
UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Repositorio Digital USM https://repositorio.usm.cl

Tesis USM TESIS de Postgrado de acceso ABIERTO

2016

A MATHEMATICAL AND

COMPUTATIONAL MODEL FOR

MULTIPLE COLLISIONS OF RIGID

BODIES: ANEXTENSION OF A-CD2 METHOD

LEON VASQUEZ, ROBERTO JESUS

http://hdl.handle.net/11673/13966

Repositorio Digital USM, UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Universidad Técnica Federico Santa María

Departamento de Informática

A Mathematical and Computational Model for

Multiple Collisions of Rigid Bodies: An

Extension of A-CD
2

Method

Thesis by

Roberto Jesús León Vásquez

In Partial Fullfillment of the Requeriments for the Degree of

Doctor in Informatic Engineering

Valparaíso, Chile

July, 2016

ii

Title of Thesis

A Mathematical and Computational Model for Multiple Collisions of Rigid

Bodies: An Extension of A-CD2 Method

Author

Roberto Jesús León Vásquez

In Partial Fullfillment of the Requeriments for the Degree of Doctor in Informatic

Engineering of Universidad Técnica Federico Santa María

Luis Salinas Ph.D.

advisor, utfsm

Claudio Torres Ph.D.

co-advisor, utfsm

Eric Dimnet Ph.D.

co-advisor, ifsttar

Mauricio Solar Ph.D.

internal member, utfsm

Rodrigo Soto Ph.D.

external national member, uchile

Mario Alberto Storti Ph.D.

external international member, unl

Hernán Astudillo Ph.D.

committe president, utfsm

Valparaíso, Chile July 13th, 2016

iii

This thesis is dedicated to my family:

Karina, Leonor and Lucas.

Acknowledgements

I want to thank my wife for her unconditional love and support in this process.

Also for encouraging me when I was fallen and be a mainstay in my life. Thanks to

my children, Leonor and Lucas, they are my core and my force to keep going.

Thanks to my mentor Dr. Luis Salinas, for his guide, support and dedication in

this work. For his countless advices and suggestions. To Dr. Claudio Torres, for his

dedication in this work, for the countless meetings, suggestions and also advices. To

Dr. Eric Dimnet, for his dedication in this work, for his suggestions and advices,

and also for his support in my stay at Paris and thanks to my collegue, friend and

guide Dr. Gonzalo Hernández, for his constant support, friendship and advices.

Thanks to my wife’s parents, Marta y Juan Carlos, for his support, advices and

being part in this process. To my best friends Leticia and Sebastián, for his support

and friendship.

This research was partially supported by: CONICYT grant ”Doctorado en Chile“,

MECESUP grant ”Doctorado- Programa Nacional“ and the project BASAL FB0821

CCTVal.

Powered@NLHPC: This research was partially supported by the supercomputing

infrastructure of the NLHPC (ECM-02).

v

Abstract

An extension of a mathematical model and a computational simulation for mul-

tiple collisions of rigid bodies is presented in this work.

The A-CD2 method gives a mechanical description for instantaneous collisions

between rigid bodies. The solution of a constrained optimization problem is required

for obtaining the new velocities of the rigid bodies after collision.

The extension includes the use of the Euler equations for modeling the angular

velocities, this produces a non constant angular velocities when the moments of

inertia are different. If the moments of inertia are equal, we obtain the constant

angular velocity solution.

The extension considers also a reduction in the computational complexity of the

original algorithm. The computational complexity has been reduced from an O(N2)

algorithm to an O(N) algorithm. This reduction allows to handle problem 20 times

larger than the original implementation.

Finally, numerical simulations for a shock-absorber structure, a rockslide real

event and granular layers motion are presented.

Keywords: rigid body collision, contact detection, computational com-

plexity, Jacobi elliptic function

vii

Resumen

Una extensión de un modelo matemático y simulaciones computacionales para

colisiones múltiples de cuerpos rígidos es presentada en este trabajo

El método A-CD2 entrega una descripción mecánica para colisiones instantáneas

entre cuerpos rígidos. La solución de un problema de optimización con restricciones

es requerida para obtener las nuevas velocidades de los cuerpos rígidos después de

una colisión.

La extensión a este método incluye el uso de las ecuaciones de Euler para modelar

las velocidades angulares, esto produce velocidades angulares no constantes cuando

los momentos de inercia son distintos. Si los momentos de inercia son iguales, se

obtienen velocidades angulares constantes.

Esta extensión considera también una reducción en la complejidad computacional

del algoritmo original. La complejidad computacional ha sido reducido de un algo-

ritmo O(N2) a un algoritmo O(N). Esta reducción permite manejar problemas 20

veces más grandes que la implementación original.

Finalmente se presentan simulaciones numéricas sobre una estructura granular,

un evento real de una avalancha y la constitución de capas granulares.

Palabras claves: colisión de cuerpos rígidos, detección de contactos,

complejidad computacional, funciones elípticas de Jacobi

ix

Contents

Acknowledgements v

Abstract vii

Resumen ix

List of Tables xv

List of Figures xvii

Chapter 1. Introduction 1

1.1. Granular Material 2

1.2. Collision Model 5

1.3. Contact Detection 17

Chapter 2. A-CD2 Model 29

2.1. Rigid Bodies Collisions 29

2.2. A-CD2 Approach 33

Chapter 3. Numerical Model 49

3.1. Matrix Representation 49

3.2. Torque and Force Free Rigid Box Motion 59

3.2.1. First Solution 68

3.2.2. Second Solution 72

xi

xii CONTENTS

3.2.3. Comparison 78

3.2.4. Numerical Results 85

3.3. Contact detection 96

3.3.1. Surface contact detection 99

3.3.2. Face contact detection 100

3.3.3. Edge contact detection 101

3.3.3.1. Starting Situation 102

3.3.3.2. The local reference system 102

3.3.3.3. Checking whether some edges of V intersect box U 104

Chapter 4. Computational Model 107

4.1. Main Procedure 107

4.2. First version 109

4.3. Second version 113

Chapter 5. Computational resources 123

5.1. Levque Cluster 123

5.2. Leftraru Cluster 126

5.3. Visualization Module 128

Chapter 6. Applications: results and comparison 133

6.1. Study of a shock - absorber structure 133

6.1.1. Description of the impact station 133

6.1.2. Impacted structure 134

6.1.3. Instrumentation 135

6.1.4. Impacts 136

CONTENTS xiii

6.1.5. Mechanical model 137

6.1.6. Numerical computations and comparison 143

6.2. Study of a rockslide real event 156

6.2.1. Data set acquisition 157

6.2.2. Numerical Simulation 161

6.3. Granular layers 170

Chapter 7. Conclusions 175

Bibliography 177

Appendix A. Subdifferential calculus 193

A.1. Definitions 193

List of Tables

3.1 Jacobi differential equations 69

3.2 Comparing term by term with candidate solutions 70

3.3 Coefficients used to find the analytical solutions for ω1(t), ω2(t), and

ω3(t). 72

3.4 Set of initial conditions. 86

5.1 Characteristics of Leftaru. 127

5.2 Modules available in Leftaru 128

6.1 CPU time for impacts. 155

xv

List of Figures

1.1 Complex geometry examples. 4

1.2 Two disc compressed between rigid walls; (a) t = t0, (b) t = t1 = t0 +∆t,

(c) t = t2 = t1 +∆t, see [42] 6

1.3 Contact force, see [85] 9

1.4 The system at collision time: the disks are seen from above, see [27]. 10

1.5 The positions of the rigid rod at different times between the first and

second impact, see [152]. 15

1.6 A simple “potential particle” for two and three dimensions, see [74]. 16

1.7 Examples of block mapping to cell space in two dimensions, see [40] 18

1.8 Multilevel of representations, see [123] 22

1.9 Contact detection problem, see [114] 23

1.10 Space decomposition, see [114] 25

1.11 Common plane (CP) between two particles: (a) particles in contact,

both particles intersect the CP; and (b) particles not in contact, neither

particle intersects the CP, see [119]. 26

1.12 Ellipsoids A and B are nearest neighbors, and they may collide among

them before colliding with their OBP; neither A or B can collide with C

during this time, see [102] 27

xvii

xviii LIST OF FIGURES

2.1 The point x1(t) and the solid Ω(t) move and collide. The outwards

normal vector to Ω(t) is N , projx1 is the projection of x1 on the

boundary ∂Ω of Ω [55]. 30

2.2 Point - plane system: a particle with mass m and a fixed plane. 34

2.3 Definition of reactive percussion 37

2.4 Numerical simulation of a landslide. 48

2.5 System with 1225 solids 48

3.1 The global coordinate system OXY Z and the local orthogonal coordinate

system Gxyz 62

3.2 Evolution from t to ∆t = t+ 1 for the local coordinate system. 65

3.3 Cases A, B, C and D solved with numerical integration method and

analytical solution 86

3.4 Cases E, F, G and H solved with numerical integration method and

analytical solution 88

3.5 Trajectory for a rigid solid with constant rotational velocity. 90

3.6 Trajectory for a rigid solid with non constant rotational velocity. 91

3.7 Solution for ω(t) in [182] 92

3.8 Solution for ω(t) with our proposal. 92

3.9 Solution for I22 = I33, where ω1(t) is constant. 94

3.10 Solution for I11 = I22, where ω3(t) is constant. 94

3.11 Graph for tanh(t) and sech(t). 96

LIST OF FIGURES xix

3.12 Types of bounding volumes, see [53]. 97

3.13 A box 98

3.14 Ground contact 100

3.15 Contact Edge Detection: first version 101

3.16 Edge contact 106

4.1 Computational model for a numerical simulation. 108

4.2 Block Matrix Information 120

5.1 Levque Cluster Network 124

5.2 Levque hardware 126

5.3 Leftaru Cluster 127

6.1 Tested sandwich structure 134

6.2 CER pendular impact facility. Source [145] 134

6.3 Instrumentation of the structure (a: accelerometers, f : force sensors).

Source [145] 135

6.4 Accelerometers and sensors 136

6.5 Shape of the grains 137

6.6 Gabion with 216 grains 138

6.7 The force applied to the grain is proportional to the part of its volume

outside the boundary of the gabion (left); the force is null if the grain is

inside the gabion (right) 139

xx LIST OF FIGURES

6.8 The initial position of the ball and the 9 gabions. The transparent yellow

region is the volume of sand. 140

6.9 Unilateral boundary condition (black zone) 141

6.10 Winkler - Westergaard boundary condition. 142

6.11 Impacts at different level of energy. 143

6.12 Comparison between experimental (blue continuous) and numerical (red

dashed) signals of f1(t) for the 4 impacts of 20%, 40%, 80% and 100% of

Emax. 145

6.13 Comparison between experimental (blue continuous) and numerical (red

dashed) signals of f2(t) for the 4 impacts of 20%, 40%, 80% and 100% of

Emax. 146

6.14 Comparison between experimental (blue continuous) and numerical (red

dashed) signals of f3(t) for the 4 impacts of 20%, 40%, 80% and 100% of

Emax. 147

6.15 Comparison between experimental (blue continuos) and numerical (red

dashed) signals of f4(t) for the 4 impacts of 20%, 40%, 80% and 100% of

Emax 148

6.16 Comparison between experimental (blue continuous) and numerical (red

dashed) signals of a0(t) for the 4 impacts of 20%, 40%, 80% and 100% of

Emax. 150

LIST OF FIGURES xxi

6.17 Comparison between experimental (blue continuous) and numerical (red

dashed) signals of a2(t) for the 4 impacts of 20%, 40%, 80% and 100% of

Emax. 151

6.18 Comparison between experimental (blue continuous) and numerical (red

dashed) signals of a3(t) for the 4 impacts of 20%, 40%, 80% and 100% of

Emax. 152

6.19 Comparison between experimental (blue continuous) and numerical (red

dashed) signals of a4(t) for the 4 impacts of 20%, 40%, 80% and 100% of

Emax. 153

6.20 Left: Comparison between experimental (blue continuous) and numerical

(red dashed) signals of a1(t) for the 4 impacts of 20%, 40%, 80% and 100%

of Emax. Right: Comparision between experimental (blue) and numerical

(red hatched) signals peaks of a1(t) for the 4 impacts of 20%, 40%, 80%

and 100% of Emax. 154

6.21 Comparison between experimental (blue) and numerical (red hatched)

displacements for the 4 impacts of 20%, 40%, 80% and 100% of Emax. 155

6.22 Collapse of the Piton Marcel in Martinique, France. 157

6.23 A sketch of an airborne LiDAR survey 158

6.24 3D LiDAR points before the collapse (IGN survey displayed in height

color scale) and after the collapse (Helilmap survey - blue points) 159

6.25 Height difference between both point clouds coded in a polar scale (blue

to red) and display in the same perspective as in Figure 6.24. Height

xxii LIST OF FIGURES

difference comes from 0[m] to 60[m]. Grey points lie outside the collapse

area. 160

6.26 Location of the initial set of block within the LiDAR Helimap data set. 160

6.27 A rock represented by a regular polyhedron with dimensions a, b and c. 161

6.28 Initial positions of the numerical rock avalanche. Display made by

VPython module visualization. 163

6.29 Kinetic energy with 435 solids. 165

6.30 Dissipative energy with 435 solids. 166

6.31 An avalanche numerical simulation with 435 blocks. 167

6.32 An avalanche numerical simulation with 874 blocks. 168

6.33 Comparison between real and numerical final deposits. The blue curve

delimitates the surface considered in the numerical simulation, and the

red curve delimitates the greater concentration of material in the final

deposit. 169

6.34 Evolution of 500 solids falling. 171

6.35 Evolution of 1000 solids falling. 171

6.36 Evolution of 3000 solids falling. 172

6.37 Evolution of 500 solids forming a heap. 173

6.38 Evolution of 1000 solids forming a heap. 174

6.39 Evolution of 3000 solids forming a heap. 174

LIST OF FIGURES xxiii

7.1 Computational time comparison between the original version (red

dashed) and the new one (blue continuous) for different amounts of

solids. 176

CHAPTER 1

Introduction

Collision between rigid bodies is an important class of process arising in sev-

eral natural events. For instances, avalanches, molecules and asteroids collisions,

etc. And also in many important engineering and industrial problems e.g., mining,

construction, transport, among others.

Thus, it is important to develop computational models for collision simulations

in order to avoid experiments, which usually requires resources and equipments that

are expensive. A computational simulation allows to considerably reduce the use

of special equipments and other resources, and still allowing to obtain a very close

description of the dynamics of the phenomenon, with the goal of analyzing and

studying the evolution of collisions in time.

This thesis followed the approach presented in [132, 46], named A-CD2. This

method obtain the new velocities of a set of solids, after collision, solving a con-

strained minimization problem. Currently this method allows us to simulate a sys-

tem with no more than 1500 solids. The problem is mainly computational: the con-

tact detection algorithm has computatinal complexity O(n2), where n is the number

of solids in the system, and the algorithm used for the constrained minimization

problem, is not the best one for convex optimization. In this thesis an efficient

computational method is presented, where an algorithm with linear computational

1

2 1. INTRODUCTION

complexity is achieved, and an interior point method for the constrained optimiza-

tion problem is used. Now, simulations with more than 5000 solids is achieved, and

the computational time has been decreased considerably. Furthermore, the A-CD2

approach, consideres after collision, the solid evolution with constant rotational ve-

locity, which physically does not obey to classical mechanics equations. In this thesis

a set of new equations is presented to obtain the rotational velocities of a solid in

torque free motion. Several applications are presented in this work: impacts over

gabions (a grid with grains), where the energy curves obtained experimentally and

numerically are compared, simulations of an avalanche ocurred in Martinique also is

presented, where the final deposit is compared with the real images obtained, and

simulations for the constitution of compact grain layers is obtained, where the solids

is concentrated in a point with the objective to have a layer of rigid bodies in equi-

librium. All these simulations are visualized by means of a Python script developed

during this work.

1.1. Granular Material

A granular material is a collection of solid particles or grains, such that most of the

particles are in contact with at least some of their neighboring particles. The term

“granular materials” and “particulate solids” are interchangeably in the literature.

Common examples of granular materials are sand, gravel, food grains, seeds, sugar,

coal, and cement for instance [84].

Granular materials are commonly encountered in nature and in various industries,

that is why the importance of understanding the mechanic and behavior. This is

1.1. GRANULAR MATERIAL 3

still an open problem. Nevertheless, some progress has been made during the past

few decades.

An interesting scope of granular materials, is when they are in a state of flow-

ing (particle - particle interaction are a dominant feature [23]). There are several

contributions about experimental observations and models related to their behavior.

Application of discrete models to problems of granular flow have been initiated by

Cundall [37, 38, 42]. Here Newton’s laws are applied to each particle, and its motion

is followed in time. This approach is named as distinct element method (DEM). An-

other applications with these approach appears in [78, 179, 51]. In [68] individual

grains are treated as the “molecules” of a granular “fluid”.

In [84], is shown that granular material exhibits many features which can not

be anticipated from the experience with fluids such as air or water. In fact, unlike

water, granular materials are compressible in the sense that the space between the

particles often changes during flow.

The theory of granular materials is among the most interesting and intensively

developing fields of mechanics [147] because the area of its application is very wide.

It involves problems of mechanics of geomaterials such as soils and rocks. These

problems are related to stability of mine openings, transportation of granular mate-

rials of minerals industry and agriculture production, design of storage bunkers and

grain tanks, modeling of avalanching, among others.

4 1. INTRODUCTION

(a) Hopper (b) Heap

Figure 1.1. Complex geometry examples.

Now, why is it interesting to study granular materials in flow? Dense and fluid,

like flows of granular materials, are involved in a huge variety of natural and industrial

processes. In industry, one is often concerned with the capacity of grains or pastes to

flow without blockage through complex geometries. For instance, hoppers (a storage

container used to dispense granular materials through the use of a chute to restrict

flow, sometimes assisted by mechanical agitation), pipes (a tubular section or hollow

cylinder, usually but not necessarily of circular cross-section, used mainly to convey

substances which can flow), among others (see Figure 1.1).

It is important to be clear about the study in granular materials, when there are

particles in a certain configuration, as sand in a pipe, arise the concept of a granu-

lar material in rest. This implies to study all the factors which are involved in the

equilibrium of this system. On the other hand, if the granular material moves, for

instance, an extreme of the pipe is opened and the sand start to fall down. In this

case arise the concept of a granular material in flow, or a granular flow. An inter-

esting definition is presented in [25], where the adjective “granular” is attributed to

materials when they are made of sets of unfastened discrete solid particles (granules)

1.2. COLLISION MODEL 5

of a size larger than one micron (micrometre), a length scale where thermal agitation

is negligible.

The research about granular flows (materials) is wide [121, 150, 116, 151, 50,

140, 156, 44, 180, 181, 175, 28, 122, 136, 148, 31, 137].The main studies is

focused in the description of models that explain the behavior of the evolution of

the particles; in fact, this behavior continues to be under research, because is not

completely understood yet.

1.2. Collision Model

The numerical model for describing the behavior of colliding particles has been

studied for many years [37, 42]. Cundall proposed the distinct element method

(DEM), as a numerical model capable of describing the mechanical behavior of as-

semblies of discs and spheres. The method is based in the use of an explicit numerical

scheme. The interaction of the particles is handled contact by contact and the mo-

tion of the particles modelled particle by particle, in fact, the computer program

BALL was developed for modelling two-dimensional assemblies [39].

In DEM, the equilibrium contact forces and displacements of a stressed assembly

of discs are found by means of the movements of each particle. These movements

are the result of the propagation of disturbances through the medium originated at

the boundaries. And the speed of propagation of the disturbances is defined by the

physical properties of the medium.

The velocities and accelerations are estimated to be constant over a small period

of time, i.e. a time step. The time step chosen may be so small that, perturbations

can not propagate from any disc further than its immediate neighbours. Therefore,

6 1. INTRODUCTION

the resultant forces on any disc are determined by its interaction with the colliding

discs, at any time.

x x xy y yC C CB B BA A(D) A(W) A(D) A(W)
1 1 1

2 2 2

v v v v v v

︷ ︸︸ ︷(
∆n(A)

)
t1
= v∆t (

∆n(C)

)
t1
= v∆t

(
∆n(A)

)
t1
+
(
∆n(A)

)
t2

(
∆n(B)

)
t2︷ ︸︸ ︷(
∆n(C)

)
t1
+
(
∆n(C)

)
t2

(a) (b) (c)

Figure 1.2. Two disc compressed between rigid walls; (a) t = t0, (b)
t = t1 = t0 +∆t, (c) t = t2 = t1 +∆t, see [42]

To illustrate how forces and displacements are determined during a calculation

cycle, the case represented in Figure 1.2(a) will be considered. Two discs, labelled as

disc x and disc y, are squashed between a pair of rigid walls. The walls move toward

each other at a constant velocity v. Initially, at time t = t0, the walls and discs are

touching and no contact forces exist. A time t1, the walls have moved inward over

distances v∆t. In accordance with the assumption that the perturbations can not

travel beyond a single disc during one time step, both discs are assumed to maintain

their initial positions during the time interval from t0 to t1. Overlaps therefore exist

at time t1 = t0 + ∆t at contacts A and C (Figure 1.2(b)) and are of magnitude

∆n = v∆t.

The points A(D) and A(W) (Figure 1.2(b)) are points of the disc and the wall

respectively, lying on the line drawn perpendicular to the wall and through the center

of the disc. The contact A is the point halfway between A(D) and A(W). The relative

1.2. COLLISION MODEL 7

displacement
(
∆n(A)

)
t1

at contact point (overlap) is the displacement of point A(W)

relative to that of point A(D) ocurring over one time increment.

The relative displacements ocurring at contact points A and C at time t1 are

used in a force-displacement law for computing the contact forces. An incremental

force-displacement law of the following form is used

∆Fn = κn (∆n)t1 = κn v∆t (1.1)

where κn is the normal stiffness and ∆Fn represents the increment in normal force.

The sum of the forces F(x)1 and F(y)1 for discs x and y at time t1, taking account

the direction 1 (see Figure 1.2) as positive, become

F(x)1 = κn (∆n)t1 (1.2)

F(y)1 = −κn (∆n)t1 (1.3)

which are used to obtain new accelerations through Newton’s second law

ẍ1 =
F(x)1

m(x)

(1.4)

ÿ1 =
F(y)1

m(y)

(1.5)

where m(x) and m(y) are the masses of the disc x and y respectively. These acceler-

ations (1.4) and (1.5) are assumed to be constant over the time interval [t1, t2], then

velocities can be obtained

[ẋ1]t2 =

(
F(x)1

m(x)

)
∆t (1.6)

[ẏ1]t2 =

(
F(y)1

m(y)

)
∆t (1.7)

8 1. INTRODUCTION

The relative displacement increments at contact points A, B and C at time t2 can

be obtained

(
∆n(A)

)
t2
=

(
v −

(
F(x)1

m(x)

)
∆t

)
∆t (1.8)

(
∆n(B)

)
t2
=

((
F(x)1

m(x)

)
∆t−

(
F(y)1

m(y)

)
∆t

)
∆t (1.9)

(
∆n(C)

)
t2
=

((
F(y)1

m(y)

)
∆t− (−v)

)
∆t (1.10)

These calculations are repeated: forces corresponding to the displacements, which

are found using force-displacement law (1.2) and (1.3), and the Newton’s second law

is used to obtain the displacements (1.4) and (1.5).

Cundall’s approach has been widely studied [162, 134, 161, 97, 100, 143, 62,

63]. The particles are treated as rigid bodies but the contacts between particles

follow a viscoelastic behavior in which the local strain variables are the relative

particle positions and displacements.

The method called disc model analysis is presented in [85], where the term “disc”

is used instead of “grain”. The method is based upon the following assumptions: (i)

the elastic behavior of a disc is replaced by the action of springs attached virtually

at the contact point in the normal and tangential directions, and the disc itself is

displaced and rotated rigidly; (b) discs can overlap each other, and only at that time

contact force is produced between them. Usually the amount of overlapping is small

enough compared with the radii; (c) for the slippage between discs, the Coulomb’s

friction law [76] is assumed, and the tangential component of the contact force can

not exceed the limit determined by it; (d) to attain the equilibrium state of the

disc assembly, each disc is displaced and rotated iteratively according to the contact

1.2. COLLISION MODEL 9

stiffness matrix defined from the locations of neighboring discs; and (e) the boundary

can be either strain - controlled or stress - controlled, and the interaction between

boundary elemen and a disc is specified in a similar way as the interaction between

discs.

A

Bc

r

r′

xi

xi
′

ti ni

pi

ω

ω′

Figure 1.3. Contact force, see [85]

As shown in Figure 1.3, let two disk A and B, whose centers are located at xi

and xi
′ respectively, are in contact with each other. The normal and tangential

components of the contact force pi which is acting on the disc A are denoted as

pN = −pi ni and pT = −pi ti, respectively. ni and ti are the normal and tangential

unit vectors on the disc A. The increment of the relative displacement is given by

∆ uN = (∆xi −∆xi
′)
T
ni (1.11)

∆ uT = (∆xi −∆xi
′)
T
ti + r∆ω + r′ ∆ω′ (1.12)

where r y r′ are the radii, and ω and ω′ are the angular velocities of the discs A and

B respectively.

10 1. INTRODUCTION

Between the contact force and the relative displacement, the following incremen-

tal force-displacement law is assumed:

∆pN = kN ∆uN (1.13)

∆pT = kT ∆uT (1.14)

where kN and kT are stiffnesses. The disc model analysis is performed through an

itrative calculation, which is repeated until the resultant force and the moment of

each member in the disc assembly become sufficiently small.

The theory formulated by Fremond [55], starts considering a point and a rigid

body as a system, which is deformable since the distance of the point and the body

changes. The basic idea leads to define strain rates and interior forces, these latter

are percussions related to collisions and forces related to smooth evolutions, which

are defined by their virtual work. This approach presents a new way to obtain the

velocities after a collision, through the solution of a system of linear equations. This

theory is explained in detail in Chapter 2.

O1 O2

O3

l(θ)

A

B

θ

e1

e2

Figure 1.4. The system at collision time: the disks are seen from
above, see [27].

1.2. COLLISION MODEL 11

Based in Fremond’s approach, [27] presents the motion of three rigid balls on

a plane and their multiple collisions is investigated. They start with a simplified

2D problem of three rigid disks moving in a plane, considering Fremond’s approach:

“the system made of the three disks is deformable” because the relative distances

of material points vary. Therefore, three identical disks with redius R and center

Oi, i = 1, 2, 3, evolve a plane with normal unit vector e3 (Figure 1.4). The unit

vector e1 is parallel to O1O2 and the unit vector e2 is such that (e1, e2, e3) is direct.

The angle between e1 and O2O3 is denoted by θ and belongs to [0, 2π/3].

At collision time t̂, disks 1 and 2 are in contact at point A and disks 2 and 3

are in contact at point B, also the distance between point A and B is denoted

l(θ). A rigid system velocity (U ,Ω) is considered such that the distance of any two

material points of the system remains constant; then, the velocity of any point C of

the system can be expressed by

U (C) = U 1(O1) + Ω1 e3 ×O1C (1.15)

then, it has Ωi = Ω̂, i = 1, 2, 3 and

U 2(O2) = U 1(O1) + Ω̂ e3 ×O1O2 (1.16)

U 3(O3) = U 1(O1) + Ω̂ e3 ×O1O3 (1.17)

After setting the rigid system velocities, the velocities of deformation are defined,

which are choose from the local velocities at the contact points A and B, i.e., the

12 1. INTRODUCTION

relative velocities

D12 (U ,Ω) = U 1(A)−U 2(A) (1.18)

D23 (U ,Ω) = U 2(B)−U 3(A) (1.19)

Also, an at a distance velocity of deformation [27] is chosen

D13 (U ,Ω) = 2
(
U 1(A)−U 3(B)

)
·BA

= −2
(
U1
1 −

(
U3
1 +RΩ3 sin θ

))
l cos

θ

2

= −2
(
U1
2 +RΩ1 −

(
U3
2 +RΩ3 cos θ

))
l sin

θ

2
(1.20)

which accounts for interaction of disk 3 with disk 1. This velocity is considered

as well as the others local velocities of deformation, with the goal to describe the

non local interactions. For instance, it could applied in a predictive theory for the

behavior of a mixture of sand and long fibers [58]. Applying Fremond’s approach,

the virtual work of the accelerations and interior forces are defined, therefore the

principle of virtual work is applied. The internal forces are defined with constitutive

laws which have to fulfill the principles of thermodynamics, which means that they

have to satisfy the following inequality

−Tint
(
u±,ω±) ≥ 0 (1.21)

where u+ and u− are the linear velocity after and before the collision respectively. In

the similar fashion ω+ and ω− are the rotational velocity after and before the collision

respectively. Tint is the work of internal forces. Therefore, an important point in

Fremond’s theory, is the way to satisfy (1.21), which is possible assuming that the

1.2. COLLISION MODEL 13

percussion is a function which belongs to the subdifferential of a pseudopotential of

dissipation Φ introduced by [81] (see Appendix A).

Research based on Fremond’s theory has been made, for instance in [35], a pre-

dictive theory of rigid bodies collisions is developed, where the research is focused in

to prove the existence of a solution of the evolution problem of a point above a plane

including friction and general constitutive laws during collisions. Also in [56], the

collision of a wedge with a plane is investigated, the equations of motion involves an

interior percussion as a sum of dissipative percussion. In [57], a model with fracture

is presented, using Fremond’s theory, the problem considered is a rock colliding with

a wall, damage and collision theory is applied. Furthermore in [59], a predictive

theory for collisions of a viscous incompressible fluid with solids is presented, this

theory is based, as Fremond’s approach, on interior percussions which account for

the very large stresses and contact forces resulting from the kinematic incompatibil-

ities responsible for the collision. In [18, 19], the fracture of a chandelier when falls

on the ground is studied at the macroscopic level, the collisions are assumed instan-

taneous and characterized by a time discontinuity of the velocity field, as Fremond’s

approach. The Atomized efforts Contact Dynamics respecting the Clausius–Duhem

inequality, A-CD2, approach is presented in [46, 132, 133, 48], where a strategy

for soil modeling is applied. This is based on a discretization of the media with

rigid polygons, a mechanical description of instantaneous collisions is presented. In

Chapter 2 is explained with more detail. Other studies based on this theory are

crowd movements [124, 125, 126, 127], deformable bodies and fluids [47], several

14 1. INTRODUCTION

applications in civil engineering [60, 61], among others. All Fremond’s theory in

detail, can be found in [58].

There are, of course, other approaches –different from Fremond’s method– that

deal with similar problems, e.g., impact between rigid bodies [15, 17], multibody

dynamics [130], ellastic collisions [158], fall of rigid bodies [152], particle collision

[101], nonlinear deformable bodies [24], flows with collisions [155], among others.

The contact dynamics (CD) method is presented as a discrete element method

for the simulation of nonsmooth granular dynamics. This approach emerges from the

mathematical formulation of nonsmooth dynamics and the subsequent algorithmic

developments by Moreau and Jean [108, 109, 110, 111, 112, 82, 81, 79, 80].

The two central ingredients are: (1) the contact laws expressed as complementarity

relations between the contact forces and velocities and (2) the nonsmooth motion

involving velocity jumps with impulsive unresolved forces as well as smooth motion

with resolved static forces; particularly in [139], the authors show that a consis-

tent description of the dynamics at the velocity level leads to a numerical scheme

together with an explicit treatment of the evolution of the particle configuration,

also they discuss the intuitive features of the CD method with regard to collective

phenomena involved in the multicontact dynamics of granular media: the role of

the coarse-graining time δt, the precision issues and the interpretation of the resti-

tution coefficients. This method has been applied to investigate granular materials

[138, 141, 22, 140, 156, 120, 142, 100, 160, 149, 14, 144] as well as other

mechanical systems composed of rigid bodies with frictional contact interactions.

1.2. COLLISION MODEL 15

Recently this method has been applied to simulate the penetration in coarse granu-

lar materials [137], where the system is simulated through rigid irregular polyhedral

particles.

An important remark is that the models described before, consider the simulation

of regular rigid bodies, rectangular, disks, balls, etc. Neverthless, there are many

models which consider another kind of bodies, for instance in [152], a continuous

contact impact model has been developed to simulate the multiple impacts of a

falling rigid body with the ground (Figure 1.5). Results from the computational

model as well as analytic analysis from a discrete contact impact model indicate

that subsequent impacts might be larger than the initial impact in some situations.

First Collision Second Collision

θ β

Figure 1.5. The positions of the rigid rod at different times between
the first and second impact, see [152].

The continuous contact model, also known as the compliant contact model [157],

is used to model the impact contact force, which allows to record specific impacts

and forces at any particular moment; and the viscoelastic parameters in the model

can be used to describe the energy dissipation and the elastic reconstitution of the

16 1. INTRODUCTION

floor. The horizontal ground is modelled as a distributed viscoelastic foundation,

which consists of a layer of continuously distributed parallel springs and dampers.

Similar ground models have been used in [157] to study the impacts of concentrated

masses or of rigid bodies with point impact contact.

