concatenation of (i) the hour of the day, (ii)
the sum of generator’s status at time n, and (iii) an integer approximation of the sum of the
differences between real and planning dispatch costs over the time interval [t(n− 1), t(n)].

2. Control variable λn ∈ Λ: robustness level of the risk measure ρλ(·) used in (3.6).

3. State transition function fn: sequential solution of the UC problem (3.6)–(3.17) for hour
h = N∆, and simulation of the corresponding operation.

4. Transition cost function cn: selected operational index, obtained as an output of the power
system operation, which can be stated as cn = gn(sn, λn,ΞΞΞn).

For a better understating of the proposed dynamic formulation for the UC problem, Fig. 3.8
shows how the DP variables are implemented in real–time operation for the case with N = 4.
As can be observed, commitment solutions to be implemented Xn are calculated using the risk–
level λn, calculated from a control policy µn(sn) that depends on the current state and the past
experience. Then, while the system operates under the generators schedule defined by Xn, the
real values of REG availability and demand ΞΞΞn = {ξξξt(n−1)+∆, ..., ξξξt(n)} define the operation cost
cn, and the next state sn+1, which are subsequently stored for future calculations. Later, when
sn+1 is reached, the process is repeated.

Ξ ={ξ  , ... , ξ }n t(n-1)+ t(n)Δ

sn
UC

Model

μnμn

λn

Power

System

s =f (s ,λ ,Ξ )n+1 n n n n

c =g (s ,λ ,Ξ )n n n n n

x (λ )n n

Weather

and

Demand

sn+1

μnμn+1

λn+1

UC

Model x (λ )n+1 n+1

Figure 3.8: Schematic representation of the DP formulation for the adpative UC framework.

With those definitions being made, let s0 being the initial state, and consider the set of policies
π = {µ0, µ1, ...}, from which the robustness level is determined by λn = µn(sn). Then, the optimal
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expected total cost over an infinite horizon can be stated as:

J?(s0) = min
π

E

[ ∞∑
n=0

γngn(sn, λn,ΞΞΞn)

]
(3.21)

which is equivalent to optimize over λn ∈ Λ, where Λ is the domain of the robustness levels allowed
by the operator. On that wise, the equation (3.21) addresses the principle of optimality of the tail
subproblem [104], allowing the definition of Bellman’s equation:

J?(sn) = min
λn∈Λ

E [gn(sn, λn,ΞΞΞn) + γJ∗(sn+1)] (3.22)

with 0 ≤ γ ≤ 1 the discount factor. As was reviewed in section 2.5, the formulation presented
above is relatively standard and has been extensively studied. However, formulating the resolution
of the UC in this way allows the application of several techniques, particularly RL techniques, to
dynamically determine approximations of the optimal control policies µ?n(·), which determine the
values of λ. Nevertheless, since the complexity of transition function, and the behavior of random
variable ξξξt(n), a series of approximations has to be made to obtain feasible and implementable
solutions. In particular, the determination of operational indexes from system operation simulation
and the construction of robustness levels requires a series of definitions developed in the next
section.

3.5 Real–time operation simulation
This section presents the assumptions taken to model the power system’s real-time operating
conditions. UC decisions, dispatch decisions, and the evaluation of operational indicators are
modeled to be taken sequentially. In this sense, the power system module of Fig. 3.3 is simulated
by an optimal power flow (OPF) model, from which generators dispatches are obtained. Then,
exact power flow equations are solved, simulating the real-time steady-state behavior of the system,
accounting for the imbalances existing between planning and operation stages.

As illustrated in Fig. 3.9,RUC solutions are applied and fixed for a length period N∆. As the
calculation and application of RUC solutions have a delay of N∆ hours, the state calculation at
period t considers as initial condition the solution calculated at period t − N∆, as depicted on
Fig. 3.7. Under this schedule, the OPF model is solved each ∆ hours, determining the generator
dispatches that will be applied at the next time step, with a delay of ∆ between calculation
and implementation. Finally, jointly with the uncertainty realization, dispatch levels previously
calculated are used to solve exact power flow equations every ∆. The existing discrepancies between
planning operation and real operation are supplied by the system flexibility resources, where the
magnitude of their use, along with system operation costs, are used to compute the operational
indicators of interest.

0

RUC Solver

OPF Solver

Next Δ y*Exact Power Flow

Δ 2Δ 3Δ NΔ...

...

...

...

Next NΔ x*

(N+1)Δ ...

ξ
NΔ

ξ
(N+1)Δ

ξ
(N+2)Δ

} }w /dt t w /dt+1 t+1

Figure 3.9: Simulation of real–time operation. ξξξ values are aggregated to obtain wk
h/d

k
h scenarios

values. Rectangles lengths represent the calculation time of each model. Arrows indicate the times
on which UC and OPF solutions are implemented, after being calculated.
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For the OPF model resolution, renewable generation w and demand d values are set equal to
the last observed realization, i.e., the value available at the beginning of the calculation process.
Hence, there is a delay of ∆ between the real-time value and the one used for the calculation.

In this way, the system’s operation is divided into three levels of decisions, focusing on the
adaptation process of commitment solutions. Their quality is measured through the performance
of the third layer, i.e., out–of–sample results obtained by solving exact power flow equations,
using out–of–sample data. Moreover, this 3-level schema, as a simulation framework of real-time
operation, could be used to test either OPF or UC models using the same adaptation strategy.
Then, the general framework shown in Fig. 3.3is now specified on the schema illustrated in Fig.
3.10, where the closed–loop structure is kept.

