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Abstract

In this analysis, we studied quark energy loss for positive pions produced in DIS events.
The analysis used data from experiments carried out during the run period EG2 in Hall
B of Jefferson Lab, Virginia. The experiments used a 5.014 GeV electron beam and
studied the nuclear targets deuterium, carbon, iron and lead.

This phenomenon has been studied indirectly in various types of scattering exper-
iments such as heavy-ion collisions, DIS, among others, measuring different kinds of
hadrons, such as pions and kaons.

By looking at the production of ⇡+ from two different targets we can obtain infor-
mation about quark energy loss by comparing the curves of the energy spectra. Assum-
ing that the energy distributions from the different targets have approximately the same
behaviour, the goal of the study is to measure the size of the horizontal shift between
the distributions that would correspond to a shift in quark energy.

To extract quark energy loss, the method proposed is to shift the energy spec-
trum from the solid target by some chosen amount and compare this new distribution
with the original energy spectrum from the deuterium target. To compare the curves
the Kolmogorov-Smirnov statistical test was used, that gives the probability that both
curves follow the same underlying distribution. If the described steps are repeated for
a sufficient number of different shifts in energy a probability curve is obtained and the
average energy loss can be estimated.
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Chapter 1

Physics Motivation

High energy physics experiments study the microscopic structure of nuclear matter.
Deep inelastic scattering (DIS) of a lepton off a nucleon is a type of particle experi-
ment that serves as an excellent tool for studies of hadron formation processes inside
a nuclear medium. The present work is a study about quark energy loss with a DIS
experiment and it is presented in the following way. It starts by presenting the theoret-
ical motivation for the analysis and what is intended to extract and observe. Then the
experiment used for the analysis is described followed by a description of the analysis
method used for the measurement of quark energy loss and the results of the analysis.

The physics motivation section is divided in five parts. It starts with a brief history
of particle physics followed by a description of the most important features of QCD.
After that is presented a brief summary of DIS and hadronization and their relation to
the theme of this work. It ends with the main topic of this work, quark energy loss.

1.1 The Standard Model: A brief history of Particle
Physics

When trying to understand the fundamental laws of the universe it was only a matter of
time until humans started to think about matter itself. At some point came the idea that
all matter in the universe can only be divided so much. This inspired the atomic theory,
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where the atoms of different elements could be combined and create all we see in the
universe. The first particle to be discovered was the electron in 1897 by J. J. Thomson
with his cathode rays experiment [1]. After that, in 1913, the Rutherford-Bohr model
of the atom showed that the atoms were not truly indivisible but were made of not only
electrons but protons too [2] and these were considered the new elementary particles
(also known as fundamental).

Around 1930 new fundamental particles started to be discovered with cosmic rays
and reactors. Eventually these experiments evolved to the particle accelerators we know
today. With time we came to discover so many supposedly elemental particles that we
had to think about the possibility that maybe these weren’t indivisible and had their
own structure.

And then the Quark Model came into existence. Independently proposed by Murray
Gell-Mann [3] and George Zweig [4], it poses that the observed baryons and mesons
were made of only three elementary particles, called quarks, and their corresponding
antiparticles. We call the different varieties of quarks "flavors" and today we know
that there are six of them: up, down, strange, charm, bottom and top. The theory also
proposes that quarks have a quantum number referred to as color and that only neutral
color objects can be observed as real particles. So single quarks are not observable,
only bound states of specific combinations of quarks and/or antiquarks with specific
colors and anticolors, which are called hadrons. There are two types of hadrons: quark-
antiquark pairs are called mesons and bound states of three quarks or antiquarks are
called baryons (Fig. 1.1).

Figure 1.1: The two kinds of hadrons, a schematic of mesons and baryons.
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Figure 1.2: The Standard Model Elementary Particles. Image from Wikimedia Com-
mons. Attribution: MissMJ

But quarks are not the only fundamental particles. There is a set of elementary par-
ticles called leptons. Those are the electron, muon and tau particles and three neutrinos,
one for each flavor (electron neutrino, muon neutrino and tau neutrino). The leptons
electron, muon and tau have electric charge but no color while the neutrinos do not have
electric charge. Together with the quarks, they complete the known Fermions (particles
of spin 1/2). Fig. 1.2 shows the known Quarks and Leptons.

Together with the elementary bosons, this completes the list of known Standard
Model elementary particles but we also need to understand how the interactions be-
tween them work. Theories were formulated to explain these fundamental interactions
or the four fundamental forces. Of these four, gravitation remains unexplained in terms
of quantum theories and is not included in the SM. The other three are the well known
electromagnetic force and the nuclear forces: the weak and the strong nuclear interac-
tions.
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1.2 Quantum Chromodynamics

The quark model solved a lot of problems with the introduction of quarks, but it didn’t
explain well enough the dynamics between them. Feynman proposed that protons had
internal structure and started the formulation of the parton model [5]. This theory was
applied to different scattering experiments and paved the way for the formulation of
Quantum Chromodynamics.

The most successful quantum field theories are the gauge theories, in which par-
ticles of integer spin, called bosons, act as mediators of the interactions. The set of
vector bosons that are reponsible for the four interactions are shown in Fig. 1.2. Quan-
tum Chromodynamics (QCD) is an SU(3) gauge theory that explains the interaction
between quarks, often referred to as the Strong interaction while the Quantum Electro-
dynamics theory explains the interactions of electrically charged particles.

Just like the photon is the mediator particle of QED, in QCD there is the gluon. But
there are a few differences between these two theories that result in a different behavior
for particles with color charge. QCD has two main features that QED does not have:
asymptotic freedom and color confinement.

According to QCD the potential energy between two colored objects is weak at
small relative distances, this is called asymptotic freedom. At large distances it grows
strongly with separation, so colored objects (like quarks) are not observed in experi-
ments, they are confined. These concepts are deeply linked to the behavior of the QCD
coupling constant. Different from other types of interactions, the strong coupling is not
constant. For low energies, or larger distances, the coupling has its highest values while
for hard interactions, high energy and small distance scales, it becomes asymptotically
small.

1.3 Deep Inelastic Scattering

Since the beginning of particle physics we use scattering experiments to probe the struc-
ture of matter. Rutherford used alpha particles scattered from gold to probe the structure
of atoms and now we use high energy electrons to probe even smaller structures.
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Figure 1.3: Deep inelastic scattering diagram

One of the motivations of this work is to contribute to the understanding of the pro-
cess of formation of hadrons, the hadronization process. One way to study hadroniza-
tion is to perturb the nuclear environment and compare the properties of final states
produced on nuclei of different sizes. Deep Inelastic Scattering (DIS) is one of the
many ways of doing that.

In a Deep Inelastic Scattering process a beam of leptons l(k) with four-momentum
k scatters off a nucleon target h(p) of four-momentum p resulting in a hadronic final
state X and can be represented by l(k)+h(p) ! l0(k0)+X . A diagram of a typical DIS
process can be seen in Fig. 1.3. In CLAS kinematics, the energy of the lepton beam (5
GeV) is very low so, although exchange of Z and W bosons do occur at JLab energies
the probability per event is low, therefore the weak interaction can be neglected. If
the interaction is assumed to be of one photon and the energy and momentum k0 of
the scattered electron is measured, we can characterize the virtual photon �⇤ of four-
momentum q, which will also be the transferred four-momentum:

q = k � k0 (1.1)
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and the virtuality of the photon:

Q2 ⇡ 4EkEk0sin
2(
✓

2
) (1.2)

�q2 = Q2 (1.3)

The energy transfer from the electron to the nucleon is ⌫:

⌫ =
p · q
M

(1.4)

or ⌫ = Ek � Ek0 in the target rest frame.
The DIS process is called "Deep" because it is a scattering of highly energetic parti-

cles off a hadron, resulting in a photon of high virtuality allowing us to take a "look" at
distance scales smaller than that of the target nucleus, probing its structure. The reso-
lution necessary to resolve a parton is around 0.2 fm, that corresponds to the kinematic
region with Q2 > 1 GeV2. DIS is also "Inelastic" because the invariant mass of the
hadronic final state X is much larger than that of a nucleon. The squared mass of the
total hadronic system is M2

x
⌘ W 2 where:

W 2 = (p+ q)2 = M2 + 2M⌫ �Q2 (1.5)

with M as the mass of the target. The scattering is elastic when M2 = W 2 and
thus 2M⌫�Q2 = 0. To also isolate DIS from resonance production and the diffractive
regime, the mass of the final states must exceed the hadronic resonances so it’s required
that W2 > 2 GeV.

Other useful variables include the Bjorken scaling variable:

x =
Q2

2M⌫
(1.6)

with its value being 1 for elastic scatterings and 0 < x < 1 for inelastic scatterings and
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the fractional energy y of the virtual photon:

y =
p · q
p · k (1.7)

or y =
⌫

Ek

in the target rest frame.