Another interesting concept is presented in [74], denominated the potential par-

ticles, which is used to define convex particles with a wide of variety of shapes,

from almost polygonal to circular. It is readily applicable in both two and three

dimensions. Although contact detection and overlap calculations are not as fast as

for circular particles, they are nevertheless sufficiently simple and fast for another

implementations. Then, an alternative to the definition of a particle by geometric

construction is to define the particle simply in terms of some function of a local

coordinate system. The analysis is presented in terms of two dimensions, but the

approach can be extended to three dimensions.

x

y

z

f > 0

f < 0

f = 0f > 0

f < 0

f = 0

x

y

Figure 1.6. A simple “potential particle” for two and three dimen-
sions, see [74].

The authors define a potential particle by means of function f(x, y) = 0, where

(x, y) are local coordinates. The function is chosen so that: (a) f = 0 define the

1.3. CONTACT DETECTION 17

particle surface; (b) f < 0 “inside” the particle; (c) f > 0 “outside” the particle; in

the Figure 1.6 is possible to observe an example. When two particles is in contact,

the model consider just the evaluation of the function f for each particle, considering

a minimization or maximization problem.

A rigid bodies collision model also is introduced in [163], where a numerical model

to generalize limit analysis in plasticity is presented. The system is represented

as an assemblage of rigid bodies connected by normal and tangential springs. In

[135] two rigid bodies are colliding in an incompressible flow, where the coupled

system is formulated as a symmetric positive-definite matrix which is solved using

the preconditioned conjugate gradient method, the method works for a “wet” and

“dry” contact; in [117] a novel numerical approach is introduced for the simulation

of soft particles interacting via frictional contacts, this approach is based on an

implicit formulation of the Material Point Method [67], allowing for large particle

deformations, combined with the Contact Dynamics method for the treatment of

unilateral frictional contacts between particles. In [70] a new collision model has

been developed to enable multiple-body proximate-flight simulation, where collisions

between rigid bodies are modeled using an impulse-based approach with either an

iterative propagation method or a simultaneous method.

1.3. Contact Detection

Large scale collision simulations involve to identify the contact of large number

of bodies. Any collision model consideres to solve the new velocities of each rigid

body after a collision, but before to compute this velocities, it is highly necessary to

18 1. INTRODUCTION

know the contact point between a pair of elements, therefore it is very important to

develop a robust and efficient contact detection algorithm.

There is a whole range of related works in this matter, for instance, in the formu-

lation of the distinct element method (DEM) [40, 71], a robust and rapid method

to identify pairs of particle that are touching is presented. A technique for identi-

fying candidate pairs of colliding bodies is developed, in fact, they mention that is

prohibitive, in computer time, to check all possible pairs, because the search time

increases quadratically with the number of blocks. The space containing the system

of blocks is divided into rectangular 3D cells. Each block is mapped into the cell

or cells that its “envelope space” occupies. A block’s envelope space is defined as

the smallest three dimensional box with sides parallel to the coordinate axis that

can contain the block. Each cell stores the addresses of all blocks that map into it.

Figure 1.7 ilustrates a mapping logic for two dimensional space.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

sequential
cell numbers

A, B, C = blocks

block envelop

A
B

C

Figure 1.7. Examples of block mapping to cell space in two dimen-
sions, see [40]

1.3. CONTACT DETECTION 19

Once all blocks have been mapped into the cell space, it is an easy matter to

identify the neighbours to a given block: the cells that correspond to its envelope

space contain entries for all blocks that are near. Normally, this “search space” is

increased in all directions by a tolerance, so that all blocks within the given tolerance

are found. An important remark is that the computation time to perform the map

and search functions for each block depends on the size and shape of the block, but

not on the number of the blocks in the system. According to the optimum cell size,

the authors keep clear that it is difficut to provide a formula for it. They proposed the

following: as a block moves during the simulation, the neihbours must be updated,

computing an accumulated movement of the block. A variable uacc, set to zero after

each re-map, is updated at very timestep, as follows:

uacc := uacc +max (|du|) (1.22)

where du is the incremental displacement of a vertex, and the max function is taken

over all vertices of the block. When uacc exceeds a tolerance, re-mapping and contact

testing is activated. The contact testing is done for a search volume that is twice the

tolerance larger in all dimensions than the block envelope. The contact detection

problem in this work is splitted into the following two parts:

• determine a “common - plane” that bisects the space between the two blocks;

and

• test each block separately for contact with the common - plane.

Then, the task of testing for contact is simplified the following way

20 1. INTRODUCTION

(1) Simple vertex-to-plane tests need to be carried out (using dot products).

Because the blocks are convex, face and edge contacts are recognized simply

by counting the number of vertex-to-plane overlaps for both blocks.

(2) The number of tests depends linearly on the number of vertices. Because the

test is over the vertices of block A with the common-plane, and separately

test the vertices of block B with the common-plane.

(3) There is no need to test if a potential contact lies within the perimeter of

a face. If both blocks touch the common-plane, then they must touch each

other.

(4) The unit contact normal is equal to the common-plane unit normal – no

additional calculations are necessary.

(5) The determination of minimum gap between two nontouching blocks is triv-

ial: it is simply the sum of the distances of the two blocks from the common-

plane.

An important step in contact detection problem, is checking a pair of elements

are colliding or not. As Cundall [40] remarks, checking all elements in the system

implies an algorithm with order N2, where N is the number of elements. As we see

above, it is possible to compute neighbours for each element. In the last example, we

observe the cell space mapping technique. However, in [166] is introduced a neighbor

table (Verlet list), in which those particles j which are nearby particle i are stored.

The author pointed out that by using a table containing all particle pairs which are

separated by a distance less than (rc + rs), where rc is the cutoff in the range of the

interaction potential and rs is a small skin, significant reductions in computer time

1.3. CONTACT DETECTION 21

could be achieved. This list has been used in much research, mainly in molecular

dynamics [66, 32, 33, 64, 9, 168], as the elements are spheres, it could be possible

to obtain an important optimization in the contact detection phase.

An object representation scheme, based on a discrete function representation

(DFR), is presented in [123]. The data structure provides a direct mapping between

problem space and a hierarchical representation of the object geometry. This ap-

proach achieves a theoretical order of complexity O(N), for testing contact between

two objects, each one defined by N points. This technique can handle general three

dimensional shapes, including convex and concave geometries, unlike large systems

with geometries relatively simple [13, 170].

There are two distinct algorithmic stages in contact detection, namely spatial

search and contact resolution. Spatial search identifies pairs of objects in spatial

proximity, which should be further processed for details of contact. Contact resolu-

tion provides these geometric details of the contact, such as the extent of the contact

surface and the depth of penetration.

The order of algorithmic complexity for the resolution of contact between two

objects isO(N2), for unstructered boundary representations [172, 41, 106]. For tree

schemes such as Binary Space Partitioning Trees (BSP), [164] or octrees, the cost can

be reduced to O(N logN) for convex objects. In [123] each object is represented at

multiple levels of detail and then performing contact resolution at the appropiate level

of approximation. The scheme presented uses 4 levels of representation: bounding

spheres, bounding box, cellular region and surface facets, see Figure 1.8. A contact

22 1. INTRODUCTION

detection schemes for discrete elements with more complex shapes is contained in

[173, 75].

x

y

x

y

x

y

x

y

Bounding Sphere - S

Region - R

Bounding Box - B

Cellular Region - C

∆y

∆x

Surface Facets - F

Figure 1.8. Multilevel of representations, see [123]

As we have seen until now, the contact detection problem is of interest, however

there are some aspects to consider in the moment to choose an efficient algorithm.

Obviously, while the element shape is complex, the contact detection part will be

1.3. CONTACT DETECTION 23

expensive in terms of computational cost. For the other hand, if we know that

the system have elements with similar size, it could be better. In [114], the no

binary search (NBS) contact detection algorithm is presented, which is based in

space descomposition.

xmin xmax

ymin

ymax

2r

x

y

Figure 1.9. Contact detection problem, see [114]

An important assumption of this approach is that each discrete element can be

approximated with a sphere in 3-D or with a circular disc in 2-D. The diameter of

an equivalent circular disc 2r is obtained from the size of the largest discrete element

in the system, i.e. all discrete elements are approximated with identical circular

discs. Thus the NBS contact detection algorithm assumes a system comprising N

identical discs occupying finite space of rectangular shape, see Figure 1.9. The space

boundaries are defined by xmin, xmax, ymin and ymax

The space is subdivided into identical square cells of size 2r, see Figure 1.10.

Each disc is assigned a integer identification number {0, 1, 2, ..., N − 1}. In a similar

fashion each cell is assigned an identification couple of integer numbers (ix, iy), where

24 1. INTRODUCTION

ix = 0, 1, 2, ..., ncelx− 1 and iy = 0, 1, 2, ..., ncely− 1, where ncelx and ncely are the

total number of cells in X and Y direction respectively

ncelx =
xmax − xmin

2r
(1.23)

ncely =
ymax − ymin

2r
(1.24)

Mapping from the set of discs

E = {0, 1, 2, ..., N} (1.25)

to the set of cells

C ={(0, 0), (0, 1), · · · , (0, ncely− 1), (1, 0), (1, 1), · · · , (1, ncely− 1),

· · · , (ncelx− 1, 0), (ncelx− 1, 1), · · · , (ncelx− 1, ncely− 1)} (1.26)

is defined in such way that each element is assigned to one and only one cell. The

detection of contact is therefore accomplished by checking all elements mapped to a

particular cell against all elements in neighbouring cells.

An improvement of this procedure, named MR algorithm, is presented in [115].

An optimum cell size algorithm is presented in [105, 104, 103] to improve the

calculation speed. The theoretical formula is proposed by considering the effects of

the number of searched cells and contact checks. The optimum cell size was given

round 1.5 - 2.0 times of particle radius.

1.3. CONTACT DETECTION 25

(3, 5)

(0, 0)

2r

2
r

Figure 1.10. Space decomposition, see [114]

Much research about contact detection has been developed, in [165] an efficient

algorithm is presented for arbitrarily shaped rigid moving objects. The detection is

in two stages: finding candidates for possible collisions by building an octree, and

the exact collision detection where a surface octree is built for each object. The

algorithm is applied in particle flows simulation. In [77] a new boxing algorithm

called “level - boxing” is presented, which consists in the definition of a maximum

collision distance for each element depending on particle size. This definition allows

to check collision for a large particle in a wide range, on the other hand, a smaller

particle is limited to a narrower range.

In spite of that some algorithms use space decomposition or bounding box for

contact detection, building cell-linked lists has achieved very good results. This

technique [12] allows to reduce the complexity time for checking detection from

O(N2) to O(N). For this reason, many works is based on this technique [96, 128,

167, 95, 91, 174, 176, 94, 159].

26 1. INTRODUCTION

A fast contact detection algorithm named fast common plane (FCP) is presented

in [118], where in 2-D the common plane is found by checking only 5 possible can-

didate planes, and in 3-D, the candidates plane fall within 4 types related to the

geometry of the particles and their relative positions. This new approach introduces

a new fashion to obtain the common plane for polygonal and polyhedral particles. In

[119] a new approach to obtain the CP (see Figure 1.11) is presented. The concept

of “shortest link” is introduced. Among all the possible line segments that connect

any point on the surface of particle A to any point on the surface of particle B, the

one with the shortest length defines the shortest link between the two particles. The

perpendicular bisector plane of the shortest link fulfils all the conditions of a CP,

suggesting that CP can be obtained by seeking the shortest link.

(a) (b)

Figure 1.11. Common plane (CP) between two particles: (a) parti-
cles in contact, both particles intersect the CP; and (b) particles not
in contact, neither particle intersects the CP, see [119].

The sort moving boxes (SMB) algorithm is presented in [92] for large number of

moving 2D/3D objects which are represented by their axis-aligned bounding boxes

(AABBs). The AABB is one of the most common bounding volumes [53], which

consists in a rectangular six-sided box (in 3D, four-sided in 2D) categorized by having

its faces oriented in such a way that its face normals are at all times parallel with

1.3. CONTACT DETECTION 27

the axes of the given coordinate system. The main feature of the SMB algorithm

is the full exploitation of the temporal coherence (property that some features of

an application do not change significantly between two consecutive time steps) of

the objects exhibited in a dynamic environment. In the algorithm, the AABBs

are first projected to each Cartesian axis. The projected intervals on the axes are

separately sorted by the diminishing increment sort (DIS) [154] and further divided

into subsections. By processing all the intervals within the subsections to check if

they overlap, a complete contact list can be built.

A collision detection method using a dual bounding volume hierarchy is presented

in [29, 30]. The bounding volume hierarchy consists of an oriented bounding box

(OBB) [53] tree enhanced with bounding spheres. This approach combines the

compactness of OBBs and the simplicity of spheres. In [102], an oriented bounding

parallelepiped (OBP) is suggested to build, instead of an ellipsoid around each body,

therefore it is possible to predict collisions between elements that having overlapping

parallelepipeds (see Figure 1.12)

Figure 1.12. Ellipsoids A and B are nearest neighbors, and they may
collide among them before colliding with their OBP; neither A or B
can collide with C during this time, see [102]

28 1. INTRODUCTION

In [178] a three-dimensional discrete element code (BLOKS3D) for efficient sim-

ulation of polyhedral particles of any size is developed. A neighbor search algorithm

called TLS (two-level search) is described. The elements used in simulations are

mainly convex particles, in [20, 21, 93, 169] several algorithms for contact detec-

tion between convex polygonal and polyhedral particles are presented. For shapes

more complicated, several algorithms have been presented recently in [177, 34, 86].

CHAPTER 2

A-CD2 Model

In this thesis, Fremond’s approach is followed [55]. The collision problem is

addressed as a system deformation in the sense that a set of rigid bodies constitute

a system. The system is deformable due to changes in the distance between the

bodies. We highlight the origin of this approach, where the equations of motion are

presented in the case of a collision. Later, a theory based on Fremond formulation

is presented as the A-CD2 approach, where forces are replaced by a succession of

percussions (forces concentrated in time).

2.1. Rigid Bodies Collisions

The theory formulated by Fremond [55] starts considering a point and a rigid

body as a system. The system is deformable since the distance of the point and the

body changes. The basic idea is to define strain rates and interior forces, these latter

are percussions related to collisions and forces related to smooth evolutions, which

are defined by their virtual work.

Thus, the distance g between the point x1 and the rigid body Ω may change

[55, 58]

g(t) = (x1(t)− projx1(t)) ·N (projx1(t)) (2.1)

where proj x1 is the projection of x1 on the boundary ∂Ω of Ω and N is the

outwards normal vector to Ω at proj x1 (see Figure 2.1). Therefore the point does

not interpenetrate the solid if and only if ∀t g(t) ≥ 0.

29

30 2. A-CD2 MODEL

Ω

g < 0

g > 0 x1

N (projx1)
projx1

Figure 2.1. The point x1(t) and the solid Ω(t) move and collide.
The outwards normal vector to Ω(t) is N , projx1 is the projection of
x1 on the boundary ∂Ω of Ω [55].

Let V1 and V2, be the linear spaces of the virtual velocities of the point (vectors

depending on t) and of the rigid body (vectors depending on t and x ∈ Ω(t));

let R be the linear subset of V = V1 × V2 of the rigid system velocities. Then

V 1(t) = W (x1(t), t),V 2(x, t) = W (x, t), where W (x, t) = V 0(t)+ω(t)× (x−x0),

defined by the same twist, {V 0(t),ω(t)}, because in a movement with such velocities

the distances of the points of the system remain constant. Let D = V/R, be the

linear space of the velocities defined up to a rigid system velocity. It is also the space

of the velocities of the point with respect to the rigid body. The strain rate of the

deformable system is defined by

V = (V 1,V 2) ∈ V 7→D(V) with D(V)(t) = V 1(t)− V 2(x1(t), t) (2.2)

Due to collisions, the velocities can be discontinues. The indices − and + refer to

values before and after collisions.

2.1. RIGID BODIES COLLISIONS 31

Interior forces are defined by their work. There are forces and percussions. The

latter are forces concentrated in time. The virtual work of the acceleration forces is

[58]

Tacc (V , t1, t2) =

∫ t2

t1

m

dU 1

dt
(t) ·V 1(t) +

∫

Ω(t)

ρ
dU 2

dt
(x, t) ·V 2(x, t) dΩ

 dt

+
∑

t∈Z

m[U 1](t) ·

V +
1 (t) + V −

1 (t)

2
+

∫

Ω(t)

ρ[U 2](x, t) ·
V +

2 (t) + V −
2 (t)

2
dΩ

 (2.3)

where U = (U 1,U 2) are the actual velocities, [U 1](t) = U+
1 − U−

1 and Z =

Z (V ,U , t1, t2) is the set of the instants of the time interval [t1, t2] where the actual

or virtual velocities are discontinuos, m is the mass of the point and ρ the density

of the rigid body. This expression is meaningful if the velocities are functions of

bounded variation[113]. The virtual work of the acceleration forces is such that the

actual work is the variation of the kinetic energy between the times t1 and t2.

The virtual work of the interior forces Tint is a linear function on D which must

be equal to zero for any rigid system velocity [58]

Tint(V , t1, t2) = −
∫ t2

t1

Rint(t) ·D(V)(t)dt−
∑

t∈Z
P int ·D(V +)(t) +D(V −)(t)

2
(2.4)

where Rint(t) is a force and P int(t) a percussion. It is obvious that Tint(V , t1, t2) = 0

for V ∈ R.

32 2. A-CD2 MODEL

The virtual work of the exterior forces Text is a linear function on V [58]

Text(V , t1, t2) =

∫ t2

t1

f 1(t) ·V 1(t) +

∫

∂Ω(t)

T 2(x, t)dΓ

 dt

+
∑

t∈Z

P ext

1 (t)
V +

1 (t) + V −
1 (t)

2
+

∫

∂Ω(t)

P ext
2 (x, t) · V

+
2 (t) + V −

2 (t)

2
dΩ

 (2.5)

where P ext
1 (t) is the exterior percussion applied to the point and P ext

2 (x, t) the

surface density of the exterior percussion applied to the solid, f 1(t) is the exterior

force applied to the point and T 2(x, t) the exterior surface force applied to the solid.

The equations of motion result from the principle of virtual work: the virtual

work of the accelerations between times t1 and t2 is equal to the sum of the virtual

works of the interior and exterior forces between the same instants,

∀t1, ∀t2, ∀V ∈ V, Tacc(V , t1, t2) = Text(V , t1, t2) + Tint(V , t1, t2) (2.6)

The equations of motion of the point are: at any time t, in particular when there is

collision,

m[U 1](t) = −P int(t) + P ext
1 (t) (2.7)

and almost everywhere,

m
dU 1

dt
= −Rint + f1 (2.8)

2.2. A-CD2 APPROACH 33

2.2. A-CD2 Approach

A theory for multiple collisions in granular flow, based on the representation of

the medium as a collection of rigid bodies [55] is presented in [46, 132, 133]. In

this thesis, rigid bodies contacts are studied by means of the principle of virtual

work. When rigid bodies get into collision, it is no longer possible to solve the

classical equation of motion because velocities are not differentiable: the application

of the principle of virtual work in association with appropriate constitutive laws

relating internal stress and velocities, allows to obtain a set of equations of motion,

valid both for smooth and for non-smooth evolutions. In particular, this approach

allows us to overcome the limits of the classical penalty method, it does not require

the definition of gap functions, and satisfy the actual physical condition of non-

interpenetration of the particles. Moreover, compared to [112] or [81] the existence

and the uniqueness of the solution of the Clausius–Duhem inequality has been showed

[46]. This approach is called Atomized efforts Contact Dynamics respecting the

Clausius–Duhem inequality (A-CD2). It describes multiple bodies contact dynamics

(according to the Clausius–Duhem inequality) by means of an “atomization” of the

efforts exerted during contact.

According to obtain the velocities after the collision, this approach, for the sake of

simplicity, it exposed for a single point, with mass m, colliding once to a rigid fixed

surface in a time interval [t1, t2] and having instantaneous velocity discontinuity,

before generalizing the formulation to a simulataneous collision of N rigid solids

[55, 46].

34 2. A-CD2 MODEL

As the collision is assumed instantaneous, the velocity u of the point is discon-

tinous at the instant tc of the impact, having a left and right limit noted u− and

u+. The contact force is concentrated in time, becoming a percussion P int [55]. In

Figure 2.2 we observe the interaction between the point and the rigid fixed plane

with one collision in the time interval, the description of the point trajectory x(t) in

[t1, t2] and the collision at time tc.

Interior forces considered in the particle motion at interval time [t1, t2] are defined

by their work. Let us consider a contact force f int, which is concentrated in time,

such as the internal percussion P int. The particle velocity is discontinuous [46],

therefore let us consider a virtual velocity of deformation which has, such as the

actual velocity u, a left and right limit. This means, we have velocities before and

after collision: v− and v+ respectively. Then, the interior forces virtual work is given

by [132, 46]

W int = −
∫ t2

t1

f int(t) ·v(t) dt− P int(tc) ·
(
v−(tc) + v+(tc)

2

)
(2.9)

N

x(t1)

x(t2)

x(tc)

u− u+

Figure 2.2. Point - plane system: a particle with mass m and a fixed plane.

2.2. A-CD2 APPROACH 35

In particular, (2.9) allows us to establish a duality between the internal percus-

sion P int and the quantity

(
v− + v+

2

)
, which can be interpreted as the rate of

deformation of the system.

The virtual work of the acceleration efforts is [132, 46]

W acc =

∫ t2

t1

m
du(t)

dt
·v(t) dt+m

(
u+(tc)− u−(tc)

)
·
(
v−(tc) + v+(tc)

2

)
(2.10)

An exterior percussion P ext could be taken into account, not depending on u, and

also applied to the point at the instant of collision. This exterior percussion is later

used to include the forces not depending on the velocities in the equations of the

velocity jumps. The exterior virtual work is of the following form [132, 46]

W ext =

∫ t2

t1

f ext(t) ·v(t) dt+ P exp(tc) ·
(
v−(tc) + v+(tc)

2

)
(2.11)

The principle of virtual work implies that for any velocity v at any time tc, the

following expression holds [58]

W acc = W int +W ext (2.12)

According to this principle, the equations of motion assume the following form on

[t1, t2]

m
du

dt
= −f int + f ext almost everywhere (2.13)

and

m
(
u+(tc)− u−(tc)

)
= −P int + P ext everywhere (2.14)

The internal percussion P int in (2.14) is generally unknown and depends on the de-

formation rate, as a consequence of the duality established by (2.9) between P int and
(
v− + v+

2

)
. Therefore it is neccesary to introduce an appropiate set of constitutive

36 2. A-CD2 MODEL

laws describing the behaviour and the interactions between the point and the rigid

surface during the collision. This set is formulated by expressing P int as a function

of

(
u− + u+

2

)
.

In the case of a contact problem, constitutive laws describe the interactions among

particles during the collision and have to assure the non - interpenetration of the

solids.

Internal percussion is therefore divided in two parts, a dissipative percussion P d

and a reactive percussion P reac [132, 46]

P int = P d + P reac (2.15)

Dissipative percussion describes the dissipative interaccions among colliding solids.

In general, the associated dissipative interaction can be described introducing a pseu-

dopotential of dissipation Φd, which is a convex, positive and null in the origin

[46, 58, 107, 131]

P d ∈ ∂Φd

(
u− + u+

2

)
(2.16)

where ∂Φd indicates the subdifferential (see Appendix A) of the function Φd.

Reactive percussion describes the non - interpenetration condition, which implies

u+
N = u+ ·N ≥ 0 (see Figure 2.2). This percussion is null if u+

N > 0, is not null if

u+
N = 0 and implies that the condition u+

N < 0 can not be verified (see Figure 2.3).

All these properties can be written by means of a indicator function of the following

form [132, 46, 55]

P reac ∈ ∂1K

(
u− + u+

2
·N
)
, with K =

[
u− ·N

2
,∞
[

(2.17)

2.2. A-CD2 APPROACH 37

xN

P reac

u−
N

2

u+
N + u−

N

2

Figure 2.3. Definition of reactive percussion

In particular, as K is convex and contains the zero value, the indicator function 1K

is a pseudopotential of dissipation [107, 55, 131]. The internal percussion can be

written in the following form

P int ∈ ∂Φ

(
u− + u+

2

)
where Φ = Φd + 1K (2.18)

i.e. the internal percussion is derived from a pseudopotential of dissipation.

As the reactive percussion is determined by an indicator function, it is possible

to express this condition by a constraint, where the relative velocity of the point at

collision time must belong to the set K =

[
u−
N

2
,∞
[
. The dissipative percussion can

be determined by a normal behavior and a tangential behavior (friction) [46]. The

former one, through experimental results, can be modeled by a quadratic function

with good accuracy, but it is not the same case for the tangential behavior. In [46] is

explained with more details the description of these behaviors and the constitutive

law used for the contact forces

38 2. A-CD2 MODEL

According to the assumptions made above about the evolution of the system,

especially the solids moving with constant velocities during a time interval (∆t), the

problem to solve at an instant of velocitiy jump has to be considered as a simul-

taneous collision of several solids. Indeed, all the contacts occurring during ∆t are

considered to take place at the instant of velocity jump as they are computed accord-

ing to the positions of the bodies at this time interval. The problem to solve thus

becomes similar to an instantaneous collision of several solids with known velocities

before the collision.

Therefore, the instantaneous collision model exposed above for a “point - plane”

system has to be generalized for N colliding solids, each one with mass m, gravity

center gi, and moment of inertia Ii. The kth contact between solid i and solid j takes

place at point Aijk and P int
ijk is the internal percussion at this point. The lth point

where external percussion P ext
il is applied to the solid i takes place at point Bil.

The actual velocity of gravity center gi is denoted by ui and the actual rotational

velocity by ωi of solid i; the virtual velocity is denoted by vi and the virtual rotational

velocity by ̟i. Thus, the actual relative velocity of solids i and j at the contact

point Aijk is given by

du
ij (Aijk) = (ui + ωi × giAijk)−

(
uj + ωj × gjAijk

)
(2.19)

and at point Bil the actual velocity of solid i is

eu
i (Bil) = (ui + ωi × giBil) (2.20)

2.2. A-CD2 APPROACH 39

Also, the virtual relative velocity of solids i and j at the contact point Aijk is given

by

dv
ij (Aijk) = (vi +̟i × giAijk)−

(
vj +̟j × gjAijk

)
(2.21)

and at point Bil the virtual velocity of solid i is

ev
i (Bil) = (vi +̟i × giBil) (2.22)

From (2.14), and considering a solid, not a point, we have [58]:

m
(
u+ − u−) = −P int + P ext (2.23)

I
(
ω+ − ω−) = −g A× P int + g B × P ext (2.24)

Let [x] = x+−x− denote the difference between the right and left limit of the vector

x. Then, rewritten (2.23) and (2.24), we have

m [u] = −P int + P ext (2.25)

I [ω] = −g A× P int + g B × P ext (2.26)

Applying (2.25) and (2.26) for N solids and for each kth contact at point Aijk:

N∑

i=1

mi [xi] = −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk +

N∑

i=1

∑

Bil

P ext
il (2.27)

N∑

i=1

Ii [ωi] = −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

giAijk × P int
ijk +

N∑

i=1

∑

Bil

giBil × P ext
il (2.28)

Let [x] =
x− + x+

2
denote the average of right and left limit of the vector x. Thus,

we can obtain the virtual kinetic energy of the linear and rotational virtual velocity

40 2. A-CD2 MODEL

by multipliying, respectively, the virtual linear and rotational rate of deformation:

N∑

i=1

mi [xi] · [vi] = −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk · [vi] +

N∑

i=1

∑

Bil

P ext
il · [vi] (2.29)

N∑

i=1

Ii [ωi] · [̟i] = −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

(
giAijk × P int

ijk

)
· [̟i]

+
N∑

i=1

∑

Bil

(
giBil × P ext

il

)
· [̟i] (2.30)

Adding (2.29) and (2.30), we obtain the total virtual kinetic energy,

N∑

i=1

mi [ui] · [vi] +
N∑

i=1

Ii [ωi] · [̟i] = −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk ·

(
[vi] + giAijk × [̟i]

)

+
N∑

i=1

∑

Bil

P ext
il ·

(
[vi] + giBil × [̟i]

)
(2.31)

Now, we can obtain the actual kinetic energy of the linear and rotational actual ve-

locity multipliying, respectively, the actual linear and rotational rate of deformation:

N∑

i=1

mi [ui] · [ui] = −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk · [ui] +

N∑

i=1

∑

Bil

P ext
il · [ui] (2.32)

N∑

i=1

Ii [ωi] · [ωi] = −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

giAijk × P int
ijk · [ωi]

+
N∑

i=1

∑

Bil

giBil × P ext
il · [ωi] (2.33)

Adding (2.32) and (2.33), we obtain the total actual kinetic energy,

N∑

i=1

mi [ui] · [ui] +
N∑

i=1

Ii [ωi] · [ωi] = −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk ·

(
[ui] + giAijk × [ωi]

)

+
N∑

i=1

∑

Bil

P ext
il ·

(
[ui] + giBil × [ωi]

)
(2.34)

2.2. A-CD2 APPROACH 41

Substracting (2.31) and (2.34),

−
N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk ·

(
[vi] + giAijk × [̟i]

)
+

N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk ·

(
[ui] + giAijk × [ωi]

)

+
N∑

i=1

∑

Bil

P ext
il ·

(
[vi] + giBil × [ϕi]

)
−

N∑

i=1

∑

Bil

P ext
il ·

(
[ui] + giBil × [ωi]

)

=
N∑

i=1

mi [ui]
(
[vi]− [ui]

)
+

N∑

i=1

Ii [ωi]
(
[̟i]− [ωi]

)
(2.35)

Then, applying (2.19), (2.20), (2.21) and (2.22):

N∑

i=1

mi [ui] ·
(
[vi]− [ui]

)
+

N∑

i=1

Ii [ωi] ·
(
[̟i]− [ωi]

)

+
N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk

(
dv+

ij (Aijk) + dv−

ij (Aijk)

2

)
− P int

ijk

(
du+

ij (Aijk) + du−

ij (Aijk)

2

)

−
N∑

i=1

∑

Bil

P
exp
il

(
ev

+

i (Bil) + ev
−

i (Bil)

2

)
+ P

exp
il

(
eu

+

i (Bil) + eu
−

i (Bil)

2

)
= 0 (2.36)

Now, introducing a set of constitutive laws, we can describe the behavior and

interactions among the colliding solids, which using the pseudopotential defined by

(2.18)

P int
ijk ∈ ∂Φijk

(
du+

ij (Aijk) + du−

ij (Aijk)

2

)
(2.37)

and from the sub-differential definition (see Appendix A), for any v, we have that

Φijk

(
dv+

ij (Aijk) + dv−

ij (Aijk)

2

)
− Φijk

(
du+

ij (Aijk) + du−

ij (Aijk)

2

)
≥

P int
ijk ·

(
dv+

ij (Aijk) + dv−

ij (Aijk)

2
− du+

ij (Aijk) + du−

ij (Aijk)

2

)
(2.38)

42 2. A-CD2 MODEL

Thus (2.36) becomes

N∑

i=1

mi [ui] ·
(
[vi]− [ui]

)
+

N∑

i=1

Ii [ωi] ·
(
[̟i]− [ωi]

)

+
N−1∑

i=1

N∑

j=i+1

∑

Aijk

Φijk

(
dv+

ij (Aijk) + dv−

ij (Aijk)

2

)
− Φijk

(
du+

ij (Aijk) + du−

ij (Aijk)

2

)

−
N∑

i=1

∑

Bil

P
exp
il

(
ev

+

i (Bil) + ev
−

i (Bil)

2

)
+ P

exp
il

(
eu

+

i (Bil) + eu
−

i (Bil)

2

)
≥ 0 (2.39)

Introducing the scalar product

〈u,v〉 =
N∑

i=1

mi (ui ·vi) + Ii (ωi ·̟i) (2.40)

and defining the vector b such as

〈b,u〉 =
N∑

i=1

∑

Bil

P ext
il ·ui +

(
P ext

il × giBil

)
·ωi (2.41)

and the pseudopotential Φ such as

Φ (v) =
N−1∑

i=1

N∑

j=i+1

∑

Aijk

Φijk

(
dv
ij (Aijk)

)
(2.42)

then (2.39) becomes

∀v,
〈
u+ − u− − b,

v+ + v−

2
− u+ + u−

2

〉
+Φ

(
v+ + v−

2

)
− Φ

(
u+ + u−

2

)
≥ 0 (2.43)

Given that R
6N has a scalar product defined by 〈 · , · 〉 and given the definition of

sub - gradient, the formulation (2.43) is equivalent to following,

−
(
u+ − u− − b

)
∈ ∂Φ

(
u+ + u−

2

)
(2.44)

Let be x =
u+ + u−

2
, then the last equation could be written by

2u− + b ∈ 2x+ ∂Φ (x) (2.45)

2.2. A-CD2 APPROACH 43

Equation 2.44 is equivalent to the following minimization problem:

inf
x
F (x) = 〈x,x〉+ Φ(x)−

〈
2u− + b,x

〉
(2.46)

Let’s recall that he function Φ(x) = Φd(x)+1K(x), where Φd is the sum of dissipative

parts given by (2.16) and the indicator function represents the reactive part given

by (2.17). Particularly, the reactive percussion can be replaced by the constraints

ϕk(x) ≤ 0 defining the set Ω.