UC

Model

OPF

Model

Risk Level

Calculator

DataBaseDataBase

ξ

uncertainty

realization 

commitment

decisions

x(λ)

data

samples

Uk

λ
risk-averse level

operational

indicators

g(x(λ),ξ)

Load Flow

Equations

dispatches

levels

y

d
w\pj i

REG and demand samples

Figure 3.10: Proposed closed–loop scheme and experimental framework. Arrows represent the flow
of information between modules.

Concerning the OPF model, the proposed framework uses a second-order cone programming
(SOCP) relaxed model [150], including slack variables for non–served demand and renewable power
spillage, which are appropriately penalized as in the cost function of the UC problem (3.7). The
specific OPF model used is formulated below:

min
∑
i∈G

cgi p
g
i +

∑
b∈B

(
c+(sppb + spqb) + c−(smp

b + smq
b)

)
(3.23)

s.t.
∑
j∈Gi

pgj +
∑
j∈Ri

wj − pdi + smp
i − sppi = Giicii +

∑
j∈δ(i)

(Gijcij −Bijsij) ∀i ∈ B (3.24)

∑
j∈Gi

qgj − qdi + smq
i − spqi = −Biicii +

∑
j∈δ(i)

(−Bijcij −Gijsij) ∀i ∈ B (3.25)

V 2
i ≤ cii ≤ V̄ 2

i ∀i ∈ B (3.26)
cij = cji, sij = −sji ∀(i, j) ∈ L (3.27)

c2ij + s2
ji = ciicjj ∀(i, j) ∈ L (3.28)

pmini ≤ pgi ≤ pmaxi ∀i ∈ G (3.29)

qmini ≤ qgi ≤ qmaxi ∀i ∈ G (3.30)

where Gi and Ri are the sets of conventional and renewable generators connected to bus i
respectively. The set δ(i) contains the indexes of buses connected to bus i. The cost function
(3.23) contains linear generation costs for active power dispatches of conventional generators, and
imbalances costs accounted for positive slack variables for active and reactive power on each bus
b, sppb and spqb , respectively, and negative slack variables for the same quantities, spqb and smq

b .
Equations (3.24) - (3.25) represent balances in both active and reactive power on each bus, with
pgi and q

g
i the active and reactive power dispatches of the conventional generator i, respectively, wj

the active power supplied by the renewable generator j, with pdi and pqi the demanded active and
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reactive power of bus i, respectively. The parameters Gij and Bij denote the real and imaginary
components of the system admittance matrix, whereas ei = |Vi| cos(θi) and fi = |Vi| sin(θi) are
the real and imaginary components of the voltage phasor of bus i, respectively. In this model, the
parameters wj , pdi and qdi are set equal to the last realization.

It is known that using relaxations of the OPF model could produce optimal solutions that could
be infeasible in the real power flow manifold. Therefore exact power flow equation could not have
any solutions using this solution dispatch. However, in this proposal, equations of the third layer are
formulated with enough flexibility to absorb both model and data inconsistencies.These power flow
equations include extended characteristics both for generators and loads, modeling system local
controllers, and ensuring a solution’s existence simultaneously. Specifically, the equations include
power–frequency droop characteristics for generators and impedance–voltage dependence for loads,
which has been already implemented in simulation softwares, like OpenDSS [151]. Besides, voltage–
dependent loads have been studied in the context of demand response, where consumers can
react to power prices variations [152]. The above–mentioned characteristics are respectively shown
hereunder:

Pg(w) =


P gmax w ≤ wgmin

P gnom − 1
dc

(w − wn) wgmin ≤ w ≤ wgmax

P gmin wgmax ≤ w
(3.31)

Sd(Vb) =


V 2
b

Z1
Vb ≤ Vmin

Snom Vmin ≤ Vb ≤ Vmax

V 2
b

Z2
Vmax ≤ Vb

(3.32)

where Pg is the active power generated by the conventional generator g, w is the system an-
gular frequency, P gmax/P

g
min are maximum and minimum generation levels for the generator g,

respectively, P gnom is the dispatch solution of the OPF model, dc the droop constant, wn is the
system nominal frequency, and wgmax/w

g
min are the maximum and minimum frequency limits for

the generator g, respectively. In addition, Sd represents the apparent power consumed by the load
d, Vb is the voltage magnitude of bus b, Z1 and Z2 are constant impedance values, and Vmin/Vmax

are the minimum and maximum admitted bus voltage magnitudes, respectively. The characteristic
defined in (3.31) states that each generator posses a window on which can deliver power, limited
by generation limits and ramps rates. On the other hand, equation (3.32) imposes that the power
consumed by loads is constant between admissible values of bus voltage magnitudes. Conversely,
operating out of this range means a constant impedance behavior. Graphically, modified charac-
teristics of both generators and loads are described by piece–wise linear functions, as is shown in
Fig. 3.11 and 3.12, respectively.
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Figure 3.11: Power–frequency curve for generators.
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Figure 3.12: Power–voltage curve for loads.

As result, the modified load flow equations used for the operation evaluation are stated as
follows:

∑
j∈G(i)

pgj (w) +
∑

j∈R(i)

wj − pdb(Vi) =

∑
i∈δ(i)

ViVj(Gij cos(θi − θj) +Bij sin(θi − θj)) ∀i ∈ B (3.33)

∑
j∈G(i)

qgj − qdi (Vi) =

∑
j∈δ(i)

ViVj(Gij sin(θi − θj)−Bij cos(θi − θj)) ∀i ∈ B (3.34)

(3.31) ∀i ∈ G (3.35)
(3.32) ∀b ∈ B (3.36)

qgj =

{
Qslack j = jslack

q̄gj j 6= jslack
∀j ∈ G (3.37)

Vislack = 1 (3.38)
θislack = 0 (3.39)

where wj is the value of renewable generation extracted from real–time data, and jslack is the
index of the slack generator that supplies the necessary amount of reactive power Qslack. The
other generators are defined to dispatch the reactive power q̄gj calculated in the OPF. Finally,
islack is the index of the slack bus, which has a fixed value of voltage, equal to 1(p.u.), and defines
the reference bus angle.