For inclusive DIS only the scattered lepton is detected while for Semi-Inclusive DIS
(SIDIS) an additional final-state hadron is detected. SIDIS is particularly interesting
because the four-momentum of the detected hadron ph provides information about the
struck quark. In this case one can also define a variable for the fraction of the energy
of the virtual photon transferred to the produced hadron as:

z =
p · ph
p · q (1.8)

or z =
Eh

⌫
in the target rest frame, where Eh is the energy of the hadron. The

transverse momentum pT of the hadron is with respect to the direction of the virtual
photon �⇤. The �h is defined as the angle between the leptonic and hadronic planes.

1.4 Hadronization

In DIS, the incoming electron, if it has enough energy, interacts directly with a valence
quark of the nucleon through a virtual photon. The valence quark is "kicked out" of
the nucleon but it cannot be observed in its single colored state, so it has to hadronize,
meaning it has to become a hadron so it complies with color confinement. Hadroniza-
tion refers to the process that the quark goes through in order to become a hadron. The
experimental data used in this work is from a SIDIS experiment, where the scattered
electron and some of the resulting hadrons are measured, since one of the goals is to
contribute to the study of hadronization processes.

The Lund String Model [6] was originally developed by members of the Depart-
ment of Theoretical Physics at Lund University and is a well-established model for the
hadronization process. The quarks that make up the hadron are connected by a gluon
field so, in this model, the field lines are as if it were like a massless string tying the
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quarks together. If you try to separate them the string stretches and stores more energy.
At some point, if you keep separating them, the energy stored becomes large enough
to create a quark-antiquark pair and the string breaks. The model was inspired by the
asymptotic freedom and confinement concepts.

This Lund String Model has been implemented in the PYTHIA [7] event generator,
one of the most widely used Monte Carlo generators for pp collisions at high energies.
Fig. 1.4 shows a visual representation of lattice QCD simulations of the flux tubes for
a meson and a baryon.

Figure 1.4: Lattice QCD simulations for a meson and a baryon from
http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/Nobel/index.html

1.4.1 Hadronization in a nuclear environment

There are other effects that have to be taken into consideration when the hadronization
occurs in a medium and not "in a vacuum". In a medium, like a nuclear environment,
there are plenty more partons for the scattered quark to interact with. The EG2 data is
precisely of this kind. In this case the nuclear media tested in the experiment, or "cold
QCD matter", are the nuclear targets themselves: carbon (C), iron (Fe) and lead (Pb).
When the quark is scattered and goes into the nuclear medium while hadronizing it can
interact with other partons and in turn lose energy. This is precisely the main topic of
this work, so this subject will be further developed in the next section.
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1.5 Quark Energy Loss

1.5.1 QED Bremsstrahlung and LPM effect

Energy loss in this context is a very simple concept that is accurately self-descriptive
since it is about how much energy a particle loses when passing through a medium.
But not only quarks lose energy in a medium, charged leptons can also lose energy,
although quark energy loss is caused by strong interactions while leptons lose energy
vie electromagnetic interactions. A very well known mechanism for this kind of en-
ergy loss is bremsstrahlung radiation: the radiated energy from an electrically charged
particle interacting with another charged particle (or scattering site), let’s say, a muon
interacting with a nucleon. The picture below (Fig. 1.5) shows how much energy a
muon loses when going through a copper medium for different energy ranges.

Figure 1.5: The plot shows the energy losses of muons passing through copper in var-
ious momentum ranges. For muons of greater than 10 GeV, photon bremsstrahlung
(radiation) becomes significant and dominates for muons of more than a few hundred
GeV. Picture from PDG.
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But this is considering a single scattering. In a medium there will be multiple nu-
cleons, so multiple scattering sites. A high energy particle undergoing multiple soft
scatterings from a medium will experience interference effects between adjacent scat-
tering sites. If the momentum transfer is small, the photon has small momentum and
large wavelength and therefore it is not localized in space. A photon with definite en-
ergy (energy ⇠ frequency ⇠ 1/wavelength ⌘ 1/� ) cannot be said to exist in a space
interval much shorter than its wavelength, it takes some time for the photon to form.
The time is of the order of �/c for a particle traveling at velocity c. If the particle scat-
ters from a second scattering center before the emitted photon is formed, it interrupts
its formation process, reducing the per-center scattering probability. So as the longitu-
dinal momentum transfer gets smaller the particles wavelength will increase and if the
wavelength becomes longer than the mean free path in the medium (where the mean
free path will be the average distance between scattering sites) then the scatterings can
no longer be treated as independent events. This is the so-called LPM effect.

One of the possible outcomes is that even if a particle interacts with three different
scattering centers it can emit only one photon. Thus the LPM effect can suppress
bremsstrahlung photons.

1.5.2 QCD Bremsstrahlung

In QCD, just like in QED, coherent suppression of the radiation spectrum takes place
when a quark (or a parton, for that matter) propagates in a medium. When a high-
energy parton travels a length L of hot or cold matter, the induced radiative energy loss
is proportional to L2 when below the critical length [8].

But how can there be quark energy loss when quarks are confined? When a quark is
knocked-out from a hadron it only enters a hadronization state after a macroscopically
large time interval from the start of the process that is proportional to the quark energy
much like the previous picture of the emission of a photon that takes some time to form.
In the present case we call it the field regeneration time.
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Field Regeneration Time

In a DIS hard process a quark is knocked out from a hadron as a half-dressed particle,
this means that the charge appears to have a truncated proper field (either electro or
chromomagnetic) when also being accelerated. The regeneration of a stationary field
surrounding a charge has been well understood in QED [9]. The regeneration time of
the proper field is given by:

Tregen.(k) ⇠
kk
k2
?

(1.9)

where longitudinal and transverse components of photon momentum are defined with
respect to the outgoing electron.

We can look at this problem from a classical point of view: considering a classical
charge moving along the z�axis with velocity v ⇡ 1 after being accelerated from a
v = 0 state at t = 0. At some point it will be surrounded by a Lorentz contracted
electromagnetic field but it could not have emerged instantaneously. In the reference
frame accompanying the charge the field spreads out inside the sphere r0  t0 but in
the laboratory frame time it is slowed by � = E/m, so the field changes will appear at
distance r no sooner than at

t = �t0 =
E

m
r (1.10)

The consequence of this for a quark is that it will have some time before hadronizing
to interact with other partons. In this case r in Equation 1.10 will be the typical value of
interquark distances inside a hadron of hadronic size R and m is its constituent mass.
If we are dealing with a light quark (q = u, d, s) r and m are linked to each other by:

m ⇠
q
hk2

?i ⇠ R�1 ⇡ a few hundred MeV (1.11)

So for light (q) and heavy (Q = c, b, t) quarks the estimation for the hadronization
times are:

thadr
q

⇡ ER2 (1.12)
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thadr
Q

⇡ E

mQ

R (1.13)

Quark energy loss can be classified in two main classes: collisional energy loss and
radiative energy loss.

1.5.3 Collisional Energy Loss

Collisional energy loss comes from an elastic scattering of the parton. In this case the
scattering center recoils and carries away some energy. The energy loss per unit length
is proportional to the strong coupling constant squared (↵2) temperature squared (T 2)
and to a term with log(E/T ) where E is the energy of the incoming parton that is losing
energy as can be seen in 1.14. For heavy ion collisions the temperature is high, but for
cold nuclei it’s close to zero. The energy loss for a plasma is then

�dE

dz
= ⇡↵2

X

p

Cp

Z
d3k

k
⇢p(k) ln

q2
max

q2
min

' 4⇡↵2
S
T 2

3

✓
1 +

Nf

6

◆
ln

cE

↵ST
(1.14)

where ⇢p is the density of the plasma constituents p (with momentum k). Below is a
plot from [8] of numerical values for the collisional energy loss for a charm quark in a
hot plasma.

1.5.4 Radiative Energy Loss

Radiative energy loss is caused by radiation of gluons, is what we previously called
"gluon bremsstrahlung" in analogy with the QED radiation of photons.

Consider a very energetic quark of energy E propagating through a QCD medium
of finite length L. Multiple scattering of this projectile in the medium induces gluon
radiation, which gives rise to the radiative quark energy loss. To simplify the calcula-
tions, the scattering centers are assumed to be static and uncorrelated. For static (fixed)
scattering centers, collisional energy loss is zero by definition.

One can define a parton-particle cross section d�/dQ2 where Q2 is the momentum
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Figure 1.6: The plot shows the collisional energy loss of a charm quark as a function of
its momentum. The dashed curve shows the equilibrium result; the dotted curve shows
an original prediction by Bjorken. Taken from [8].

transfer. In the case of a hot QCD plasma, the “particle” is a quark or gluon, and in the
case of cold matter (the case for this work), it is a nucleon. There is a momentum scale
µ that is a characteristic of the medium: taken as the Debye screening mass in the hot
case and as a typical momentum transfer in a quark-nucleon collision. The condition
that the independent scattering picture is valid may be expressed as 1/µ ⌧ �, where
� = 1/⇢� is the parton mean free path in the medium of density ⇢. We assume that a
large number of scatterings take place, that is, L � �. Following the calculations from
[8] one can find the Equation 1.15 that shows that the energy loss is proportional to the
pathlength in the medium.