The collision problem is now a constrained minimization problem, where the

solution gives us the new velocities of solids at some discrete time ∆t. The function

F (x) is quadratic due to the choice of the dissipative percussion Φd (quadratic) and

the set of constraints ϕk(x) ≤ 0, k = 1, nc (non - interpenetration condition) where

nc is the total number of contact points.

Thus, the constrained minimization problem is given by:

inf
x∈Ω

F (x) = 〈x,x〉+ Φd(x)−
〈
2u− + b,x

〉

where Ω =
{
x ∈ R

6N : ϕk(x) ≤ 0, k = 1, ..., nc

}
(2.47)

The constraint ϕk(x) associated to the contact point Aijk is given by

ϕk(x) =
(
d
u/2−

ij (Aijk)− dx
ij (Aijk)

)
·N k (2.48)

where N k is the normal vector at contact point Aijk.

The constraint ϕk(x) is the reactive part of the internal percussion, determined

by the indicator function 1K (see Figure 2.3), where the velocity at contact point

must be greater or equal to
u−
N

2
, therefore when there is a simultaneous collision

of N solids, the relative velocity at each contact point must to fulfill this reactive

44 2. A-CD2 MODEL

condition, then

d
u
−

2

ij (Aijk) ·N k ≤ dx
ij (Aijk) ·N k

d
u
−

2

ij (Aijk) ·N k − dx
ij (Aijk) ·N k ≤ 0

(
d

u
−

2

ij (Aijk)− dx
ij (Aijk)

)
·N k ≤ 0 (2.49)

which is the constraint ϕk(x) ≤ 0. It is simple to note that the constraints are

linear, then the problem to solve is a quadratic minimization problem with linear

constraints.

The solution to the minimization problem (2.47) is a saddle point of the La-

grangian function [46]

L (x, µ)→ F (x) +
nc∑

k=1

µk ϕk (x) (2.50)

The domain Ω, such as F (x) and ϕk (x) is convex, this means that if x∗ is a solution

to the problem, exists at least a µ∗ ∈ R
nc

+ such that (x∗,µ∗) is a saddle point of

L (x,µ).

The existence and the uniqueness of the solution is proved in [133], by the fol-

lowing theorem

Theorem 1. If all the constitutive laws derive from a pseudopotential of dissi-

pation, then the problem of multiple collision of N rigid solids has a unique solution

u+.

The proof of this theorem is a direct consequence of the strong convexity of the

function F (x).

2.2. A-CD2 APPROACH 45

The constitutive law (2.37) derives from a pseudopotential of dissipation:

P int
ijk ·

(
du+

ij (Aijk) + du−

ij (Aijk)

2

)
≥ 0 (2.51)

in every point Aijk and

N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk ·

(
du+

ij (Aijk) + du−

ij (Aijk)

2

)
≥ 0 (2.52)

This inequality, under the hypothesis that the temperature does not vary during

the collision, represents the inequality of Clausius - Duhem [58]. This inequality is

important because it shows that the collision is dissipative if no exterior percussion

is applied. In this case, the kinetic energy balance is negative,

N∑

i=1

1

2
mi

(
(u+

i)
2 − (u−

i)
2
)
+

1

2
Ii
(
(ω+

i)
2 − (ω−

i)
2
)
=

N∑

i=1

mi [ui] [ui] + Ii [ωi] [ωi]

= −
N−1∑

i=1

N∑

j=i+1

∑

Aijk

P int
ijk ·

(
du+

ij (Aijk) + du−

ij (Aijk)

2

)
≤ 0 (2.53)

To compute an approximation of the evolution described by the set of equations

over a time interval [0, T], it must handle forces having a density with respect to

Lebesgue’s measure [69, 146] in time and percussions having density with respect

to Dirac’s measure [69, 146] in time. The A-CD2 method consists of approximating

all the forces by a succession of percussions, in order to have all the stresses described

as percussions.

The time discretization technique of the forces (atomization) presented makes

the evolution a succession of instantaneous velocity discontinuities. Recalling (2.13)

and (2.14), we have

m
du

dt
= −f int + f ext almost everywhere (2.54)

46 2. A-CD2 MODEL

and

m [u] = −P int + P ext everywhere (2.55)

From time 0 to t, the accumulated stresses Rint and Rext are defined by [133],

Rint(t) =

∫ t

0

f int(τ) dτ +

∫ t

0

∑

ti

P int(ti) δti(τ) dτ (2.56)

Rext(t) =

∫ t

0

f ext(τ) dτ +

∫ t

0

∑

tj

P ext(tj) δtj(τ) dτ (2.57)

where ti and tj are the instants when internal and external percussions are exerted.

The percussion method (PM) approximates the regular elements of Rint and Rext

by the percussions. This procedure is named stress atomization. The approximated

evolution is obtained by computing a series of velocities discontinuities separated by

constant velocity evolutions. When this procedure is applied to a system formed by

solids, is known as A-CD2 method, and can be summarized as follows:

• The time length [0, T] is discretized in n regular steps [tk, tk+1] of length

∆n =
T

n
. In each time step, active forces are “atomized”, that is, replaced

by percussions exerted at the instant θk = tk +
n

2
.

• All the percussions exerted during the time gap [tk, tk+1] are also exerted at

the instant θk ∈ [tk, tk+1]. It follows that velocities are discontinuous at the

instants θk when the percussions are exerted and are constant elsewhere.

The atomization of a regular force f on the time interval [tk, tk+1] consists of

replacing it with the percussion P exerted at the instant θk. For instance, if f

depends on a time-dependent quantity y, then

∫ tk+1

tk

f (y(τ)) dτ ≃ (tk+1 − tk) f

(
y+ (θk) + y− (θk)

2

)
(2.58)

2.2. A-CD2 APPROACH 47

and thus f can be replaced by the percussion

P = ∆n f

(
y+ (θk) + y− (θk)

2

)
δθk(t) (2.59)

Three cases are considered,

• Constant force. The atomization of a constant force f 0 consists of ap-

proximating it with a percussion of intensity f 0∆n, on any time interval

∆n. For instance, the action of the weight

w(tk) = −
∫ tk+1

tk

m g dτ (2.60)

at time θk is approximated by

pw(t) = −m g∆n (2.61)

• Time dependent force. The force f(t) exerted on the system at time

gap [tk, tk+1] is replaced by a percussion of intensity ∆n f (θk) exerted at

the instant θk.

• Position dependent force. The force f (y(t)) exerted on the system at the

time [tk, tk+1] is replaced by a percussion of intensity ∆n f (y(θk)) exerted

at the instant θk. If we consider, for example, that two points are elastically

bounded and note the elongation x(t) at the instant t, the modulus of the

elastic force exerted on every point is κ |x(t)|. This force is therefore replaced

by a percussion of intensity ∆n κ |x(θk)|.

A numerical example based on the proposed theory is presented; a package of ran-

domly generated particles has been arranged on a skid, simulating the behaviour of a

landslide formed with 300 rigid regular bodies [133], see Figure 2.4. The parameters

48 2. A-CD2 MODEL

are κN = κT = 78 [kg/m] and the function Φ is

Φ = κT

((
u+ + u−

2

)
T

)2

+ κN

((
u+ + u−

2

)
N

)2

(2.62)

where T and N are the tangential and normal directions respectively.

Figure 2.4. Numerical simulation of a landslide.

Similar results is obtained in [132] with more than 1200 particles, see Figure 2.5.

Figure 2.5. System with 1225 solids

CHAPTER 3

Numerical Model

The AC −D2 [132] method is summarized by the following 3 recursive steps:

(1) Solids displace with constant velocity during ∆t.

(2) Contact points are computed with positions of the solids and the end of

time step ∆t.

(3) New velocities are computed and replace the previous ones in step 1.

New velocities are calculated by means of a constrained minimization problem 2.47

inf
x∈Ω

F (x) = 〈x,x〉+ Φd(x)−
〈
2u− + b,x

〉

where Ω =
{
x ∈ R

6N : ϕk(x) ≤ 0, k = 1, ..., nc

}
(3.1)

The constraint ϕk(x) associated to the contact point Aijk is given by

ϕk(x) =
(
d
u/2−

ij (Aijk)− dx
ij (Aijk)

)
·N k (3.2)

where N k is the normal vector at contact point Aijk.

The goal of this chapter is to: (a) expose the matrix representation for F (x), (b)

show the new equations associated to the non constant rotational velocities of the

solids and (c) explain the contact detection method used in this work.

3.1. Matrix Representation

The function F (x) is possible to write it in the following quadratic matrix form

F (x) =
1

2
xT (2M + Ξ) x− xT

(
2M u− − bext

)
(3.3)

49

50 3. NUMERICAL MODEL

where M ∈ R
6N×6N is the inertia and mass matrix, Ξ ∈ R

6N×6N is the pseudopoten-

tial of dissipation matrix and bext is the external percussion vector.

The product xT M x represents the total kinetic energy Ke, which is obtained by

Ke =
N∑

i=1

mi ·uT
i ui + Ii ·ωT

i ωi, mi ∈ R, Ii ∈ R
3×3, ui ∈ R

3, ωi ∈ R
3 (3.4)

where mi is the mass of solid i and Ii is the corresponding inertial tensor.

Let the velocity vector be

u = [u1 ω1 · · · ui ωi · · · uN ωN]
T ∈ R

6N (3.5)

therefore the total kinetic energy can be written as

Ke(u) =
N∑

i=1

mi u
T
i ui + Ii ω

T
i ωi =

N∑

i=1

uT
i

mi 0 0
0 mi 0
0 0 mi

 ui + ωT

i Iiωi

=
N∑

i=1

[
ui

ωi

]T

mi 0 0 0 0 0
0 mi 0 0 0 0
0 0 mi 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

[
ui

ωi

]
+

[
ui

ωi

]T

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0
0 0 0 Ii
0 0 0

[
ui

ωi

]

=
N∑

i=1

[
ui

ωi

]T

mi 0 0 0 0 0
0 mi 0 0 0 0
0 0 mi 0 0 0
0 0 0
0 0 0 Ii
0 0 0

[
ui

ωi

]
(3.6)

Let the diagonal matrix be

Mi =

mi 0 0
0 mi 0
0 0 mi

then (3.6) becomes

Ke =
N∑

i=1

[
ui

ωi

]T [
Mi Z3

Z3 Ii

] [
ui

ωi

]
(3.7)

3.1. MATRIX REPRESENTATION 51

where Z3 is a null matrix with size 3× 3. Then, expanding the sum, we have

Ke =

[
u1

ω1

]T [
M1 Z3

Z3 I1

] [
u1

ω1

]
+ · · ·+

[
uN

ωN

]T [
MN Z3

Z3 IN

] [
uN

ωN

]

=

u1

ω1

0
...
0

T

M1 Z3 · · · · · · Z3

Z3 I1 Z3 · · · Z3
... Z3

. . . Z3 Z3
...

... Z3 MN Z3

Z3 Z3 Z3 Z3 IN

u1

ω1

0
...
0

+

+ · · ·+

+

0
...
0
uN

ωN

T

M1 Z3 · · · · · · Z3

Z3 I1 Z3 · · · Z3
... Z3

. . . Z3 Z3
...

... Z3 MN Z3

Z3 Z3 Z3 Z3 IN

0
...
0
uN

ωN

=

u1

ω1
...
ui

ωi

...
uN

ωN

T

M1 Z3 · · · · · · · · · · · · · · · Z3

Z3 I1 Z3 · · · · · · · · · · · · Z3
... Z3

. . . Z3 · · · · · · · · · Z3
...

... Z3 Mi Z3 · · · · · · Z3
...

...
... Z3 Ii Z3 · · · Z3

...
...

...
... Z3

. . . Z3 Z3
...

...
...

...
... Z3 MN Z3

Z3 Z3 Z3 Z3 Z3 Z3 Z3 IN

︸ ︷︷ ︸
M

u1

ω1
...
ui

ωi

...
uN

ωN

= uT M u (3.8)

therefore, for any velocity vector x the total kinetic energy is

Ke(x) = xT M x (3.9)

The constitutive law describing the behavior (normal and tangential) of the solids has

been chosen quadratic [133]. The normal component of the dissipative percussion

52 3. NUMERICAL MODEL

applied at each contact point Aijk is given by

Φd
N (u) =

∑

Aijk

1

2
κN

(
du
ij (Aijk) ·N k

)2
(3.10)

where κN ≥ 0 is the normal coefficient, the relative velocity du
ij (Aijk) is defined in

(2.19) and N k is the normal vector at contact point Aijk. Therefore, we have

du
ij (Aijk) ·N k =

(
(ui + ωi × giAijk)−

(
uj + ωj × gjAijk

))
·N k

= (ui + ωi × giAijk) ·N k −
(
uj + ωj × gjAijk

)
·N k

= ui ·N k + (ωi × giAijk) ·N k − uj ·N k +
(
ωj × gjAijk

)
·N k

= ui ·N k + (giAijk ×N k) ·ωi − uj ·N k +
(
gjAijk ×N k

)
·ωj

=

[
N k

giAijk ×N k

]T [
ui

ωi

]
−
[

N k

gjAijk ×N k

]T [
uj

ωj

]
(3.11)

Defining the vector cik =

[
N k

giAijk ×N k

]
∈ R

6 and considering the velocity vector

defined in (3.5), the vectorial product in (3.11) is given by

du
ij (Aijk) ·N k = cTik

[
ui

ωi

]
− cTjk

[
uj

ωj

]

=

0
0
...

N k

giAijk ×N k

...
0
0
...
0
0

T

u1

ω1
...
ui

ωi

...
uj

ωj

...
uN

ωN

−

0
0
...
0
0
...

N k

gjAijk ×N k

...
0
0

T

u1

ω1
...
ui

ωi

...
uj

ωj

...
uN

ωN

(3.12)

Now, defining the following vector

ck =
[
0 · · · 0 N k giAijk ×N k 0 · · · 0 −N k −gjAijk ×N k 0 · · · 0

]T
(3.13)

3.1. MATRIX REPRESENTATION 53

the expression (3.11) becomes

du
ij (Aijk) ·N k =

0
...
0

N k

giAijk ×N k

0
...
0
−N k

−gjAijk ×N k

0
...
0

T

u1

ω1
...
ui

ωi

...
uj

ωj

...
uN

ωN

= cTk u (3.14)

Therefore, the normal behavior defined in (3.10) is given by

Φd
N (u) =

1

2
κN

∑

Aijk

((
(ui + ωi × giAijk)−

(
uj + ωj × gjAijk

))
·N k

)2

=
1

2
κN

∑

Aijk

(
cTk u

)2
=

1

2
κN

∑

Aijk

(
cTk u

)T (
cTk u

)

=
1

2
κN

∑

Aijk

uT
(
ck c

T
k

)
u

=
1

2
κN uT

∑

Aijk

ck c
T
k

 u (3.15)

Let be ΞN =
∑

Aijk
ck c

T
k , then the normal behavior for any velocity vector x is given

by

Φd
N (x) =

1

2
κN

(
xT ΞN x

)
(3.16)

54 3. NUMERICAL MODEL

The tangential component of the dissipative percussion applied at each contact point

Aijk is given by

Φd
T (u) =

∑

Aijk

1

2
κT

((
du
ij (Aijk)

)
−
((
du
ij (Aijk)

)
·N k

)
·N k

)2
(3.17)

The relative velocity of a contact point Aijk to the solid i is given by

ui + ωi × giAijk = ui +

ω

y
i (giAijk)

z − ωz
i (giAijk)

y

ωz
i (giAijk)

x − ωx
i (giAijk)

z

ωx
i (giAijk)

y − ω
y
i (giAijk)

x

=

ux

i + ω
y
i (giAijk)

z − ωz
i (giAijk)

y

u
y
i + ωz

i (giAijk)
x − ωx

i (giAijk)
z

uz
i + ωx

i (giAijk)
y − ω

y
i (giAijk)

x

=

1 0 0 0 (giAijk)

z − (giAijk)
y

0 1 0 − (giAijk)
z 0 (giAijk)

x

0 0 1 (giAijk)
y − (giAijk)

x 0

ux
i

u
y
i

uz
i

ωx
i

ω
y
i

ωz
i

= Rik

[
ui

ωi

]
(3.18)

Then the relative velocity for a contact point Aijk, to both solids i and j, is given by

du
ij (Aijk) = (ui + ωi × giAijk)−

(
uj + ωj × gjAijk

)

= Rik

[
ui

ωi

]
−Rjk

[
uj

ωj

]
(3.19)

3.1. MATRIX REPRESENTATION 55

Let be Zr
3 a zero matrix with size 3× 6r, therefore

Rik

[
ui

ωi

]
−Rjk

[
uj

ωj

]
=
[
Z

6(i−1)
3 Rik Z

6(N−i)
3

]

u1

ω1

...

ui

ωi

...

uN

ωN

−
[
Z

6(j−1)
3 Rjk Z

6(N−j)
3

]

u1

ω1

...

uj

ωj

...

uN

ωN

=

[
Z

6(i−1)
3 Rik Z

6(j−i−1)
3 Rjk Z

6(N−j)
3

]

︸ ︷︷ ︸
R

ij

k

u1

ω1

...

uN

ωN

= Rij
k u (3.20)

where Rij
k ∈ R

3×6N . For any velocity vector x, the relative velocity at a contact

point Aijk of two solids i and j is then

dx
ij (Aijk) = Rij

k x (3.21)

The second part of the tangential behavior is given by

((
du
ij (Aijk)

)
·N k

)
·N k (3.22)

56 3. NUMERICAL MODEL

Taking into account (3.11), we have

((
du
ij (Aijk)

)
·N k

)
·N k =

([
N k

giAijk ×N k

]T [
ui

ωi

]
−
[

N k

gjAijk ×N k

]T [
uj

ωj

])
·N k

=

([
N k

giAijk ×N k

]T [
ui

ωi

])
·N k −

([
N k

gjAijk ×N k

]T [
uj

ωj

])
·N k

=

Nx

k [N k giAijk ×N k]
N

y
k [N k giAijk ×N k]

N z
k [N k giAijk ×N k]

︸ ︷︷ ︸
Sik

[
ui

ωi

]
−

Nx

k

[
N k gjAijk ×N k

]

N
y
k

[
N k gjAijk ×N k

]

N z
k

[
N k gjAijk ×N k

]

︸ ︷︷ ︸
Sjk

[
uj

ωj

]

= Sik

[
ui

ωi

]
− Sjk

[
uj

ωj

]

=
[
Z

6(i−1)
3 Sik Z

6(N−i)
3

]

u1

ω1

...

ui

ωi

...

uN

ωN

−
[
Z

6(j−1)
3 Sjk Z

6(N−j)
3

]

u1

ω1

...

uj

ωj

...

uN

ωN

=

[
Z

6(i−1)
3 Sik Z

6(j−i−1)
3 Sjk Z

6(N−j)
3

]

︸ ︷︷ ︸
S
ij

k

u1

ω1

...

uN

ωN

= Sij
k u (3.23)

where Sij
k ∈ R

3×6N . For any velocity vector x, the relative velocity for a contact

point Aijk of two solids i and j is then

((
dx
ij (Aijk)

)
·N k

)
·N k = Sij

k x (3.24)

3.1. MATRIX REPRESENTATION 57

Finally the tangential behavior for any velocity vector x, considering (3.21) and

(3.24) is given by

Φd
T (x) =

∑

Aijk

1

2
κT

((
dx
ij (Aijk)

)
−
((
dx
ij (Aijk)

)
·N k

)
·N k

)2

=
∑

Aijk

1

2
κT

(
Rij

k x− Sij
k x
)2

=
∑

Aijk

1

2
κT

((
Rij

k − Sij
k

)
x
)2

=
∑

Aijk

1

2
κT xT

(
Rij

k − Sij
k

)T (
Rij

k − Sij
k

)
x

=
1

2
κT xT

∑

Aijk

(
Rij

k − Sij
k

)T (
Rij

k − Sij
k

)

 x (3.25)

Let be ΞT =
∑

Aijk

(
Rij

k − Sij
k

)T (
Rij

k − Sij
k

)
, then the tangential behavior for any

velocity vector x becomes

Φd
T (x) =

1

2
κT

(
xT ΞT x

)
(3.26)

Then, the total dissipative percussion is

Φd(x) = Φd
N(x) + Φd

T (x) (3.27)

The external percussion in (2.41) is defined by the following expression

〈b,u〉 =
N∑

i=1

∑

Bil

P ext
il ·ui +

(
P ext

il × giBil

)
·ωi (3.28)

We can obtain, for this expression, the following

N∑

i=1

∑

Bil

P ext
il ·ui +

(
P ext

il × giBil

)
·ωi =

N∑

i=1

∑

Bil

[
ui

ωi

]T [
P ext

il

P ext
il × giBil

]

=
∑

Bil

N∑

i=1

[
ui

ωi

]T [
P ext

il

P ext
il × giBil

]
(3.29)

58 3. NUMERICAL MODEL

Taking into account the velocity vector u, the external percussion becomes

〈b,u〉 =
∑

Bil

N∑

i=1

[
ui

ωi

]T [
P ext

il

P ext
il × giBil

]
=
∑

Bil

u1

ω1

...

ui

ωi

...

uN

ωN

T

0
...

0

P ext
il

P ext
il × giBil

0
...

0

=

u1

ω1

...

ui

ωi

...

uN

ωN

T

∑

Bil

0
...

0

P ext
il

P ext
il × giBil

0
...

0

︸ ︷︷ ︸
bext

= uT bext (3.30)

Finally, the function F (x) is obtained in the matricial form. Replacing (3.9), (3.27)

and (3.30), we can obtain

F (x) = 〈x,x〉+ Φd(x)−
〈
2u− + bext,x

〉

= 〈x,x〉+ Φd
N(x) + Φd

T (x)−
〈
2u−,x

〉
−
〈
bext,x

〉

= xT M x+
1

2
κN

(
xT ΞN x

)
+

1

2
κT

(
xT ΞT x

)
− 2xT M u− − xT bext

=
1

2
xT

2M +

1

2
κN ΞN +

1

2
κT ΞT

︸ ︷︷ ︸
Ξ

 x− xT

(
2M u− − bext

)

=
1

2
xT (2M + Ξ) x− xT

(
2M u− − bext

)
(3.31)

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 59

which is the expression defined in (3.3).

The linear constraints in (2.47) and (2.49) are defined by

ϕk(x) =

(
d

u
−

2

ij (Aijk)− dx
ij (Aijk)

)
·N k ≤ 0 (3.32)

replacing (3.13) and considering (3.14), the constraint ϕk(x) becomes

ϕk(x) =

(
d

u
−

2

ij (Aijk)− dx
ij (Aijk)

)
·N k

= cTk
u−

2
− cTk x (3.33)

Finally, the constrained minimization in matricial form has the following expression

min
x∈Ω

1

2
xT (2M + Ξ) x− xT

(
2M u− − bext

)

where Ω =

{
x ∈ R

6N : cTk
u−

2
− cTk x ≤ 0, k = 1, ..., nc

}
(3.34)

3.2. Torque and Force Free Rigid Box Motion

The A-CD2 method considers the displacements with constant velocity during ∆t.

If we take into account a moving solid, we know that the linear velocities are constant,

except in the z axis, where the gravity has effect. For the other hand, rotational

velocities are not constant due to the inertial motion, which is not considered in the

A-CD2 approach. In this section we present a set of equations associated to the non

constant rotational velocities of the solids.

We consider a solid rigid rectangular box (right parallelepiped) of sides a, b, c,

flying freely in the absence of torques and external forces, except for gravity.

By Charles’ theorem [65, p. 188] we know that any general displacement of the

box can be represented by a translation plus a rotation, both independent of each

other. More precisely, the problem of any rigid body motion can be split into two

60 3. NUMERICAL MODEL

separate phases: one concerned solely with the translational motion of the center

of mass G of the rigid body, and the other concerning its rotational motion. The

trajectory of the center of mass G of the box is described by a position vector r

(radius vector) with respect to a fixed global coordinate system OXY Z and it is

computed by the standard methods of gravitational mechanics.

We denote the canonical unit basis vectors of OXY Z by I, J and K, along the

X-, Y - and Z-axis, respectively.

Furthermore, we consider a local moving frame Gxyz fixed at the center of mass

G of the box. The canonical orthogonal unit basis vectors of Gxyz are denoted by i,

j and k, along the x-, y- and z-axis, respectively. Note that this local frame is fixed

on the box, so that, as the box moves and rotates in space, these basis vectors i, j

and k move and simultaneously rotate as well.

The fundamental equations describing the motion of the rigid box are the well

known equations from Classical Mechanics:

∑
F = m a ,

∑
MG =
·
HG , (3.35)

where
∑

F is the sum of all external forces acting on the box, m is the mass of

the box, a is the instantaneous acceleration of the center of mass G, i.e. a = ··r ,

∑
MG is the sum of all external momenta (torques) applied to the box, and HG is

the angular momentum of the box about its mass center G.

In the continuous case the sums go smoothly over into integrals. From the general

theory we know that:

HG = Iω , (3.36)

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 61

relative to the OXY Z coordinate system, where ω is the instantaneous angular

speed of the box I is its inertia tensor whose matrix representation is:

I =
[
Iij

]
3×3

, (3.37)

where:

I11 =

∫
(y2 + z2) dm , I22 =

∫
(z2 + y2) dm , I33 =

∫
(y2 + x2) dm , (3.38)

I12 =

∫
xy dm , I13 =

∫
xz dm , I23 =

∫
yz dm . (3.39)

Note that I, as a matrix, is Hermitian and hence, it is diagonalizable by means of a

similarity transformation using a real orthogonal matrix. Thus, it is always possible

to select the orthogonal coordinate axes Gxyz in such a way that the inertia tensor

I is diagonal:

I =

I11 0 0

0 I22 0

0 0 I33

 . (3.40)

These new orthogonal coordinate axes are the so-called principal axes of inertia

and the corresponding diagonal coefficients Iii are the principal moments of inertia.

With respect to the principal axes of inertia, i.e., with respect to the local coor-

dinate system Gxyz, equation (3.36) can be written as the set of three equations:

Hx ≡ H1 = I11 ω1 , Hy ≡ H2 = I22 ω2 , Hz ≡ H3 = I33 ω3 , (3.41)

where:

Hx = HG · i , Hy = HG · j , Hz = HG · k , (3.42)

ω1 = ω · i , ω2 = ω · j , ω3 = ω · k , (3.43)

denote the x-, y-, z-components of HG and ω respectively.

62 3. NUMERICAL MODEL

In the sequel we will always assume that the moving local orthogonal coordinate

system Gxyz is the one formed by the principal axes of inertia and whose origin is

fixed at the center of gravity G of the box.

With the help of the angular momentum HG we introduce a special notation

adapted to the situation we are dealing with. When we consider HG with respect to

the global coordinate system OXY Z we shall write:

[
HG

]
OXY Z

= HX I +HY J +HZ K , (3.44)

where HX , HY , HZ denote the X-, Y - and Z-components of HG. The basis vectors

I , J , K, are of course fixed.

I

J

K

HG

X

Y

Z

O

i

j

k

H

ω

xy

z

G

Figure 3.1. The global coordinate system OXY Z and the local or-
thogonal coordinate system Gxyz

Similarly we can consider HG with respect to the moving local coordinate system

Gxyz of the principal axes of inertia of the box as well. In this case we write:

[
HG

]
Gxyz

= Hx i+Hy j+Hz k . (3.45)

The basis vectors i, j, k, are now fixed on the box and hence move in space and

rotate with angular speed ω.

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 63

Note that for any given time instant we have:

HX I +HY J +HZ K =
[
HG

]
OXY Z

=
[
HG

]
Gxyz

= Hx i+Hy j+Hz k . (3.46)

Component equalities do not hold in general, of course. Although the next remark

is irrelevant for the classical mechanics considerations in this section, it gives some

information about when component equality holds.

Remark 1. Recall that the orthonormal trihedron {i, j, k} rotates with angular

speed ω with respect to the fixed orthonormal trihedron {I , J , K}. Fix some instant

t, and hence the orthonormal trihedron {i, j, k} as well. Apply a parallel shift to the

trihedra {I ,J ,K} and {i, j,k}, so that all six vectors originate at the center of

gravity G of the box. Then, whenever I · i 6= ±1, respectively J · j 6= ±1 and

K · k 6= ±1, i.e., whenever these vector pairs span planes, we have:

HX = Hx ⇔ HG = a (I + i) + bI × i , a, b ∈ R , (3.47)

HY = Hy ⇔ HG = a (J + j) + bJ × j , a, b ∈ R , (3.48)

HZ = Hz ⇔ HG = a (K+ k) + bK× k , a, b ∈ R . (3.49)

Proof. We only prove (3.47).

(⇒) Let HG be such that HX = Hx. Let HG originates at G and consider this

vector as the radius vector of a point Q in R
3 relative to G. First we observe, that the

geometric place of the points P on the plane E spanned by I and i, that have equal

projections onto I and i, is the bisector B of the angle subtended by those vectors.

The equation of the points P on B is P = λ (I + i), λ ∈ R. Now, it is fairly obvious

that the geometric place of all points Q on the space R
3, that have equal projections

64 3. NUMERICAL MODEL

onto I and i, is the plane F perpendicular to the plane E along the bisector B.

Thus, the equation of the points Q on the plane F is Q = a (I + i) + bI × i with

a, b ∈ R. This proves (⇒).

(⇐) We just need to consider the dot product of HG with I and i:

HX = HG · I = a (I + i) · I + bI × i · I = a(1 + i · I)
Hx = HG · i = a (I + i) · i+ bI × i · i = a(I · i+ 1) .

Thus, HX = Hx as claimed. Similar arguments gives the other two expressions. �

For the time derivative we have a similar but slightly more complicated situation.

The partial time derivative, with the standard meaning, will be denoted by the usual

symbol ∂
∂t

. We introduce the time derivative operator
[·]·coordinate

system
, meaning time

derivative assuming that the displayed coordinate system is fixed. With the help of

the angular momentum HG this operator is defined by:

[
HG

]·
OXY Z

:= time derivative of HG assuming

fixed coordinate system OXY Z , (3.50)

[
HG

]·
Gxyz

:= time derivative of HG assuming

fixed coordinate system Gxyz . (3.51)

Thus, in terms of the components:

[
HG

]·
OXY Z

=
·
HX I +

·
HY J +

·
HZ K , (3.52)

[
HG

]·
Gxyz

=
·
Hx i+
·
Hy j+
·
Hz k . (3.53)

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 65

Recall, however, that although the trihedron {I , J , K} is fixed, i.e., does not change

with time, the trihedron {i, j, k} rotates, i.e., it does change with respect to time,

and hence:

∂HG

∂t
=
[
HG

]·
OXY Z

,
∂HG

∂t
6=
[
HG

]·
Gxyz

, (3.54)

in general. For the computation of the dynamics of the system we need the time

derivative of HG relative to the OXY Z coordinate system. Since the local basis

trihedron {i, j, k} rotates with angular speed ω around an axis which goes through

G and is parallel to ω, we have:

[
HG

]·
OXY Z

=
∂

∂t

[
HG

]

OXY Z

=
∂

∂t

[
HG

]

Gxyz

=
∂

∂t
(Hx i+Hy j+Hz k)

=
∂Hx

∂t
i+

∂Hy

∂t
j+

∂Hz

∂t
k+Hx

∂ i

∂t
+Hy

∂ j

∂t
+Hz

∂ k

∂t

=
·
Hx i+
·
Hy j+
·
Hz k+Hx

∂ i

∂t
+Hy

∂ j

∂t
+Hz

∂ k

∂t
. (3.55)

i

j

k

H

ω

xy

z

G
t −→ t+∆t

i

j

k

H

ω

x

y

z
G

Figure 3.2. Evolution from t to ∆t = t+ 1 for the local coordinate system.

