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Maǵıster en Ciencias de la Ingenieŕıa Electrónica
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RESUMEN

Los sistemas puerto Hamiltonianos irreversibles (IPHS) son una extensión de la clásica
formulación de sistemas puerto Hamiltonianos (PHS). Al igual que los sistemas PHS, esta
forma de modelado permite representar una gran cantidad de sistemas multif́ısicos, con
la capacidad de representar cada sistema f́ısico como un bloque capaz de conectarse con
los demás a través de funciones de enerǵıa. A diferencia de un sistema PHS, los IPHS
representan en su estructura el primer principio de la termodinámica (conservación de la
enerǵıa) y el segundo principio termodinámico (la creación irreversible de entroṕıa). Esta
representación pues, permite no solo el modelado de sistemas electromecánicos sino que
también permite representar a sistemás termodinámicos y en general, sistemas con procesos
irreversibles. Este formalismo, al igual que en sistemas PHS, provee un marco teórico para
el control de sistemas multif́ısicos.

Técnicas de control pasivas y no lineales han demostrado ser útiles en el control de
sistemas PHS. Estas técnicas tienen como objetivo modificar la función de enerǵıa del sistema
de forma tal que la función de enerǵıa resultante sea un candidato a función de Lyapunov,
y tenga un mı́nimo estricto de enerǵıa en un punto de equilibrio deseado. Esta forma de
control garantiza la estabilización del sistema en un punto de equilibrio deseado, junto con
la estabilidad asintótica del sistema.

Dentro de estas técnicas de control pasivas, control por interconección y modelado de
enerǵıa han sido utilizadas para cambiar el punto de equilibrio de una función de enerǵıa
candidata a función de Lyapunov en sistemas PHS; la existencia y utilización de las funciones
de Casimir resultan, por lo tanto, fundamentales para tal propósito pues estas funciones
son invariantes estructurales del sistema. Si bien la estabilidad del sistema es garantizada
mediante control por interconexión, la incorporación adicional de amortiguación, a través
de la entrada pasiva del sistema, asegura que el sistema sea asintóticamente estable en el
punto deseado.

El principal objetivo de esta tesis es extender las técnicas de control pasivas y no lin-
eales utilizadas en sistemas PHS al control de sistemas IPHS. En particular, se propone un
método sistemático de diseño de controladores para IPHS, basado en las técnicas de control
por interconexión y la inyección de amortiguamiento. Para ello, se plantea una estructura
de controlador IPHS como interconexión con el sistema, y se derivan condiciones para la
existencia de invariantes estructurales que permitan mover el punto de equilibrio. En el
proceso de diseño, resulta de gran importancia para el diseño de la función de enerǵıa, el
concepto de función de disponibilidad. Esta función resulta ser un candidato a función de
Lyapunov para un punto de equilibrio deseado, y estrictamente convexa.

El resultado es un método sistemático de diseño, haciendo uso de las técnicas clásicas de
control pasivo como control por interconexión y energy shaping, junto con invariantes estruc-

v



vi Resumen

turales de Casimir, y funciones de disponibilidad de enerǵıa; para sintetizar un controlador
que estabiliza el sistema IPHS en un equilibrio dinámico deseado, y que es asintóticamente
estable. Finalmente, se realizan simulaciones utilizando sistemas con procesos irreversibles-
reversibles.



ABSTRACT

Irreversible Hamiltonian Port Systems (IPHS) are an extension of the classic Port Hamil-
tonian System (PHS) Formulation. Like PHS systems, this form of modeling allows the
representation of a large number of multiphysical systems, with the ability to represent
each physical system as a block capable of connecting with the others through energy func-
tions. Unlike a PHS system, IPHS represent in their structure not only the first principle of
thermodynamics (energy conservation) but also the second thermodynamic principle (the
irreversible creation of entropy). Therefore, this representation allows not only the modeling
of electromechanical systems but also allows to represent thermodynamic systems and, in
general, systems with irreversible processes. This formalism provides. as in the case of PHS,
a theoretical framework for the control of multiphysical systems.

Passive and non-linear control techniques have proven to be useful in controlling PHS
systems. These techniques aim to modify the energy function of the system such that the
resulting energy function is a candidate for a Lyapunov function, and has a strict minimum
energy at a desired equilibrium point. This form of control ensures stabilization of the
system at a desired equilibrium point, along with asymptotic stability of the system.

Within these passive control techniques, control by interconnection and energy shaping
have been used to change the natural equilibrium point of a Lyapunov candidate energy
function in PHS; the existence and use of the Casimir functions are, therefore, fundamental
for this purpose since these functions are structural invariants of the system. Although
the stability of the system is guaranteed by the energy-Casimir control, the additional
incorporation of damping, through the passive input of the system, ensures that the system
is asymptotically stable at the desired point.

The main objective of this thesis is to extend the passive and non-linear control tech-
niques used for PHS to the control of IPHS. Precisely, a systematic design method control
for IPHS is proposed, based on control by interconnection techniques and damping injection.
For this, an IPHS controller structure is proposed as an interconnection with the system,
and conditions are derived for the existence of structural invariants that allow changing the
equilibrium point. In the design process, the concept of availability function is of great
importance for the design of the energy function. This function turns out to be a candidate
for a Lyapunov function for irreversible systems.