3.6 Solution methodology
In this work, the adaptation is solely evaluated for the robust risk measure, i.e., solution methods
for problem (3.6)-(3.17) are only analyzed for ρλ(.) = maxU∈Uλ(.).

3.6.1 Two–stage UC model resolution
Solution methods for the problem (3.6)-(3.17) heavily depend on the function ρλ(.), leading to the
need to analyze strategies case by case. In the present work, two cases are analyzed, namely the
robust case, with ρλ(.) = maxU∈Uλ(.), using the scenario–based uncertainty set (3.20), and the
conditional value–at–risk case, with ρλ(.) = CVaRλ(.).
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In this case, we will use the C&CG algorithm, leading to a master–subproblem structure. Since
the second stage problem (3.7)-(3.17) is linear, the optimal solution of maxU∈Uλ(zk(X,U)) lies
in an extreme point of Uλ [153] and, considering that Uλ is constructed as the convex hull of the
scenarios {Uk}k∈K, optimizing over Uλ is equivalent to optimize over {Uk}k∈K. Therefore, let
z̃k(pkh, sp

k
h, sm

k
h) =

∑
h∈H((cg)Tpkh+(c+)T spkh+(c−)T smk

h) the second stage cost of the scenario
k, and the master problem defined as follows:

min
X∈X3bin

∑
h∈H

(cfix)Txh + η (3.40)

s.t.

η ≥ z̃k(pkh, sp
k
h, sm

k
h) ∀k ∈ Kj (3.41)

Constraints (3.8)-(3.17) ∀k ∈ Kj (3.42)

Problem MP is equivalent to (3.6)-(3.17) if Kj = K. In this way, the spirit of the C&CG
algorithm is to sequentially add critical scenarios to solve a smaller problem with Kj ⊆ K. To this
end, consider the following subproblem:

SP: Q(X) := max
k∈K

zk(X,Uk) (3.43)

Due to the existence of slack variables spkh and smk
h, the original problem has a complete

resource in the second stage [147], i.e., ∀X ∈ X3bin, the problem SP has a feasible solution. Thus,
if X̃ is a feasible solution of (3.6)-(3.17), then X̃ + Q(X̃) is an upper bound for the original
problem (3.7)-(3.17). Conversely, if Kj ⊆ K, MP represents a relaxation of the original problem.
Accordingly, a sequence of every time tighter bounds can be obtained by following Algorithm 2
presented below.

Algorithm 2: C&CG algorithm for the two–stage RUC
1 Initialization: j ← 0, Kj ← ∅, UB← +∞, LB← −∞, and select a tolerance value δ ;
2 Solve MP and get the optimal solution (X∗, η∗) ;
3 Update LB =

∑
h∈H(cfix)Tx∗h + η∗ ;

4 Solve SP and get Q(X∗) and k∗ ;
5 Update UB =

∑
h∈H(cfix)Tx∗h +Q(X∗) ;

6 if UB− LB ≤ δ then
7 Return X∗ ;
8 else
9 Update j ← j + 1 and Kj+1 ← Kj ∪ {k∗} ;

10 Go to step 2 ;
11 end

3.6.2 Robustness level determination via double Q–learning
According to [104], many strategies can be selected to approximately solve Bellman’s equation
(3.22). In this work, is opt to use the double Q–Learning algorithm [110]. Accordingly, consider
the Q-function defined as Q(sn, λn) = E [gn(sn, λn, ξξξn) + γJ(sn+1)], which evaluates the future
expected cost of applying the control λn given the current state sn. Then, the optimal value of Q
also satisfies the Bellman’s equation:

Q?(sn) = min
λn∈Λ

E
[
gn(sn, λn, ξξξn) + γmin

ν∈Λ
Q(sn+1, ν)

]
(3.44)

where the optimal policy (control law) is obtained as

µ?n(sn) ∈ arg min
λn∈Λ

Q(sn, λn) (3.45)

To solve (3.44) approximately and generate a recursive method to update the Q–function,
consider a discretization of the robustness level domain Λ = {λj}j∈J , with J = {1, 2, ...,M}. Given
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the definition of sn in Section 3.4, the set S = {si}i∈I is already discrete, with I = {1, 2, ..., N}.
Hereby, the Q–function can be interpreted as an N ×M matrix or table, Q(i, j), on which every
entry (i, j) contains the Q–value of the pair (si, λj). Without loss of generality, let us express
the DP equation in terms of states and control variables indexes, (sn, λn) → (in, jn) ∈ I × J .
In this way, consider that at certain time n, the system is in the state in, and the estimation
of the Q–table is Q̃n(i, j), which generates an estimate of the optimal robustness level index
jn ∈ arg minj∈J Q̃n(in, j). The Q–learning algorithm uses the recursive definition (3.44) to update
the Q–table as follows:

Q̃n+1(i, j) = (1− αn)Q̃n(i, j) + αn(Fn(Q̃n, v))(i, j) (3.46)

where 0 < αn < 1 is the learning rate at time n and Fn(Q̃n, v) is the updating operator defined as:

(Fn(Q̃n, v))(i, j) ={
gn(in, jn, ξξξn) + γQ̃n(in+1, v) (i, j) = (in, jn)

Q̃n(i, j) (i, j) 6= (in, jn)
(3.47)

with v ∈ arg minj∈J Q̃n(in, j). Equation (3.47) states that the Q–value of the pair (in, jn) is
updated using a step–size αn, remaining all others Q–values unchanged.