66 3. NUMERICAL MODEL

Approximating the derivatives by the usual finite differences we have:

i
∣∣
t+∆t
− i
∣∣
t
≈ ω × i

∣∣
t
∆t ,

j
∣∣
t+∆t
− j
∣∣
t
≈ ω × j

∣∣
t
∆t , (3.56)

k
∣∣
t+∆t
− k

∣∣
t
≈ ω × k

∣∣
t
∆t ,

and hence taking the limit when ∆t→ 0:

∂i

∂t
= ω × i ,

∂j

∂t
= ω × j ,

∂k

∂t
= ω × k , (3.57)

Thus, we obtain:

∂

∂t

[
HG

]

OXY Z

=
·
Hx i+
·
Hy j+
·
Hz k+ ω × iHx + ω × jHy + ω × kHz , (3.58)

i.e., finally:

[
HG

]·
OXY Z

=
[
HG

]·
Gxyz

+ ω ×
[
HG

]
Gxyz

. (3.59)

Now, introducing (3.41) into (3.53) we observe that

[
HG

]·
Gxyz

= I11
·ω1 i+ I22

·ω2 j+ I33
·ω3 k , (3.60)

and hence we get:

∑
MG =

[
HG

]·
OXY Z

= I11
·ω1 i+I22
·ω2 j+I33
·ω3 k +

∣∣∣∣∣∣∣

i j k

ω1 ω2 ω3

I11 ω1 I22 ω2 I33 ω3

∣∣∣∣∣∣∣
(3.61)

Writing this equation componentwise we obtain:

∑
M1 = I11

·ω1 + (I33 − I22)ω2 ω3 ,

∑
M2 = I22

·ω2 + (I11 − I33)ω1 ω3 , (3.62)

∑
M1 = I33

·ω3 + (I22 − I11)ω1 ω2 ,

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 67

which are (part of) the so called Euler equations of motion concerning the rotation

motion of the rigid body. The other part of the Euler equations are the three Newton

equations concerning the translation motion F = m a.

Now, in our case, since the motion is torque-free, the Euler equation gives:

·
HG =

∑
MG = 0 , (3.63)

which means that the direction (and the magnitude) of HG remains fixed w.r.t. the

fixed coordinate system OXY Z. In this case the equations (3.62) reduce to: (cf.

[65, p. 205])

I11
·ω1 = (I22 − I33)ω2 ω3 ,

I22
·ω2 = (I33 − I11)ω3 ω1 , (3.64)

I33
·ω3 = (I11 − I22)ω1 ω2 ,

From (3.64) we obtain:

(
ω2
1

)· = 2(I22 − I33)

I11
ω1 ω2 ω3 =: P ω1 ω2 ω3 ,

(
ω2
2

)· = 2(I33 − I11)

I22
ω1 ω2 ω3 =: Qω1 ω2 ω3 , (3.65)

(
ω2
3

)· = 2(I11 − I22)

I33
ω1 ω2 ω3 =: Rω1 ω2 ω3 .

It follows that:

(
ω2
2

)· = Q

P

(
ω2
1

)· , (
ω2
3

)· = R

P

(
ω2
1

)· , (3.66)

where:

Q

P
=

I11(I33 − I11)

I22(I22 − I33)
,

R

P
=

I11(I11 − I22)

I33(I22 − I33)
. (3.67)

68 3. NUMERICAL MODEL

Thus,

ω2
2 = a

′

1 +
Q

P
ω2
1 , ω2

3 = c
′

1 +
R

P
ω2
1 , (3.68)

where a
′

1 and c
′

1 are integration constants to be determined. Now the first equation

in (3.64) gives:

(·ω1

)2
=

(I22 − I33)
2

I211
ω2
2 ω

3
3 =

(I22 − I33)
2

I211

(
a

′

1 +
Q

P
ω2
1

)(
c
′

1 +
R

P
ω2
1

)
, (3.69)

Doing the algebra we get:

(·ω1

)2
=
(
a1 + b1 ω

2
1

) (
c1 + d1 ω

2
1

)
, (3.70)

where:

a1 = a
′

1

I22 − I33
I11

= a
′

1

P

2
b1 =

I33 − I11
I22

=
Q

2
(3.71)

c1 = c
′

1

I22 − I33
I11

= c
′

1

P

2
d1 =

I11 − I22
I33

=
R

2
(3.72)

3.2.1. First Solution. Equation (3.70) is a differential equation related to the

Jacobi elliptic functions sn, cn and dn [171, p. 492].

From now on, we will consider that I11 < I22 < I33. Although this may look as

an over-simplification, it is not since we are free to choose the name of the unknowns

function ω1(t), ω2(t) and ω3(t) and the name will be selected such that we always

satisfy I11 < I22 < I33.

This simplification help us to find the signs of three of the four constants ap-

pearing in equation (3.70), thus a < 0, b > 0 and d < 0. Unfortunately, c could be

either negative of positive. This will depend of the moments of inertias I11, I22 and

I33 and the initial conditions for ω1(0), ω2(0) and ω3(0). So, we must analyze both

cases. We will denote by Case 1 when c > 0 and Case 2 when c < 0.

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 69

Before continue, we need to come back to the Jacobi elliptic functions mentioned

before. The reason they appear here is because they provide an explicit solution

to the equation (3.70) depending on the value of the coefficients a, b, c and d,

respectively.

In Table 3.1 we provide the form of the differential equations that are solved by

the Jacobi elliptic functions sn, cn and dn, respectively.

Differential Equation Solution

(y′(x))2 = (1− y2(x)) (1− k2 y2(x))
= 1− (1 + k2) y2(x) + k2 y4(x)

y(x) = sn(x, k2)

(y′(x))2 = (1− y2(x)) (1− k2 + k2 y2(x))
= 1− k2 + (−1 + 2 k2) y2(x)− k2 y4(x)

y(x) = cn(x, k2)

(y′(x))2 = (y2(x)− 1) (1− k2 − y2(x))
= −1 + k2 + (2− k2) y2(x)− y4(x)

y(x) = dn(x, k2)

Table 3.1. Jacobi differential equations

where k2 is called the modulus and here it is considered to be 0 < k2 < 1. Thus,

now we need to make a suitable change of variables such that we can transform

the equation (3.70) into one of the described differential equations in Table 3.1. To

achieve this task, we propose to build the non-dimensional function ω̃1(τ), such that

ω1(t) = ±
√
γ ω̃1(τ) and t = η τ − t0. Thus we obtain,

γ η2
(·̃
ω1

)2

=
(
a1 + b1 γ ω̃

2
1

) (
c1 + d1 γ ω̃

2
1

)
,

expanding the right-hand-side and moving scaling factors also to right hand side we

obtain,

(·̃
ω1

)2

= a1 c1 γ
−1 η−2 + η−2 (a1 d1 + b1 c1) ω̃

2
1 + γ−1η−2 b1 d1 ω̃

4
1 (3.73)

where in this the over-dot means derivative with respect to the non-dimensional time

τ .

70 3. NUMERICAL MODEL

To decide which Jacobi elliptic function will be the solution of (3.70) we need to

compare each term of the right-hand-side of equation (3.73) and the right-hand-side

of the differential equations in Table 3.1.

To simplify the comparison we provide Table 3.2.

Equal terms Candidate solution

a1 c1 γ
−1 η−2 = 1

η−2 (a1 d1 + b1 c1) = −(1 + k2)
γ−1η−2 b1 d1 = k2

y(x) = sn(x, k2)

a1 c1 γ
−1 η−2 = 1− k2

η−2 (a1 d1 + b1 c1) = −1 + 2 k2

γ−1η−2 b1 d1 = −k2
y(x) = cn(x, k2)

a1 c1 γ
−1 η−2 = −1 + k2

η−2 (a1 d1 + b1 c1) = 2− k2

γ−1η−2 b1 d1 = −1
y(x) = dn(x, k2)

Table 3.2. Comparing term by term with candidate solutions

The next step is to find the constants γ, η and k2. It is interesting to point out

that 2 unknowns of the three equations are provided by the original problem and

one unknown is provided by the Jacobi elliptic functions. The problem now has been

translated to solution of 3 system of nonlinear equations. Fortunately, these can be

solved explicitly.

Before continuing, we would like to point out that we are only interested in real

solutions of the nonlinear systems of equations and also require that 0 < k < 1.

Although the latter could be removed, but it is kept to avoid the use of identities of

the Jacobi elliptic functions later on and obtain the solution in their standard form

directly.

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 71

The solutions are summarized as follows:

(
ω̃1(τ), η, γ, k

2
)
=

(
dn(τ, k2), 1√

|a1 d1|
,
∣∣∣a1b1
∣∣∣ , 1−

∣∣∣ b1 c1a1 d1

∣∣∣
)
,

if c1 > 0 and |a1 d1| > |b1 c1|
(

dn(τ, k2), 1√
|b1 c1|

,
∣∣∣ c1d1
∣∣∣ , 1−

∣∣∣a1 d1b1 c1

∣∣∣
)
,

if c1 > 0 and |a1 d1| ≤ |b1 c1|
(

cn(τ, k2), 1√
|a1 d1|+|b1 c1|

,
∣∣∣a1b1
∣∣∣ , |a1 d1|

|a1 d1|+|b1 c1|

)
,

if c1 ≤ 0

(3.74)

We can easily find ω1(t) =
√
γ ω̃1(

t+t0
η
), where t0 is obtained directly from the initial

condition t0 = η ω̃−1
1

(
ω1(0)√

γ

)
, respectively. Following the same procedure, we can

find ω2(t) and ω3(t). These are:

(
ω̃2(τ), η, γ, k

2
)
=

(
sn(τ, k2), 1√

|a1 d1|
,
∣∣∣ c2d2
∣∣∣ ,
∣∣∣ b2 c2a2 d2

∣∣∣
)

if |a2 d2| > |b2 c2|
(

sn(τ, k2), 1√
|b2 c2|

,
∣∣∣a2b2
∣∣∣ ,
∣∣∣a2 d2b2 c2

∣∣∣
)

if |a2 d2| ≤ |b2 c2|
(3.75)

and

(
ω̃3(τ), η, γ, k

2
)
=

(
dn(τ, k2), 1√

|a3 d3|
,
∣∣∣a3b3
∣∣∣ , 1−

∣∣∣ b3 c3a3 d3

∣∣∣
)
,

if a3 > 0 and |a3 d3| > |b3 c3|
(

dn(τ, k2), 1√
|b3 c3|

,
∣∣∣ c3d3
∣∣∣ , 1−

∣∣∣a3 d3b3 c3

∣∣∣
)
,

if a3 > 0 and |a3 d3| ≤ |b3 c3|
(

cn(τ, k2), 1√
|a3 d3|+|b3 c3|

,
∣∣∣ c3d3
∣∣∣ , |b3 c3|

|a3 d3|+|b3 c3|

)
,

if a3 ≤ 0

(3.76)

72 3. NUMERICAL MODEL

where t0 for ω2(t) and ω3(t) can be found in the same fashion as we did for ω1(t).

Finally, we provide a table with the explicit definition of the coefficients used for the

analytical solutions.

Coefficient Value

a1 −Qω1(0)
2 + |P |ω2(0)

2

2
b1 Q/2

c1
|R|ω1(0)

2 − |P |ω3(0)
2

2
d1 R/2
a2 −a1
b2 P/2

c2
|R|ω2(0)

2 +Qω3(0)
2

2
d2 d1
a3 −c1
b3 b2
c3 −c2
d3 b1

Table 3.3. Coefficients used to find the analytical solutions for ω1(t),
ω2(t), and ω3(t).

We can clearly see from table that the sign of c1 could be positive or negative,

and this effect is also valid for a3 but it is the opposite sign of c1. All the other

coefficients has well defined sign.

3.2.2. Second Solution. Recalling equation (3.70) which is a differential equa-

tion related to the Jacobi elliptic functions, Mathematica [6] readily gives solutions

in terms of these functions,

ω1(t) = ±i
√

a1
b1

sn
(
i
√
b1 c1 (t∓ k1) |mω1

)
, (3.77)

where i2 = −1, k1 is an integration constant and,

mω1
=

a1 d1
b1 c1

= a
′

1

P

2

R

2

2

Q

2

P

1

c
′

1

=
a

′

1

c
′

1

R

Q
. (3.78)

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 73

where P ,R and Q are determined by (3.65) and a′1, c
′
1 by (3.68). Similar results can

be obtained for ω2(t) and ω3(t). It follows from (3.64) that,

(
ω2
1

)· = P

Q

(
ω2
2

)· , (
ω2
1

)· = R

Q

(
ω2
3

)· , (3.79)

Thus,

ω2
1 = a

′

2 +
P

Q
ω2
2 , ω2

3 = c
′

2 +
R

Q
ω2
2 , (3.80)

where a
′

2, c
′

2 are integration constants to be determined. Now the second equation

in (3.64) gives,

(·ω2

)2
=

(I33 − I11)
2

I222
ω2
1 ω

2
3 =

Q2

4

(
a

′

2 +
P

Q
ω2
2

)(
c
′

2 +
R

Q
ω2
2

)
, (3.81)

Doing the algebra we get,

(·ω1

)2
=
(
a2 + b2 ω

2
2

) (
c2 + d2 ω

2
2

)
, (3.82)

where,

a2 = a
′

2

Q

2
, b2 =

P

2
, c2 = c

′

2

Q

2
, d2 =

R

2
. (3.83)

Analogously as (3.77), we get

ω2(t) = ±i
√

a2
b2

sn
(
i
√
b2 c2 (t∓ k2) |mω2

)
, (3.84)

where i2 = −1, k2 is an integration constant and,

mω2
=

a2 d2
b2 c2

= a
′

2

Q

2

R

2

2

P

2

Q

1

c
′

2

=
a

′

2

c
′

2

R

P
. (3.85)

It follows from (3.64) that,

(
ω2
1

)· = P

R

(
ω2
3

)· , (
ω2
3

)· = Q

R

(
ω2
2

)· , (3.86)

74 3. NUMERICAL MODEL

Thus,

ω2
1 = a

′

3 +
P

R
ω2
3 , ω2

2 = c
′

3 +
Q

R
ω2
3 , (3.87)

where a
′

3, c
′

3 are integration constants to be determined. Now the third equation in

(3.64) gives,

(·ω3

)2
=

(I11 − I22)
2

I233
ω2
1 ω

2
2 =

R2

4

(
a

′

3 +
P

R
ω2
3

)(
c
′

3 +
Q

R
ω2
3

)
, (3.88)

Doing the algebra we get,

(·ω3

)2
=
(
a3 + b3 ω

2
3

) (
c3 + d3 ω

2
3

)
, (3.89)

where,

a3 = a
′

3

R

2
, b3 =

P

2
, c3 = c

′

3

R

2
, d3 =

Q

2
. (3.90)

Analogously as (3.77) and (3.84), we get

ω3(t) = ±i
√

a3
b3

sn
(
i
√
b3 c3 (t∓ k3) |mω3

)
, (3.91)

where i2 = −1, k3 is an integration constant and

mω3
=

a3 d3
b3 c3

= a
′

3

R

2

Q

2

2

P

2

R

1

c
′

3

=
a

′

3

c
′

3

Q

P
. (3.92)

Summarizing, we obtain the following equations,

ω1(t) = ±i
√

a1
b1

sn
(
i
√
b1 c1 (t∓ k1) |mω1

)
, (3.93)

ω2(t) = ±i
√

a2
b2

sn
(
i
√
b2 c2 (t∓ k2) |mω2

)
, (3.94)

ω3(t) = ±i
√

a3
b3

sn
(
i
√
b3 c3 (t∓ k3) |mω3

)
, (3.95)

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 75

Analyzing these functions, not always are real, in fact, depend of P,Q and R values.

Then, we obtain the following combinations depending of the inertia values,

CASE P Q R

1. I11 < I22 < I33 − + −

2. I11 < I33 < I22 + + −

3. I22 < I11 < I33 − + +

4. I22 < I33 < I11 − − +

5. I33 < I11 < I22 + − −

6. I33 < I22 < I11 + − +

(3.96)

For example, we observe that in the case 1, P < 0, Q > 0 and R < 0, and for each

function in (3.93),(3.94) and 3.95, we have:

a1 < 0 b1 > 0 c1 > 0 ⇒ a1
b1

< 0 b1c1 > 0 ⇒ ω1(t) /∈ R

a1 < 0 b1 > 0 c1 < 0 ⇒ a1
b1

< 0 b1c1 < 0 ⇒ ω1(t) ∈ R

a2 > 0 b2 < 0 c2 > 0 ⇒ a2
b2

< 0 b2c2 < 0 ⇒ ω2(t) ∈ R

a3 < 0 b3 < 0 c3 < 0 ⇒ a3
b3

> 0 b3c3 > 0 ⇒ ω3(t) /∈ R

a3 > 0 b3 < 0 c3 < 0 ⇒ a3
b3

< 0 b3c3 > 0 ⇒ ω3(t) /∈ R

(3.97)

Thus, only ω2(t) is real unique for this case, therefore, explicitely is the equation

(3.94),

ω2(t) = ±i
√

a2
b2

sn
(
i
√
b2 c2 (t∓ k2) |mω2

)
, (3.98)

76 3. NUMERICAL MODEL

but we know that a2
b2

< 0 and b2c2 < 0, therefore,

ω2(t) = ∓
√
−a2
b2

sn
(
−
√
−b2 c2 (t∓ k2) |mω2

)
, (3.99)

= ∓α2 sn (−β2 (t∓ k2) |mω2
) , (3.100)

= ±α2 sn (β2 (t∓ k2) |mω2
) , (3.101)

Now, we need to obtain an explicit expression for the others two velocities ω1(t) and

ω3(t). The first equation in (3.80) gives:

ω2
1 = a

′

2 +
P

Q
ω2
2 = a

′

2 +
P

Q
(±α2 sn (β2 (t∓ k2) |mω2

))2

= a
′

2 +
P

Q
α2
2 sn2 (β2 (t∓ k2) |mω2

) = a
′

2 +
P

Q

(
−a2
b2

)
sn2 (β2 (t∓ k2) |mω2

)

= a
′

2 −
P

Q

a2
b2

sn2 (β2 (t∓ k2) |mω2
) = a

′

2 −
P

Q
a

′

2

Q

2

2

P
sn2 (β2 (t∓ k2) |mω2

)

= a
′

2

(
1− sn2 (β2 (t∓ k2) |mω2

)
)
= a

′

2 cn2 (β2 (t∓ k2) |mω2
)

Finally we get

ω1 = ±
√
a

′

2 cn (β2 (t∓ k2) |mω2
) (3.102)

Then we have that α1 =
√
a

′

2. Now the second equation in (3.80) gives:

ω2
3 = c

′

2 +
R

Q
ω2
2 = c

′

2 +
R

Q
(±α2 sn (β2 (t∓ k2) |mω2

))2

= c
′

2 +
R

Q
α2
2 sn2 (β2 (t∓ k2) |mω2

) = c
′

2 +
R

Q

(
−a2
b2

)
sn2 (β2 (t∓ k2) |mω2

)

= c
′

2 −
R

Q

a2
b2

sn2 (β2 (t∓ k2) |mω2
) = c

′

2 −
R

Q
a

′

2

Q

2

2

P
sn2 (β2 (t∓ k2) |mω2

)

= c
′

2 − a
′

2

R

P
sn2 (β2 (t∓ k2) |mω2

) = c
′

2 − c
′

2 mω2
sn2 (β2 (t∓ k2) |mω2

)

= c
′

2

(
1−mω2

sn2 (β2 (t∓ k2) |mω2
)
)
= c

′

2 dn2 (β2 (t∓ k2) |mω2
)

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 77

Finally we get

ω3 = ±
√

c
′

2 dn (β2 (t∓ k2) |mω2
) (3.103)

Then we have that α3 =
√

c
′

2.

An important point is mention that mω2
is always positive:

mω2
=

a
′

2

c
′

2

R

P
> 0 (3.104)

Then, if 0 < mω2
< 1, the velocities are:

ω1(t) = ±
√
a

′

2 cn (β2 (t∓ k2) |mω2
)

ω2(t) = ±α2 sn (β2 (t∓ k2) |mω2
) , (3.105)

ω3(t) = ±
√
c
′

2 dn (β2 (t∓ k2) |mω2
)

Now, if mω2
> 1, the velocities are [11, p. 573]:

ω1(t) = ±
√
a

′

2 dn

(√
mω2

β2 (t∓ k2)

∣∣∣∣
1

mω2

)

ω2(t) = ±α2
1√
mω2

sn

(√
mω2

β2 (t∓ k2)

∣∣∣∣
1

mω2

)
, (3.106)

ω3(t) = ±
√
c
′

2 cn

(√
mω2

β2 (t∓ k2)

∣∣∣∣
1

mω2

)

where choosing the sign depends on the initial values.

78 3. NUMERICAL MODEL

3.2.3. Comparison. The solutions with the form ω(t) = ±√γ ω̃
(
t+ t0
η

)
, are

summarized as follows:

(
ω̃1(τ), η, γ, k

2
)
=

(
dn(τ, k2), 1√

|a1 d1|
,
∣∣∣a1b1
∣∣∣ , 1−

∣∣∣ b1 c1a1 d1

∣∣∣
)
,

if c1 > 0 and |a1 d1| > |b1 c1|
(

dn(τ, k2), 1√
|b1 c1|

,
∣∣∣ c1d1
∣∣∣ , 1−

∣∣∣a1 d1b1 c1

∣∣∣
)
,

if c1 > 0 and |a1 d1| ≤ |b1 c1|
(

cn(τ, k2), 1√
|a1 d1|+|b1 c1|

,
∣∣∣a1b1
∣∣∣ , |a1 d1|

|a1 d1|+|b1 c1|

)
,

if c1 ≤ 0

(3.107)

,

(
ω̃2(τ), η, γ, k

2
)
=

(
sn(τ, k2), 1√

|a1 d1|
,
∣∣∣ c2d2
∣∣∣ ,
∣∣∣ b2 c2a2 d2

∣∣∣
)

if |a2 d2| > |b2 c2|
(

sn(τ, k2), 1√
|b2 c2|

,
∣∣∣a2b2
∣∣∣ ,
∣∣∣a2 d2b2 c2

∣∣∣
)

if |a2 d2| ≤ |b2 c2|
(3.108)

and

(
ω̃3(τ), η, γ, k

2
)
=

(
dn(τ, k2), 1√

|a3 d3|
,
∣∣∣a3b3
∣∣∣ , 1−

∣∣∣ b3 c3a3 d3

∣∣∣
)
,

if a3 > 0 and |a3 d3| > |b3 c3|
(

dn(τ, k2), 1√
|b3 c3|

,
∣∣∣ c3d3
∣∣∣ , 1−

∣∣∣a3 d3b3 c3

∣∣∣
)
,

if a3 > 0 and |a3 d3| ≤ |b3 c3|
(

cn(τ, k2), 1√
|a3 d3|+|b3 c3|

,
∣∣∣ c3d3
∣∣∣ , |b3 c3|

|a3 d3|+|b3 c3|

)
,

if a3 ≤ 0

(3.109)

where t0 for ω2(t) and ω3(t) can be found in the same fashion as we did for ω1(t).

Taking into account the first equation in (3.108) and the right equation of (3.80), we

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 79

have

ω2
3 = c

′

2 +
R

Q
ω2
2 = c

′

2 +
R

Q

(√∣∣∣∣
c2
d2

∣∣∣∣sn(τ, k
2)

)2

= c
′

2 +
R

Q

∣∣∣∣
c2
d2

∣∣∣∣ sn
2(τ, k2)

= c
′

2 +
R

Q

∣∣∣∣∣
c
′

2
Q

2
R
2

∣∣∣∣∣ sn
2(τ, k2) = c

′

2 +
R

Q

∣∣∣∣
c
′

2Q

R

∣∣∣∣ sn
2(τ, k2)

= c
′

2 −
∣∣∣∣
R

Q

∣∣∣∣
∣∣∣∣
c
′

2 Q

R

∣∣∣∣ sn
2(τ, k2) = c

′

2 −
∣∣∣∣
R

Q

c
′

2 Q

R

∣∣∣∣ sn
2(τ, k2)

= c
′

2 − |c
′

2|sn2(τ, k2) = c
′

2

(
1− sn2(τ, k2)

)

Finally,

ω2
3 = c

′

2 cn2(τ, k2) (3.110)

Then, we have obtained the third function in equation (3.109). The problem which

arises now, is to verify if the coefficients for both functions are equals. First, it

verifies if γ coefficients are equal.

In (3.110), γ coefficient is given by

c
′

2 = ω2
3 −

R

Q
ω2
2 (3.111)

On the other hand, in (3.109), γ coefficient is given by

∣∣∣∣
c3
d3

∣∣∣∣ =

∣∣∣∣∣∣∣

c
′

3

R

2
Q

2

∣∣∣∣∣∣∣
=

∣∣∣∣
c
′

3 R

Q

∣∣∣∣ = −
c
′

3 R

Q
= −

(
ω2
2 −

Q

R
ω2
3

)
R

Q
= ω2

3 −
R

Q
ω2
2 (3.112)

Therefore, γ coefficient is the same. Second, it verifies if k2 coefficients are equal. In

(3.108), k2 is given by

∣∣∣∣
b2 c2
a2 d2

∣∣∣∣ =

∣∣∣∣∣∣

P
2

c
′

2
Q

2

a
′

2
Q

2
R
2

∣∣∣∣∣∣
=

P c
′

2

a
′

2 R
=

P

R

(
ω2
3 − R

Q
ω2
2

)

(
ω2
1 − P

Q
ω2
2

)

80 3. NUMERICAL MODEL

On the other hand, in (3.109), k2 is given by

|b3 c3|
|a3 d3|+ |b3 c3|

=

∣∣∣P2
c
′

3
R

2

∣∣∣
∣∣∣a

′

3
R

2
Q

2

∣∣∣+
∣∣∣P2

c
′

3
R

2

∣∣∣
=

P c
′

3

P c
′

3 −Qa
′

3

=

P

(
ω2
2 −

Q

R
ω2
3

)

P

(
ω2
2 −

Q

R
ω2
3

)
−Q

(
ω2
1 −

P

R
ω2
3

)

=

P

(
ω2
2 −

Q

R
ω2
3

)

P ω2
2 −

P Q

R
ω2
3 −Qω2

1 +
P Q

R
ω2
3

=

P

(
ω2
2 −

Q

R
ω2
3

)

P ω2
2 −Qω2

1

=

P

(
R

Q
ω2
2 − ω2

3

)

P
R

Q
ω2
2 −Rω2

1

=

−P
(
ω2
3 −

R

Q
ω2
2

)

−R
(
ω2
1 −

P

Q
ω2
2

) =

P

(
ω2
3 −

R

Q
ω2
2

)

R

(
ω2
1 −

P

Q
ω2
2

)

Therefore, k2 parameter is the same. Third, it verifies if η coefficients are equal. In

(3.108), η is given by

1√
|a1 d1|

=
1√∣∣∣∣a

′

1

P

2

R

2

∣∣∣∣

=
2√

a
′

1 P R
=

2√(
ω2
2 −

Q

P
ω2
1

)
P R

=
2√

R (P ω2
2 −Qω2

1)

On the other hand, in (3.109), η is given by

1√
|a3 d3|+ |b3 c3|

=
1√∣∣∣∣a

′

3

R

2

Q

2

∣∣∣∣+
∣∣∣∣c

′

3

P

2

R

2

∣∣∣∣

=
1√

c
′

3

P R

4
− a

′

3

RQ

4

=
2√

c
′

3 P R− a
′

3 RQ
=

2√(
ω2
2 −

Q

R
ω2
3

)
P R−

(
ω2
1 −

P

R
ω2
3

)
RQ

=
2√

P Rω2
2 − P Qω2

3 −RQω2
1 + P Qω2

3

=
2√

R (P ω2
2 −Qω2

1)

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 81

Therefore, η parameter is the same. Now, taking into account the first equation in

(3.108) and the left equation of (3.80), we have

ω2
1 = a

′

2 +
P

Q
ω2
2 = a

′

2 +
P

Q

(√∣∣∣∣
c2
d2

∣∣∣∣sn(τ, k
2)

)2

= a
′

2 +
P

Q

∣∣∣∣
c2
d2

∣∣∣∣ sn
2(τ, k2)

= a
′

2 +
P

Q

∣∣∣∣∣
c
′

2
Q

2
R
2

∣∣∣∣∣ sn
2(τ, k2) = a

′

2 +
P

Q

∣∣∣∣
c
′

2 Q

R

∣∣∣∣ sn
2(τ, k2)

= a
′

2 −
∣∣∣∣
P

Q

∣∣∣∣
∣∣∣∣
c
′

2 Q

R

∣∣∣∣ sn
2(τ, k2) = a

′

2 −
∣∣∣∣
P

R
c
′

2

∣∣∣∣ sn
2(τ, k2)

We know that,

k2 =

∣∣∣∣
b2 c2
a2 d2

∣∣∣∣ =

∣∣∣∣∣∣

P
2

c
′

2
Q

2

a
′

2
Q

2
R
2

∣∣∣∣∣∣
=

P c
′

2

a
′

2 R

which implies that

a
′

2 k
2 =

P c
′

2

R

Replacing in ω2
1, it results that

ω2
1 = a

′

2 −
∣∣∣∣
P

R
c
′

2

∣∣∣∣ sn
2(τ, k2) = a

′

2 −
∣∣∣a′

2 k
2
∣∣∣ sn2(τ, k2) = a

′

2

(
1− k2sn2(τ, k2)

)

Finally,

ω2
1 = a

′

2 dn2(τ, k2)

However, we can notice that there are two functions dn in (3.107). If we analyze the

second function dn, we can note a condition, which is c1 > 0 and |a1 d1| ≤ |b1 c1|,

therefore we have the following

|a1 d1| ≤ |b1 c1| ⇒
∣∣∣∣a

′

1

P

2

R

2

∣∣∣∣ ≤
∣∣∣∣
Q

2
c
′

1

P

2

∣∣∣∣⇒
∣∣∣∣
(
ω2
2 −

Q

P
ω2
1

)
P

2

R

2

∣∣∣∣ ≤
∣∣∣∣
(
ω2
3 −

R

P
ω2
1

)
Q

2

P

2

∣∣∣∣

82 3. NUMERICAL MODEL

∣∣∣∣
(
ω2
2 −

Q

P
ω2
1

)
P

2

R

2

∣∣∣∣ ≤
∣∣∣∣
(
ω2
3 −

R

P
ω2
1

)
Q

2

P

2

∣∣∣∣
∣∣∣∣
(
ω2
2 +

Q

|P | ω
2
1

) |P |
2

|R|
2

∣∣∣∣ ≤
∣∣∣∣
(
ω2
3 −
|R|
|P | ω

2
1

)
Q

2

(−|P |
2

)∣∣∣∣
(
ω2
2 +

Q

|P | ω
2
1

) |P |
2

|R|
2
≤

∣∣∣∣
(|R|

2
ω2
1 −
|P |
2

ω2
3

)
Q

2

∣∣∣∣
(|P |

2
ω2
2 +

Q

2
ω2
1

) |R|
2
≤

(|R|
2

ω2
1 −
|P |
2

ω2
3

)
Q

2

|P |
2

|R|
2

ω2
2 +

Q

2

|R|
2

ω2
1 ≤

Q

2

|R|
2

ω2
1 −

Q

2

|P |
2

ω2
3

Finally we obtain

|P |
2

|R|
2

ω2
2 ≤ −

Q

2

|P |
2

ω2
3 (3.113)

This result can be analyzing by two scenarios: (a) P = 0, in this case, ω1(t) is

constant, therefore is ω1(0), and (b) P 6= 0, in this case, we have |R|ω2
2 ≤ −Qω2

3,

which is not possible, because Q > 0.

Therefore, we must choose the first dn function and verify if η, γ and k2 param-

eters fit.

In the case of η parameter, we can note that for the first dn function is the same

η as in (3.108).