�dE

dz
' ↵S

⇡
Nc

µ2

�
L (1.15)

To get to this equation the multiple scattering process is modeled after a Gaussian-
distributed random walk in transverse momentum. The model (conceptually) takes
steps through the medium. Each step has a length in time equal to the mean free path.
At each step the particle can acquire an additional amount of transverse momentum.
The average squared transverse momentum is just equal to µ2. The derivation of the
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following equations can be found in more detail in [8].
We can define three regimes. In the Bethe-Heitler regime (BH regime in analogy

to the QED Bremsstrahlung formula) lcoh  � and !  !BH ⌘ ELPM and the radiation
is incoherent, every scattering results in a fully formed gluon before the next scattering.
The spectrum only depends on the density times the cross section because it is just the
sum of the result of individual independent scatterings in the medium of thickness L:

!d2I

d!dz

����
BH

=
1

L

!dI

d!

����
L

' ↵S

⇡
Nc

1

�
. (1.16)

Since � = 1/⇢� is the parton mean free path, there is more emission for dense
systems than for diffuse systems (e.g. QGP vs. cold nuclei) and for bigger parton-
particle cross sections �. The energy loss is visibly linear in path length, as can be seen
from Equation 1.16 by integrating over z and then over !.

The coherent regime is the so-called LPM regime and is defined by � < lcoh < L

(Ncoh > 1) so:
ELPM = !BH < ! < min{!fact, E} (1.17)

with ! ⇠ µ2

�
L2, and !fact is discussed below. This means that the emission of one

gluon is stimulated by several scattering centers coherently. In this case the step size in
distance dz can be approximated by the coherence length itself dz ⇡ lcoh because the
gluon emission cannot depend on smaller distance steps since the coherence length is
the smallest distance interval that can physically matter. We consider Ncoh groups of
partons that act as effective single scattering centers so the energy spectrum is estimated
as:

!d2I

d!dz

����
LPM

' 1

lcoh

!dI

d!

����
lcoh

' ↵S

⇡
Nc

1

lcoh
' ↵S

⇡
Nc

r
µ2

�

1

!
. (1.18)

If the equations for the spectrum of incoherent and coherent scattering are compared
(equations 1.16 and 1.18) it is easily observed a suppression factor of

p
ELPM/! which

makes sense since the coherence length is longer than the mean free path, that means
the spectrum should be suppressed indeed.
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But we can also think of another picture: when all the scattering centers act as one.
This is the factorization regime and is characterized by !fact < ! < E and lcoh � L

so:

! > !fact = ELPM

✓
L

�

◆2

(1.19)

!d2I

d!dz

����
fact

' ↵S

⇡
Nc

1

L
(1.20)

This term does not depend so much on the medium, it does not explicitly depend
on the mean free path, density, interaction cross section, etc. But it does depend on the
path length L, which is not constant for a realistic system such as a spherical nucleus
or a QGP.

So from equations 1.16, 1.18 and 1.20 we can define a critical length Lcr where
these expressions hold for a medium of finite length L if L < Lcr and if E > Ecr =

ELPM(L/�)2, where:
Lcr = �

p
E/ELPM (1.21)

So the energy loss expression in 1.14 is obtained when the gluon spectrum is inte-
grated over !, with 0 < ! < E. If the expression is integrated over z the total loss
grows with L2. For L > Lcr equation 1.14 becomes:

�dE

dz
' ↵S

⇡
Nc

r
µ2

�
E =

↵S

⇡

Nc

�

p
ELPME (1.22)

so the size does not affect the energy loss per unit length and it is proportional to
p
E.

To obtain a general energy loss expression for the induced and the factorization
cases as a function of L like in Fig. 1.7 and of the form:

��E ⌘
Z

L

0

�dE

dz
dz (1.23)

In [8] the authors use the random walk expression for the accumulated transverse
momentum of the gluon due to successive scatterings in a medium of size L and they
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find:
hk2

?iL ' µ2L/� (1.24)

and putting it into 1.14:

�dE

dz
' ↵S

⇡
Nchk2

?iL (1.25)

Figure 1.7: Schematical representation of total induced energy loss as a function of the
parton energy E (left) and total induced energy loss as a function of the medium size L
(right). From O. Aravena’s thesis [10]

Figure 1.7 shows the energy loss as a function of the parton energy and as a function
of the medium size. In the present case we will measure the direct energy loss for three
different size media, the three EG2 targets, and binned the data in ⌫, expecting to
observe this behaviour.
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Chapter 2

Experimental Setup

The data used in this work is from the EG2 experiments, carried out from January 9,
2004 to March 5, 2004, in Hall-B at Thomas Jefferson National Accelerator Facility
(Jefferson Lab), in Newport News, VA, USA. The Jefferson Lab is one of seventeen
Unites States national research facilities overseen by the Office of Science of the United
States Department of Energy (DOE) and is specialized in studying the structure of
nuclear matter with its particle accelerator, the Continuous Electron Beam Accelerator
Facility (CEBAF) based on superconducting radiofrequency (SRF) technology, and the
different detectors from Halls A, B, C and D.

In this work the data used is from Hall B, and its main detector is called CLAS
(CEBAF Large Acceptance Spectrometer) [11]. CLAS was designed to operate with
electron beams of 5.014 GeV with a momentum resolution of 0.01% and a typical
diameter of 50-100 µm during the EG2 run period, produced by CEBAF. A schematic
of the facility, including the accelerator and the experimental halls, can be seen in Fig.
2.1 and the next sections go into more detail about the specific parts of the experiment.
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Figure 2.1: CEBAF accelerator and experimental halls. This is the 12 GeV upgrade.

2.1 CLAS

Hall B hosts the CEBAF Large Acceptance Spectrometer (CLAS), one of the detectors
that receives electron beams produced by the CEBAF accelerator and has a wide solid
angle range of almost 4⇡, while the Halls A and C focus on high resolution and Hall D
started only in 2014 and after the experiment used for this analysis.

One of the most particular features of the CLAS detector is its toroidal magnetic
field. It is generated by six superconducting coils placed around the beam axis and
was designed this way for better measurement of charged particles, producing better
momentum resolution while maintaining the area close to the target unaffected by the
magnetic field, making possible to perform experiments with polarized targets.

The detection system is a collection of different elements used for different pur-
poses. The Drift Chambers (DC) are used to determine the trajectories made by charged
particles, Cherenkov Counters (CC) are for electron identification and pion rejection,
Scintillator Counters (SC) are used for measuring Time-of-Flight and Electromagnetic
Calorimeters that measure energy deposition by charged particles as well as neutral par-
ticles, detecting electrons and photons and helping in the detection of neutrons (when
combining information from the different elements of the detector).

The location of the six coils that generate the toroidal field, naturally separates
CLAS in six sections. A small mini-torus surrounds the target so that in electron scat-
tering experiments low momentum electrons produced by Møller scattering are kept
from reaching the drift chambers. Fig. 2.2 shows a schematic view of the detector and
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Fig. 2.3 is a perpendicular view.
Because of the way the detectors are organized it is best to describe the geometry

of the experiment with spherical coordinates. The z-axis lies along the beam direction,
✓ is the polar (scattering) angle and � is taken as the azimuthal angle while x is the
horizontal and y the vertical directions in the plane that is normal to the beam.

Figure 2.2: CLAS viewed along the beam line with an illustration of a typical photon,
electron and proton tracks from an interaction.

2.1.1 Torus Magnet

For the measurement of momentum of charged particles, the magnetic field generated
by the six iron-free superconducting coils that produce a toroidal field around the beam
axis is used. It can be calculated directly from the current since there is no iron in the
system. These are used for charged particles since the field bends the particles’ trajec-
tories towards or away from the beam axis (depending on the sign of the charge) and
leaves the azimuthal angle essentially unchanged, while the neutral particles trajecto-
ries remain unchanged. The magnet coils are approximately 5 m in diameter and 5 m in
length. Fig. 2.4 illustrates the coils and fields of the system. While the main component
of the field is in the �-direction, close to the coils there are significant deviations, but
they are minimized by the circular inner shape of the coils so the particles that come
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Figure 2.3: CLAS schematic perpendicular to the beam direction. The location of the
Drift Chambers, Torus Magnets and TOF Counters are indicated.

from the target do not experience a significant deflection in � when crossing the inner
boundary of the coil.

2.1.2 Drift Chambers (DC)

The drift chambers are actually 18 separate chambers in each of the six sectors (sepa-
rated by the magnet coils) which in turn are grouped in three chamber regions located
radially from the beam that share many of the same basic design elements. They are
wedge-shaped constructed from a pair of long wire-supporting endplates that bear both
the load of the wire tensions and the weight of all associated hardware.

Each region experiences the magnetic field at different intensities. The closer ones
to the targets are the Region One chambers and they are localized in a low field in-
tensity area. The Region Two chambers are placed between the magnet coils where
the intensity of the magnetic field is the highest. And the Region Three chambers are
outside the magnetic coils.