Since at the beginning of the algorithm few historical information has been captured in Q̃t, at
the first periods is necessary to explore many values of λ rather than select the value induced by
the estimator. Oppositely, as the algorithm evolves, it becomes desirable to choose values induced
by Q̃t rather than exploring. To this end, an ε–greedy selection policy is often used:

Sε(Q̃n) =

Select j w. prob. 1−εn
|JQ̃|

∀j ∈ JQ̃
Select j w. prob. εn

|Λd/JQ̃|
∀j ∈ Λd/JQ̃

(3.48)

where JQ̃ := arg minj∈J Q̃n, and 0 ≤ εn ≤ 1 is the exploring probability, which is expected to
decrease as iterations progress. In this way, the double Q–Learning algorithm to the robustness
level determination is described in Algorithm 3.

Algorithm 3: Double Q–learning algorithm for robustness level determination.

1 Initialization: n = 0, Q̃1
0(i, j) = Q̃2

0(i, j) = 0, ∀(i, j), s0 = s̄, α0 = ᾱ, ε0 = ε̄ ;
2 while n ≤ |T | do
3 Obtain jn from Sε(Q̃

1
n + Q̃2

n);
4 Solve (3.6)-(3.17) with λ = λjn to obtain x∗ ;
5 Run the simulation model to obtain sn+1 = f(sn, λn,ΞΞΞn) and gn(in, jn,ΞΞΞn) ;
6 if event with probability 0.5 then
7 Select v ∈ arg minj∈J Q̃1

n(in, j) ;
8 Update Q̃1

n+1(i, j) = (1− αn)Q̃1
n(i, j) + αn(Fn(Q̃2

n, v))(i, j);
9 else

10 Select v ∈ arg minj∈J Q̃2
n(in, j) ;

11 Update Q̃2
n+1(i, j) = (1− αn)Q̃2

n(i, j) + αn(Fn(Q̃1
n, v))(i, j);

12 end
13 n← n+ 1 ;
14 end
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Chapter 4

Computational experiments

The present chapter comprises the methodologies, data, and results correspond-
ing to the developed computational experiments. In the first place, an overall
description of the instances used for evaluating the proposal is presented. Ref-
erences of the data used are included for the sake of reproducibility of the
experiments. Then, the tested methods used for comparison are introduced,
and the evaluation methodology is described. The specifications of the mea-
sured indicators and the formulation of the used Q–learning cost functions are
also incorporated. Lastly, the two tested cases are presented, and the specific
parameters configuration, measured indicators, and performance comparison
analyses are shown.

4.1 Preliminaries

Numerical experiments were performed to test the performance of the proposed scheme against
previously reported approaches. For the sake of reproducibility, the instances and the data utilized
are the same as the ones used in [20], namely an illustrative 4–bus system and the IEEE 118–bus
system. Additionally, wind generators were considered for the inclusion of the uncertainty, using
the data of the Global Energy Competition [2].

The study compares the performance of the closed-loop scheme using the robust approach for
the UC problem, in the future referred to as ARUC, against the open-loop version of the same
model using fixed values of robustness, from now on referred to as FRUC, and which has previously
used in [20, 23]. The value of the robustness level used in the FRUC method was defined as λ = 1,
as in [20]. This calculation was made by exhaustive enumeration of λ values from 0 to 1, using a
step of 0.05. The value of λ = 1 results in the best performance in the indicators described in the
next section. For further evaluation, we also include results for a two–stage stochastic model and
a model considering CVAR for the second–stage cost measure, which will be referred to as STO
and CVAR, respectively. All methods were tested according to the procedure described in section
3.5.

The two–stage STO model, considering equiprobable scenarios, can be formulated as follows:

min
X∈X3bin

∑
h∈H

(cfix)Txh +
1

|K|
∑
k∈K

z̃k(pkh, sp
k
h, sm

k
h) (4.1)

s.t.
Constraints (3.8)-(3.17) (4.2)

On the other hand, according to [149], the conditional value–at–risk is defined as CVaRλ(z) =
min
η

(η + 1
1−λE([z − η]+)), where the function [a]+ = max{0, a}. Then, considering discrete and
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equiprobable scenarios, the CVAR formulation applied to the problem (3.6)-(3.17) is equivalent to:

min
X∈X3bin

∑
h∈H

(cfix)Txh + η +
1

|K|(1− λ)

∑
k∈K

ψk (4.3)

s.t.

z̃k(pkh, sp
k
h, sm

k
h)− η − ψk ≤ 0 ∀k ∈ K (4.4)

η ≥ 0 (4.5)
Constraints (3.8)-(3.17) (4.6)

where the value of λ was selected as 0.05, capturing the average of the 5% of worst cases.
Concerning to the number of scenarios considered for the UC resolution, |K| = 30 was selected

for every method, derived from the numerical studies made in [20]. In this way, daily profiles of the
latest 30 days for every REG source and load are synthesized. Finally, different REG penetration
levels were analyzed for the comparison of the FRUC and ARUC methods, where the original data
of wind availability was consistently scaled.