In the case of γ parameter for ω1(t), we have,

γ = a
′

2 = ω2
1 −

P

Q
ω2
2

On the other hand, γ parameter in (3.107) is given by

∣∣∣∣
a1
b1

∣∣∣∣ =

∣∣∣∣∣∣∣

a
′

1

P

2
Q

2

∣∣∣∣∣∣∣
=

∣∣∣∣
a

′

1 P

Q

∣∣∣∣

=

∣∣∣∣
P

Q

(
ω2
2 −

Q

P
ω2
1

)∣∣∣∣ =
−|P |
Q

(
ω2
2 +

Q

|P | ω
2
1

)
= ω2

1 −
P

Q
ω2
2

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 83

Therefore, γ parameter is the same. In the case of k2, we have that sn function is

given by
∣∣∣∣
b2 c2
a2 d2

∣∣∣∣ =
P

R

(
ω2
3 − R

Q
ω2
2

)

(
ω2
1 − P

Q
ω2
2

) (3.114)

On the other hand, dn function is given by

1− |b1 c1||a1 d1|
= 1−

∣∣∣∣
Q

2
c
′

1

P

2

∣∣∣∣
∣∣∣∣a

′

1

P

2

R

2

∣∣∣∣
= 1−

∣∣c′1 Q
∣∣

∣∣a′

1 R
∣∣ = 1−

(−|c′1|Q
−|R| a′

1

)
= 1−

(|c′1|Q
|R| a′

1

)

= 1− Q
(
ω2
3 − R

P
ω2
1

)

R
(
ω2
2 − Q

P
ω2
1

) =
R
(
ω2
2 − Q

P
ω2
1

)
−Q

(
ω2
3 − R

P
ω2
1

)

R
(
ω2
2 − Q

P
ω2
1

)

=
Rω2

2 − QR

P
ω2
1 −Qω2

3 +
QR

P
ω2
1

R
(
ω2
2 − Q

P
ω2
1

) =
Rω2

2 −Qω2
3

R
(
ω2
2 − Q

P
ω2
1

)

=

P

Q
P

Q

Rω2
2 −Qω2

3

R
(
ω2
2 − Q

P
ω2
1

) =

P R

Q
ω2
2 − P ω2

3

R

(
P

Q
ω2
2 − ω2

1

) =

−P
(
ω2
3 −

R

Q
ω2
2

)

−R
(
ω2
1 −

P

Q
ω2
2

)

=

P

(
ω2
3 −

R

Q
ω2
2

)

R

(
ω2
1 −

P

Q
ω2
2

)

Therefore, k2 parameter is the same. Summarizing we have ω(t) = ±√γ ω̃
(
t+ t0
η

)

represented by (ω̃(τ), η, γ, k2), where t = η τ − t0 and k2 is the modulus,

(
ω̃1(τ), η, γ, k

2
)

=

(
dn(τ, k2),

1√
|a1 d1|

, a
′

2,

∣∣∣∣
b2 c2
a2 d2

∣∣∣∣

)

(
ω̃2(τ), η, γ, k

2
)

=

(
sn(τ, k2),

1√
|a1 d1|

,

∣∣∣∣
c2
d2

∣∣∣∣ ,
∣∣∣∣
b2 c2
a2 d2

∣∣∣∣

)
(3.115)

(
ω̃3(τ), η, γ, k

2
)

=

(
cn(τ, k2),

1√
|a1 d1|

, c
′

2,

∣∣∣∣
b2 c2
a2 d2

∣∣∣∣

)

It is important to remark that these results are for the case k2 =
∣∣∣ b2 c2a2 d2

∣∣∣ where

|b2 c2| < |a2 d2| therefore 0 < k2 < 1; in fact, we can obtain in the same fashion as

84 3. NUMERICAL MODEL

we did before, the velocities for the case k2 =
∣∣∣a2 d2b2 c2

∣∣∣ where |b2 c2| ≥ |a2 d2|, and also

0 < k2 < 1,

(
ω̃1(τ), η, γ, k

2
)

=

(
cn(τ, k2),

1√
|b2 c2|

, a
′

2,

∣∣∣∣
a2 d2
b2 c2

∣∣∣∣

)

(
ω̃2(τ), η, γ, k

2
)

=

(
sn(τ, k2),

1√
|b2 c2|

,

∣∣∣∣
a2
b2

∣∣∣∣ ,
∣∣∣∣
a2 d2
b2 c2

∣∣∣∣

)
(3.116)

(
ω̃3(τ), η, γ, k

2
)

=

(
dn(τ, k2),

1√
|b2 c2|

, c
′

2,

∣∣∣∣
a2 d2
b2 c2

∣∣∣∣

)

As final remark, these results are consistents with the Jacobi elliptic functions de-

scribed in (3.105) and (3.106) corresponding to ω1, ω2 and ω3 respectively. It is

possible to rename the parameters in (3.105), to obtain the equivalent parameters in

3.116, for instance we can observe ω2(t),

ω2(t) = ±α2 sn (β2 (t∓ k2) |mω2
) = ±√γ sn

(
1

η
(t∓ t0)

∣∣ k2

)
(3.117)

therefore, we obtain α2 =
√
γ, β2 =

1
η

and mω2
= k2. If we analyze each equivalence

we obtain the following

α2 =

√
−a2
b2

=

√∣∣∣∣
a2
b2

∣∣∣∣ since a2 > 0, b2 < 0

√
γ =

√∣∣∣∣
a2
b2

∣∣∣∣

β2 =
√
−b2 c2 =

√
|b2 c2| since c2 > 0, b2 < 0

1

η
=

1
1√
|b2 c2|

=
√
|b2 c2|

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 85

mω2
=

a
′

2

c
′

2

R

P
=

a
′

2 R

P c
′

2

=
R

P

(
ω2
1 − P

Q
ω2
2

)

(
ω2
3 − R

Q
ω2
2

)

k2 =

∣∣∣∣
a2 d2
b2 c2

∣∣∣∣ =

∣∣∣∣∣∣

a
′

2
Q

2
R
2

P
2

c
′

2
Q

2

∣∣∣∣∣∣
=

a
′

2R

P c
′

2

=
R

P

(
ω2
1 − P

Q
ω2
2

)

(
ω2
3 − R

Q
ω2
2

)

According to the offset t0 and k2, the sign of the function, outside and inside, will

depend on the initial condition, in fact, this is an interesting property of Jacobi

elliptic functions [11].

The rest of parameters could be check in the same fashion as before, therefore,

we can obtain all rotational velocities from two different analysis.

3.2.4. Numerical Results. The comparison between the numerical solution

of Euler equations with free torque and our analytical solution is presented. An

experiment which describe the difference between a rigid box with free torque motion

and without also is shown.

The Algorithm 1 is the main procedure, which compute the rotational velocities

with a numerical integration method using Algorithm 5, and the analytical solution

using Algorithm 2, 3 and 4. The parameter t0 is obtained by the inverse of sn

function [99],

inv sn(x |m) =

∫ x

0

dt√
1− t2

√
1− k2 t2

(3.118)

The inputs in the main procedure are I11 = 5, I22 = 10 and I33 = 12, also the

timestep is ∆t = 10−3 with tF = 5 seconds. It has been computed 8 cases with

different set of initial conditions:

86 3. NUMERICAL MODEL

Case Initial Conditions Case Initial Conditions
A ω1(0) ω2(0) ω3(0) E ω1(0) −ω2(0) −ω3(0)
B ω1(0) ω2(0) −ω3(0) F −ω1(0) ω2(0) −ω3(0)
C ω1(0) −ω2(0) ω3(0) G −ω1(0) −ω2(0) ω3(0)
D −ω1(0) ω2(0) ω3(0) H −ω1(0) −ω2(0) −ω3(0)

Table 3.4. Set of initial conditions.

where ω0 = [ω1(0), ω2(0), ω3(0)] = [1, 10, 2].

For each case, (see Figure 3.3 and 3.4) the dashed lines are the rotational velocities

computed by the numerical integration method, and the continuous lines, computed

with elliptic Jacobi functions, are the analytical solutions.

0 1 2 3 4 5
−15

−10

−5

0

5

10

15 CASE A

0 1 2 3 4 5
−15

−10

−5

0

5

10

15 CASE B

0 1 2 3 4 5
−15

−10

−5

0

5

10

15 CASE C

0 1 2 3 4 5
−15

−10

−5

0

5

10

15 CASE D

Figure 3.3. Cases A, B, C and D solved with numerical integration
method and analytical solution

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 87

Algorithm 1 Free_Torque_Motion

Require: I11, I22, I33, tol, tF ,∆t
Ensure: omg_1, omg_2, omg_3, omg_j1, omg_j2, omg_j3
P,Q,R← Jacobi_Values(I11, I22, I33)
a2p, c2p, a1, d1, a2, b2, c2, d2← Jacobi_Parameters(P,Q,R, ω(0))
omg_1, omg_2, omg_3 ← Euler_Num(ω(0), P,Q,R, tF ,∆t)
η, k2← 1/|a1 d1|, |(b2 c2)/(a2 d2)|
γ1, γ2, γ3 ← a2p, |c2/d2| , c2p
t0 ← η inv sn(ω2(0)/

√
γ2 | k2)

omgp2 ← (Q/2) ω1(0) ∗ ω3(0)
omgp2f ← (1/η)

√
γ2 cn(t0/η | k2) dn(t0/η | k2)

if |omgp2− omgp2f| < tol then
sign2 ← 1

else
t0 ← η inv sn(−ω2(0)/

√
γ2 | k2)

sign2 ← −1
end if
omgp1 ← (P/2) ω2(0) ∗ ω3(0)
omgp3f ← (−k2/η)

√
γ1 sn(t0/η | k2) cn(t0/η | k2)

if |omgp1− omgp1f| < tol then
sign1 ← 1

else
sign1 ← −1

end if
omgp3 ← (R/2) ω1(0) ∗ ω2(0)
omgp3f ← (−1/η)√γ3 sn(t0/η | k2) dn(t0/η | k2)
if |omgp3− omgp3f| < tol then

sign3 ← 1
else

sign3 ← −1
end if
for t← tI +∆t, tF do

omg_j1 ← Omega_DN(t, γ1, η, k2, sign1, t0)
omg_j2 ← Omega_SN(t, γ2, η, k2, sign2, t0)
omg_j3 ← Omega_CN(t, γ3, η, k2, sign3, t0)

end for

88 3. NUMERICAL MODEL

0 1 2 3 4 5
−15

−10

−5

0

5

10

15 CASE E

0 1 2 3 4 5
−15

−10

−5

0

5

10

15 CASE F

0 1 2 3 4 5
−15

−10

−5

0

5

10

15 CASE G

0 1 2 3 4 5
−15

−10

−5

0

5

10

15 CASE H

Figure 3.4. Cases E, F, G and H solved with numerical integration
method and analytical solution

Algorithm 2 Jacobi_Values

function Jacobi_Values(I11, I22, I33)
P ← 2 (I22 − I33) /I11
Q← 2 (I33 − I11) /I22
R← 2 (I11 − I22) /I33
return P,Q,R

end function

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 89

Algorithm 3 Jacobi_Parameters

function Jacobi_Parameters(P,Q,R, ω(0))
a2p← ω1(0)

2 − (P/Q)ω2(0)
2

c2p← ω3(0)
2 − (R/Q)ω2(0)

2

a1← − (Qω1(0)
2 + |P |ω2(0)

2) /2
d1← (R/2)
a2← −a1
b2← (P/2)
c2← (|R|ω2(0)

2 +Qω2(0)
2) /2

d2← d1
return a2p, c2p, a1, d1, a2, b2, c2, d2

end function

Algorithm 4 Elliptic Jacobi Functions

function Omega_DN(t, γ, η, k2, sign, t0)
return sign

√
γ dn ((t+ t0)/η | k2)

end function
function Omega_SN(t, γ, η, k2, sign, t0)

return sign
√
γ sn ((t+ t0)/η | k2)

end function
function Omega_CN(t, γ, η, k2, sign, t0)

return sign
√
γ cn ((t+ t0)/η | k2)

end function

Algorithm 5 Euler Numerical Integration

function Euler_Num(ω(0), P,Q,R, tF ,∆t)
omg_euler1(0)← ω1(0)
omg_euler2(0)← ω2(0)
omg_euler3(0)← ω3(0)
for i← tI +∆t, tF do

omg_euler1(i)← ω1(i−∆t) + ∆t (P/2)ω2(i)ω3(i)
omg_euler2(i)← ω2(i−∆t) + ∆t (Q/2)ω1(i)ω2(i)
omg_euler3(i)← ω3(i−∆t) + ∆t (R/2)ω1(i)ω2(i)

end for
return omg_euler1, omg_euler2, omg_euler3

end function

90 3. NUMERICAL MODEL

Another interesting result has been obtained: the difference of a solid trajectory

considering constant (Figure 3.5) and non constant (Figure 3.6) rotational velocities.

The gravity center trajectory (red line) is the same in both cases, but a vertex

trajectory (blue line) is loudly different.

(a) 0.375[s]

(b) 0.75[s]

(c) 1.125[s]

(d) 1.5[s]

Figure 3.5. Trajectory for a rigid solid with constant rotational velocity.

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 91

(a) 0.375[s]

(b) 0.75[s]

(c) 1.125[s]

(d) 1.5[s]

Figure 3.6. Trajectory for a rigid solid with non constant rotational velocity.

A comparison with another research made in [182] has been considered as weel.

The inertia values are I11 = 10, I2 = 20 and I3 = 26. The initial conditions are

ω0 = [1, 15, 1]. In the Figure 3.7 is shown the example of the exact solution obtained

by the authors in [182]. In the Figure 3.8, we can observe the same results obtained

by our proposal.

92 3. NUMERICAL MODEL

Figure 3.7. Solution for ω(t) in [182]

0 1 2 3 4 5 6
−20

−10

0

10

20

ω1 (t)

ω2 (t)

ω3 (t)

Figure 3.8. Solution for ω(t) with our proposal.

According to Euler equations, when two inertias are equal, a rotational velocity

must be constant. For instance, if I22 = I33, the first equation in (3.64) is now ·ω1 =

0, therefore ω1 is constant. Taking into account the solutions, with the condition

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 93

I22 = I33, and considering from (3.65) that P = 0, we have the following:

k2 =

∣∣∣∣
b2 c2
a2 d2

∣∣∣∣
Table 3.3

=

∣∣∣∣∣
P
2
c2

a2 d2

∣∣∣∣∣ = 0 (3.119)

When k2 = 0, the Jacobi Elliptic functions take the following forms [11]:

sn(x | 0) = sin(x)

cn(x | 0) = cos(x) (3.120)

dn(x | 0) = 1

therefore, the solutions in (3.115) now are

ω1(t) =
√

a
′

2 =

√
ω1(0)2 −

P

Q
ω2(0)2 = ω1(0)

ω2(t) = ±
√∣∣∣∣

c2
d2

∣∣∣∣ sin
(
t+ t0
η

)
(3.121)

ω3(t) = ±
√

c
′

2 cos

(
t+ t0
η

)

where the function sign depends on the initial condition.

In the top chart of the Figure 3.9 is shown the numerical solution for Euler

equations with I22 = I33. In this case, clearly we can note the constant velocity ω1(t)

(red line) and the corresponding ω2(t) and ω3(t) as the trigonometric functions sin

and cos respectively. In the bottom chart we can observe the analytical solutions

presented in (3.121). We can note that all curves fit with the numerical solutions.

94 3. NUMERICAL MODEL

-15

-10

-5

0

5

10

15

20

25

ω1(t)

ω2(t)

ω3(t)

0 5 10 15 20
-15

-10

-5

0

5

10

15

20

25

ω1(t)

ω2(t)

ω3(t)

Figure 3.9. Solution for I22 = I33, where ω1(t) is constant.

In the same fashion we can obtain the velocity equations if I11 = I22 (see Figure

3.10).

-10

0

10

20

30 ω1(t)

ω2(t)

ω3(t)

0 5 10 15 20

-10

0

10

20

30 ω1(t)

ω2(t)

ω3(t)

Figure 3.10. Solution for I11 = I22, where ω3(t) is constant.

3.2. TORQUE AND FORCE FREE RIGID BOX MOTION 95

It is important to remark, that the parameter k2 also can take the value 1. In

fact, the Jacobi Elliptic functions have the following identities in this case [11]:

sn(x | 1) = tanh(x)

cn(x | 1) = sech(x) (3.122)

dn(x | 1) = sech(x)

which are not periodic functions (see Figure 3.11).

If we analyze the case that Q = 0, which means that I11 = I33, we have the

following

k2 =

∣∣∣∣
b2 c2
a2 d2

∣∣∣∣
Table 3.3

=

∣∣∣∣∣∣∣

P

2

|R|ω2(0)
2 +Qω3(0)

2

2
Qω1(0)

2 + |P |ω2(0)
2

2

R

2

∣∣∣∣∣∣∣

=

∣∣∣∣
P (|R|ω2(0)

2)

R (|P |ω2(0)2)

∣∣∣∣ = 1 (3.123)

The problem is, when I11 = I33 and assuming that I11 < I22 < I33, which is our

case, all moments of inertia must be the same, therefore all velocities are constant.

According to this, there is not alternative where k2 = 1, in fact, it is not physically

possible, because the functions are not periodic.

96 3. NUMERICAL MODEL

-6 -4 -2 0 2 4 6
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

tanh(t)

-6 -4 -2 0 2 4 6
-0.5

0.0

0.5

1.0

1.5

2.0

sech(t)

Figure 3.11. Graph for tanh(t) and sech(t).

3.3. Contact detection

An important step in this method, is the contact detection part, which determines

the points where the solids are in contact. In [53] is mentioned a Bounding Volume

(BV) which is a volume encapsulating one or more objects of more complex nature.

The idea is, for the simple shapes, such as boxes or spheres, to have cheaper overlap

tests than the complex objects they bound. Using bounding volumes fast overlap

rejection test is allowed, because it is only necessary a test against the complex

bounded geometry when the initial overlap query for the bounding volumes gives a

positive result. In [53] also mentioned that not all geometric objects serve as effective

bounding volumes; desirable properties for bounding volumes include:

• Inexpensive intersection tests

• Tight fitting

• Inexpensive to compute

3.3. CONTACT DETECTION 97

• Easy to rotate and transform

• Use little memory

The main idea is to apply a technique called “early out”, which consists in to procede

with less expensive tests first before to entry in the more specific overlap tests.

Therefore, the idea of the bounding volumes is that they must have a simple geometry

shape, allowing a first fast overlapping test. The principle types of bounding volumes

used in real time collision detection are (see Figure 3.12):

• SPHERE

• AABB: Axis-aligned Bounding Boxes

• OBB: Oriented Bounding Boxes

• 8-DOP: Eight - direction discrete orientation polytope

• CONVEX HULL

BETTER BOUND, BETTER CULLING

FASTER TEST, LESS MEMORY

SPHERE AABB OBB 8-DOP CONVEX HULL

Figure 3.12. Types of bounding volumes, see [53].

The contact detection procedure has been separated in two steps: a faster overlap

detection and a contact point detection. The first step is made using spheres as BV,

therefore the overlap detection is focused in detect if a polyhedron is close enough

to another one. The second part is performed when both bounding spheres are

overlapped, then, is applied a technique to search the points where the polyhedrons

98 3. NUMERICAL MODEL

are in contact. Three contact point detections are made: surface, face and edge

detection.

Before beginning to review each type of detection, let discuss about the poly-

hedron representation, which are an important element in the simulation. Each

polyhedron is represented by their vertices, edges and faces. To build a polyhe-

dron is necessary to know their size, orientation and position in the space. With

this information a polyhedron is easily represented as unique in the space, in fact,

their vertices, edges and faces are always defined in their local coordinate system.

Therefore, just the position and orientation of each polyhedron is updated from one

timestep to another. For instance, let consider the polyhedron of the Figure 3.13,

with size a, b and c and orientation î, ĵ and k̂.

x

y

z

ab

c

î

ĵ

k̂

edge
vertex

face

Figure 3.13. A box

3.3. CONTACT DETECTION 99

A box, then, has

• 8 vertices, which are represented in function of the size parameteres a, b and

c,

• 12 edges, which are represented in function of two vertices, where the edge

begins and ends. For instance, the edge 0 begins at vertex 0 and ends at

vertex 1, and

• 6 faces, which are represented with plane equations in function of the poly-

hedron edges, for instance, the face 0 is represented by the plane equation

[1 0 0] · [x y z]T − a
2
= 0.

3.3.1. Surface contact detection. The surface contact detection is focused,

and active, where in the simulations there are one or more rigid surfaces which

interacting with polyhedrons. Mainly the ground surface always is in a simulation,

which is represented with the plane x− y.

The structure of the surface can be determined by two forms: a plane and tri-

angles. The first type of structure is easier to treat, due to is just a plane equation

which represent the surface. A point of a polyhedron is in contact with the surface if

it is under the plane. For instance, the ground in a simulation is easily represented

by the plane Π : z = 0, then if any vertex has z value negative, then it is in contact

with the ground.

When a surface is more complex, then it is represented by a set of points which

are concatenated by a triangularization process. A set of triangles represents then

a complex surface; in this case, a polyhedron is in contact, if some of their vertices

is under some triangle of the surface. When a surface is not the ground but less

100 3. NUMERICAL MODEL

complex, for instance, a slide, then it is not necessary the triangularization. A slide

can be represented by a plane with a certain inclination angle, even so, the method

to detect interpenetration is the same, it must be detected if some vertex of the solid

is under the plane.

Figure 3.14. Ground contact

3.3.2. Face contact detection. Each face k of a solid is represented by a

plane equation Πk(x, y, z) : cx x+ cy y+ cz z− ck. A point p = (px, py, pz) in the local

reference system of the solid, will be inside the solid if Πk(px, py, pz) < 0 ∀k = 0, ..., 5.

The point is inside the solid if is under all faces, which means a negative value in the

plane evaluation. The important step in this method is about the evaluation which

it is necessary to make, because a fast output could be obtain if the point is outside

the solid. The face contact detection is not finished yet, in fact, the computation

described before is just the way to know if a point is inside or not of the solid. The

information which the algorithm really need is about the face which is in contact

with the point, for this step it computes a double check, which it is described below

• Check 1: computing closer face to the point.

• Check 2: the velocity direction of the solid is inward the closer face found

in the check 1.

3.3. CONTACT DETECTION 101

Therefore, the contact vector direction is the normal vector of the face, and the

contact point is the vertex which is inside the solid.

3.3.3. Edge contact detection. Edge contact detection is the most computa-

tionally expensive check. The first version considered the detection as the intersection

of two planes formed by the points of the edge and the center of gravity of a solid.

Considering the situation in Figure 3.15, we have two solids (red and blue) which are

in contact with their edges respectively. The solid 1 contains the edge v1 v2, forming

a triangle with its center of gravity g1. Analogously, solid 2 contains the edge u1 u2,

forming a triangle with its center of gravity g2. The edge detection is made in two

steps: (1) check if both planes formed by the triangles intersect between them, this

check can generate a line l, and (2) check if the line l is lying in some solid. This

detection is made between each pair of edges. If we take into account just two solids,

each one with 12 edges, it must compute 144 edge detection. We can imagine the

amount of edge detections that must be performed for a neighborhood of solids, is

much computing!

x

y

z

v1

v2

g1

u1

u2

g2

Figure 3.15. Contact Edge Detection: first version

102 3. NUMERICAL MODEL

In the second version, we introduce another technique. The idea is taking into

account the edge projection over a solid, and check if this projection lies partially or

completly.

3.3.3.1. Starting Situation. The new algorithm considers rectangular boxes V ,

with sizes 0 < a < b < c, which are moving and colliding in the 3-dimensional space

R
3, which is equipped with a fixed origin O an the fixed canonical orthonormal

standard vectors e1, e2, e3.

These boxes are considered as including the volume that they enclose. That these

boxes are topologically closed means that they also include their boundary. Each

box V has eight vertices Vj, j = 0 : 7, with position vector Vj relative to the fixed

canonical orthonormal vectors e1, e2, e3. Note that these position vectors Vj are

functions of time t. In addition, box V has twelve edges Vjk, joining vertices Vj and

Vk, and six plane sides Vijkl bounded by the closed path VijVjkVklVli formed by the

edges Vij, Vjk, Vkl and Vli.

3.3.3.2. The local reference system. For each time step ∆t we must sequentially

select one box after the other and determine all the other boxes which have nonempty

intersection with the selected one.

We call U the selected box. Recall that for each time step U must run over the

whole set of boxes V . The vertices of box U are denoted by Uj, j = 0 : 7, hav-

ing position vector Uj relative to the fixed canonical orthonormal vectors e1, e2, e3.

Similarly, Ujk denotes the edge joining the vertices Uj and Uk, and Uijkl the plane

side with boundary UijUjkUklUli.

3.3. CONTACT DETECTION 103

Given a maximal linear speed vmax of the boxes and timestep ∆t, it is clear that

only those boxes V lying inside a ball B(U) centered at (the center of gravity of) U

and radius, say 2vmax ∆t, have a chance of colliding with U . Thus, in order to find

the boxes which collide with U we do not have to search over the whole set of boxes

V but only those lying in B(U).

First of all, we arbitrarily fix a corner of box U and label it U0. Then we label

U1, U2, U3 the three adjacent vertices to U0 in such a way that the vectors U1−U0,

U2−U0 and U3−U0 make a right or positive trihedron at U0. Using this trihedron

we define the local orthonormal basis for R
3:

b1 =
U1 −U0

‖U1 −U0‖
, b2 =

U2 −U0

‖U2 −U0‖
, b3 =

U3 −U0

‖U3 −U0‖
. (3.124)

We use these moving basis vectors to constitute a moving rectangular local coordinate

system. Written componentwise in terms of the fixed global canonical basis e1, e2, e3

the moving basis vectors are:

b1 =

b11
b21
b31

 , b2 =

b12
b22
b32

 , b3 =

b13
b23
b33

 . (3.125)

We define the position vectors Vj of the vertices Vj of the boxes V ∈ B(U), relative

to the local position vector U0:

V∗
j := Vj −U0 , j = 0 : 7 . (3.126)

Note that these vectors are still represented in terms of the fixed canonical basis

vectors ek. We want to write them in terms of the local basis vectors bk.

For this, consider any vector v = [v1, v2, v3]
⊤ from R

3 written in terms of the

canonical basis ek. In order to write v in terms of the local basis bk we need to find

104 3. NUMERICAL MODEL

coefficients α1, α2, α3 such that α1b1 + α2b2 + α3b3 = v. We of course need to use

the change of basis matrix B:

B︷ ︸︸ ︷

b11 b12 b13
b21 b22 b23
b31 b32 b33

α1

α2

α3

 =

v1
v2
v2

 . (3.127)

Thus, the coefficients α1, α2, α3 are given by:

α1

α2

α3

 = B−1

v1
v2
v2

 . (3.128)

In particular, the coordinates of V∗
j =

[
V ∗
1j , V

∗
2j , V

∗
3j

]⊤
relative to the bk basis are

given by:

α∗
1

α∗
2

α∗
3

 = B−1

V ∗
1j

V ∗
2j

V ∗
3j

 (3.129)

Then we clearly have:

Vj ∈ U ⇔ 0 ≤ α1j ≤ a ∧ 0 ≤ α2j ≤ b ∧ 0 ≤ α3j ≤ c . (3.130)

This allows us to determine whether vertex Vj lies in box U or not. We must check

this for all eight vertices Vj of V . If at least one of the vertices Vj of V lies in U ,

then the two boxes have collided and we must go over to the schock routine. Note

that now, in principle, one would have to switch the roles of U and V and check

whether some of the vertices of U lie in V , but this is not necessary since we must

sequentially select every V as the box U , and hence we eventually will do this as

well. If none of the vertices of V lies in U , it is still possible that at least one or

more edges of V has nonempy intersection with U . We must check this.

3.3.3.3. Checking whether some edges of V intersect box U . We get into this

section of the algorithm only when no vertex of box V has been found in box U .

3.3. CONTACT DETECTION 105

Consider then edge Vjk with end vertices Vj and Vk of box V . Relative to the

coordinate system located at U0, but still with respect to the canonical ek basis

vectors, this edge is described by the position vector:

r∗(s) = (1− s)V∗
j + sV∗

k , 0 ≤ s ≤ 1 , (3.131)

where –at the risk of being redundant– vectors r∗(s), V∗
j and V∗

k are all written in

terms of the fixed canonical basis vectors e1 = [1, 0, 0]⊤, e2 = [0, 1, 0]⊤,e3 = [0, 0, 1]⊤.

Note that r∗(s) is a function of time t as well. Now we apply the change of basis

matrix B —or, more precisely, B−1— to (3.131) and we obtain the representation of

the edge Vjk in terms of the local ortonormal basis b1,b2,b3:

ρ(s) := B−1. r∗(s) = (1− s)B−1.V∗
j + sB−1.V∗

k , 0 ≤ s ≤ 1 . (3.132)

Now the solution of the problem of finding whether the edge Vjk lies completly or

partially inside the box U is easy. Let ρ = [ρ1, ρ2, ρ3]
⊤ and define:

J := {s ∈ [0, 1] | 0 ≤ ρ1(s) ≤ a}

∩ {s ∈ [0, 1] | 0 ≤ ρ2(s) ≤ b} ∩ {s ∈ [0, 1] | 0 ≤ ρ3(s) ≤ c} (3.133)

J is clearly a closed subinterval of [0, 1]. This interval allows us to compute edge

interpenetration. If for at least one edge of box V we have J 6= ∅, then this V -

edge has penetrated the U -box and we must go over to the schock routine. If for

all edges of box V we have J = ∅, then we are sure that boxes U and V are

disjoint and we have finished testing the current V -box and we can go over to test

the next box V ∈ B(U). When we have finished testing all V ∈ B(U) we can go

over and select a new distinguished box U and repeat the whole procedure until

106 3. NUMERICAL MODEL

we exhaust the supply of boxes and hence complete the computations for one time

step. Besides edge interprenetration, many other useful geometric conclusions can

be drawn from (3.133), in particular how deep box V intepenetrates box U . For

instance, let J0 := inf J and J1 = sup J , so that 0 ≤ J0 ≤ J1 ≤ 1 and J = [J0 , J1].

Then we clearly have:

ρ(s) ∈ U ⇔ s ∈ J = [J0 , J1] , (3.134)

and moreover:

Vj ∈ U ⇔ J0 = 0 and Vk ∈ U ⇔ J1 = 1 . (3.135)

Moreover, having represented vectors with respect to the bk-basis localized at vertex

U0, it is easy to obtain projections onto the sides of box U without any computation:

for instance, if we want to project some vector v –already represented in such a way–

onto a box side which is perpendicular to, say, b1, all we have to do is to delete the

b1-component from v.

Figure 3.16. Edge contact

CHAPTER 4

Computational Model

The computational model performed in the numerical simulations has two ver-

sions: (1) the computational improvements made in the A-CD2 approach, mainly

the acceleration of the Uzawa method by the Conjugate Gradient Method, and, (2)

the performance improvements in the entire algorithm.

4.1. Main Procedure

The main procedure implemented for numerical simulations is described in the

Figure 4.1. In the module contact detection three kind of contact detection:

surface, face and edge are considered. Then, if some contact point is detected, it

must be performed the module optimization, where the constrained minimiza-

tion problem is build as a quadratic function in matrix form. The optimization

solver (CPLEX) obtains the solution. Finally, the updating velocity module is per-

formed, where the new velocities of each solid is computed. When the simulation

ends (t = T), an evolution file is generated (evolution.data). This file contains all

the positions of the solids from t = 0 to t = T . A Python script receives this file for

the 3D visualization.

107

108 4. COMPUTATIONAL MODEL

Initial conditions Surface detection

t < T? Face detection

Edge detection

Updating velocities Contact?

Matrix Opt. Problem

CPLEX Solver

evolution.data

YES

YES

NO

NO

contact detection

optimization

computational model - main procedure

Figure 4.1. Computational model for a numerical simulation.

4.2. FIRST VERSION 109

4.2. First version

The A-CD2 method has been performed with the main procedure described be-

fore. In the first version, the collision detection module was implemented by inside-

point technique for surface and face detection, and by plane-intersection technique

for edge detection. The constrained minimization problem was solved by the Uzawa

method [36, p. 360]. This saddle point problem, minF (−→x) subject to a set of con-

straints φl(
−→x) ≤ 0, is solved by means of an iterative method, which approximates

the solution of the dual problem (Algorithm 7). Also, it has been studied the con-

straint matrix. When a solid has more than three contact points, the constraints

are not linearly independent, then it is possible to keep only the constraints which

are linear independent. For this, it was implemented a reduced row echelon form

procedure (Algorithm 6), which reduce the dimensionality of the constraint matrix

and keep only the linear independent rows, i.e. the rank of the constraint matrix

[26, p. 44], and reduce the computational time as well, because it is not necessary

to evaluate all the constraints.

110 4. COMPUTATIONAL MODEL

Algorithm 6 Reduced Row Echelon Form

Require: M ∈ R
n×n is a matrix.

lead← 0
rowcount ← number of rows in M
colcount ← number of columns in M
for r ← 0, rowcount − 1 do

if colcount ≤ lead then
STOP

end if
i← r
while M [i, lead]← 0 do

i← i+ 1
if rowcount == i then

i← r
lead← lead+ 1
if colcount == lead then

STOP
end if

end if
end while
Swap row i and row r
if M [r, lead] 6= 0 then

r ← r

M [r, lead]end if
for i← 0, rowcount − 1 do

if i 6= r then
Row i← Row i−M [r, lead]× Row r

end if
end for
lead← lead+ 1

end for

An important step in the Uzawa method is to obtain the minimum of the La-

grangian function (line 4 of Algorithm 7). This step is computed by the well know

conjugate gradient method (Algorithm 8). The application of this method is pos-

sible because the constrained minimization problem is convex, then the Lagrangian

function is convex as well. Therefore, to obtain a global minimum of this function,

it is considered the derivative, equal to zero, which is a system of linear equations,

4.2. FIRST VERSION 111

given that the Lagrangian function is quadratic. Then the solution of this system of

linear equations, will be the global minimum.

Algorithm 7 Uzawa method

Require: µ0 ∈ R
+
p :Lagrange multipliers initial vector, x0: starting point.

1: γ0 ← 1
2: n← 0
3: while |γn| ≤ ε do
4: xn+1 ← argmin

{
F (x) +

∑p

l=1 µ
n
l φl (x) , x ∈ R

6N
}

5: µl
n+1 ← max

{
0, µl

n + ̺ φl (xn+1)
}
, ∀l = 1, p

6: γn+1 ←
∑p

l=1 µ
l
n+1 φ

l (xn+1)
7: n← n+ 1
8: end while

Algorithm 8 Conjugate gradient method

Require: −→x0 ∈ R
6N is the initial vector.