To accommodate the wires, there are two endplates parallel to the closest coil planes
(60o with respect each other) with the wires stretched between them. These wire layers
are grouped into two bigger layers of six layers each. One is axial to the magnetic field
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Figure 2.4: Magnetic field contour produced by the super conducting coils.

while the other is tilted by a 6o stereo angle to provide azimuthal information. Only
Region One is different, with only four wire layers in the first super layer since it has
less space available. So it has only 4 layers in the innermost super layer and 6 in the
next to that. The wire layout can be seen in Fig. 2.5.

More details on the drift chamber system can be found in [12].

2.1.3 Cherenkov counters, CC

The main goal of the Cherenkov Counters is to trigger electrons while also discrimi-
nating them from pions. In each of the six sectors the CCs cover up to ✓ = 45o and
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Figure 2.5: The Region Three chamber. A layout of its two superlayers and its wiring.
The sense wires are at the center of each hexagon and the field wires are located are the
vertices. An example of a passing particle track is shown by the highlighted drift cells
that have fired (from [13]).

are constituted by mirrors, that cover most of the available area, PMTs, placed in a �

region that is covered by the magnetic coils so they don’t intercept the particle’s tra-
jectories, and a radiator gas, that causes the Cherenkov radiation. A schematic of the
detector can be seen in Fig. 2.6. The goal of its design is to have a small amount of
material in the sensitive area to prevent degradation of energy resolution. The mirrors
are organized in a specific way so they reflect the Cherenkov light produced from the
particles to the location of the PMTs, which in turn collect the light and convert it to
an electronic signal that can be analysed. Since the charged particle trajectories lie in
planes of constant �, the placement of the PMTs does not affect the angular coverage.
And the mirrors focus the light only in the � direction, preserving the information of
the polar angle ✓ of the electron. Also, since the PMTs are located in the region with
highest transverse magnetic fields, they are covered with high permeability magnetic
shields.
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To cause the emission of light from the particles a radiator gas is used. In this case
perfluorobutane (C4F10) was used with a refractive index of 1.00153, resulting in a
pion momentum threshold of 2.5 GeV/c. An inbending electron, for example, passing
through the active volume of the detector results in typically 4-5 photoelectrons that
will be reflected to the PMT’s and then amplified by the last.

More details on the CLAS Cherenkov detector can be found in [14].

Figure 2.6: Diagram of a Cherenkov Counter segment, symmetric around the sector
center. An example of an electron trajectory with the collection of Cherenkov light to
the PMT is shown. The PMTs, magnetic shields, and light-collecting Winston cones
lie in the region of the detector covered by the CLAS magnet coils, so it does not affect
the electron acceptance.

2.1.4 Time-of-Flight Counters (SC)

These detectors are located between the CC and the calorimeters (as seen in Fig. 2.2 and
Fig. 2.3), covering a polar angles of ✓ = 8o and ✓ = 142o but the entirety of the active
range of �. They are made of 5.08 cm thick scintillators positioned perpendicularly to
the average local particle trajectory. At forward angles ✓ < 45o the counters are 15 cm
wide and 32 - 376 cm in length, and at large angles the counters are 22 cm wide and
371 - 445 cm in length resulting in 206 m2 of scintillators.

More details on the Time-of-flight system can be found in [15].
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2.1.5 Forward Electromagnetic Calorimeters (EC)

This detector is used mainly for electron detection of energies above 0.5 GeV, photons
of more than 0.2 GeV, and neutrons. They are made of layers of scintillator strips
alternated by lead sheets, totaling a thickness of 16 radiation lengths. Each lead sheet
has a thickness of 0.24 of that of the scintillator so they have a total of 8.4 cm and 39 cm
of each respectively. It uses a projective geometry in which the area of each successive
layer increases.

Each EC module has 39 layers, made with 10 mm individual scintillators and 2.2
mm individual lead sheets making a triangular volume. The scintillator layers consist
of 36 parallel strips which are rotated 120° after each layer, thus defining three views
(U, V and W), which provide stereo information on the location of the energy deposits.
Each one of the views has 13 layers each as seen in Fig. 2.7 and are further subdivided
into an inner (5) and outer (8) stack, providing longitudinal sampling that helps to
improve hadron/electron separation.

For the detection of neutrons the EC were provided with its own timing system, in-
dependent of the TOFs. It is used to differentiate photons and neutrons, and is sufficient
to provide a start time in case any channels in the TOFs are inoperative in the forward
region. So with that, neutrons can be detected by a combination of information from
the electromagnetic calorimeter, drift chambers and time-of-flight.

More details on the CLAS forward electromagnetic calorimeter system can be
found in [16].

2.2 Double-Target System

The target system was designed specifically for the EG2 Experiment. The goal of
the experiment was the precision measurement of nuclear medium effects, like hadron
attenuation and transverse momentum broadening, and also to search for color trans-
parency in unpolarized electron scattering through the attenuation of rho meson in nu-
clei with an electron beam of 4-5 GeV.

To minimize the systematic uncertainties the target was designed to be a double-
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Figure 2.7: Exploded view of one of the six CLAS electromagnetic calorimeter mod-
ules.

target, where a solid (carbon, aluminim, tin, iron or lead) and a liquid (deuterium) target
were simultaneously located in the beam line and separated by 4 cm so the acceptance
correction differences are minimized while the ability to identify the target event by
event is maintained. This also results in same beam current reducing the errors in the
estimation of the ratio of the cross-sections.

To achieve the goal of the EG2 Experiment, the target also had to have some key
features: a large acceptance for semi-inclusive and exclusive kinematics, a good match
to the CLAS detector acceptance, minimal mass for low-energy particles at large angles
(70°-140° from the beam direction) as well as forward particles, similar scattering rates
for the two targets in the beam, minimal mass in the support structure, rapid target
changes for the heavy nuclear targets, less than 2-3% of a radiation length of any target
material to suppress secondary electromagnetic processes, and minimal entrance/exit
window thicknesses for cryotarget to maximize target/window ratio. One of the targets
needed to be a stable deuterium cryotarget, while the second was a solid, heavy nuclear
target. The cryotarget was located upstream of the solid targets, limiting the effects of
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secondary electromagnetic processes contributing to the flux incident on either target.
A schematic of the cryotarget can be seen in Fig. 2.8. A full assembly of the double

target is shown on Fig. 2.9. Each holder arm carries a different target and can be flipped
on and off remotely to change the target on beam.

Figure 2.8: A drawing of the cryotarget cell showing the three support tubes through
which the cryogens flow; the entrance foil attached to the cylindrical standoff; and the
exit foil attached to the outer cone. The electron beam passes through the center of the
support ring in the upper left part of the drawing, then through the entrance and exit
foils in the lower right part of the drawing.

More details on the target system can be found in [17]. A GEANT3 simulation
of the double target system was added to the existing simulations of the full CLAS
detector.
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Figure 2.9: The full double-target assembly, which shows one solid target flipped into
position; five solid targets retracted; and the thermally insulated cryotarget cell (from
[13]).
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Chapter 3

Data Analysis

3.1 Data Format

The raw data taken from the experiment was stored in files for each run in Bank Object
System (BOS) format. For each file the data were organized in units of information
corresponding to certain detectors called banks. The reconstruction procedure for the
conversion of raw data into particle information useful for an analysis is named "cook-
ing". This was performed using USERANA software, which gives information of the
reconstructed tracks also in BOS format. All cooked data were organized in events, by
event we mean that the scattered electron passed the triggering threshold and all the re-
constructed particles detected after the trigger are also included. After cooking the data
with USERANA the files have to be converted to ROOT [18] format. This step was
performed using the ClasTool software. It was created by Maurick Holtrop and Gagik
Gavalyan and it is a ROOT based package for analysing CLAS data. It organizes the
information in a structure using NTuple objects from ROOT, where the links between
different banks are included as pointers.

The last step is to use Analyser [19], a C++ based class, that takes the data from
ClasTool and reduces it to NTuples with general information of the particles. This
process is important since it produces files in a simpler format for the analysis, making
it a lot easier to work with.
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3.2 Particle Identification

One of the parts of the data analysis is to attempt to identify each of the particles
detected. For that we make a few different "cuts" in the data: cuts in the data banks
allow us to select particles based on the detector used for the specific signal, cuts in the
variables can be performed to reject some contamination of the sample, and the fiducial
cuts, that exclude the regions of the detectors that have efficiency problems. Some of
the cuts performed are described in the next sections.

3.2.1 Electron Identification

Since the particles in the EVNT bank are ordered according to the time they arrive at
the SC, to identify the scattered electron we consider the first track in the bank. Not
only that but to classify an event as a "good" event, the first particle identified must
be an electron. Also, some particles leave tracks in all detectors and others only leave
tracks in some of them. So first of all, the basic requirements to identify a particle as an
"electron" are two: The particle must leave a track in all detectors (DC, CC, SC, EC);
and the charge must be negative.

The electrical charge of the particles is extracted from the curvature of the tracks in
the DC, since they go through the magnetic field produced by the torus magnet. If the
particle bends inwards it has a negative electric charge, and if the particle is positive its
track will bend outwards with the default tourus field direction.