4.2 Evaluation methodology
For the use of the experimentation framework described in section 3.5, ∆ was selected as 15 minutes,
and N∆ as one hour, resulting in t = n. Therefore, following Fig. 3.9, at every simulation period
t the UC model (3.6)–(3.17) is solved, and the solution of the hour 2, x?2, is implemented in the
period t+ 1. Thereafter, every 15 minutes of simulation time, the OPF model is solved using data
of the past 15 minutes, defining generators’ dispatch levels. Finally, 15 minutes later, exact power
flow equations (3.33)-(3.39) are solved using out–of–sample data. Hence for every UC solution,
four evaluations are made, where data with 15–minute granularity was generated from the original
dataset using cubic splines.

Respecting the double Q–learning algorithm, two cost functions g(it, jt, ξξξt) were selected. The
first one corresponds to the differences between the real generation cost and the planning generation
cost, g(it, jt, ξξξt) = (cg)T (pReal −pk

∗
), where pReal is the vector of real generated power, obtained

after the corrections made by droop–frequency characteristic, and pk
∗
is the vector of the dispatches

levels on the scenario k∗, with k∗ = argmaxk{z(X,Uk)}k∈K. The second cost function considered
was g(it, jt, ξξξt) =

∑4
i=1 ||x∗ − xevali ||, where x∗ is the optimal commitment solution calculated by

the planning model, at the corresponding hour, and xevali is the optimal commitment solution of a
single–period UC problem with a second order cone relaxation on the power flow manifold, using
the data of the i–th quarter of the hour t, i.e., with the out–of–sample data used in the evaluation.
Specifically, the model used for the calculation of the second learning cost function is presented
below:

min
∑
i∈G

(cNLi xi + cSUi vi + cSDi wi + cgi p
g
i )

+
∑
b∈B

(
c+(sppb + spqb) + c−(smp

b + smq
b)

)
(4.7)

s.t.
∑
j∈Gi

pgj +
∑
j∈Ri

wj − pdi + smp
i − sppi = Giicii +

∑
j∈δ(i)

(Gijcij −Bijsij) ∀i ∈ B (4.8)

∑
j∈Gi

qgj − qdi + smq
i − spqi = −Biicii +

∑
j∈δ(i)

(−Bijcij −Gijsij) ∀i ∈ B (4.9)

(−Gijcii +Gijcij −Bijsij)2 + (Bijcii −Bijcij −Gijsij)2 ≤ (fmaxij )2 ∀(i, j) ∈ L (4.10)

V 2
i ≤ cii ≤ V̄ 2

i ∀i ∈ B (4.11)
cij = cji, sij = −sji ∀(i, j) ∈ L (4.12)

c2ij + c2ij ≤ ciicjj ∀(i, j) ∈ L (4.13)

pmini ui ≤ pgi ≤ pmaxi ui ∀i ∈ G (4.14)

qmini ui ≤ qgi ≤ qmaxi ui ∀i ∈ G (4.15)
(2.6)− (2.8), (2.12)− (2.13) (4.16)
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where the binary variables ui, vi, wi are defined according to the 3–bin model (section 2.2.2), as
well the fixed costs cNLi , cSUi , cSDi , and the variables cii = e2

i +f2
i , cij = eiej+fifj , sij = eifj−ejfi,

with ei, fi, according to the definition of the OPF model (3.23)-(3.29).

After this, these ARUC methods will be mentioned as ARUC1, and ARUC2, respectively,
according to the cost functions used. The idea behind evaluating two different cost functions is to
appreciate the effects of two different criteria of qualifying a solution as good. The first function
considers that the better out-of-sample solution is reached if planning and real dispatch costs are
equal. The second function tries to capture in xevali the commitment solution that achieves null
values for voltage violations and use of reserves while minimizing generation costs, assigning the
distance between the actual commitment solution and xevali as a measure of cost.

Hence, system indicators are obtained from power flow equations solutions for every bench-
marked method. In our case, voltage violations, use of reserves, and generation costs are selected,
from now on referred to as VVIOL, RES, and GCOST, respectively. As four values for each indi-
cator are calculated per hour, hourly values are defined as the four abovementioned averages. It is
important to highlight that our approach differs from the usual methodologies to account system
violations. Classical approaches obtain out-of-sample values of non-served demand and renewable
power spillage from solutions of OPF models that use the calculated commitment solutions and
out-of-sample data. Since we are using exact power flow equations with extended characteristics
for generators and loads (3.31) - (3.32), the system contains enough flexibility to deal with power
imbalances, as is made in the primary frequency control, and demand response control schemes
[152]. In this sense, VVIOL is considered an indicator of system violations, calculated as the sum
of the absolute deviations from the minimum and maximum bus voltage limits, defined as 0.9 and
1.1 p.u., respectively. On the other hand, RES is calculated as the ratio of the sum of the absolute
deviations of the generation levels from its nominal setpoints and the total generated power. Abso-
lute deviations are obtained from exact power flow equations. Finally, GCOST is calculated as the
sum of the fixed costs (cfix)Tx∗, and the dispatch costs resultant from the generated active power
on the load flow equations (3.31). In this sense, the performance of methods can be compared in
terms of the tradeoff between generation costs and voltage violations, which account for the typical
comparison made between costs and robustness.

Finally, MIP (UC), SOCP (OPF), and MISOCP (second learning cost function) models were
solved using Gurobi 9.0.2, whereas non–linear load flow system equations were solved using Knitro
12.0.0. Models were written on AMPL, and the double Q–learning algorithm was programmed on
Python 3.6.2, on an Intel Core i7–10870H processor at 2.2 GHz and 16 GB of RAM.