1:
−→r0 ← 2M

−→
U− +

−−→
T ext +

∑p

l=1 µl

−→
Cl − 2(M + Ξ)−→x0

2:
−→p0 ← −→r0

3: k ← 0

4: while ||−→r0 | | ≥ ε do

5: αk ←
−→rkT−→pk−→pkT (2M+2Ξ)−→pk

6:
−−→xk+1 ← −→xk + αk

−→pk
7:

−−→rk+1 ← −→rk − α (2M + 2Ξ)−→pk
8: βk ←

−−→rk+1
T−−→rk+1−→rkT−→rk

9:
−−→pk+1 ← −−→rk+1 + βk

−→pk
10: k ← k + 1

11: end while

The main problem in the first version was the poor convergence properties of

Uzawa method. Particularly in this case, the parameter ̺ (line 5 of Algorithm 7)

is very hard to set, even considering the proposed parameter [36, p. 362]. In our

case, all the experiments computed with Uzawa method required to stop in some

timestep and restart the computation with different ̺. This occurs several times,

complicating the final computation and obtaining the result in various stages and

112 4. COMPUTATIONAL MODEL

not in one execution. Another complication concerning ̺ parameter, was the search

of a new parameter value, spending a great amount of computation time.

According to the contact detection module, the first version was built without

dynamical memory allocation with respect to the amount of contacts points which

are detected. The maximum value of contact points is estimated in function of the

amount of solids, therefore, a fixed size of memory is allocated for the contacts,

independently the contact points which would be detected. For instance, if we have

500 solids to simulate, then we know that as maximum 8 contact points will be detect

for each solid, then it is allocated 4000 contact points in memory.

After the contact detection, the constrained minimization problem must be built.

A tridimensional matrix is generated, where the normal percussion matrix, the tan-

gential percussion matrix and the contact vector is stored, therefore, the dimension

of this matrix is (number of contacts) × 7 (3 rows for normal percussion, 3 rows for

tangential percussion and one row for contact vector) × 12 (the six velocities for each

solid). The problem arises when the total percussion matrix must be computed. For

each contact point an access to this tridimensional matrix is done, therefore, there is

a high computational cost. Furthermore, the constraint matrix is computed in the

same fashion, increasing the computational time.

4.3. SECOND VERSION 113

4.3. Second version

The main procedure of second version is presented in Algorithm 9.

Algorithm 9 Main Procedure

Require: T : simulation time, ∆t: timestep, tprox: proximity time.

Require: file_size : size data, file_position: position data.

Require: κN : normal coefficient parameter, κT : tangential coefficient parameter.

1: current ← []

2: t← 0

3: get_size_solids()

4: get_position_solids()

5: computing_mass()

6: computing_inertia()

7: computing_radius()

8: computing_inertiaMatrix()

9: while t < T do

10: computing_points()

11: if t mod tprox == 0 then

12: computing_proximity()

13: end if

14: current ← contact_detection()

15: if current 6= [] then

16: minimization(current)

17: else

18: updating_velocity()

19: end if

20: updating_position()

21: updating_axis()

22: computing_inertiaMatrix()

23: t← t+∆t

24: end while

In first place, it is obtained the size and position for each solid, which are stored

in the files size_position and file_position, respectively. After this, the mass, inertia

114 4. COMPUTATIONAL MODEL

matrix and radius is computed for each matrix and store in the solid structure

(Listing 4.1).

1 struct solid_structure{
2 int id;// identification number.
3 double mass;//mass of the solid.
4 double size [3]//size of the solid.
5 double pos [3]; // current position.
6 double vel [3]; // transation velocity.
7 double omg [3]; // rotation velocity.
8 double axis [3][3]; //axis i,j,k.
9 double diag_inertia [3]; // diagonal inertia matrix.

10 double inertia_matrix [3][3]; // inertia matrix.
11 double vertices[NVERT][3]; // vertices.
12 double points[NPOINTS][3]; // general reference.
13 double faces[NFACE][4]; // planes equation for each face.
14 int tabprox[NPROX];// NPROX closest solids.
15 int n_test;
16 double C1 ,C2 ,C3;
17 double rad;// radius
18 int idBlock [100];
19 int cantBlock;
20 } solid[N];

Listing 4.1. Struct for a solid.

In the loop, the time variable is set in 0 and it is increased until total time T .

For each loop, it is computed the points for each solids, i.e., the current position

of all vertices. If t = 0 or a multiple of tprox iterations have passed, the comput-

ing_proximity method is called. This method computes the neighborhood for each

solid using a cell mapping technique [40], applied to a three dimensional space. This

technique consists in dividing the space in boxes or cubes, and calculating the cube

where each solid belongs, for instance, if a solid i is in the position (xi, yi, zi), then

belongs to the cube with coordinate

(
xi −minx

sizex
,
yi −miny

sizey
,
zi −minz

sizez

)
(4.1)

4.3. SECOND VERSION 115

where minx,miny and minz are the minimum coordinates x, y and z respectively, and

sizex, sizey and sizez are the each size of the cube. Each cube has three coordinates,

which is the position in the space, consequently has a corresponding cube. The

neighborhood of the solid will be then, all the solids which are in the closer cubes,

i.e. for the cube CUBE(a, b, c) with coordinate (a, b, c), the neighborhood will be

formed by the following 26 cubes around:

CUBE(a, b, c− 1) CUBE(a− 1, b, c) CUBE(a+ 1, b, c)

CUBE(a, b, c+ 1) CUBE(a− 1, b, c− 1) CUBE(a+ 1, b, c− 1)

CUBE(a, b− 1, c) CUBE(a− 1, b, c+ 1) CUBE(a+ 1, b, c+ 1)

CUBE(a, b− 1, c− 1) CUBE(a− 1, b− 1, c) CUBE(a+ 1, b− 1, c)

CUBE(a, b− 1, c+ 1) CUBE(a− 1, b− 1, c− 1) CUBE(a+ 1, b− 1, c− 1)

CUBE(a, b+ 1, c) CUBE(a− 1, b− 1, c+ 1) CUBE(a+ 1, b− 1, c+ 1)

CUBE(a, b+ 1, c− 1) CUBE(a− 1, b+ 1, c) CUBE(a+ 1, b+ 1, c)

CUBE(a, b+ 1, c+ 1) CUBE(a− 1, b+ 1, c− 1) CUBE(a+ 1, b+ 1, c− 1)

CUBE(a− 1, b+ 1, c+ 1) CUBE(a+ 1, b+ 1, c+ 1)

The solids which belong to the neighborhood are stored in an array named tabprox

in the solid structure (Listing 4.1). This procedure clearly is not an algorithm with

quadratic computational time, as in the first version, for several reason: (a) the com-

putation of the cube where a solid is positioned, is linear, because the procedure is

116 4. COMPUTATIONAL MODEL

performed for each solid, then we have O(N); (b) the computation of the neighbor-

hood for each solid is just to collect the solids in the 26 cubes around, also linear

computational time, and (c) the neighborhood is not updated at each iteration, ev-

ery tprox steps, then is a linear computational time procedure as well. An important

remark is that, the neighborhood is stored in ascendent order.

In the next step, the contact detection method is called. First a double check

is performed: (a) as the neighborhood for each solid is sorted in ascendent order, a

solid with greater ID (line 2 of Listing 4.1) is just considered, because, a solid with

lower ID was already checked, and (b) an overlapping testing is performed, which

involves comparing the distance between both solids and the sum of their radius [53,

p. 102]; if the distance between a solid a and b is less than the sum of their radius

(ra+rb), then they are colliding. In any another case, the next step contact detection

algorithm is not performed. If the solids could be colliding, then a vertex-face and

edge-edge contact detection is performed.

1 typedef struct contact{
2 int sol_one;//ID solid 1
3 int sol_two;//ID solid 2
4 // vector from center of solid 1 to contact point.
5 double gp_one [3];
6 // vector from center of solid 2 to contact point.
7 double gp_two [3];
8 // normal vector in the contact point.
9 double normal_vec [3];

10 struct contact *next;
11 }contact;

Listing 4.2. Struct for a contact point

The information is stored in the linked list current (Listing 4.2). This structure

considers the ID of the solids, the contact vector of each one, i.e. the vector from

the center of mass of each solid to the contact point and the normal vector in the

4.3. SECOND VERSION 117

contact point. This linked list is generated dynamically, therefore we use only the

memory according to the amount of contact points for each timestep.

Algorithm 10 Contact Detection

Ensure: contact_p

1: contact_p ← []

2: contact_p ← surface_contact_detection(contact_p)

3: contact_p ← solid_contact_detection(contact_p)

The main procedure of the contact_detection() method is presented in the Al-

gorithm 10. This procedure is composed by two stages: (a) the surface contact

detection algorithm and (b) the solid contact detection algorithm.

Algorithm 11 Surface Contact Detection

Require: contactList : a contact structure linked list.

Ensure: contactList : linked list with new contact points added.

1: for each solid i do

2: for each vertex j in the solid i do

3: if vertex j is below surface then

4: if solid i moves inward the surface then

5: contactList ← add_new_contact() ⊲ contact point is added.

6: end if

7: end if

8: end for

9: end for

The procedure of the surface contact detection is presented in the Algorithm 11.

In this method, for each solid it verifies if one of the vertices is under the surface

(for instance, the ground or a slope). Then, it verifies if the solid moves inward the

surface, if it does, the vertex is a contact point where the normal vector will be the

normal direction of the surface.

118 4. COMPUTATIONAL MODEL

The procedure of the solid contact detection is presented in the Algorithm 12.

The method computed two detections: (1) a vertex - face detection and (a) a edge -

edge detection.

Algorithm 12 Solid Contact Detection

Require: contactList : a contact structure linked list.

Ensure: contactList : linked list with new contact points added.

1: for each solid i do

2: for each neighbor solid j of solid i do

3: if solid i and solid j are overlapped then

4: for each vertex k of the solid i do ⊲ vertex - face contact detection

5: if vertex k is inside the solid j then

6: nearestFace ← nearest face of solid j to vertex k

7: if solid i moves inward the nearestFace then

8: contactList ← add_new_contact()

9: end if

10: end if

11: end for

12: for each edge k of the solid j do ⊲ edge - edge contact detection

13: if a section of edge k is inside solid i then

14: if solid i moves inward the solid j then

15: contactList ← add_new_contact()

16: end if

17: end if

18: end for

19: end if

20: end for

21: end for

If two solids are overlapped, then it verifies if any vertex is under the face of his

neighbour and if they are getting even closer, on the contrary, the contact point is

not verified. In the case of an edge - edge detection, it verifies if the edge of the solid

is inside of his neighbour, we take in account as “inside”, even if a interval of the

edge is inside of the neighbour solid volume. Then, if they are getting even closer,

4.3. SECOND VERSION 119

the contact point is computed, which it will be the half point of the “inside” section

of the edge.

After the contact detection method, if there are contact points detected, the

minimization method is called. In this method a constrained minization problem is

solved. The problem is given by:

min
x∈Ω

1

2
xT (2M + Ξ) x− xT

(
2M u− − bext

)

where Ω =

{
x ∈ R

6N : cTk x ≥ cTk
u−

2
, k = 1, ..., nc

}
(4.2)

The quadratic objetive function matrix is composed by two matrices: mass –

inertia and pseudopotential of dissipation. These matrices have the following form:

M =

M1 Z3 · · · · · · · · · · · · · · · Z3

Z3 I1 Z3 · · · · · · · · · · · · Z3
... Z3

. . . Z3 · · · · · · · · · Z3
...

... Z3 Mi Z3 · · · · · · Z3
...

...
... Z3 Ii Z3 · · · Z3

...
...

...
... Z3

. . . Z3 Z3
...

...
...

...
... Z3 MN Z3

Z3 Z3 Z3 Z3 Z3 Z3 Z3 IN

where Z3 is a null matrix with size 3× 3,

Φd
N (x) =

1

2
κN

(
xT ΞN x

)

Φd
T (x) =

1

2
κT

(
xT ΞT x

)

Each of these matrices are sparse. Taking advantage of the above, a Block Matrix

Information (BMI) was generated. This structure consists in a 30 × N matrix (30

is choose as the maximum number of colliding bodies for a solid). For each solid,

which corresponds to a column, the number of the solid which is in contact with is

120 4. COMPUTATIONAL MODEL

stored. For instance, if the solid i is colliding with solid j and k, therefore, in the

column i of the BMI is stored both numbers, j and k. An important fact to remark

is that, each column is in ascendent order, but it is not necessary to computed a sort

algorithm, because we must to recall that the neighborhood of each solid is already

sorted in ascendent form, then, each column of BMI is going to be sorted as well.

The aim of building a BMI, is to avoid a 6N × 6N matrix product with a vector.

With a BMI it will be computed only the block where the contact was detected. For

instance, in the BMI of the Figure 4.2 it possible to observe that the column 2 has

the following numbers: 2, 3, 5 and 8, therefore, in the main matrix (quadratic), it

will be computed only the blocks with coordinate (2,2),(2,3),(2,5) and (2,8) avoiding

the other six blocks which are null matrices.

0 1 2 3 4 5 6 7 8 9
0
3
6

1
4

2
3
5
8

0
2
3

1
4
8

2
5

0
6
7

6
7

2
4
8

9

Figure 4.2. Block Matrix Information

The procedure of the minimization method is presented in the Algorithm 13.

In this method, it is computed the main matrix H = (2M + Ξ), the linear part

P =
(
2M u− − bext

)
, and the constraints. The solution is computed by the library

CPLEX. This solver is set to use a Barrier Optimization Method (interior point

method [43]) to find the optimal solution. An important remark is that the matrix

4.3. SECOND VERSION 121

structure which CPLEX requires, must be in Compressed Column Storage form

(CCS) [52], therefore, the BMI is very useful in this case, because we already have

the column information of the sparse matrix. Then, the solution is obtained and the

velocities for each solid are updated.

Algorithm 13 Minimization - Part I

Require: contactList : a contact structure linked list.

Require: u− : current velocity vector.

Ensure: u+ : new velocity vector.

1: H ← 0: quadratic objetive function matrix,P ← 0: linear part matrix.

2: C: constraint matrix, B: constraint right side vector.

3: for each solid i do

4: H[6i, 6i : 6i+ 2, 6i+ 2]← 2mi ⊲ (mass matrix)

5: H[6i+ 3, 6i+ 3 : 6i+ 5, 6i+ 5]← 2 Ii ⊲ (inertia matrix)

6: end for

7: for each solid i do

8: P [6i : 6i+ 2]← 2mi u
−[6i : 6i+ 2]

9: P [6i+ 3 : 6i+ 5]← 2 Ii u
−[6i+ 3 : 6i+ 5]

10: P [6i+ 2]← P [6i+ 2]−mi G∆t ⊲ (gravity percussion)

11: end for

12: for each contact k in contactList do

13: ⊲ normal pseudopotential

14: H[6i, 6j : 6i+ 5, 6j + 5]← H[6i, 6j : 6i+ 5, 6j + 5] + κN ΦN(i, j)

15: H[6j, 6i : 6j + 5, 6i+ 5]← H[6j, 6i : 6j + 5, 6i+ 5] + κN ΦN(j, i)

16: H[6i, 6i : 6i+ 5, 6i+ 5]← H[6i, 6i : 6i+ 5, 6i+ 5] + κN ΦN(i, i)

17: H[6j, 6j : 6j + 5, 6j + 5]← H[6j, 6j : 6j + 5, 6j + 5] + κN ΦN(j, j)

18: ⊲ tangential pseudopotential

19: H[6i, 6j : 6i+ 5, 6j + 5]← H[6i, 6j : 6i+ 5, 6j + 5] + κT ΦT (i, j)

20: H[6j, 6i : 6j + 5, 6i+ 5]← H[6j, 6i : 6j + 5, 6i+ 5] + κT ΦT (j, i)

21: H[6i, 6i : 6i+ 5, 6i+ 5]← H[6i, 6i : 6i+ 5, 6i+ 5] + κT ΦT (i, i)

22: H[6j, 6j : 6j + 5, 6j + 5]← H[6j, 6j : 6j + 5, 6j + 5] + κT ΦT (j, j)

23: end for

122 4. COMPUTATIONAL MODEL

Algorithm 13 Minimization - Part II

24: for each contact k in contactList do

25: ⊲ constraint matrix

26: C[k, 6i : 6i+ 2]← nk ⊲ see 3.14

27: C[k, 6i+ 3 : 6i+ 5]← giAijk × nk ⊲ see 3.14

28: C[k, 6j : 6j + 2]← −nk ⊲ see 3.14

29: C[k, 6j + 3 : 6j + 5]← −gjAijk × nk ⊲ see 3.14

30: end for

31: for each contact k in contactList do

32: ⊲ constraint right side vector

33: B[k]← B[k] + 1
2
(C[k, 6i : 6i+ 5]u−[6i : 6i+ 5])

34: B[k]← B[k] + 1
2
(C[k, 6j : 6j + 5]u−[6j : 6j + 5])

35: end for

36: ⊲ solution from cplex library

37: x← cplex_solution(H,P,C,B)

38: ⊲ updating velocities

39: for each solid i do

40: u+[6i : 6i+ 5] = 2x[6i : 6i+ 5]− u−[6i : 6i+ 5]

41: end for

If there are not contact points, then the updating_velocity method is called,

where the linear velocities are updated taking in account the equations from clas-

sical mechanics, and the rotational velocities are updated taking in account the

expressions from Euler equations. Then, the position, axis and inertia matrix for

each solid are updated as well.

CHAPTER 5

Computational resources

5.1. Levque Cluster

The first version of the numerical simulation program has been developed in

FORTRAN 90. This program was performed in the cluster Levque [98] as part of

the NLHPC (National Laboratory for High Performance Computing) project com-

manded by the Center of Mathematical Modelling (CMM) at University of Chile and

where University Federico Santa María is part as well.

Levque Cluster is an IBM iDataplex machine with 536 compute cores dedicated

to satisfy the demand for scientific computing. This machine, funded by the BASAL

project PFB-03, offers to researchers a computing power of about 6TFlops. This

computational power is achieved thanks to the combination of Intel Nehalem proces-

sors, a Qlogic Director Infiniband switch and an appropriate software and hardware

integration.

The cluster architecture can be divided into three main areas: the Computing

Area, the Storage Area and the Administration Area. These areas are interconnected

by means of two separated networks, each one playing different roles within the HPC

infrastructure. The computing area is used to perform the scientific computations

and it is composed by 67 compute nodes, each one equipped with multicore CPUs,

where users run their applications. The storage area provides a scalable persistent

layer to the data required by the computing area. The administration area is used to

123

124 5. COMPUTATIONAL RESOURCES

facilitate the interaction with the computing area and to perform the monitoring of

the whole infrastructure as well as the correctness of the users’ jobs. These areas are

bonded through the interconnection network and the administration network. The

former one is used for computing purposes (I/O and IPC for example) and the latter

one is used to operate, maintain and monitor the HPC infrastructure.

In particular, the Levque Cluster architecture, composed by a computing area of

67 nodes, representing 536 cores exclusively dedicated to run user jobs. The storage

area is composed by 5 nodes, four dedicated only to I/O operations summarizing

8 TB of available space, which is managed by one server known as the meta-data

server. Finally, the administration area is composed by four nodes: two acting as

the head of the cluster (two master nodes in fail over configuration) and two acting

as the interface of the cluster (one for users and one for grid computing).

(a) Interconnection network (b) Ethernet network

Figure 5.1. Levque Cluster Network

5.1. LEVQUE CLUSTER 125

The interconnection network is a packet switched network based on the Infiniband

(IB) technology capable of reaching a throughput of 40Gb/s by port with a very

low latency end-to-end. Each node in the cluster is equipped with an IB Host

Card Adapter (HCA) with two ports, which are both connected to a switch capable

of growing up to 432 Infiniband ports (adding leaf modules). The administration

network is composed by 5 Ethernet switches providing a link rate up-to 4Gb/s, from

which users can log into the cluster to run their jobs and recover their results. Figure

5.1 (a) depicts the how the interconnection network bond the above defined areas

and Figure 5.1 (b) depicts the administration network layout.

The computing area is composed by 66 compute nodes serving the users require-

ments and one compute node for testing purposes. The first 66 compute nodes are

equipped with two quad-core Intel Xeon X5550 processors running at 2.67GHz (each

compute node has 8 cores) with 24GB RAM each one. They are monitored and ad-

ministrated through the Ethernet network and interconnected with the other clusters

areas through the Infiniband network. We highlight that each compute node has a

dual port IB HCA, which are both connected. This means that each node can es-

tablish a high speed communication (40Gb/s) with two compute nodes at the same

time. The matlab compute node is equipped with two quad core Intel Xeon E5520

processors running at 2.27GHz with 24GB of RAM. This is equipped with the Eth-

ernet network only. In summary, the Levque cluster offers to users a theoretical

compute power of 6TFlops and more than 1.5TB of distributed RAM.

126 5. COMPUTATIONAL RESOURCES

(a) IBM dx360 M2 Compute Node (b) IBM x3650 M3 Storage Server

Figure 5.2. Levque hardware

Levque cluster implements a Lustre Parallel Filesystem, which is well known in

the HPC community as one of the best open source solutions to provide a storage

back-end for HPC clusters. In particular, the Lustre architecture implemented in

Levque is composed by 4 I/O servers, one meta-data server and one backup server.

The I/O servers are accessed by the compute nodes through the Infiniband network.

This interconnection network ensures a high throughput when applications are per-

forming input/output file system operations, since it is capable of performing load

balancing and stripping of data among the I/O servers. Each one of these servers is

equipped with 5 hard disk of 500GB, providing an aggregated storage space of 8TB

with a n+1 redundancy of data. The addressing and allocation of space within this

storage area is managed by the Lustre meta-data server, which knows the location

and redundancy of each object stored on the pool of disks.

5.2. Leftraru Cluster

The second version of the numerical simulation program has been developed in C

and performed in the cluster Leftraru [4], as part of the NLHPC (National Lab-

oratory for High Performance Computing) project commanded by Center of Math-

ematical Modelling (CMM) at University of Chile and where University Federico

Santa María is part as well.

5.2. LEFTRARU CLUSTER 127

Equipment Thin Nodes Thick Nodes Xeon Phi

Model HP ProLiant HP ProLiant Intel Xeon Phi
SL230s Gen8 SL250s Gen8

Amount 128 4 12

Processor 2 x Intel Xeon E5-2660 2 x Intel Xeon E5-2660 5110P
10 cores each 10 cores each 240 cores each

RAM 48 GB 64 GB 8 GB

Infiniband Infiniband FDR Infiniband FDR Shared with thick nodes
4X Mellanox 4X Mellanox

Ethernet 2 Ethernet 1 GB 2 Ethernet 1 GB Shared with thick nodes

Table 5.1. Characteristics of Leftaru.

Leftraru has 2640 processors supporting science and research in Chile. The com-

puters are organized in a cluster which contains the characteristics of Table 5.1.

Figure 5.3. Leftaru Cluster

The coprocessors Xeon Phi are distributed among the four thick nodes (3 MICS

each). Leftraru is based on Linux, which operates through SSH and a queue man-

ager, where Slurm is used. Slurm is a job manager that provides a framework for

queueing work, allocation of compute nodes, reservation of CPU time, execution

and management of works within the cluster. The compute nodes are divided into

partitions Slurm, within which users can run their jobs.

128 5. COMPUTATIONAL RESOURCES

Leftaru offers a variety of modules, where researchers can use. In Table 5.2 are

all modules available.

adf/2014.04 gromosxx/1.3.0 libzmq/4.2.0 openmpi_intel/1.6.5
alps/2.2 gsl/1.9 lsst/9.2 openmpi_intel/1.8.1
ampl/20141216 gurobi/6.0.0 mcr/2012a openmpi_intel/1.8.3
ampl/20141231 gurobi/6.0.3 meme/4.10.0 openmpi_intel/1.8.5
astro/0.1 gurobi/6.0.4 metis/5.1.0 orca/3.0.3
blas/3.5.0 hdf5/1.8.13 mpich/3.1.3 parmetis/4.0.3
cbc/2.8 hdf5/1.8.15 mpich_intel/3.1.3 python/3.4.2
cplex/12.6.1 hopspack/2.0.2 namd/2.9 R/3.1.2
espresso/5.1.1 hwlock/1.9 namd_intel/2.10 R/3.2.0
espresso/5.1.2 hwlock_intel/1.9 namd_intel/2.9 siesta/3.2
ferret/6.93 impi/4.1 nco/4.4.8 siesta/trunk-462
fftw/3.3.4 impi/5.0.0 ncview/1.93g stata/13
fftw_intel/2.1.5 impi/5.0.2 netcdf/4.3.2 stata/14
fftw_intel/3.3.4 impi/5.0.3 netcdf/4.3.3 symphony/5.6.6
g09/D01 intel/14.0.2 openbabel/2.3.2 weka/3.6.11
gcc/4.8.2 intel/15.0.0 openfoam/2.3.1 wrf/3.6.1
gromacs/5.0.4 intel/15.0.1 openmpi/1.8.1 wrf/3.7
gromos++/1.3.0 lammps/55sep14 openmpi/1.8.3

Table 5.2. Modules available in Leftaru

5.3. Visualization Module

The 3D visualization module has been built in Python. The Visual Python [8]

is a module which allows us to build 3D graphics. This module was originated by

David Scherer in 2000. With VPython it is possible to create navigable 3D display

and animations, even for those with limited programming experience.

In this thesis, the visualization module contains three components: (i) the solid

class, (ii) the surface function and (iii) the evolution procedure. The last one, is the

main program, which read the evolution.data file as input and show the evolution

of the system.

5.3. VISUALIZATION MODULE 129

The solid class considers a constructor where the main attributes of each solid

is declared: size, position, axis, color, vertices and edges. In the Listings 5.1 we can

observe the constructor for the solid class.

1 class solid:
2 def __init__(self , size , center , axis , num):
3 self.size = vector(size)
4 self.center = vector(center)
5 self.i = vector(axis [0]).norm()
6 self.j = vector(axis [1]).norm()
7 self.k = vector(axis [2]).norm()
8 self.color = (0.62 ,0.16 ,0.11)
9 self.list_of_vertices = []

10 self.list_of_edges = [[] ,[] ,[] ,[]]

Listing 5.1. Solid class

The methods associated to solid class are:

• draw(): which generates a box in the space.

• get_vertices(): which computes the initial vertices of the solid.

• set_position(): which set the position and axis of the solid after an

evolution in time.

• set_vertices(): which set the vertices of the solid after an evolution in

time.

This functions are shown in the Listings 5.2.

130 5. COMPUTATIONAL RESOURCES

1 def draw(self):
2 self.obj = box(pos = self.center ,axis = self.i,up

= self.j,size = self.size ,color = self.color ,
make_trail = True)

3
4 def get_vertices(self):
5 for i in range (8):
6 vertex_i = self.coef[i][0]*(self.size [0]/2)*

self.i
7 vertex_j = self.coef[i][1]*(self.size [1]/2)*

self.j
8 vertex_k = self.coef[i][2]*(self.size [2]/2)*

self.k
9 vertex = self.center + vertex_i + vertex_j +

vertex_k
10 self.list_of_vertices.append(vertex)
11
12 def set_position(self , center , axis):
13 self.center = vector(center)
14 self.obj.pos = vector(center)
15
16 self.i = vector(axis [0]).norm()
17 self.j = vector(axis [1]).norm()
18 self.k = vector(axis [2]).norm()
19
20 self.obj.axis = self.size [0]* self.i
21 self.obj.up = self.j
22
23 def set_vertices(self):
24 for i in range (8):
25 vertex_i = self.coef[i][0]*(self.size [0]/2)*

self.i
26 vertex_j = self.coef[i][1]*(self.size [1]/2)*

self.j
27 vertex_k = self.coef[i][2]*(self.size [2]/2)*

self.k
28 vertex = self.center + vertex_i + vertex_j +

vertex_k
29 self.list_of_vertices[i] = (vertex)

Listing 5.2. Methods of solid class

5.3. VISUALIZATION MODULE 131

The surface function generates a set of lines, that formed a plane. The input

for this function is a corner of the surface and the height and width which the user

wants. This corner (a reference point) is a dictionary with two keys: the point which

contains a tuple with the coordinates in the x− y plane, and the size of the surface

(width and height) for each coordinate. Then, the object curve from Visual Python

is used for drawing the vertical and horizontal lines respectively. The first for cycle

generates the parallel lines to the y axis, and the second one to the x axis. The

parameter delta_h indicates the gap between two consecutive lines. The code is

shown in the Listings 5.3.

1 #Input: reference = {’point ’:(x,y),’delta ’:(delta_x ,
delta_y)}, delta_h

2 def surface(reference ,delta_h):
3 for i in arange(reference[’point ’][0], reference[’

point ’][0] + reference[’delta ’][0] + 2*delta_h ,
delta_h):

4 curve(pos = [(i,reference[’point ’][1] ,0.) ,(i,
reference[’point ’][1] + reference[’delta ’][1] +
delta_h ,0.)],color=color.black)

5
6 for j in arange(reference[’point ’][1], reference[’

point ’][1] + reference[’delta ’][1] + 2*delta_h ,
delta_h):

7 curve(pos = [(reference[’point ’][0],j,0.) ,(
reference[’point ’][0] + reference[’delta ’][0] +
delta_h ,j,0.)],color=color.black)

Listing 5.3. Surface function

CHAPTER 6

Applications: results and comparison

6.1. Study of a shock - absorber structure

The purpose of this application is to investigate the mechanical behavior of a

sandwich structure impacted by a steel ball [49]. These structures are used as

protection devices agains rock falls and made of a front wall of gabions and an inside

layer of sand. Such a structure has been built, instrumented and experimentally

tested using a pendular impact facility. Four successive impacts with increasing

energy level is applied. For each impact, forces, accelerations and displacements in

different locations are measured. All the experimental information is compared with

the numerical simulations.

6.1.1. Description of the impact station. The facility used to perform the

experimental impacts is a pendulum system, designed and built by CER (Centre

d’Expérimentation et de Recherche [1]) for the purpose of performing experimental

impacts on structures. It is a metallic structure which enables to swing steel ball

(254[mm] of diameter, 260[kg] of weight), maintained by two slings, in order to make

it impact the tested structure with horizontal speed. The ball is lifted to a chosen

elevation thanks to a winch and a steel cable fixed to the backside of the ball. The

maximum dropping height allowed by the facility is 4[m], corresponding to a 10[kJ]

impact energy named Emax. A 3[m] high wall has been built in reinforced concrete

and stabilized by a compacted embankment in order to maintain the tested structures

133

134 6. APPLICATIONS: RESULTS AND COMPARISON

during the impacts and to enable the measurement of the forces generated by the

impact at several positions on the backside of the structure (Figure 6.2 - 6.1).

Figure 6.1. Tested sandwich structure

A′

A

1.5[m]

3[m]

6[m]

1.4[m]

7[m]

0.75[m]

4[m]

AA′

Figure 6.2. CER pendular impact facility. Source [145]

6.1.2. Impacted structure. The tested structure consists of a front wall of

nine gabions and a sand nucleus. The cubic gabions (1
2
[m]× 1

2
[m]× 1

2
[m]) are made

of limestone blocks confined by a steel wire net. Each gabion consists of about 216

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 135

blocks. A column of gabions is added on each side of this front wall in order to

maintain and stabilize it during the impact. The nucleus is made of Seine sand, D1

classified with w = 7.9% and γh = 18[kN/m3] [10], where w is the water content

(quantity of water contained in a material) and γh is the force density.

a1
a0

a2
a3 a4

f2

f1

f3

f4a0

A′

A

B′

B

C ′

C

BB′ AA′ CC ′

Figure 6.3. Instrumentation of the structure (a: accelerometers, f :
force sensors). Source [145]

6.1.3. Instrumentation. The impacted structure is instrumented with sensors

measuring accelerations, forces and displacements during the impact (Figure 6.3).

Accelerometers are used to measure the acceleration of the ball (Figure 4(a)) and

the acceleration of some of the blocks inside the gabions (Figure 4(c)). For this

purpose, “artificial” blocks made of concrete and instrumented with accelerometers

are installed inside the gabions. A steel plate containing 4 strain sensors is located

vertically between the backside of the nucleus and the concrete wall in order to

measure the forces generated by the impacts on the backside of the nucleus [72].

Additionally, a displacement sensor is placed between the steel plate and the back

136 6. APPLICATIONS: RESULTS AND COMPARISON

(a) Accelerometer on the iron ball (b) Displacement sensor

(c) Accelerometer inside a gabion

Figure 6.4. Accelerometers and sensors

of the central gabion in order to measure the displacement of the gabion-wall during

the impact (Figure 4(b)).

6.1.4. Impacts. The sandwich structure was impacted four times with increas-

ing energy (20%, 40%, 80% and 100% of Emax (maximum impact energy)). During

each impact, the data of all the sensors were recorded simultaneously and the signals

were processed by a second order Butterworth filter with a cut frequency of 600[Hz]

[87].

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 137

6.1.5. Mechanical model. The mechanical complexity of the tested structures

makes some assumptions necessary for the numerical simulation of the impacts. The

impacted structure is regarded as a granular media (the gabion - wall) with unilat-

eral boundary conditions at its bottom and at both lateral sides, elastic boundary

conditions for its contacts with the sand nucleus and “internal” elastic forces due to

the confinement by the steel wire net surrounding the gabions.