If these requirements are fulfilled the next step is to make ⇡�/e� separation by us-
ing the information in the CCPB branch (a bank related to the Cerenkov Counters). The
e� can be differentiated from the ⇡� by measuring the electromagnetic radiation emit-
ted by them when passing through a medium. This radiation, called Cherenkov light,
is the electromagnetic radiation emitted by a charged particle when passing through
a medium with a velocity that is larger than the velocity of light in this medium. A
minimum momentum threshold for each particle is required so it can emit Cherenkov
radiation and it depends on the mass of the particle. In this case, charged pions need
a minimum momentum of 2.5 GeV to emit Cherenkov light, compared to electrons
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that need just a few MeV. From the distribution of the number of photons collected
by the PMTs of the CC, a clear peak with low number of photo-electrons is observed.
This peak correspond to the ⇡� signal. So in order to select a particle as an electron a
minimum number of 2.5 photo-electrons is required in each of the CC sectors.

Another cut in the EC bank is made with the same goal of suppressing pion contam-
ination. The EC only covers forward angles and the scattered electron always travels in
a forward direction while the pion can have any direction. So any track not producing
a signal in EC is immediately rejected. To complement that, since pions are minimum
ionizing, they will deposit a fixed amount of energy in the detector, regardless of its
momentum.

In addition to the preliminary identification described above, some additional cuts
and selections are necessary to assure the quality of the data. One of the consequences
of having the detector separated in six sectors is that we will have regions with poor
acceptance. For example, not all particles from an electromagnetic shower will be
detected if the particle that generated it hit the edge of a detector, since the shower will
not be fully contained by it. So to reduce systematic uncertainties it is necessary to
select a fiducial volume where the acceptance is large and uniform, these are the so
called "fiducial cuts". They remove the data near the edges of the detectors and were
developed by Lorenzo Zana.

More details of these and all the cuts performed can be found in [20].

3.2.2 ⇡+ Identification

The procedure of identifying pions is analogous to the electron. So besides requiring a
positive general status for the event the hit must be positively charged since the particle
of interest on this analysis is the positive pion ⇡+. So the thing to do is to discriminate
them from other positive hadrons and positrons. Positive pions were identified using
positive reconstructed tracks with track signals in the SC, DC.

To select positive pions and exclude the kaon and proton contamination the "time-
of-flight" (TOF) discrimination technique was used. The technique consists of using the
information from the tracking system in conjunction with the TOF system, determining
the time difference between a positive hit and an outgoing electron. This time difference
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is called TimeCorr4 (�t) and is of the following form:

�t =
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(3.1)

where te
�

flight
and tflight represent the time for flight from the interaction vertex to

the scintillator of the electron and charged particle, respectively. Le
�

flight
and Lflight are

the path lengths from the vertex to the TOF counters. M⇡+ and p are the ⇡+ mass and
the momentum of the charged particle. The TRFI is an additional timing correction
using the radio frequency signal sent from the accelerator injector.

What was done here was the comparison of the theoretical time for a ⇡+ with a given
momentum with the measured time taken for the particle to reach the SC detector. If
we are looking for ⇡+ but the detected particle is lighter/heavier it would take less/more
time to reach the SC than the time that was calculated. So cuts in data are made around
0[ns] of time difference between the calculated and the measured time. These cuts are
for pions of P < 2.7 GeV.

Besides the TOF technique we need additional cuts for pions with P > 2.7 GeV. First
a non null number of CC hits and a positive status in the CC data bank are required.
After that some geometrical matching is also needed. We also make sure that the pion
candidate must fail the positron cuts and the positron is defined in the same way as the
electron, but this time the charge must be positive.

Pions with more than 2.5 GeV start emitting Cherenkov radiation so the Cherenkov
Counters are used for pions with energies of that range. As mentioned before a require-
ment of at least 2.5 photo-electrons emitted is made.

The fiducial cuts were made similarly as the ones applied for the electron identifi-
cation. A cut in ✓lab and �lab variables was made to remove hits close to edges of the
detector where acceptance is worse, and reconstruction is less reliable.

All the pion identification techniques are described in more detail in [20].

31



3.3 Additional Cuts

3.3.1 DIS Kinematics

Now that we have all good electrons and pions identified the next step is to select events
with kinematics that corresponds to the DIS regime:

• According to the wave length of the virtual photon: � ⇡ 1/Q, the selection of
Q2 > 1.0 gives enough resolution as to see the partons inside the nucleons.

• We are also not interested in hadrons coming from nuclear resonance decay (e.g.
�++) so to exclude those and avoid the resonance region a cut on the invariant
mass of the electron-nucleon interaction of W > 2.0 is applied, where W is the
invariant mass of the photon-nucleon system.

• Another possible source of the data contamination is the radiative effects. They
become important for larger values of the DIS variable y, so a cut is made in
y < 0.85.

3.3.2 Vertex Cuts

After selecting the electrons, pions and the DIS events it is necessary to identify the
target at which the event occurred, the solid or the liquid target. Since both targets are
located along the z-axis (which corresponds to the beam axis) a vertex cut is applied on
the Z variable that represents the position of the vertex along the beam axis.

3.3.3 Feynman X

To reduce possible target fragmentation contribution we put a constraint on the Feyn-
man X variable, xF . For this work the requirement is of xF > 0.1 to emphasize the
current fragmentation region. When performing a xF cut we observe a change in the
shape of the energy spectrum and drop in statistics, which can be observed in Figure
3.1. The main goal by reducing fragmentation contribution is to ensure that we are
using only hadrons from the struck quark.
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Figure 3.1: In this plot the red curve represents the energy spectrum with no Feynman
X cut and the blue curve is the energy spectrum with Feynman X greater than 0.1.

Modified Feynman X

Something particular about this analysis is that the Feynman X cut for the shifted dis-
tributions had to be done a bit differently. This cut changes the shape of the energy
distribution and xF is defined as:

xF = (⌫ +mp)

p
p2 � p2

T
� (Q2 + ⌫2)Zh⌫/(⌫ +mn)

1
2

p
(W 2 �m2
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⇡+)2 � 4W 2m2
⇡+

(3.2)

In the method used to extract the direct quark energy loss we manually shift the en-
ergy spectrum of one of the targets towards the other one. That means we are changing
the E value. From Equation 3.2 we can see that when the energy, xF is also affected.
That means that for each shift we need to recalculate the xF in order to perform the right
cut. The Feynman X of the shifted spectrum is what we will call modified Feyman X
xmod

F
and it can be defined as:
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3.4 Simulations

Ideally, the result of any experiment should be detector independent but the CLAS
detector has some unavoidable difficulties which end up reducing the data obtained
from the experiment. For one, CLAS’s geometry does not cover the full momentum
space range of the phenomena studied in the experiment, but not only that the detectors
and the reconstruction protocol also have limited efficiency. Because of that we should
correct the results for the acceptance effects.

To correct for acceptance we need to know what should the data set look like before
going through the detectors as well as how this data behaves when interacting with the
detector. All that is done by means of simulations.

The simulations used in this work were produced by Hayk Hakobian and are ex-
plained in detail in [13]. They consist of two sets of events, the generated and recon-
structed events.

The generated events were produced with Pythia 6.319, a Monte-Carlo event gen-
erator. It contains a model of non-perturbative and perturbative DIS processes. The
simulation set consists of approximately 100 million events for each target. The output
of the Pythia simulation are the generated events, or what we call "thrown", and those
are fed to the GSIM.

GSIM creates a model of the CLAS spectrometer and simulates how the detector
would respond to MC generated events. It is built with GEANT 3 simulation package
(CERN software) as the base and the features of the EG2 target were implemented
by Hayk Hakobyan [13]. They include processes like energy loss and radiation of
secondary particles through different parts of CLAS.

After that the GSIM Post Processor (GPP) was used in order to account for defects
that the detector might have and to eliminate signals from dead channels, like dead
wires in the drift chambers and bad tubes in the scintillator counters.

Then the GPP output files go through a reconstruction process, using the RECSIS
program, just like the real data. The reconstruction program was built with the same
libraries that were used for the processing of the real data from the EG2 running period.
In the final stage, mostly the same cuts used on the experimental data were used on the
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simulated output data, we only had to account for a few differences between real data
and simulations.

One of the differences is that the CC efficiency is much worse for data and some of
the inefficient zones could not be simulated by the MC technique. The result of that is
that the spectrum for the Number of Photo-electrons in the simulated data does not have
a big peak, so some specific cuts were made to make it look like the real data. The cuts
based on EC energy were also slightly modified. More details about these differences
can be seen in [20].

3.5 Corrections

3.5.1 Acceptance Correction

This correction is based on a simulation factor applied to each bin in the experimen-
tal data with the goal of correcting the inefficiencies of the detector. In the case of
the CLAS detector the acceptance is a combination of geometrical acceptance and in-
efficiencies in the drift chambers, scintillator counters, track reconstruction and event
selection.