4.3 Tests systems

4.3.1 Illustrative 4–bus System

Firstly, a 4–bus system, depicted in Fig. 4.1, was used for the application of the methods, in order
to evidence and check the concept’s effectiveness. The system is composed of 14 thermal generators,
4 buses, 4 lines, and 2 wind generators. Wind generation data were extracted from buses 2 and 5
from the Global Energy Competition data [2], and the specification of system parameters can be
found in the references of [20]. All the UC models tested were solved monolithically due to the
size of the system, using a MIP–gap of 10−6. Fig. 4.1 shows the single line diagram of the system,
and the maximum values of generation and loads values at each bus, for the case of 7% of REG
penetration, while Fig. 4.2 shows the wind profiles for buses 1 and 4, for the same case of REG
penetration, which were set as the values of buses 2 and 5 of [2], respectively.

Concerning to the double Q–learning parameters, αt was selected as αt = 1
t+1 , and for the ε–

greedy selection policy, εt+1 = kεt, with k = 0.99, ε0 = 1, and a lower limit εmin = 0.01. For both
ARUC methods, the domain of robustness levels were selected as Λ = {0, 0.05, 0.1, ..., 0.95, 1.0}.
The evaluation was made for 210 days (5040 hrs.) of out–of–sample data for wind generation and
active/reactive power loads, capturing daily average values.
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Figure 4.1: 4–bus test system single line diagram. The values shown for generators and loads
represent maximum values.
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Figure 4.2: Wind profiles used in the 4–bus system. Profiles of buses 1 and 4 were set as the
profiles of buses 2 and 5 of [2], respectively.

Firstly, the evolution of daily operational indicators are displayed for every method in Fig. 4.3.
Similarly, for illustrative purposes, generators schedules for 168 consecutive hours (one week) are
depicted in Fig. 4.4. Differences between ARUC2 and FRUC methods could be observed.

To obtain a more conclusive constrast, a comparison of daily average values between STO,
CVAR, FROB, ARUC1 and ARUC2 methods was made for the case with 7% of REG penetration,
where the results are shown in Table 4.1. As can be seen, the proposed closed–loop versions of
the robust method achieve lower daily average values for every analyzed index, considering the
two above–mentioned cost functions for the learning algorithm, overmatching the others analyzed
methods. Since the similarity of the values obtained, statistical hypothesis tests were driven for
the differences of each pair of method’s samples, specifically the t–Student test and the Wilcoxon
signed-rank test, both rejecting the null hypothesis of equal means and equal medians, respectively.
Besides, standard deviation values of daily indicators are presented in Table 4.2. Results show that
the dispersion on voltage violations is also lower for both ARUC methods, whereas dispersion of
daily generation costs is lower for the FRUC method. However, it can be checked that the robust
closed–loop methods achieve the lowest values for hourly values.
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Figure 4.3: Daily operational indicators for 210 days of out–of–sample tests, for every analyzed
method.
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Figure 4.4: Differences on generators schedules for a week between ARUC2 and FRUC methods.
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Metric STO CVAR FRUC ARUC1 ARUC2

VVIOL (p.u.) 0.027 0.037 0.032 0.018 0.014

RES (-) 0.091 0.088 0.088 0.084 0.084

GCOST (kUSD) 66.47 65.59 65.61 64.66 64.73

Table 4.1: Daily–average values of system indicators for the analyzed solution methods for the
4–bus case with 7% of renewable generation penetration.

Std. Deviation STO CVAR FRUC ARUC1 ARUC2

Daily VVIOL (p.u.) 0.133 0.151 0.138 0.088 0.067
GCOST (kUSD) 3.76 3.75 3.72 3.96 3.89

Hourly VVIOL (p.u.) 0.014 0.017 0.015 0.009 0.008
GCOST (kUSD) 0.824 0.825 0.824 0.809 0.814

Table 4.2: Standard deviation of demand violations and generation costs for the analyzed methods
on the 4–bus case with 7% of REG penetration.

Also, in order to compare the trade–off between cost and robustness for each method, a Pareto
front is constructed in Fig. 4.5 for the case with 7% of penetration. Daily average generation costs
and daily average voltage violations for each method are plotted. Results show the effectiveness
of both closed–loop versions of the robust method, which dominate, in a Pareto sense, every other
method, by improving in average both daily voltage violations and generation costs.
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Figure 4.5: Pareto front of daily averages for metrics VVIOL and GCOST. Average values are
depicted with an star, and the boxes surrounding them have edge lengths equal to their standard
deviation.

Conductive to the comparison of the differences between the open and closed–loop versions for
the robust method, Table 4.3 shows the results of VVIOL, RES and GCOST for three levels of
REG penetration studied. The percentage of improvement of ARUC1 and ARUC2 over FRUC are
denoted by ∆FA1 and ∆FA2, respectively. It can be seen ARUC schemes improve the indices at all
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penetration levels. It is noted larger improvements in GCOST are observed for higher penetartion
levels. For the case of 25% of penetration, ARUC1 and ARUC2 methods reach a 2.81% and a
6.02% of improvement in generation costs, which are known to be significant in the context of the
UC [154]. Additionally, results on the use of reserves exhibit the capacity of ARUC methods of
selecting more accurately the adequate set–points of generators, which produces lower corrections
and lower use of reserves.

REG level Model VVIOL (p.u.) RES (-) GCOST (kUSD)

7%

FRUC 0.0319 0.0884 65.61
ARUC1 0.0177 0.0842 64.66
ARUC2 0.0137 0.0844 64.73
∆FA1% 44.51 4.75 1.44
∆FA2% 57.05 4.52 1.33

14%

FRUC 0.5638 0.0887 61.86
ARUC1 0.4718 0.0853 61.02
ARUC2 0.4039 0.0841 60.60
∆FA1% 16.32 3.83 1.36
∆FA2% 28.36 5.19 2.03

25%

FRUC 2.1558 0.0913 57.90
ARUC1 1.8197 0.0883 56.27
ARUC2 1.5528 0.0843 54.41
∆FA1% 15.59 3.26 2.81
∆FA2% 27.97 7.67 6.02

Table 4.3: Comparison of daily average results between open–loop and closed–loop methods for
different values of renewable generation penetration for the 4–bus case.