Thus, the mechanical modeling of the structure requires to create a tridimensional

granular media representing the collection of limestone blocks (or grains) of the

gabion - wall, to model the interaction of these “grains” with the sand nucleus and

the steel wire nettings and to compute the impact of the steel ball by taking into

account the unilateral contact boundary conditions between grains, grains and steel

ball as well as between grains and the bottom and lateral sides of the gabion - wall.

a

b

c d

Figure 6.5. Shape of the grains

The gabion - wall of the sandwich structure is modeled by a granular media in

which each limestone block is a polyhedral grain. The action of the steel wire net is

modeled by a confinement force applied to the grains belonging to the boundary of

each gabion. The sand nucleus is modeled as a Winkler - Westergard solid [54] in

contact with the grains of the backside of the gabion - wall. In order to represent

138 6. APPLICATIONS: RESULTS AND COMPARISON

the geometry of the limestone blocks of the gabion, a 12 - sides polyhedral shape is

used (Figure 6.5).

Each gabion consists of an average number of 216 blocks. A sample of blocks was

measured to obtain the values of a, b, c and d to use for modeling them as described

in Figure 6.5. The average values of these parameters are 7.8[cm] for a, 5.3[cm] for

b, 6.5[cm] for c and 3.8[cm] for d with a dispersion of 23%.

Figure 6.6. Gabion with 216 grains

Thus, in order to make a numerical gabion, 216 grains of dimensions a, b, c and

d randomly chosen within the range of ±23% of their average values, are randomly

disposed and oriented inside a 1
2
[m] × 1

2
[m] × 1

2
[m] box, following the algorithm

recommended in [83]. This collection of grains is then compacted by numerical

simulation until the containing box reaches the dimensions of the actual gabions

(Figure 6.6). This compaction process is achieved considering boundary conditions:

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 139

a random amount of grains are dropped to an empty gabion. A collision process is

initiated until the compactness is obtained.

The numerical compaction is done by applying, to each side of the box, inwards

percussion on each grain in contact with any side of the box. Nine different ”numer-

ical” gabions were computed this way. The grid drawn on Figure 6.6 represents the

1
2
[m]× 1

2
[m]× 1

2
[m] dimensions of a gabion.

The steel wire net surrounding a gabion and insuring its confinement is then modeled

by a force applied to each grain having a part of itself outside the 1
2
[m]× 1

2
[m]× 1

2
[m]

gabion and proportional to the volume of the grain that is outside this domain (Fig-

ure 6.7).

Figure 6.7. The force applied to the grain is proportional to the part
of its volume outside the boundary of the gabion (left); the force is null
if the grain is inside the gabion (right)

The use of k = 1011[N/m3] allowed to obtain nine size - and shape - stabilized

numerical gabions which are placed like in the experimental structure, in order to

build the gabion - wall.

Thus it obtains a system of 1944 polyhedral grains in unilateral contact and sub-

mitted to elastic confinement forces at the boundary of the gabions. Let be precise

140 6. APPLICATIONS: RESULTS AND COMPARISON

that, a grain from the boundary of a gabion which is submitted to the confinement

force (if a part of it crosses the boundary of the gabion he belongs to), is submitted

to contact forces due to its contacts with grains of the gabion he belongs to, and also

to contact forces due to its contacts with grains from the neighbor gabion.

Figure 6.8. The initial position of the ball and the 9 gabions. The
transparent yellow region is the volume of sand.

As the experimental impacts do not show any significant displacement of the two

extra columns of gabions disposed at each lateral side of the nine gabions wall in order

to stabilize it (Figure 6.9), they are not modeled by a collection of grains, but by

unilateral contact boundary conditions for the grains. Unilateral contact boundary

conditions are also applied to the grains of the bottom of the wall to model the

interaction with the soil.

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 141

The backside of the gabion wall is in contact with the nucleus of the structure,

its most deformable part, made of sand and backed on to a rigid concrete wall.

Experimental measurements of Young’s modulus of the used sand have values around

300[MPa](±7%). This part of the structure is modeled by a Winkler - Westergaard

(Figure 6.10) elastic solid [54] in the direction of the impact. In this direction, a

displacement ∆z corresponds to an elastic force F = kww∆z.

This boundary condition is to be applied to each grain of the backside of the

gabion wall during the impact. According to the measurements of Young’s modulus

of the sand, kww is set to 3× 104[N/m].

Figure 6.9. Unilateral boundary condition (black zone)

142 6. APPLICATIONS: RESULTS AND COMPARISON

Figure 6.10. Winkler - Westergaard boundary condition.

The numerical simulation of the impact on the sandwich structure has been

performed by the A-CD2 method which has the purpose of computing 3D polyhedral

granular media dynamics [133, 45, 47, 46].

As in the non - smooth Contact Dynamics method [80], the grains are in unilat-

eral contact. The A-CD2 method is applied for expressing the contact forces, having

for consequence a different formulation of the equations to solve at each time step.

For the numerical simulation of the impact on the mechanical model of the sand-

wich structure, the forces not depending on the velocities are the gravity force and

the elastic forces applied to the grains by the Winkler - Westergaard [54] solid and

the steel wire netting. The gravity force does not depend on the positions and its

expression is easy to get for any grain. The mentioned elastic forces depend on the

positions and therefore need to be computed taking into account the positions of the

grains.

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 143

(a) 20%Emax (b) 40%Emax

(c) 80%Emax (d) 100%Emax

Figure 6.11. Impacts at different level of energy.

6.1.6. Numerical computations and comparison. Similarly to the experi-

mental testing of the structure, four successive impacts with increasing level of energy

are computed with the mechanical model of the sandwich structure, as is shown in

Figure 6.11.

The time step used for the computation was ∆t = 10−3[s], making the friction

force between grains a linear viscous force with a viscosity coefficient υ = 0.3[Ns/m].

To cover the duration of the signals recorded during the experimental collisions, 100

time steps are computed for each collision. At each step, the number of contacts to

take into account is between 6200 and 8600 in the system.

For each impact, forces, accelerations and displacements are computed in the me-

chanical model at the places where they have been measured during the experiment.

144 6. APPLICATIONS: RESULTS AND COMPARISON

Thus, we obtain the numerical signals to compare with the experimental ones for

the validation of the model.

The forces are measured and computed at the positions f1, f2, f3 and f4 (right

picture in Figure 6.3). The computation of the forces is made thanks to the defor-

mation of the Winkler - Westergaard solid. In the Figures 6.12 - 6.15 are presented

the comparison of the experimental and numerical signals at each one of these spots

for the four successive impacts of 20%, 40%, 80% and 100% of Emax.

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 145

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

t[s]

f
1
[k
N
]

20%Emax

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

t[s]

40%Emax

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

t[s]

f
1
[k
N
]

80%Emax

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t[s]

100%Emax

Figure 6.12. Comparison between experimental (blue continuous)
and numerical (red dashed) signals of f1(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax.

146 6. APPLICATIONS: RESULTS AND COMPARISON

0 0.02 0.04 0.06 0.08 0.1

· 102

0

0.01

0.02

0.03
· 102

t[s]

f
2
[k
N
]

20%Emax

0 0.02 0.04 0.06 0.08 0.1

· 102

0

0.02

0.04

0.06

0.08
· 102

t[s]

40%Emax

0 0.02 0.04 0.06 0.08 0.1

· 102

0

0.02

0.04

0.06

0.08

0.1
· 102

t[s]

f
2
[k
N
]

80%Emax

0 0.02 0.04 0.06 0.08 0.1

· 102

0

0.05

0.1

0.15
· 102

t[s]

100%Emax

Figure 6.13. Comparison between experimental (blue continuous)
and numerical (red dashed) signals of f2(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax.

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 147

0 0.02 0.04 0.06 0.08 0.1

· 102

0

0.01

0.02

0.03

0.04

0.05
· 102

t[s]

f
3
[k
N
]

20%Emax

0 0.02 0.04 0.06 0.08 0.1

· 102

0

0.04

0.08

0.12

0.16
· 102

t[s]

40%Emax

0 0.02 0.04 0.06 0.08 0.1

· 102

0

0.1

0.2

0.3
· 102

t[s]

f
3
[k
N
]

80%Emax

0 0.02 0.04 0.06 0.08 0.1

· 102

0

0.2

0.4

0.6
· 102

t[s]

100%Emax

Figure 6.14. Comparison between experimental (blue continuous)
and numerical (red dashed) signals of f3(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax.

148 6. APPLICATIONS: RESULTS AND COMPARISON

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03
· 10−2

t[s]

f
4
[k
N
]

20%Emax

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06
· 10−2

t[s]

40%Emax

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

t[s]

f
4
[k
N
]

80%Emax

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

t[s]

100%Emax

Figure 6.15. Comparison between experimental (blue continuos)
and numerical (red dashed) signals of f4(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 149

There are five points where the accelerations were measured: a0, a1, a2, a3 and a4

(Figure 6.3). The point a1 corresponds to the steel ball horizontal acceleration and

the other points correspond to horizontal acceleration at specific positions for three

grains. The acceleration a2 corresponds to a grain located in the back of the gabion,

and it has measured the acceleration of the motion toward the boundary of the

structure; whereas that the acceleration a0 corresponds to the motion at back side of

the sand wall (left picture in Figure 6.3). The acceleration a3 and a4 correspond to

two grains located in the middle of the structure (middle picture in Figure 6.3) and

it has measured the acceleration of the motion toward the left and the right of the

central gabion respectively. In the Figures 6.16 - 6.19 are presented the comparisons

between the experimental and numerical accelerations signals for the grains in the

points a0, a2, a3 and a4.

150 6. APPLICATIONS: RESULTS AND COMPARISON

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

t[s]

a
0
[g
]

20%Emax

0 0.02 0.04 0.06 0.08 0.1
−3

−2

−1

0

1

2

3

t[s]

40%Emax

0 0.02 0.04 0.06 0.08 0.1
−4

−2

0

2

4

6

t[s]

a
0
[g
]

80%Emax

0 0.02 0.04 0.06 0.08 0.1
−4

−2

0

2

4

6

t[s]

100%Emax

Figure 6.16. Comparison between experimental (blue continuous)
and numerical (red dashed) signals of a0(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax.

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 151

0 0.02 0.04 0.06 0.08 0.1
−40

−20

0

20

t[s]

a
2
[g
]

20%Emax

0 0.02 0.04 0.06 0.08 0.1
−50

−30

−10

10

30

t[s]

40%Emax

0 0.02 0.04 0.06 0.08 0.1
−50

−30

−10

10

30

t[s]

a
2
[g
]

80%Emax

0 0.02 0.04 0.06 0.08 0.1
−50

−30

−10

10

30

t[s]

100%Emax

Figure 6.17. Comparison between experimental (blue continuous)
and numerical (red dashed) signals of a2(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax.

152 6. APPLICATIONS: RESULTS AND COMPARISON

0 0.02 0.04 0.06 0.08 0.1
−20

−10

0

10

20

t[s]

a
3
[g
]

20%Emax

0 0.02 0.04 0.06 0.08 0.1
−50

−30

−10

10

30

t[s]

40%Emax

0 0.02 0.04 0.06 0.08 0.1
−60

−40

−20

0

20

40

60

t[s]

a
3
[g
]

80%Emax

0 0.02 0.04 0.06 0.08 0.1
−50

−30

−10

10

30

t[s]

100%Emax

Figure 6.18. Comparison between experimental (blue continuous)
and numerical (red dashed) signals of a3(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax.

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 153

0 0.02 0.04 0.06 0.08 0.1
−30

−20

−10

0

10

20

t[s]

a
4
[g
]

20%Emax

0 0.02 0.04 0.06 0.08 0.1
−60

−40

−20

0

20

40

t[s]

40%Emax

0 0.02 0.04 0.06 0.08 0.1
−60

−40

−20

0

20

40

60

t[s]

a
4
[g
]

80%Emax

0 0.02 0.04 0.06 0.08 0.1
−50

−30

−10

10

30

50

t[s]

100%Emax

Figure 6.19. Comparison between experimental (blue continuous)
and numerical (red dashed) signals of a4(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax.

154 6. APPLICATIONS: RESULTS AND COMPARISON

Concerning the measurements of the steel ball acceleration, the accelerometer

could only register the signal peaks for the first three impacts. The problem could

be fixed for the last impact only. For this reason, it was only possible to obtain

the experimental acceleration signal during the impact with 100% of Emax, which is

presented in Figure 6.20.

0 0.02 0.04 0.06 0.08 0.1
−120

−70

−20

30

t[s]

a
1
[g
]

20%Emax

20 40 80 100
0

30

60

90

120

Energy level [%Emax]

Signals peaks

Figure 6.20. Left: Comparison between experimental (blue contin-
uous) and numerical (red dashed) signals of a1(t) for the 4 impacts of
20%, 40%, 80% and 100% of Emax. Right: Comparision between ex-
perimental (blue) and numerical (red hatched) signals peaks of a1(t)
for the 4 impacts of 20%, 40%, 80% and 100% of Emax.

The displacement sensors measured the maximal displacement of the blocks be-

longing to the backside of the gabion - wall during each impact. In the numerical

simulation, this displacement is computed by comparing the positions of the corre-

sponding grains in the backside of the gabion - wall to their positions before the first

impact. In Figure 6.21 is presented the comparison between maximum displacements

for the four impacts with different energy levels.

6.1. STUDY OF A SHOCK - ABSORBER STRUCTURE 155

20 40 80 100
0

10

20

30

40

50

Energy level [%Emax]

D
is

p
la

ce
m

en
t

p
ea

k
[m

m
]

Displacement

Figure 6.21. Comparison between experimental (blue) and numer-
ical (red hatched) displacements for the 4 impacts of 20%, 40%, 80%
and 100% of Emax.

Concerning the CPU time (in seconds) for the four impacts with different energy

level, see Table 6.1.

Impacts
20%Emax 40%Emax 80%Emax 100%Emax

4527.525 5718.016 3435.088 7768.229

Table 6.1. CPU time for impacts.

156 6. APPLICATIONS: RESULTS AND COMPARISON

6.2. Study of a rockslide real event

A major collapse of the Piton Marcel in Martinique, France, has occurred during

the night on May 11th 2010. The materials which were at the top of the cliff for a

couple of days, has been remobilized on May 17th 2010, and it caused a first mudflow

along the Rivière du Prêcheur (River Preacher). From June 25th 2010, there was no

trace left of the collapse at the top of the cliff, all sediments had been remobilized.

In the Figure 6.22 it is possible to observe the deposit of material at the bottom of

the cliff after the collapse.

The main study of this event is to replay the particular collapse with a numerical

simulation; for achieving this, it has been necessary to obtain the information of the

materials which were in the top of the cliff. The Airborne LiDAR data have been

acquired before and after the collapse. Hence, two accurate tridimensional point

clouds have been available to reconstruct the exact location of the missing material

and to generate realistic initial conditions for the simulation. The first set of points

has been used to obtain the initial position of the material which it is necessary to

estimate the volume which has fallen; and the second one to obtain the final deposit

of the material which it is necessary to make a comparison with numerical results.

Finally, another important aspect obtaining these two point clouds, is the relieve

surface where the numerical simulations have been done; the difference between the

initial position of the material and the final one, allows to build the relieve surface.

6.2. STUDY OF A ROCKSLIDE REAL EVENT 157

Figure 6.22. Collapse of the Piton Marcel in Martinique, France.

6.2.1. Data set acquisition. Airborne LiDAR (Light Detection And Rang-

ing) is a system which provides the topography of a landscape as geo – referenced

3D point clouds by the measurement of the time - of - flight of a short laser pulse

(generally 1064[nm]) once reflected on the Earth surface as is shown in Figure 6.23

[16]. They operate at high pulse repetition rates from 50[kHz] to 400[kHz] depend-

ing of the flying conditions. Supporting vector attitudes are calculated using the

synergy of both GPS and inertial measurements (IMU) providing at the top end

process a height accuracy less than 0.05[m] and a planimetric accuracy about 0.4[m]

or less depending on the flying conditions as well as on the surveyed topography

(tridimensional structure) [153].

158 6. APPLICATIONS: RESULTS AND COMPARISON

Figure 6.23. A sketch of an airborne LiDAR survey

Moreover, such active systems, called multiple echos LiDAR, allow detecting

several return signals for a single laser shot. It is particularly relevant when surveying

vegetation areas since a single LiDAR survey allows acquiring not only the canopy

(upper part of the vegetation layer), but also points inside the vegetation layers

as well as on the ground underneath. In the framework of the French national

project Litto3D [5], LiDAR data have been acquired both on the sea side around the

Martinique Island as well as over the entire island surface. This survey was operated

by the French National Survey (ING) in March 2010, with the Optech ALTM 3100

LiDAR device [7]. After the Piton Marcel collapse and the successive mudflows

during May and June 2010, local authorities have decided to survey with LiDAR

system the entire Rivière du Prêcheur, from the Piton Marcel to the seashore on

July 22nd 2010. This survey was operated by the Swiss company Helimap [3] from a

helicopter. In the Figure 6.24 is shown both the IGN (color scale, red points are the

6.2. STUDY OF A ROCKSLIDE REAL EVENT 159

highest ones) and the Helimap data set (blue points) in a perspective front view of

the collapse area.

Figure 6.24. 3D LiDAR points before the collapse (IGN survey dis-
played in height color scale) and after the collapse (Helilmap survey -
blue points)

The height difference between both point clouds (before and after the collapse)

has been calculated with the open source software CloudCompare (CC) [2] as is

shown in Figure 6.25. Clearly it is possible to observe the deficit of material along

the cliff (red area) which reaches 130[m] straight down.

The height difference becomes smaller in white areas to null in blue ones. Figure

6.25 confirms that all collapsed materials have been remobilized during the mudflow

events since height difference along the thalweg (”valley way”, it refers to a line drawn

to join the lowest points along the entire length of a valley in its downward slope,

defining its deepest channel) is null, contrary to what has been observed just after

the collapse (Figure 6.22).

160 6. APPLICATIONS: RESULTS AND COMPARISON

Figure 6.25. Height difference between both point clouds coded in
a polar scale (blue to red) and display in the same perspective as in
Figure 6.24. Height difference comes from 0[m] to 60[m]. Grey points
lie outside the collapse area.

Figure 6.26. Location of the initial set of block within the LiDAR
Helimap data set.

In order to prepare the initial position for the numerical simulation, it has been

isolated a region of interest around collapsed area (red to white area in Figure 6.25).

It has been calculated a triangulation of the upper (IGN data set) and of the bottom

(Helimap data set) point clouds with the end to delineate the volume of the collapsed

material. Then, this volume is filled with similar parallelepiped finite elements where

6.2. STUDY OF A ROCKSLIDE REAL EVENT 161

dimensions are set both to make a paving of the 3D bounding box and to belong to

the delineated volume. A fair estimate of the total volume is 8×105[m3]. Considering

the geometry of the collapse, finite elements have been oriented along the z direction

and coplanar to the orientation of the remaining cliff. Figure 5 shows the inclusion of

these blocks in the Helimap used for the numerical simulation and can be considered

as the initial position.

6.2.2. Numerical Simulation. The total material which has fallen from the

top of the cliff has been simulated by a volumetric partition, this means, the total

volume has been split in discrete elements with the objective to complete as much as

possible the area which has been released. Then, each one of these discrete elements is

considered as a numerical rock, or block, which is represented by a regular polyhedron

of 6 faces with fixed dimensions.

ab

c

Figure 6.27. A rock represented by a regular polyhedron with di-
mensions a, b and c.

162 6. APPLICATIONS: RESULTS AND COMPARISON

As it has been mentioned before, the numerical rocks have been positioned in the

orientation z and coplanar to the remaining cliff. In the Figure 6.27 it is possible to

observe a representation of each numerical rock with width a, length b and height c.

The rock avalanche has been simulated considering two set of blocks: 435 and

874. In the first one, each block has dimensions 10, 935[m], 9, 636[m] and 15, 775[m]

respectively, with a volume of 1662, 21[m3]. In the second set of blocks, each one

has dimensions 8, 852[m], 7, 801[m] and 12, 771[m] respectively, with a volume of

881, 85[m3].

In the Figure 6.28 it is possible to observe the two set of blocks with their respec-

tive initial position; on the left with 435 blocks and on the right with 874 blocks. A

visualization module has been developed to obtain the results of the numerical sim-

ulation. This module has been developed in VPython which allows building several

geometric elements such as boxes, triangles, spheres, cylinders, pyramids, etc. In

this numerical simulation, with this visualization module has been possible to build

the surface of the remaining cliff with the point cloud given by LiDAR Helimap; this

construction has been possible with the triangulation of these points and each set

of blocks is representing by the regular polyhedrons explained before. The visual-

ization module also has allowed building an evolution program, which consists in to

observe the behavior of the blocks falling by the cliff after to obtain the numerical

results. Furthermore, it is possible to obtain instantaneous position of the numerical

avalanche evolution with the objective to compare the final deposit, or final position,

of the blocks versus the real final deposit.

6.2. STUDY OF A ROCKSLIDE REAL EVENT 163

(a) 435 blocks (b) 874 blocks

Figure 6.28. Initial positions of the numerical rock avalanche. Dis-
play made by VPython module visualization.

The numerical simulation of the rock avalanche then, considers a set of blocks

positioned in the top of the cliff, a time step for the simulation, which is the time

interval where the blocks move with constant velocity, this parameter has been set

in 0.1[s] with total time of simulation of 35[s], and the surface of the cliff which is

determined by 2371 points and 4709 triangles.

Several results can be obtained with this numerical simulation: it is possible to

obtain the position of the blocks during the entire evolution, checking if the behavior

corresponds to the real case; furthermore it is possible to obtain the kinetic energy

curve, translational and rotational, and the dissipation energy curve as well. In

the Figure 6.29 the curves are from kinetic energy, the first one in the top is the

total kinetic energy, in the middle there is the translational kinetic energy curve

and in the bottom the rotational kinetic energy curve. According to these curves,

164 6. APPLICATIONS: RESULTS AND COMPARISON

it is observed that in the interval 5[s] − 10[s] the total energy is in the maximal

value, therefore in this interval the system has the maximal velocity due to the

increasing collisions between the blocks. An interesting result is at the beginning

of the energy curve; approximately at 2[s] there is a small decreasing, this is due

to that the solids in the bottom start to collide with the relief, then there is a

small drop in velocity but it is rapidly recovered in the next 10[s]. Finally the

energy curve decreases to zero due to the reduction of the system velocity since the

amount of collisions between the blocks declines. In the Figure 6.30 it is observed the

instantaneous dissipative energy curve at top, the accumulative dissipative energy

curve at middle and the potential energy at bottom, all these curves, including from

kinetic energy, has been computed with 435 blocks. According to the dissipative

energy, the instantaneous curve shows that the maximal dissipation is reached at

around 12[s] which is consistent with the maximal value of kinetic energy, also it

is possible to observe that at the end of the time evolution, the dissipative energy

decreases to zero, which also is consistent with the real behavior of the avalanche.

The dissipative accumulative curve is monotonically increasing, in fact, around 12[s]

there is a characteristic impulse, this is due to the same impulse in the instantaneous

energy; at the end, the accumulative curve obtains a constant behavior, due to the

decrease of energy.

The potential energy curve is in constant decrease, which is consistent, due to

the blocks are falling, then the system loses potential energy during the evolution;

at the end, the potential curve obtain a constant behavior due to the blocks is in the

bottom of the cliff, therefore, they do not continue falling down.

6.2. STUDY OF A ROCKSLIDE REAL EVENT 165

0 1 2 3 4 5 6 7 8
0

0.4

0.8

1.2

1.6

2

2.4

2.8
· 108

T
ot

al
[k
J
]

Kinetic Energy

0 1 2 3 4 5 6 7 8
0

0.4

0.8

1.2

1.6

2

2.4

2.8
· 108

T
ra

n
sl

at
io

n
al

[k
J
]

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5
· 107

t[s]

R
ot

at
io

n
al

[k
J
]

Figure 6.29. Kinetic energy with 435 solids.

166 6. APPLICATIONS: RESULTS AND COMPARISON

0 1 2 3 4 5 6 7 8

0.4

0.8

1.2

1.6

2

· 109
In

st
an

ta
n
eo

u
s
[k
J
]

Dissipative Energy

0 1 2 3 4 5 6 7 8

0.4

0.8

1.2

· 109

A
cc

u
m

u
la

ti
ve

[k
J
]

0 1 2 3 4 5 6 7 8

0.4

0.8

· 1010

t[s]

P
ot

en
ti

al
[k
J
]

Figure 6.30. Dissipative energy with 435 solids.

6.2. STUDY OF A ROCKSLIDE REAL EVENT 167

In Figure 6.31 the evolution of the numerical avalanche with 435 blocks and for

different time step is observed.

(a) 0[s] (b) 15[s]

(c) 25[s] (d) 35[s]

Figure 6.31. An avalanche numerical simulation with 435 blocks.

At the beginning (Figure 31(a)) it is shown the initial position of the blocks,

then in the right (Figure 6.31(b)), after 15[s] the system presents a considerable

deformation. In Figure 6.31(c) it is observed the same deformation and collision

between the blocks, in addition of a concentration taking the form as a decline

curvature in the bottom of the relief. In the final position at 35[s] (Figure 6.31(d)),

168 6. APPLICATIONS: RESULTS AND COMPARISON

the system is in a quiet state, the blocks take even more the form of the relief and

the velocity of the system decreases to zero.

In Figure 6.32 the evolution of the numerical avalanche with 874 solids for the

same time step as the other simulation is observed.

(a) 0[s] (b) 15[s]

(c) 25[s] (d) 35[s]

Figure 6.32. An avalanche numerical simulation with 874 blocks.

The final position of the numerical avalanche is compared with the final deposit

of the real one. In Figure 6.33(a) the shape of the real avalanche deposit is observed

and in the Figure 6.33(b) and Figure 6.33(c) the final numerical avalanche deposit

with 435 and 874 blocks respectively are shown. The first one, marked in red, has

6.2. STUDY OF A ROCKSLIDE REAL EVENT 169

a shape of an arrowhead where the tip is at the bottom, in the numerical case, the

final deposit has a similar shape, a sort of an arrowhead pointing down. In fact the

location where the deposits are situated, both are around the point where the slope

of the hill changes considerably, therefore the numerical model simulates in good way

the behavior of the real avalanche.

(a) Real avalanche final deposit

(b) Final deposit with 435
blocks

(c) Final deposit with 874
blocks

Figure 6.33. Comparison between real and numerical final deposits.
The blue curve delimitates the surface considered in the numerical
simulation, and the red curve delimitates the greater concentration of
material in the final deposit.

170 6. APPLICATIONS: RESULTS AND COMPARISON

6.3. Granular layers

A granular material is a collection of solid particles or grains, such that most of

the particles are in contact with at least some of their neighboring particles. The

term granular layer could be used to describe a type of granular material, in fact,

a granular layer is simply a collection of solid particles which is in repose in some

surface. In this case it will be considered a granular layer in a plane. The problem

arises in building this layer, because the idea is to obtain a very compact granular

heap.

An interesting result is that the computational time for N solids, have a linear

behavior. It is important to remark that the optimization part was a black case,

which it is not possible to change, but all the rest of the computations: contact

detection, optimization problem building, velocity updating and geometry setting

were computed. There are two experiments from an initial configuration for N

solids: in the first one, all solids start in repose and fall; and in the second, all solids

beging at rest in a random position but directed towards the origin, therefore after

some simulation time, solids start to collide forming a heap.

The computational time for the first type of experiment is fast, because there are

not a great amount of contacts in the simulation, therefore, the more expensive part

of the computation does not occur at each timestep.

6.3. GRANULAR LAYERS 171

(a) 0.0 [s] (b) 0.5 [s]

(c) 1.2 [s] (d) 2.0 [s]

Figure 6.34. Evolution of 500 solids falling.

(a) 0.0 [s] (b) 0.75 [s]

(c) 1.0 [s] (d) 1.2 [s]

Figure 6.35. Evolution of 1000 solids falling.

172 6. APPLICATIONS: RESULTS AND COMPARISON

(a) 0.0 [s] (b) 0.75 [s]

(c) 1.0 [s] (d) 1.2 [s]

Figure 6.36. Evolution of 3000 solids falling.

The evolution with 500, 1000 and 3000 solids is shown in Figure 6.34, 6.35 and

6.36 respectively. For the other hand, the second kind of experiment is slower, be-

cause the amount of contacts increase in time, therefore, at each timestep is necessary

to solve a constrained minimization problem. The evolution with 500, 1000 and 3000

solids is shown in Figure 6.37, 6.38 and 6.39 respectively. In this case, the initial

rotational velocity for each solid is random, and the initial linear velocity is directed

towards the origin.

6.3. GRANULAR LAYERS 173

(a) 0.0 [s] (b) 0.35 [s]

(c) 0.5 [s] (d) 0.9 [s]

Figure 6.37. Evolution of 500 solids forming a heap.

174 6. APPLICATIONS: RESULTS AND COMPARISON

(a) 0.0 [s] (b) 0.2 [s]

(c) 0.5 [s] (d) 0.8 [s]

Figure 6.38. Evolution of 1000 solids forming a heap.

(a) 0.0 [s] (b) 0.2 [s]

(c) 0.5 [s] (d) 0.8 [s]

Figure 6.39. Evolution of 3000 solids forming a heap.

CHAPTER 7

Conclusions

The main goal of this thesis was to develop a mathematical and computational

model for multiple collision of rigid bodies, by means of an extension of the A-CD2

method. The new elements addressed in this work was the computational issues

detected in the original version and the theoretical development for the rotational

velocities of the solids. Theses issues comprise (a) inefficient use of computational

memory, (b) convergence problem in the constrained minimization problem method

and (c) inadequate mechanical behavior according to the rotational velocity of the

solids. For the first issue a dynamical algorithm was presented, where the efficient use

of computational memory has been achieved. Mainly in the contact detection mod-

ule, a dynamical neighborhood algorithm was developed accompained by a linked

list technique for contact points storing. Regarding the convergence problem, the

original version uses Uzawa method to find the solution for the constrained mini-

mization problem. In this work an interior-point method (barrier) has been used, by

means of the CPLEX library. The convergence problem has been solved, because the

high convexity of the function to minimize the barrier method best suits. Finally,

the original approach consider, in a timestep simulation, all velocities constant. In

our case, a new set of equations has been presented particularly for the rotational

velocity non constant behavior.

175

176 7. CONCLUSIONS

102 103

100

101

102

103

Number of solids

C
P

U
ti

m
e

Figure 7.1. Computational time comparison between the original
version (red dashed) and the new one (blue continuous) for different
amounts of solids.

All these improvements allow us to compute until 3000 solids in a reasonable com-

putational time. In the Figure 7.1, the cpu time is shown for one iteration, without

the CPLEX computational cost. Clearly we observe an improvement between the

original version and the new one, where the computational order has been reduced.

An important remark is that with the original approach, no more than 1000 solids

simulation can be achieved in a reasonable computational time. As final conclusion,

this extension offers the possibility to simulate large scale problem, even so, we can

continue to obtain more improvements.

The publications achieved in this thesis are [49, 88, 89, 90].

The entire code of this work is accessible at https://github.com/rleonvas/

phd_thesis.

Bibliography

[1] Centre d’expérimentation et de recherche (cer). http://www.normandie-centre.cerema.

fr/centre-d-experimentation-et-de-recherche-cer-r340.html.

[2] Cloud compare. http://www.danielgm.net/cc/.

[3] Helimap. http://www.helimap.ch/en_index.html.

[4] Leftraru. http://usuarios.nlhpc.cl/.

[5] Litto 3D. http://www.shom.fr/les-activites/projets/modele-numerique-terre-mer/.

[6] Mathematica. Wolfram Research Inc.

[7] OpTech. http://www.optech.ca/prodaltm.htm.

[8] Visual Python. http://vpython.org/.

[9] Neighbor-list reduction: Optimization for computation of molecular Van der Waals and

solvent-accessible surface areas. Journal of Computational Chemistry, 19:797 – 808, 1997.

[10] Guidelines for soil description, 4th edition. Technical report, Food and agriculture organization

of the United Nations, 2006.

[11] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions, volume 55 of Applied

Mathematics Series. National Bureau of Standards, Washington, D.C., 1972. Issued June

1964, Tenth Printing December 1972, with corrections.

[12] M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Clarendon Press, 1989.

[13] G. Astfalk. Applications on Advance Architecture Computers. SIAM, 1996.

[14] E. Azéma, F. Radjaï, and R. Peyroux. Force transmission in a packing of pentagonal particles.

Physical Review E, 76:011301, 2007.

[15] L. Baeza. Simulación de choque entre elementos rígidos - Memoria Ingeniero Civil Mecánico.

PhD thesis, Universidad de Concepción, 2000.

177

178 BIBLIOGRAPHY

[16] E.P. Baltsavias. Airborne laser scanning: basic relations and formulas. ISPRS Journal of

Photogrammetry and Remote Sensing, 54:199 – 214, 1999.