The acceptance correction factor A is calculated with the simulations described in
Section 3.4 and are defined as:

A =
Nrec

Ngen

(3.4)

where Nrec and Ngen are the number of counts in the bin for reconstructed and generated
events, respectively. Since this correction is applied in each bin independently the
binning used to calculate the factors must be the same used for the analysis of the real
experimental data. Ultimately the data is corrected by a weight of w = 1/A.

Since the Kolmogorov test is very sensitive to fluctuations, in this work the ac-
ceptance correction was performed with the fitted distributions of acceptance factors.
The calculations of the energy distributions acceptance factors were made bin by bin,
matching the same number of bins that were later used for the statistical tests. After
that the distribution was fitted and the fit function was used to calculate the correction
factor. The process for this specific analysis is explained in more detail in Section 4.
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3.5.2 Coulomb Corrections

For DIS experiments it is also necessary a Coulomb correction based on the effects
that the Coulomb field of the target nuclei has on any particle that approaches it. This
is especially important in our present case of low energies ( ⇠ 5GeV) and medium to
heavy nuclei.

The incoming electron’s momentum is enhanced as it gets closer to the nuclei and
the momentum of the scattered electron gets reduced as it leaves the nuclei’s vicinity.
The Coulomb field also affects the ⇡+, the particle of interest in this thesis.

For the purpose of this thesis we will use the following �E Coulomb corrections
from [21] shown in Table 3.1.

Target �E [MeV]
2D 0
12C 2.9
56Fe 9.4
208Pb 20.3

Table 3.1: Coulomb correction �E values from [21].

3.6 Shape Analysis

This work is based on the shape analysis of the energy spectrum of pions from solid
and liquid targets. The goal is to extract the quark energy loss �E that happens when a
quark is crossing a nuclear medium. To do that we use events from the deuterium target
as a control. Scatterings from the deuterium target are considered events where the
quark was emitted in a "vacuum". The energy spectrum from those events is compared
to the one of a solid target (C, Fe, Pb). Assuming that there is some energy loss when
the quark travels through a nuclear medium (as discussed in 1.5) this solid target energy
spectrum will be shifted horizontally in relation with the liquid target spectrum. This
horizontal shift in energy will be identified as the quark energy loss.
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The question is how to find this shift in energy. The proposed method is to make
incremental shifts in the energy distribution of the solid target pions by summing �E to
the measured energy. The resulting energy spectrum is referred to as "shifted distribu-
tion". Then we use a statistical test to compare the shifted distribution to the unchanged
energy distribution of pions from deuterium target. This statistical test will give us the
probability that both curves come from the same distribution. This process is repeated
for a number of times N . After comparing all the horizontally shifted distributions
we select the one that yields the highest probability for the test. This means that the
selected distribution was produced by the correct �E and behaved like it would have
if the pion were in a vacuum, and as if there were no energy loss happening. The
statistical test chosen for this task was the 2-Sample Kolmogorov-Smirnov Test.

3.6.1 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (KS test) is a statistical test that can be used to compare
one dimensional distributions: a sample with a reference distribution, or two samples.
The way it does that is by quantifying the distance between the the empirical distri-
bution function of the sample and the cumulative distribution function of the reference
distribution, in the case of the one sample test, or between the two empirical distribution
functions if using two samples.

The null hypothesis is that the sample is drawn from the reference distribution or,
in the case of two samples, that both come from the same distribution, and with that the
null distribution is calculated. In the present work the two sample KS test was used,
always comparing the energy distribution of the pions from the deuterium target with
the pion’s energy distribution from a solid target.

One of the reasons for using the KS-test is that it is a good general nonparametric
method for comparing two samples and it is sensitive to location and shape differences
between two cumulative distribution functions. Another attractive feature is that the
distribution of the KS statistic does not depend on the underlying cumulative distribu-
tion being tested. It is also is an exact test, so it does not depend on the sample size
for the approximations to be valid (like the chi-square test does). But we also need to
keep in mind its downsides. The test works best with continuous distributions, it is also
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more sensitive near the center of the distributions than at the tails, and the distribution
must be fully specified.

Figure 3.2: The Kolmogorov statistic. On the left a one sample example where the red
curve is the model and the blue line is the sample. On the right an example of a two
sample statistic.

3.6.2 Two-Sample Kolmogorov-Smirnov Test

The Empirical Cumulative Distribution Function (ECDF) Fn for n independent or-
dered observations Xi is defined as:

Fn(t) =
number of elements in the sample 6 t

n
=

1

n

nX

i�1

1Xi<ti (3.5)

and with that we can define the Kolmogorov statistic:

Dn,m = sup
x

|F1,n(x)� F2,m(x)| (3.6)

where sup is the supremum function.
If the sample is large the null hypothesis is rejected at level ↵ if:

Dn,m > c(↵)

r
n+m

n ·m (3.7)

where in general c(↵) =
r
� ln(↵/2) · 1

2
.
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The Kolmogorov Distribution

The Kolmogorov Distribution gives the probability that Kolmogorov’s test statistic will
accept the null hypothesis and can be defined as:

P (z) = 2
1X

j=1

(�1)j�1 exp�2j2z2 (3.8)

where z =

r
m · n
m+ n

Dn,m. The z quantity looks like the c(↵) quantity from equa-

tion 3.7, so the Kolmogorov distribution gives the probability that Kolmogorov’s test
statistic will exceed the value z, assuming the null hypothesis.

3.6.3 The ROOT implementation

For this work a ROOT implementation of the Kolmogorov test and the Kolmogorov
Distribution was used. There are two versions of this test in ROOT, a TH1F version
and a TMath version.

TMath::KolmogorovTest

TMath’s Kolmogorov Test uses two one dimensional ordered arrays as input and re-
turns the calculated confidence level which gives a statistical test for compatibility of
the two arrays.

The function calculates the maximum deviation between the two integrated distri-
bution functions multiplied by the normalizing factor. The algorithm is a for-loop over
the two arrays (a and b, e.g.) and handles the three different possible cases: a > b,
a < b, a = b. The code basically keeps a tally with increments of one over the number
of observations.

After calculating the maximum distance between the two distributions it calls a
different function to calculate the probability, the TMath::KolmogorovProb
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TMath::KolmogorovProb

This function does exactly what is described in Section 3.6.2 as the Kolmogorov dis-
tribution, with z as the input. So the output will be the confidence level for the null
hypothesis.

TH1F::KolmogorovTest

This is a binned version of the Kolmogorov Test, so it uses histograms instead of arrays.
The inputs are the histograms for both functions and the output is also the probability
that both histograms have the same parent distribution.

Is is important to note that the Kolmogorov-Smirnov Test should in theory be only
used for unbinned data and not for binned data, as is the case with histograms. For
that we can use the TMath::KolmogorovTest. But if the data set is too large arrays
are not the most efficient objects to work with, in this case histograms are extremely
convenient. In principle, as long as the bin width is small compared with any significant
physical effect (for example the experimental resolution) then the binning cannot have
an important effect for the test. Therefore one can argue that for all practical purposes,
the probability value given by the TH1F test is calculated correctly provided the user is
aware that:

• The value of the probability given should not be expected to have exactly the
correct distribution for binned data.

• The user is responsible for seeing to it that the bin widths are small compared
with any physical phenomena of interest.

• The effect of binning (if any) is always to make the value of the probability
slightly bigger than in the unbinned case. Setting an acceptance criteria of p>0.05
will assure that at most 5% of truly compatible histograms are rejected.

With all that in mind we designed a Proof of Concept with the goal of testing our
method and comparing the different implementations of the Kolmogorov Test.
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3.6.4 Proof of Concept

For our Proof of Concept we generate two random distributions, one of them with
a small artificial shift, to represent the two spectra that we want to compare for the
energy loss measurement. These distributions then go through all the same tests and
algorithms that will later be used for real data. If we can extract the applied shift it
means that our method works and that we can proceed and use it with real data.

So for each run of the Proof of Concept, or "experiment", consists of the following
steps:

1. Generate two random distributions where one is shifted to the left by �E. For
all Proof of Concept the artificial shift chosen was of 21.

2. Use the KS test to compare the two curves. This gives us a probability that both
curves are equivalent.

3. Manually add �E, referred to as step, to each entry of the shifted distribution and
repeat step 2.

4. Repeat steps 2 and 3 enough times to obtain a reasonable probability distribution.

5. Pick the �E ⇤ N = �E value that yields the highest probability value as the
"found shift".

Gaussian Distributions

First we tested our method with Gaussian distributions for the simple reason that they
are the easiest for our test. Since our analysis is based on a shape comparison and
our shift is horizontal the higher the order and the more rapidly varying our curve is
the better. If we have two curves that are almost constant (a straight horizontal line)
we would never be able to measure a horizontal shift, because our test measures the
vertical distance between this two curves (Fig. 3.2) and the distance between them
would not change with the shifts. That is not the case with Gaussians, since is has two
clear "ramp up" and "ramp down" portions that make the applied shift very apparent,
while still being very simple (in contrast with polynomials, for example).
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To produce Figure 3.3 and 3.4 we used 50 thousand events and a step of 0.25 (so for
each iteration the shifted distribution was moved by increments of 0.25) while varying
the number of bins in the distribution. Figure 3.4 shows the found shift size for the 20
experiments used in this run of the code and Figure 3.3 shows the probability plots for
one of these experiments. In these plots we can observe that the binned test usually
gives higher probabilities. But if the number of bins is increased its result approaches
the result of the unbinned test. In Figure 3.5 we can see an example of the original
distributions, the one that stayed fixed through the test and the one that was generated
with a shift and will be shifted for the test, as well as the distribution that the test
selected from the set of shifted spectra as the most similar. From the distributions we
can observe a pretty obvious result of increasing the number of bins while the number
of events are fixed, we get bigger uncertainties. In this case we would benefit of having
more events to fill up the bins.