Histograms of differences are drawn in Fig. 4.6 and 4.7 to graphically appreciate the differences
between ARUC and FRUC methods. Those are plotted for every analyzed metric and the three
levels of REG penetration. The differences of FRUC from ARUC1 and ARUC2 models are denoted
by |∆FA1| and |∆FA2|, respectively. As can be seen, on reserves use, and generation costs differences,
a high mass of samples are right-shifted from zero. Moreover, on generation costs, the distribution
shape is conserved and increasingly shifted to the right as the penetration level grows. On the
other hand, voltage violations are mostly zero, showing that system flexibility is enough to supply
imbalances due to the discrepancies between planning and real operation.
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Figure 4.6: Histograms of the differences between FRUC and ARUC1 methods of VVIOL, RES
and GCOST indexes, for the 4–bus system. Different REG penetration level are analyzed, where
|∆FA1|I represents the difference on index I between FRUC and ARUC1 methods.
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Figure 4.7: Histograms of the differences between FRUC and ARUC2 methods of VVIOL, RES
and GCOST indexes, for the 4–bus system. Different REG penetration level are analyzed, where
|∆FA2|I represents the difference on index I between FRUC and ARUC2 methods.

4.3.2 IEEE 118–bus system

The second system under analysis corresponds to a modified version of the IEEE 188–bus instance,
showed in Fig. 4.8, which includes 10 wind farms, the same as was made in [20], where wind profiles
are illustrated in 4.9. For this study case, only the robust case was tested, principally due to the
poor computational performance of stochastic and CVaR–based models.

Two–stage robust models were solved using the C&CG algorithm, with a MIP gap of 0.005%
for the master problem, and the subproblems solved to optimality. The methods were tested for
120 days of simulation (2880 hrs.). Finally, tests were run using real–time data, extracted from
[2], whereas network data can be found in [20]. Respecting the settings to the double Q–learning
algorithm, learning parameters, and sets were defined as the same as the 4–bus case.
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Daily–average values of the operational metrics are presented in Table 4.4, for REG penetration
levels of 14 and 25%. As can be seen, VVIOL is very small which means no voltage violations are
encountered. In contrast with 4–bus case, the 118–bus instances possess much more conventional
generators, with each one having a power–frequency droop characteristic. This results in such
flexibility that allows to completely compensate power discrepancies between planned and real
renewable generation values. On the other hand, significant improvements observed on the GCOST
metric are noticed, which increases with REG penetration level. Similar to the 4–bus system case
study, the use of reserves is also reduced by the ARUC models, showing the better capability of
the proposal on predicting real renewable generation values.
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Figure 4.9: Wind profiles of the 10 wind generators included in the IEEE 118–bus system, consid-
ering a 7% of REG penetration.

REG level Method VVIOL (p.u.) RES (-) GCOST (USD)

14%

FRUC ∼ 10−5 0.0362 1129.62
ARUC1 ∼ 10−5 0.0355 1124.81
ARUC2 ∼ 10−5 0.0356 1124.74
∆FA1% ∼ 0 1.93 0.43
∆FA2% ∼ 0 1.66 0.43

25%

FRUC ∼ 10−5 0.0327 985.88
ARUC1 ∼ 10−5 0.0316 971.73
ARUC2 ∼ 10−5 0.0319 958.43
∆FA1% ∼ 0 3.63 1.43
∆FA2% ∼ 0 2.45 2.78

Table 4.4: Comparison of daily average results between open–loop and closed–loop methods for
different values of renewable generation penetration for the IEEE 118–bus case.

It is essential to highlight that, by definition, the ARUC1 model adds no computational com-
plexity to the solution algorithm since the calculation of the double Q-learning cost function is read
from the Q-table directly. On the other hand, the ARUC2 model requires solving a mixed-integer
SOCP (MISOCP) problem for the UC model for one period with deterministic REG and load
levels values.

Table 4.5 shows different measures of the computational time needed to solve one-step of every
involved model for the case with 25% of REG level penetration. As already discussed and shown in
[20], the FRUC model possesses relatively short computation times compared with the maximum
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limit that ensures the applicability of the proposed framework with hourly periodicity, i.e., 3600(s).
In this sense, the present results confirm the scalability of FRUC under the proposed methodology.
At the same time, a step of the ARUC1 model takes, on average, the same time as FRUC, where
the rest of the measures keep very similar. Finally, ARUC2 model time measures are slightly
greater than the reported on FRUC and ARUC1, with an average increment of 4.10% concerning
FRUC, which results negligible in the light of the improvement in operational results. In this sense,
both ARUC models keep the order of the FRUC computational time, ensuring the scalability of
the proposal.

Measured Time FRUC ARUC1 ARUC2

Average (s) 536 536 558

Std. Deviation (s) 567 566 577

Min. (s) 24 11 25

Max. (s) 3352 3342 3362

Table 4.5: Computational times for the 118–bus system with a 25% of REG penetration level.