[17] G. Barrientos and L. Baeza. Simulation of impact between rigid elements. International Jour-

nal of Solids and Structures, 40:4943 – 4954, 2003.

[18] E. Bonetti and M. Fremond. Collisions and fracture. Vietnam Journal of Mathematics, 32:167

– 186, 2004.

[19] E. Bonetti and M. Fremond. Collisions and fracture: a 1-D theory. how to tear off a chandelier

from the ceiling. Journal of Elasticity, 74:47 – 66, 2004.

[20] C.W. Boon, G.T. Houlsby, and S. Utili. A new algorithm for contact detection between

convex polygonal and polyhedral particles in the discrete element method. Computers and

Geotechnics, 44:73 – 82, 2012.

[21] C.W. Boon, G.T. Houlsby, and S. Utili. A new contact detection algorithm for three-

dimensional non-spherical particles. Powder Technology, 248:94 – 102, 2013.

[22] I. Bratberg, F. Radjaï, and A. Hansen. Dynamic rearrangements and packing regimes in

randomly deposited two-dimensional granular beds. Physical Review E, 66:031303, 2002.

[23] C.E. Brennen. Fundamentals of Multiphase Flow. Cambridge University, 2005.

[24] F.S. Buezas, M.B. Rosales, and C.P. Filipich. Collisions between two nonlinear deformable

bodies stated within continuum mechanics. International Journal of Mechanical Sciences,

52:777 – 783, 2010.

[25] G. Capriz, P. Giovine, and P. Mariano. Mathematical Models of Granular Matter. Springer,

2008.

[26] D. Meyer Carl. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[27] F. Caselli and M. Fremond. Collision of three balls on a plane. Computational Mechanic,

43:743 – 754, 2009.

[28] G. Chambon, R. Bouvarel, D. Laigle, and M. Naaim. Numerical simulations of granular

free-surface flows using smoothed particle hydrodynamics. Journal of Non-Newtonian Fluid

Mechanics, 166:698 – 712, 2011.

BIBLIOGRAPHY 179

[29] J. Chang, W. Wang, and M. Kim. Efficient collision detection using a dual bounding volume

hierarchy. Lecture Notes in Computer Science, 4975:143 – 154, 2008.

[30] J. Chang, W. Wang, and M. Kim. Efficient collision detection using a dual obb-sphere bound-

ing volume hierarchy. Computer-Aided Design, 42:50 – 57, 2010.

[31] G. Chen, L. Zheng, Y. Zhang, and J. Wu. Numerical simulation in rockfall analysis: A close

comparison of 2-d and 3-d dda. Rock Mechanics and Rock Engineering, 46:527 – 541, 2013.

[32] A.A. Chialvo and P.G. Debenedetti. On the use of the verlet neighbor list in molecular

dynamics. Computer Physics Communications, 60:215 – 224, 1990.

[33] A.A. Chialvo and P.G. Debenedetti. On the performance of an automated verlet neighbor list

algorithm for large systems on a vector processor. Computer Physics Communications, 64:15

– 18, 1991.

[34] J. Choi, S. Rhim, and J. Choi. A general purpose contact algorithm using a compliance

contact force model for rigid and flexible bodies of complex geometry. International Journal

of Non-Linear Mechanics, 53:13 – 23, 2013.

[35] C. Cholet. Collisions d’un point et d’un plane. Problémes mathématiques de la mécanique,

pages 455 – 458, 1999.

[36] P. Ciarlet. Introduction to Numerical Linear Algebra and Optimisation. Cambridge, 1989.

[37] P.A. Cundall. A computer model for simulating progressive, large-scale movements in blocky

rock systems. Proceedings of the Symposium of the International Society of Rock Mechanics,

1:132 – 150, 1971.

[38] P.A. Cundall. A computer model for rock-mass behavior using interactive graphics for the

input and output of geometrical data. Technical report, Missouri River Division of US Army

Corps of Engineers, 1974.

[39] P.A. Cundall. Ball-a program to model granular media using the distinct element method.

Technical report, Advanced Technology Group, Dames & Moore, London, 1978.

180 BIBLIOGRAPHY

[40] P.A. Cundall. Formulation of a three-dimensional distinct element model - Part I. a scheme to

detect and represent contacts in a system composed of many polyhedral blocks. International

Journal of Rock Mechanics and Mining Sciences & Geomechanics, 25:107 – 116, 1988.

[41] P.A. Cundall and R. Hart. Numerical modelling of discontinua. Engineering Computations,

9:101 – 113, 1989.

[42] P.A. Cundall and O.D.L. Strack. A discrete numerical model for granular assemblies. Geotech-

nique, 29:47 – 65, 1976.

[43] G.B. Dantzig and M.N. Thapa. Linear Programming 2: Theory and Extensions. Springer,

2003.

[44] A. de Ryck, R. Condotta, and J.A. Dodds. Shape of a cohesive granular heap. Powder Tech-

nology, 157:72 – 78, 2005.

[45] E. Dimnet. Evolution of system of multiple solids. International conference on non-smooth /

non-convex mechanics with applications in the engineering, 2002.

[46] E. Dimnet. Mouvement et collisions de solides rigides ou déformables. PhD thesis, ENPC,

2002.

[47] E. Dimnet. Collisions of rigid bodies, deformable bodies and fluids. 2nd MIT Conference on

Computational Fluid and Solid Mechanics, 2003.

[48] E. Dimnet. Theory and numerical simulation of instantaneous collisions of solids. International

Journal of Solids and Structures, 43:6100–6114, 2006.

[49] E. Dimnet, E. Haza-Rozier, G. Vinceslas, R. León, and G. Hernández. Experimental and

numerical study of a shock-absorbing structure. Acta Mechanica, 224:3037 – 3055, 2013.

[50] S. Douady, B. Andreotti, A. Daerr, and P. Cladé. From a grain to avalanches: on the physics

of granular surface flows. Comptes Rendus Physique, 3:177 – 186, 2002.

[51] T.G. Drake and O.R. Walton. Comparison of experimental and simulated grain flows. Journal

of Applied Mechanics, 62:131 – 135, 1995.

BIBLIOGRAPHY 181

[52] V. Eijkhout. Lapack working note 50 distributed sparse data structures for linear algebra

operations. Technical report, Department of Computer Science, University of Tennessee,

Knoxville, 1992.

[53] C. Ericson. Real-Time Collision Detection. Elsevier, 2005.

[54] Q. Fletcher and L.R. Hermann. Elastic foundation representation of continuum. Journal of

Engineering Mechanics, pages 95–100, 1971.

[55] M. Fremond. Rigid bodies collisions. Physics Letters, 204:33–41, 1995.

[56] M. Fremond. Collision of a wedge with a plane. Computational and Applied Mathematics,

19:127 – 136, 2000.

[57] M. Fremond. Collisions and fractures of solids. Tendencias em Matemática Aplicada e Com-

putacional, 3:1 – 4, 2002.

[58] M. Fremond. Non-Smooth Thermomecanics. Springer, 2002.

[59] M. Fremond, R. Gormaz, and J. San Martín. Collision of a solid with an incompresible fluid.

Theoretical and Computational Fluid Dynamics, 16:405 – 420, 2003.

[60] M. Fremond and F. Maceri. Novel Approaches in Civil Engineering. Lecture Notes in Applied

and Computational Mechanics - Springer, 2003.

[61] M. Fremond and F. Maceri. Mechanical Modelling and Computational Issues in Civil Engi-

neering. Lecture Notes in Applied and Computational Mechanics - Springer, 2005.

[62] X. García and E. Medina. Acoustic response of cemented granular sedimentary rocks: Molec-

ular dynamics modeling. Physical Review E, 75:061308, 2007.

[63] F.A. Gilabert, J.N. Roux, and A. Castellanos. Computer simulation of model cohesive pow-

ders: Influence of assembling procedure and contact laws on low consolidation states. Physical

Review E, 75:011303, 2007.

[64] E. Glikman, I. Kelson, N.V. Doan, and H. Tietze. An optimized algorithm for molecular

dynamics simulation of large-scale systems. Journal of Computational Physics, 124:85 – 92,

1996.

[65] H. Goldstein. Classical Mechanics. Addison-Wesley, 3rd edition, 1980.

182 BIBLIOGRAPHY

[66] G.S. Grest, B. Dünweg, and K. Kremer. Vectorized link cell Fortran code for molecular

dynamics simulations for a large number of particles. Computer Physics Communications,

55:269 – 285, 1989.

[67] J.E. Guilkey and J.A. Weiss. Implicit time integration for the material point method: Quan-

titative and algorithmic comparisons with the finite element method. International journal

for numerical methods in engineering, 57:1323 – 1338, 2003.

[68] P.K. Haff. Grain flow as a fluid-mechanical phenomenon. Journal of Fluid Mechanics, 134:401–

430, 1983.

[69] P.R. Halmos. Measure Theory. Springer-Verlag, 1974.

[70] R.E. Harris, P.A. Liever, E.A. Luke, and J.G. Dudley. Multiple-body collision algorithms for

computational simulation of high-speed air-delivered systems. Communications in Computa-

tional Physics, 17:564 – 593, 2015.

[71] R. Hart, P.A. Cundall, and J. Lemos. Formulation of a three-dimensional distinct element

model - Part II. mechanical calculations for motion and interaction of a system composed

of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences &

Geomechanics, 3:117 – 125, 1988.

[72] A. Heymann, S. Lambert, P. Gotteland, M. Collombet, and M. Douaillat. Expérimentations

grandeur réelle sur merlons de protection contre les chutes de blocs rocheux. Journées Na-

tionales de Géotechnique et de Géologie, 2010.

[73] J.B. Hiriart-Urruty and C. Lemarechal. Fundamentals of Convex Analysis. Springer, 2004.

[74] G.T. Houlsby. Potential particles: a method for modelling non - circular particles in DEM.

Computers and Geotechniques, 36:953 – 959, 2009.

[75] P. Hubbard. Collision Detection for Interactive Graphics Applications. PhD thesis, Depart-

ment of Computer Science, Brown University, 1995.

[76] D. Inman. Engineering Vibration. Prentice Hall, 2014.

[77] T. Iwai, C.W. Hong, and P. Greil. Fast particle pair detection algorithms for particle simula-

tions. International Journal of Modern Physics C, 10:823 – 837, 1999.

BIBLIOGRAPHY 183

[78] K. Iwashita and M. Oda. Rolling resistance at contacts in simulation of shear band develop-

ment by dem. Journal of engineering mechanics, 124:285 – 292, 1998.

[79] M. Jean. Frictional contact in collections of rigid or deformable bodies: numerical simulation

of geomaterial motions. Studies in Applied Mechanics, 42:463 – 486, 1995.

[80] M. Jean. The non-smooth contact dynamics method. Computer Methods in Applied Mechanics

and Engineering, 177:235 – 257, 1999.

[81] M. Jean and J.J. Moreau. Unilaterality and dry friction in the dynamics of rigid body collec-

tions. Proceedings of Contact Mechanics International Symposium, 1992.

[82] M. Jean and E. Pratt. A system of rigid bodies with dry friction. International Journal of

Engineering Science, 23:497 – 513, 1985.

[83] J-F. Jerier, D. Imbault, F.V. Donze, and P. Doremus. A geometry algorithm based on tetra-

hedral meshes to generate dense polydisperse sphere packing. Granular Matter, 1:43–52, 2009.

[84] K. Kesava and P. Nott. An Introduction to Granular Flow. Cambridge University Press, 2008.

[85] Y. Kishino. Disc model of analysis of granular media. in Micromechanics of Granular Mate-

rials, 1988.

[86] M. Kodam, J. Curtis, Bruno Hancock, and C. Wassgren. Discrete element method modeling

of bi-convex pharmaceutical tablets: Contact detection algorithms and validation. Chemical

Engineering Science, 69:587 – 601, 2012.

[87] S. Lambert, A. Heymann, P. Gotteland, M. Douaillat, E. Haza-Rozier, and G. Vinceslas.

Comparaison expérimentale semi - vraie grandeur du comportement de trios structures pare

- blocs. Journées Nationales de Géotechnique et de Géologie, 2010.

[88] R. León, E. Dimnet, and G. Hernández. Numerical computation for a granular flow. X Jor-

nadas de Mecánica Computacional, 2011.

[89] R. León, E. Dimnet, and G. Hernández. Numerical simulation for a granular flow. XIX Con-

greso sobre Métodos Numéricos y sus aplicaciones, 2011.

[90] R. León, L. Salinas, and C. Torres. Torque free rigid motion: an elliptic function primer.

LXXXIV Encuentro Anual - Sociedad de Matemática de Chile, 2015.

184 BIBLIOGRAPHY

[91] J.S. Leszczynski and M. Ciesielski. Effective algorithm for detection of a collision between

spherical particles. in Computational Science - ICCS, 3037:348 – 355, 2004.

[92] C.F. Li, Y.T. Feng, and D.R.J. Owen. Smb: Collision detection based on temporal coherence.

Computer Methods in Applied Mechanics and Engineering, 195:2252 – 2269, 2006.

[93] S. Mack, P. Langston, C. Webb, and T. York. Experimental validation of polyhedral discrete

element model. Powder Technology, 214:431 – 442, 2011.

[94] D.R. Mason. Faster neighbour list generation using a novel lattice vector representation.

Computer Physics Communications, 170:31 – 41, 2005.

[95] M.L. Matin, P.J. Daivis, and B.D. Todd. Cell neighbor list method for planar elongational

flow: rheology of a diatomic fluid. Computer Physics Communications, 151:35 – 46, 2003.

[96] W. Mattson and B.M. Rice. Near-neighbor calculations using a modified cell-linked list

method. Computer Physics Communication, 119:135 – 148, 1999.

[97] H.G. Matuttis, S. Luding, and H.J. Herrmann. Discrete element simulations of dense packings

and heaps made of spherical and non-spherical particles.

[98] J.C. Maureira, C. Baeza, and T. Perez Acle. Levque cluster user manual. Technical report,

NLHPC, 2011.

[99] H. McKean and V. Moll. Elliptic Curves: Function Theory, Geometry, Arithmetic. Cambridge

University Press, Cambridge CB2 2RU, UK, 1999. First published 1997.

[100] S. McNamara and H. Herrmann. Measurement of indeterminacy in packings of perfectly rigid

disks. Physical Review E, 70:061303, 2004.

[101] C.J. Meyer and D.A. Deglon. Particle collision modeling – A review.

[102] C. De Michele. Simulating hard rigid bodies. Journal of Computational Physics, 229:3276 –

3294, 2010.

[103] H. Mio, A. Shimosaka, Y. Shirakawa, and J. Hidaka. Cell optimization for fast contact detec-

tion in the discrete element method algorithm.

[104] H. Mio, A. Shimosaka, Y. Shirakawa, and J. Hidaka. Optimum cell condition for contact

detection having a large particle size ratio in the discrete element method.

BIBLIOGRAPHY 185

[105] H. Mio, A. Shimosaka, Y. Shirakawa, and J. Hidaka. Optimum cell size for contact detection

in the algorithm of the discrete element method.

[106] M. Moore and J. Wilhelms. Collision detection and response for computer animation.

[107] J.J. Moreau. Fonctionnelles convexes. Séminaire sur les équations aux dérivées partielles,

1966.

[108] J.J. Moreau. Evolution problem associated with a moving convex set in a hilbert space.

Journal of Differential Equations, 26:347 – 374, 1977.

[109] J.J. Moreau. Bounded variation in time. In Topics in Nonsmooth Mechanics, 1988.

[110] J.J. Moreau. Unilateral contact and dry friction in finite freedom dynamics. In Nonsmooth

Mechanics and Applications, 1988.

[111] J.J. Moreau. New computation methods in granular dynamics. In Powders & Grains, 1993.

[112] J.J. Moreau. Some numerical methods in multibody dynamics: application to granular ma-

terials. European Journal of Mechanics - A/Solids, 13:93 – 114, 1994.

[113] J.J. Moreau, P.D. Panagiotopoulos, and G. Strang. Topics in Nonsmooth Mechanics.

Birkhäuser Verlag, 1988.

[114] A. Munjiza and K.R.F. Andrews. NBS contact detection algorithm for bodies of similar size.

International journal for numerical methods in engineering, 43:131 – 149, 1998.

[115] A. Munjiza, E. Rougier, and N.W.M. John. MR linear contact detection algorithm. Interna-

tional journal for numerical methods in engineering, 66:46 – 71, 2006.

[116] R.M. Nedderman, U. Tüzün, S.B. Savage, and G.T. Houlsby. The flow of granular materials:

Discharge rates from hoppers. Chemical Engineering Science, 37:1597 – 1609, 1982.

[117] S. Nezamabadi, F. Radjaï, J. Averseng, and J. Delenne. Implicit frictional-contact model for

soft particle systems. Journal of the Mechanics and Physics of Solids, 83:72 – 87, 2015.

[118] E.G. Nezami, Y.M.A. Hashash, D. Zhao, and J. Ghaboussi. A fast contact detection algorithm

for 3-d discrete element method. Computers and Geotechnics, 31:575 – 587, 2004.

[119] E.G. Nezami, E. Rougier, and N.W.M. John. Mr linear contact detection algorithm. Interna-

tional journal for numerical methods in engineering, 66:46 – 71, 2006.

186 BIBLIOGRAPHY

[120] C. Nouguier-Lehonn, B. Cambou, and E. Vincens. Influence of particle shape and angular-

ity on the behaviour of granular materials: a numerical analysis. International Journal for

Numerical and Analytical Methods in Geomechanics, 27:1207 – 1226, 2003.

[121] J. Novosad and K. Surapati. Flow of granular materials: Determination and interpretation

of flow patterns. Powder Technology, 2:82 – 86, 1968.

[122] S. Oliveira and D.E. Stewart. Physically accurate granular flow simulation. International

Conference on Computational Science, 9:286 – 291, 2012.

[123] R. O’Connor and J.R. Williams. A three dimensional geometric representation scheme for

contact detection in discrete element simulation. International Journal Computer Aided En-

gineering & Software Engineering Computation, 1996.

[124] P. Pecol, P. Argoul, S. Dal Pont, and S. Erlicher. Modelling crowd - structure interaction.

Mécanique & Industries, 11:495 – 504, 2010.

[125] P. Pecol, P. Argoul, S. Dal Pont, and S. Erlicher. Smooth/non-smooth contact modeling

of human crowds movement: numerical aspects and application to emergency evacuations.

Annals of Solid and Structural Mechanics, 2:69 – 85, 2011.

[126] P. Pecol, P. Argoul, S. Dal Pont, and S. Erlicher. A new crowd movement modeling for

pedestrians who hold hand. XVIIIth Symposium Vibrations, Chocs et Bruit & ASTELAB,

2012.

[127] P. Pecol, P. Argoul, S. Dal Pont, and S. Erlicher. The non-smooth view for contact dynamics

by michel fremond extended to the modelling of crowd movements. Discrete and continuous

dynamical systems series, 6:547 – 565, 2013.

[128] E. Perkins and J.R. Williams. A fast contact detection algorithm insensitive to object sizes.

Engineering Computations, 18:48 – 61, 2001.

[129] J. Peypouquet. Convex Optimization in Normed Spaces: Theory, Methods and Examples.

Springer, 2014.

[130] F. Pfeiffer and Ch. Glocker. Multibody dynamics with unilateral contacts. Wiley Series, 1996.

BIBLIOGRAPHY 187

[131] F.G. Pfeiffer. Theme issue: Non-smooth mechanics. Philosophical Transaction of the Royal

Society, 359:2307–2630, 2001.

[132] S. Dal Pont and E. Dimnet. A theory for multiple collisions of rigid solids and numerical

simulation of granular flow. International Journal of Solids and Structures, 43:6100 – 6114,

2006.

[133] S. Dal Pont and E. Dimnet. Theoretical approach and numerical simulation of instantaneous

collisions in granular media using the A−CD2 method. Communications in Applied Mathe-

matics and Computational Science, 3:1 – 24, 2008.

[134] T. Pöschel and V. Buchholtz. Molecular dynamics of arbitrarily shaped granular particles.

Journal of Physics I, 5:1431 – 1455, 1995.

[135] L. Qiu, Y. Yu, and R. Fedkiw. On thin gaps between rigid bodies two-way coupled to incom-

pressible flow. Journal of Computational Physics, 292:1 – 29, 2015.

[136] J.C. Quezada, P. Breul, G. Saussine, and F. Radjai. Stability, deformation, and variability of

granular fills composed of polyhedral particles. Physical review E, 86:031308, 2012.

[137] J.C. Quezada, P. Breul, G. Saussine, and F. Radjai. Penetration test in coarse granular

material using contact dynamics method. Computers and Geotechnics, 55:248 – 253, 2014.

[138] F. Radjaï, M. Jean, J.J. Moreau, and S. Roux. Force distributions in dense two-dimensional

granular systems. Physical Review Letters, 77:274 – 277, 1996.

[139] F. Radjaï and V. Richefeu. Contact dynamics as a nonsmooth discrete element method.

Mechanics of Materials, 41:715 – 728, 2009.

[140] F. Radjaï and S. Roux. Turbulentlike fluctuations in quasistatic flow of granular media.

Physical Review Letters, 89:064302, 2002.

[141] F. Radjaï, D.E. Wolf, M. Jean, and J.J. Moreau. Force distributions in dense two-dimensional

granular systems. Physical Review Letters, 77:274 – 277, 1996.

[142] M. Renouf, F. Dubois, and P. Alart. A parallel version of the non smooth contact dynamics

algorithm applied to the simulation of granular media. Journal of Computational and Applied

Mathematics, 168:375 – 382, 2004.

188 BIBLIOGRAPHY

[143] V. Richefeu, F. Radjaï, and M.S. El Youssouf. Stress transmission in wet granular materials.

European Physical Journal E, 21:359 – 369, 2006.

[144] A. Ries and D.E. Wolf. Shear zones in granular media: Three-dimensional contact dynamics

simulation. Physical Review E, 76:051301, 2007.

[145] E. Haza Rozier. Project anr rempare - station d’impact pendulaire du cer - merlons pare -

blocs. Technical report, LCPC, 2010.

[146] W. Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

[147] O. Sadovskaya and V. Sadovskii. Mathematical Modelling in Mechanics of Granular Materials.

Springer, 2012.

[148] T.G. Sano and H. Hayakawa. Simulation of granular jets: Is granular flow really a perfect

fluid? Physical review E, 86:041308, 2012.

[149] G. Saussine, C. Cholet, P.E. Gautier, F. Dubois, C. Bohatier, and J.J. Moreau. Modelling

ballast behaviour under dynamic loading. Part 1: A 2D polygonal discrete element method

approach. Computer Methods in Applied Mechanics Engineering, 195:2841 – 2859, 2006.

[150] S.B. Savage. Gravity flow of cohesionless granular materials in chutes and channels. Journal

of Fluid Mechanics, 92:53 – 96, 1979.

[151] S.B. Savage. The mechanics of rapid granular flows. Advances in applied mechanics, 24:289 –

366, 1984.

[152] H. Shan, J. Su, F. Badiu, J. Zhu, and L. Xu. Modeling and simulation of multiple impacts of

falling rigid bodies. Mathematical and Computer Modelling, 43:592 – 611, 2006.

[153] J. Shan and C. Toth. Topographic laser ranging and scanning: principle and processing. CRC

Press, 2009.

[154] D.L. Shell. A high-speed sorting procedure. Communications of the ACM, 7:30 – 32, 1959.

[155] P. Singh, T.I. Hesla, and D.D. Joseph. Distributed lagrange multiplier method for particulate

flows with collisions. International Journal of Multiphase Flow, 29:495 – 509, 2003.

[156] L. Staron, J.P. Vilotte, and F. Radjaï. Preavalanche instabilities in a granular pile. Physical

Review Letters, 89:204302, 2002.

BIBLIOGRAPHY 189

[157] D. Stoianovici and Y. Hurmuzlu. A critical study of the applicability of rigid-body collision

theory. Journal of Applied Mechanics, 63:307 – 316, 1996.

[158] W.J. Stronge. Rigid body collisions with friction. Proceedings: Mathematical and Physical

Sciences, 431:169 – 181, 1990.

[159] G. Sutmann and V. Stegailov. Optimization of neighbor list techniques in liquid matter

simulations. Journal of Molecular Liquids, 125:197 – 203, 2006.

[160] A. Taboada, K. Chang, F.Radjaï, and F. Bouchette. Rheology, force transmission, and shear

instabilities in frictional granular media from biaxial numerical tests using the contact dy-

namics method. Journal of Geophysical Research, 110:B09202, 2005.

[161] C. Thornton. Coefficient of restitution for collinear collisions of elasticperfectly plastic spheres.

Journal of Applied Mechanics, 64:383 – 386, 1997.

[162] C. Thornton and K.K. Yin. Impact of elastic spheres with and without adhesion. Powder

Technology, 65:153 – 166, 1991.

[163] T.Yagi and N. Takeuchi. An explicit dynamic method of rigid bodies-spring model. Interna-

tional Journal of Computational Methods, 12:1540014, 2015.

[164] G. Vanecek. Towards automatic grid generation usnig binary space partition trees. Technical

report, Department of Computer Science, Purdue University, 1990.

[165] B. C. Vemuri, Y. Cao, and L. Chen. Fast collision detection algorithms with applications to

particle flow. Computer Graphics, 17:121 – 134, 1998.

[166] L. Verlet. Computer “experiments” on classical fluids I, thermodynamical properties of

lennard-jones molecules. Physical Review, 159:98–103, 1967.

[167] J.H. Walther and P. Koumoutsakos. Molecular dynamics simulation of nanodroplet evapora-

tion. Journal of Heat Transfer, 123:741 – 748, 2001.

[168] D. Wang, F. Hsiao, C. Chuang, and Y. Lee. Algorithm optimization in molecular dynamics

simulation. Computer Physics Communications, 177:551 – 559, 2007.

[169] J. Wang, S. Li, and C. Feng. A shrunken edge algorithm for contact detection between convex

polyhedral blocks. Computers and Geotechnics, 63:315 – 330, 2015.

190 BIBLIOGRAPHY

[170] M. Warren and J.K. Salmon. A parallel hashed oct-tree n-body algorithm. Proceedings of

Supercomputing, 1993.

[171] E.T. Whittaker and G.N. Watson. A Course of Modern Analysis. Cambridge University Press,

4th (1927) edition, reprint 1963.

[172] J.R. Williams. Contact analysis of large numbers of interacting bodies using discrete modal

methods for simulating material failure on the microscopic scale. Engineering Computations,

5:198 – 209, 1988.

[173] J.R. Williams and R. O’Connnor. A linear complexity intersection algorithm for discrete

element simulation of arbitrary geometries. Engineering Computations, 12:185 – 201, 1995.

[174] J.R. Williams, E. Perkins, and B. Cook. A contact algorithm for partitioning N arbitrary

sized objects. Engineering Computations, 21:235 – 248, 2004.

[175] H. Yada, T. Kawaguchi, and T. Tanaka. Relation between segregation patterns and granular

flow modes in conical rotating drum. Flow Measurement and Instrumentation, 21:207 – 211,

2010.

[176] Z. Yao, J. Wang, G. Liu, and M. Cheng. Improved neighbor list algorithm in molecular simula-

tions using cell decomposition and data sorting method. Computer Physics Communications,

161:27 – 35, 2004.

[177] H. Zhang, G. Chen, L. Zheng, Z. Han, Y. Zhang, Y. Wu, and S. Liu. Detection of contacts

between three-dimensional polyhedral blocks for discontinuous deformation analysis. Inter-

national Journal of Rock Mechanics & Mining Sciences, 78:57 – 73, 2015.

[178] D. Zhao, E.G. Nezami, Y.M.A. Hashash, and J. Ghaboussi. Three-dimensional discrete ele-

ment simulation for granular materials. International Journal for Computer-Aided Engineer-

ing and Software, 23:749 – 770, 2006.

[179] Y.C. Zhou, B.D. Wright, R.Y. Yang, B.H. Xu, and A.B. Yu. Rolling friction in the dynamic

simulation of sandpile formation. Physica A, 269:536 – 553, 1999.

[180] H.P. Zhu, Y.H. Wu, and A.B. Yu. Discrete and continuum modelling of granular flow. China

particuology, 3:354 – 363, 2005.

BIBLIOGRAPHY 191

[181] T.I. Zohdi. Modeling and direct simulation of near-field granular flows. International Journal

of Solids and Structures, 42:539 – 564, 2005.

[182] R. Van Zon and J. Schofield. Numerical implementation of the exact dynamics of free rigid

bodies. Journal of Computational Physics, 225:145–164, 2007.

APPENDIX A

Subdifferential calculus

The main goal of this appendix is to review the notions of subdifferential calculus.

A.1. Definitions

Definition 1. A function f : S 7→ (−∞,∞], defined on a convex set [73, 129]

S ⊂ R
n, is said to be convex on S if for every x1, x2 ∈ S and every λ ∈ [0, 1]

f (λx1 + (1− λ) x2) ≤ λ f(x1) + (1− λ) f(x2) (A.1)

The same function is said to be strictly convex if for every x1, x2 ∈ S, x1 6= x2,

and for every λ ∈ (0, 1)

f (λx1 + (1− λ) x2) < λf(x1) + (1− λ) f(x2) (A.2)

By a “sign-mirror treatment” the above definition can be turned into the following:

a function f : S 7→ [−∞,∞), defined on a convex set S ⊂ R
n, is said to be [strictly]

concave on S if the function −f is [strictly] convex, as defined above.

Definition 2. The domain of a function f : Rn 7→ (−∞,∞] is the set dom f ,

given by

dom f := {x ∈ R
n : f(x) < +∞} (A.3)

It is clear that for every x0 ∈ R
n the following equivalence holds: x0 ∈ domf if

and only if f(x0) ∈ R. Note also that if f : Rn 7→ (−∞,+∞] is a convex function

(Def. 1), then dom f is a convex set [73, 129].

193

194 A. SUBDIFFERENTIAL CALCULUS

Definition 3. Given S ⊂ R
n, consider the following function 1S : Rn 7→

{0,+∞}

1S :=

0 if x ∈ S

+∞ if x /∈ S

(A.4)

This function is called the indicator function of the set S.

It is easy to see that S ⊂ R
n is a convex set if and only if its indicator function

1S is a convex function.

Definition 4. The epigraph of a function f : Rn 7→ (−∞,+∞] is the subset

epi f of Rn × R defined by

epi f := {(x, y) ∈ R
n × R : f(x) ≤ y} (A.5)

Definition 5. A subgradient of a function f : R
n 7→ (−∞,+∞] , f 6≡ +∞,

at the point x0 ∈ R
n is a vector ξ ∈ R

n such that

f(x) ≥ f(x0) + ξT (x− x0) for all x ∈ R
n (A.6)

The set ∂f(x0) (possibly empty) of all such subgradients is called the subd-

ifferential of f at the point x0. Observe that this definition is only nontrivial if

x0 ∈ dom f : if x0 ∈ R
n dom f , then f(x0) = +∞, so ∂f(x0) = ∅.

For convex functions, subgradients form a generalization of the classical notion

of gradient:

Proposition 1. Let f : Rn 7→ (−∞,+∞] be a convex function that is differen-

tiable at the point x0 ∈ int dom f . Then ∂f(x0) = {∇f(x0)}.

Let’s consider an example of subdifferential,

A.1. DEFINITIONS 195

Example 1. Consider the function f : R→]−∞,+∞], defined by

f(x) =

0 if x ∈ [−1,+1]

|x− 1| if x ∈ [−2,−1[∪]1, 2]

+∞ if x ∈]−∞,−2[∪]2,+∞[x

y

-3 -2 -1 1 2 3

-1

1

2

Therefore, the subdifferential of f is given by

∂f(x) =

{0} if x ∈ (−1,+1)

[−1, 0] if x = −1

[0, 1] if x = 1

{−1} if x ∈ (−2,−1)

{1} if x ∈ (1, 2)

(−∞,−1] if x = −2

[1,+∞] if x = 2

undefined if x ∈ (−∞,−2) ∪ (2,+∞)

x

y

1 2 3

-1-2-3

Theorem 2 (Moreau-Rockafellar). Let f, g : Rn 7→ (−∞,+∞] be convex func-

tions. Then for every x0 ∈ R
n

∂f(x0) + ∂g(x0) ⊂ ∂(f + g)(x0) (A.7)

Moreover, suppose that int dom f ∩ dom g 6= ∅. Then for every x0 ∈ R
n also

∂(f + g)(x0) ⊂ ∂f(x0) + ∂g(x0). (A.8)

196 A. SUBDIFFERENTIAL CALCULUS

As a precursor to the Karush-Kuhn-Tucker theorem, we have now the following

application of the Moreau-Rockafellar theorem.

Theorem 3. Let f : Rn 7→ R be a convex function and let S ⊂ R
n be a nonempty

convex set. Consider the optimization problem

(P) inf
x∈S

f(x) (A.9)

Then x ∈ S is an optimal solution of (P) if and only if there exists a subgradient

ξ ∈ ∂f(x) such that

ξ
T
(x− x) ≥ 0 for all x ∈ S (A.10)