In Figures 3.6, 3.7 and 3.8 the number of bins is fixed at 250 and kept the step of
0.25 and varied the number of events. It is clear from Figure 3.6 that for more events the
peaks become sharper and a result of that is that the selection of the right shift becomes
a lot more precise, since they get closer to the right answer with smaller uncertainties,
a feature that can be observed in Fig. 3.7. Figure 3.8 makes evident the importance of
having enough events to fill the distributions, so we have enough statistics to perform
the test with a good resolution.

For the next Figures 3.9 and 3.10 we can see the effect of different step sizes on the
final result. From the figures it is easy to observe that we need a sufficiently small step
in order to have enough resolution. That way we can find bigger probabilities values
(Fig. 3.9) and have a more precise measurements of the shift magnitude, with less
oscillations and smaller uncertainties (Fig. 3.10).

It is clear that the method was able to measure the right value for the shift. And we
could also develop an intuition about what choices to make about binning and size of
the shifts. So for the next phase we used the Landau Distribution, because it is more
similar to the real energy distributions that we will be comparing for this analysis.
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Figure 3.3: An example of probability curves for the binned and unbinned test applied
to Gaussian distributions. The number of events and the step are fixed in 50 thousand
and 0.25 respectively while the number of bins is varied.
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Figure 3.4: Shift size found for binned and unbinned Kolmogorov test applied to Gaus-
sian distributions. 50 thousand events and a step of 0.25 were used. Each point is
one experiment and the number of bins varies from 20 in the first one and 500 in the
last one. The black horizontal line is the shift magnitude used to generate the shifted
distribution, so this is the shift size that the test should find.
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Figure 3.5: On the left we have the energy spectra for both original distributions, the
one that will stay fixed and the one that will be shifted for the test. On the right we have
the energy spectra for the distribution that stayed fixed and the selected match from the
shifted distributions. From top to bottom the number of bins is changed starting with
20 bins, then 50, 125, 250 and 500 bins.

45



Landau Distributions

The next pictures will follow the same logic at the previous. We used the knowledge
acquired with the Gauss distribution tests and made small tweaks to assess the perfor-
mance of the test when using distributions that are more similar to the real data that we
will be using in the analysis.

We start by fixing the number of events at 250 thousand (for better statistics), and
the shift at 0.25 (since the smaller the step the better) while varying the number of
energy bins. This experiment is pictured in Figures 3.11, 3.12 and 3.13. In this case
they all behave the same way the Gaussian distributions did.

The next test is to fix the number of bins and the step size and vary the number
of events. We increased a little bit the number of events from the Gaussian case and
used 125 energy bins instead of 250 since we could see in the last case that they were
already good enough. In Figure 3.14 we can see a huge difference with the increase of
statistics. Figures 3.15 and 3.16 also show improvements but not as drastic.

Lastly we test the different sizes of shift for the Landau Distributions. Again the
Landau distribution behaves similarly to the Proof of Concept for the Gaussian distru-
bution. From these test we can conclude that for our method to work we need:

1. To have a big sample of data, so we have enough statistics

2. To bin the energy in a big enough number of bins so the binned Kolmogorov Test
gives approximately the same result as the unbinned test, but not so many that we
start losing too much statistics and the uncertainties grow.

3. A small enough step (but not too small, because the smaller the step the longer it
takes to find the match).

3.6.5 Energy loss measurement

The process of extracting the quark energy loss measurement starts by having two dis-
tributions that we want to compare. In practice, what our shape analysis described in
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Section 3.6 does is to produce N + 1 distributions, where N is the number of shifts
performed.

The way the shift is introduced is event by event. That means that, since the accep-
tance correction is done bin by bin, we have to do the shifting before the acceptance.
Then we calculate the acceptance correction, fit, generate the corrected distributions
and compare all N +1 distributions like we did in Section 3.6.4. From each probability
curve we chose the shift size with the highest probability value as our energy loss. The
sigma of our probability curve gives statistical uncertainty of the measurement. This is
done for all ⌫ bins and the results are presented in the next chapter.
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Figure 3.6: An example of robability curves for the binned and unbinned test applied
to Gaussian distributions. The number of bins and the step are fixed in 250 and 0.25
respectively while the number of events is varied.
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Figure 3.7: Shift size found for binned and unbinned Kolmogorov test applied to Gaus-
sian distributions. 250 bins and steps of 0.25 were used. Each point is one experiment
and the number of events varies from 5000 in the first one and 1M in the last one. The
black horizontal line is the shift magnitude used to generate the shifted distribution, so
this is the shift size that the test should find.
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Figure 3.8: On the left we have the energy spectra for both original distributions, the
one that will stay fixed and the one that will be shifted for the test. On the right we have
the energy spectra for the distribution that stayed fixed and the selected match from the
shifted distributions. From top to bottom the number of events is changed.
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Figure 3.9: An example of probability curves for the binned and unbinned test applied
to Gaussian distributions. The number of events and the number of bins is fixed in 1
Million and 250 bins, respectively while the size of the step if varied.
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Figure 3.10: Shift size found for binned and unbinned Kolmogorov test applied to
Gaussian distributions. 1M thousand events and 250 bins were used. Each point is one
experiment and the size of the step used varies from 0.25 in the first one and 2.0 in the
last one.
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Figure 3.11: An example of probability curves for the binned and unbinned test applied
to Landau distributions. The number of events and the step are fixed at 250 thousand
and 0.25 respectively while the number of bins is varied.
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Figure 3.12: Shift size found for binned and unbinned Kolmogorov test applied to
Landau distributions. 250 thousand events and a step of 0.25 was used. Each point is
one experiment and the number of bins varies. The black horizontal line is the shift
magnitude used to generate the shifted distribution, so this is the shift size that the test
should find.
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Figure 3.13: On the left we have the energy spectra for both original distributions, the
one that will stay fixed and the one that will be shifted for the test. On the right we have
the energy spectra for the distribution that stayed fixed and the selected match from the
shifted distributions. From top to bottom the number of bins is changed starting with
20 bins, then 50, 125, 250 and 500 bins.
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Figure 3.14: An example of probability curves for the binned and unbinned test applied
to Landau Distributions. The number of energy bins and the step are fixed at 125
thousand and 0.25 respectively while the number of events is varied.
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Figure 3.15: Shift size found for binned and unbinned Kolmogorov test applied to
Landau distributions. 125 energy bins and a step of 0.25 were used. Each point is
one experiment and the number of events varies. The black horizontal line is the shift
magnitude used to generate the shifted distribution, so this is the shift size that the test
should find.
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Figure 3.16: On the left we have the energy spectra for both original distributions, the
one that will stay fixed and the one that will be shifted for the test. On the right we have
the energy spectra for the distribution that stayed fixed and the selected match from the
shifted distributions. From top to bottom the number of events is changed.
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Figure 3.17: An example of probability curves for the binned and unbinned test ap-
plied to Landau distributions. The number of energy bins and the step are fixed at 125
thousand and 0.25 respectively while the number of events is varied.
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Figure 3.18: Shift size found for binned and unbinned Kolmogorov test applied to
Landau distributions. 125 energy bins and 1 million events were used. Each point is
one experiment and the number of events varies. The black horizontal line is the shift
magnitude used to generate the shifted distribution, so this is the shift size that the test
should find.
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Chapter 4

Results

This chapter presents the measurement of quark energy loss for all three targets in ⌫

bins. There are results for acceptance corrected data in one and two dimensions. For
all cases we used �E steps of 1 MeV and 125 energy bins for the TH1F Kolmogorov-
Smirnov test, the binned test.

The nu bins used are described in Table 4.1. For each target we will show the
probability curves with and without acceptance correction as well as the matching of
the distributions. For the 2D acceptance corrections case the variable used is Q2 binned
in the manner shown in Table 4.2. Figures 4.1 and 4.2 show examples of the acceptance
fits used for the corrections.

Nu bin Nu range

0 3.2 < Nu < 3.4
1 3.4 < Nu < 3.6
2 3.6 < Nu < 3.8
3 3.8 < Nu < 4.0
4 4.0 < Nu < 4.2

Table 4.1: Nu bins.
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Q2 bin Q2 range

1 1.0 < Q2 < 1.5
2 1.5 < Q2 < 2.0
3 2.0 < Q2 < 2.5
4 2.5 < Q2 < 3.0
5 3.0 < Q2 < 3.5
6 3.5 < Q2 < 4.0

Table 4.2: Q2 bins for the 2D acceptance corrections.