Another interesting fact is the better performance of model ARUC2 against ARUC1 at high
levels of penetration. From both learning cost functions, including information about a more
detailed plant’s model helps estimate the impact of λ on the out-of-sample solution. That cost
function captures the best possible operation of the system, knowing the values of the uncertain
data and given a previous system state. Since the detailed UC model is executed for a single period,
the approach can be classified as greedy, as it does not measure the effects on the subsequent
periods. However, this definition intrinsically pursues a solution that minimizes all the analyzed
system metrics.
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Chapter 5

Conclusions and future work

The present work has described a novel and comprehensive approach to address the UC problem
considering uncertainty management. The proposal is based on the design of a sequential decision–
making formulation, representing a real-time operation. Specifically, the decision process from the
generator schedule determination to real-time, steady-state network behavior is modeled.

Taking advantage of previous approaches that deal with uncertainty in the UC, the present
proposal defines a robustness level variable that controls the conservativeness of the commitment
solution. To this end, a scenario-based uncertainty set with a robustness control parameter is
proposed, allowing to account for REG variability, controlling the size of the set at the same time
while maintaining an efficient computational implementation.

Unlike conventional approaches, this work proposes defining this robustness level as a control
variable and determining it as a function of real-time system indicators, constituting a closed–loop
framework.

In conjunction with the framework, a simulation model of real–time operation is also proposed.
It is composed of a non–linear OPF model that manages the determination of dispatches levels
of generators, and a set of modified load flow equations, containing extended characteristics of
generators and loads, representing the real–time actuation of fast controllers. Then, the evaluation
methodology for the UC solutions uses a non-linear model of the real-time operation itself instead
of constructing linear models that accomplish the infeasibility of the operation, as is reported in
previous approaches.

The complete problem formulation is then suitable to be solved via optimal control methods.
Particularly, this proposal solves it approximately by using the double Q–learning algorithm.

Computational experiments were performed to compare the effectiveness of the proposal against
previous approaches. Specifically, a two-stage stochastic model and a two-stage robust model using
scenario-based uncertainty sets were benchmarked. The mentioned methods were tested over two
different size instances, showing the superior performance of the proposal, both in the robustness
and cost of the solution. Besides, as the proposed uncertainty set can be constructed as a convex
hull of a set of scenarios, for every value of the robustness level, the proposal can be efficiently
solved by using the C&CG algorithm, allowing to be scalable to more complex systems.

Hereby, the principal conclusions and observations of the developed work are the following:

1. The dynamic determination of internal parameters that define the size and robustness of
uncertainty sets, based on out-of-sample evaluation data and results, can positively impact
robust models’ performance. Results demonstrate that, for different hours and system con-
ditions, robustness levels that achieve the lowest out-of-sample costs are generally differ as
time evolves and new realizations are observed. Moreover, this thesis demonstrates the effec-
tiveness of the concept by adapting one single parameter that can take few discrete values.

2. The statement of closed–loop frameworks for short-term planning problems can improve the
performance of the used models. Results have shown that adapting solutions according to
out–of–samples results and the real–world system’s behavior can improve operational indexes.
In that regard, constructing an appropriate simulation model of real operation is essential
since it allows to approximate the impact of planning solutions on the objective indicators.

3. The addition of adaptation schemes for short–term planning problems is computationally
cheap for some learning algorithms, as the double Q–learning algorithm. This thesis shows
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that this concept applies to different policies for the account of uncertainty, as the robust
and CVaR–based two–stage models. In this sense, this concept is generally applicable. The
scalability depends only on the availability of efficient algorithms to solve optimization prob-
lems with uncertainty management, constituting a crucial element in the adaptation process,
analogous to the plant model in the control language.

Finally, in the light of the results and the developed ideas, future research will consider:

1. Explore the possibilities of the present scheme with other uncertainty sets and other prob-
ability measures on the second stage costs. Many approaches use parameters that control
robustness that are suitable to be dynamically calculated under this methodology. Moreover,
the present proposal could be extended and consider the number of considered planning sce-
narios |K| as an additional parameter to be adapted. Indeed, any amount of parameters with
different interpretations could be adapted under this methodology. Future research could
consider a more general framework for adaptation in short–term planning problems.

2. Explore the performance of other algorithms for the resolution of the optimal control problem
(3.22). This proposal uses the double Q–learning algorithm due to the ease of implementa-
tion and interpretation, more for testing the effectiveness of the concept of the closed–loop
adaptation than to take advantage of the effectiveness of the double Q–learning algorithm.
Even with simple definitions of states and cost functions, the proposal shows improvement
concerning previous approaches. The use of more complex learning algorithms, or other
approaches, as the approximation of the cost–to–go function J(st), could reach even better
results.

3. Explore the possible benefits of applying this concept in other engineering contexts. System
structures composed of a short–term planning model and a real–world plant are present in
various problems in which the application of this concept could be worthy. As an example,
this concept could be implemented in OPF problems with uncertainty management. As the
dispatches levels calculation directly impacts real–time system indicators than the calcula-
tion of generator statuses, the improvement of the operational indexes could be even more
significant.

4. Explore techniques of scenario generation to achieve good performance in out-of-sample eval-
uation models. One exciting fact observed along the development of the present thesis is
that optimal dispatch points in the UC stage are generally non–optimal or even infeasible
for other models using more detailed network equations. In this sense, scenario generation
processes can produce commitment and dispatch solutions contained in the power flow mani-
fold, and hopefully, optimal. This fact has a strong connection with the relationship between
planning and plant models. The two significant differences between them are the difference
of data and the difference between the equations. Even with perfect knowledge of future
realizations, planning models with approximated equations could generate bad solutions in
terms of the plant model. Therefore, an appropriate selection of scenarios could compensate
for the models’ differences to obtain better out–of–sample results.
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