Figure 4.1: Example of 1D acceptance correction fit for deuterium target.
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Figure 4.2: Example of 2D acceptance correction fit for deuterium target.

4.1 Carbon

Figure 4.3, 4.4, 4.5 and 4.6 show the results for the carbon target with 1D acceptance
corrections compared with the uncorrected data. The probability curves in Fig. 4.3
show a tendency of finding bigger energy loss for corrected data and the drop in energy
loss with bigger nu seen in 4.6 is not expected.

Figures 4.7, 4.8 and 4.9 compare the results from the carbon target with 2D accep-
tance corrections, with the previous results. The probability magnitudes are slightly
smaller and Fig. 4.8 evidences that: where we can see that the nu bins with the small-
est probabilities (nu bin 0 and 2) are also the ones that have the worse match between
distributions when compared to the match for the 1D acceptances . Not only that, a
further increase in energy loss can be seen after the 2D correction. Besides, the drop
in the energy loss for bigger ⌫ observed for 1D acceptances appears to have suffered a
slight suppression.
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Figure 4.3: Probability values of binned KS-test for the carbon target as a function
of the energy shift. The red line is the uncorrected data and the black line is the 1D
acceptance corrected data.

4.2 Iron

For the Iron target, the resulting probability curves for the 1D acceptance corrected data
were too small in magnitude to be compared with the uncorrected case, as it can be seen
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Figure 4.4: Uncorrected pion energy spectra for deuterium (blue) superimposed on the
pion energy spectrum for carbon (red) which has been shifted horizontally along the
axis by the measured energy loss. The data are normalized to unity for comparison and
have no corrections. Error bars represent statistical error only.

in Figure 4.10 and 4.12. The first 3 Nu bins resulted in even smaller probabilities for
the 1D acceptance case, which is evident by the matching distributions in Fig. 4.13.
Regardless, the test was still able to find a probability distribution and a value for the
energy loss.
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Figure 4.5: Corrected pion energy spectra for deuterium (blue) superimposed on the
pion energy spectrum for carbon (red) which has been shifted horizontally along the
axis by the measured energy loss. The data are normalized to unity for comparison and
corrected with 1D acceptance. Error bars represent statistical error only.

Figure 4.14 shows the comparison between the Kolmogorov test probabilities for
data corrected with 1D and 2D acceptances. The match between distributions is worse
(Fig. 4.15). The same behavior seen for carbon repeats itself here, the measured energy
loss is slightly bigger for the 2D case, although a downward trend in energy loss for
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Figure 4.6: Quark energy loss for carbon as a function of ⌫ for 1D acceptance corrected
data.

bigger nu is still present. This trend can be partly explained by the fact that we always
choose the shift value of the top of the probability curve, but for higher nu bins the
curve is asymmetric and the highest value of the probability does not correspond to the
centroid of the curve.

4.3 Lead

In the case of lead the probabilities found for the corrected data were also too small in
magnitude to be compared with the uncorrected results. Regardless the test still found
a peak and a value for the energy loss, as it can be seen in Fig. 4.17 for the uncorrected
and 1D acceptance and in Fig. 4.19 for the comparison between 1D and 2D acceptance
corrected data. The matching distributions are also worse than for the carbon and iron
targets (Fig. 4.18, 4.20 and 4.22). One thing to notice in Fig. 4.17 is that for most
cases the probability curve for the 2D acceptance corrected data is bigger than the 1D
acceptance corrected data. That means that the acceptance correction improves the
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Figure 4.7: Probability values of binned KS-test for the carbon target as a function
of the energy shift. Both curves are for the corrected distribution, the black is for 1D
acceptance and the red is for 2D acceptance

match.
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Figure 4.8: Corrected pion energy spectra for deuterium (blue) superimposed on the
pion energy spectrum for carbon (red) which has been shifted horizontally along the
axis by the measured energy loss. The data are normalized to unity for comparison and
corrected with 2D acceptances. Error bars represent statistical error only.

4.4 Comparison

For the final result: Figure 4.24 shows the final measured energy loss for all targets,
corrected with 2D acceptance factors, and Figure 4.25 shows the final energy loss for all
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Figure 4.9: Quark energy loss for carbon as a function of ⌫. The red points repre-
sent uncorrected results while the blue and black points are for 1D and 2D acceptance
corrected data, respectively.

targets, 2D acceptance corrections and the Coulomb corrections from 3.1. As expected,
the bigger the nucleus the more energy loss happens where for lead we have the biggest
values for the measurement and the smallest for the carbon. The error bars were defined
as the sigma of a fitted Gaussian. Notice that some of the points appear to have no error
bars, or very small ones, that is because in those cases the probability curve is very very
small, yielding small error bars too.

Nu bin Carbon Iron Lead

3.2 < Nu < 3.4 36± 1.51 70± 0.73 86± 1.57
3.4 < Nu < 3.6 38± 2.39 65± 0.96 91± 1.04
3.6 < Nu < 3.8 32± 2.43 69± 1.00 77± 1.46
3.8 < Nu < 4.0 30± 5.00 66± 1.57 76± 1.76
4.0 < Nu < 4.2 28± 6.1 57± 2.82 77± 2.7

Table 4.3: Energy loss measurement for 1D acceptance corrected data without
Coulomb corrections.
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Figure 4.10: Probability values of binned KS-test for the iron target as a function of the
energy shift. The plots are for uncorrected data.
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Figure 4.11: Uncorrected pion energy spectra for deuterium (blue) superimposed on
the pion energy spectrum for iron (red) which has been shifted horizontally along the
axis by the measured energy loss. The data are normalized to unity for comparison and
have no acceptance corrections. Error bars represent statistical error only.
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Figure 4.12: Probability values of binned KS-test for the iron target as a function of the
energy shift. The plots are for 1D acceptance corrected data.
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Figure 4.13: Corrected pion energy spectra for deuterium (blue) superimposed on the
pion energy spectrum for iron (red) which has been shifted horizontally along the axis
by the measured energy loss. The data are normalized to unity for comparison and have
1D acceptance corrections. Error bars represent statistical error only.
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Figure 4.14: Probability values of binned KS-test for the iron target as a function of
the energy shift. The black and red curves are for data corrected with 1D and 2D
acceptances, respectively.
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Figure 4.15: Corrected pion energy spectra for deuterium (blue) superimposed on the
pion energy spectrum for iron (red) which has been shifted horizontally along the axis
by the measured energy loss. The data are normalized to unity for comparison and have
2D acceptance corrections. Error bars represent statistical error only.

76



Figure 4.16: Quark energy loss for iron as a function of ⌫. The red points represent
uncorrected results while the blue and black points are for 1D and 2D acceptance cor-
rected data, respectively.
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Figure 4.17: Probability values of binned KS-test for the lead target as a function of the
energy shift. The plots are for uncorrected data.
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Figure 4.18: Uncorrected pion energy spectra for deuterium (blue) superimposed on
the pion energy spectrum for lead (red) which has been shifted horizontally along the
axis by the measured energy loss. The data are normalized to unity for comparison and
the data have no corrections. Error bars represent statistical error only.
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Figure 4.19: Probability values of binned KS-test for the lead target as a function of the
energy shift. The plots are for 1D acceptance corrected data.
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Figure 4.20: Corrected pion energy spectra for deuterium (blue) superimposed on the
pion energy spectrum for lead (red) which has been shifted horizontally along the axis
by the measured energy loss. The data are normalized to unity for comparison and the
data have 1D acceptance corrections. Error bars represent statistical error only.
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Figure 4.21: Probability values of binned KS-test for the lead target as a function of the
energy shift. The red curves are for 2D acceptances while the black curves are for 1D.
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Figure 4.22: Corrected pion energy spectra for deuterium (blue) superimposed on the
pion energy spectrum for lead (red) which has been shifted horizontally along the axis
by the measured energy loss. The data are normalized to unity for comparison and the
data have 2D acceptance corrections. Error bars represent statistical error only.
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Figure 4.23: Quark energy loss of the lead target as a function of ⌫. Red is for uncor-
rected data, blue and black are for 1D and 2D acceptance corrected respectively.

Figure 4.24: Quark energy loss as a function of ⌫ for all targets and 2D acceptance
corrected data (without Coulomb corrections).
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Figure 4.25: Quark energy loss as a function of ⌫ for all targets and 2D acceptance
corrected data and Coulomb corrections from Table 3.1
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Chapter 5

Conclusions and Future Analysis

With this analysis it was possible to observe the difference in energy loss for the dif-
ferent nucleus sizes. It was observed that this energy loss is larger for bigger nuclei.
Besides, the effect of the acceptance corrections has been shown to be important. The
⌫-dependance expected is approximately observed, but a slight downward trend with ⌫

is systematic for all three nuclei.
For the future, the acceptance corrections should be taken forward, differentiating

for more variables, as long as there is enough statistics. There are also more corrections
to be made: a proper calculation of Coulomb corrections and radiative corrections are
of extreme importance.
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