The result is a systematic design method, using classical passive control techniques such
as control by interconnection and energy shaping, along with Casimir structural invariants,
and energy availability functions to synthesize a controller that stabilizes the IPHS system
in a specified dynamic equilibrium, and that is asymptotically stable. Finally, simulations
are performed using systems with irreversible-reversible processes.

vii





Chapter 1

INTRODUCTION

In this introductory chapter, the port Hamiltonian framework is recalled; we give the state
of the art in the passivity based control techniques for the control of PHS. Subsequently, we
mention extensions for the PHS framework to cope with systems that come from irreversible
thermodynamics, as PHS are used for modelling and control of electromechanical systems in
its classic definition. One of these extension is called irreversible port Hamiltonian systems
(IPHS) which can be used to model multiphysical systems and therefore its definition can
be exploited for control purposes.

The organization of the chapters and the main contributions of this thesis are also given.

1.1 Motivation and state of the art

The Port Hamiltonian system formulation (PHS) has been used for control and modelling
of electrical, mechanical, and in general multiphysics systems ([22], [10], [36]) which are
described by the first law of thermodynamic. The PHS framework formalizes the basic
interconnection laws, e.g Kirchhoff laws in electrical systems or Newton laws in mechanical
systems, together with the power preserving elements by a geometric structure using the
energy between the elements as the interconnection, and defines the Hamiltonian as the
total energy stored in the system.

Energy then becomes essential in modeling systems as PHS, since it relates variables that
come from different physical domains. Since the PHS framework is defined by a Hamiltonian
energy function of its power preserving elements, it has been largely used for the control of
multiphysical domain systems ([36], [10]).

A key property for the control of PHS is the existence of the Casimir functions ([37],
[10], [38]) which are structural invariants of the system.

Control by interconnection (Cbi) techniques aim at closing the PHS system in a
loop with negative feedback, and with a controller that also has a PHS structure. In this
way, the total energy of the system is represented by the sum of the energies of the controller
and the PHS system. The controller energy is designed in such a way that the total energy of
the system is a candidate for Lyapunov function and has a global minimum at some desired
equilibrium point ([25],[27],[37]). By Casimir generation, the coordinates of the system are
related to the Casimir function and the useful Casimir functions for the closed-loop system
satisfy a set of partial differential equations (PDE) [37].

A proper choice of an energy controller function such that the Hamiltonian for the
closed-loop system is a candidate Lyapunov function, guarantees stability of the system
at the equilibrium point [37], while the asymptotic stability of the system is achieved by
the injection of damping (Di). A generalization of the energy-Casimir method is the
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2 CHAPTER 1. INTRODUCTION

interconnection and damping assignment passivity based control (IDA-PBC)
which has been developed in [26]. In the IDA-PBC control method, the closed-loop energy
function is obtained directly through the resolution of a set of partial differential equations,
through the choice of a desired controller and damping. Unlike control by interconnection,
in IDA-PBC the energy is obtained directly from the resolution of a PDE, and not by
completing squares or some other tentative method.

Port Hamiltonian system theory, as mentioned at the beginning of the section, has
been successfully used for modeling electromechanical systems; that is, systems that can be
modeled by the first principle of energy conservation, but fails (in its classical definition)
to model systems that express in their behavior the second principle of thermodynamics.
Various authors have proposed extensions to the PHS theory, to encompass system which
arise from irreversible phenomena.

The framework of GENERIC was first developed in the work of ([14], [29], [28]) to
encompass both reversible and irreversible physical systems for isolated thermodynamics
systems. Later in the work of ([23], [20]) the framework was extended to open systems.

In ([9], [5]) a representation of PHS which are called pseudo Hamiltonian was devel-
oped to represent a large class of dynamical systems, and furthermore in [6] the framework
was used for the study of the stability of dynamical systems.

The papers ([11], [12]) define the control contact systems, generalizing the input-
output port Hamiltonian systems to cope with models derived from irreversible thermody-
namics.

A recent framework to encompass systems which have reversible-irreversible phenomena
was developed in [32], namely Irreversible port-Hamiltonian systems (IPHS). These
systems express as a structural property the first and second principles of thermodynamics
by adding a non linear real function to the dynamics. By definition, IPHS are non-linear
systems with a physically meaningful structure and just as PHS systems, they are defined
with respect to the total energy stored in the system. This approach makes it possible to
interconnect them with other reversible or non-reversible systems, or a combination of both
[33]. Some first approaches to control of IPHS have been given in [31] using an IDA-PBC
like approach, with the framework of an energy based availability function as a candidate
for a Lyapunov function, which is based in the spirit of the works of [1] and [39].

The purpose of this thesis is to extend the passive and non-linear techniques to the
control of IPHS, proposing a systematic design method for the control of irreversible port
Hamiltonian systems, based on control by interconnection plus damping injection (Cbi-Di),
altogether with the availability function.

1.2 Organization of the chapters of this thesis

This thesis is divided into five chapters.

• Chapter 2 : A brief review of port Hamiltonian systems (PHS) is given along with
their main characteristics such as the existence of invariants structures called Casimir
functions. The PHS model of a Mass-Spring-Damper system is also shown as an
example and Casimir functions for this system are obtained.

The definition and properties of the Irreversible port Hamiltonian systems (IPHS) are
shown, and how in their non-linear structure, they are capable of capturing the second
law of thermodynamics; the existence of Casimir functions for this framework is shown.
We give the example of a non isothermal RLC system, which can be seen as a coupled
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PHS-IPHS and we obtain its Casimir functions. The example of a Continuous Stirred
Tank Reactor (CSTR) system is also given, which can be modelled as a pure IPHS.

• Chapter 3 : In this chapter, the control by interconnection plus damping injection
(Cbi-Di) of PHS systems is reviewed; the Lyapunov stability theorem and the invari-
ance principle are recalled, as they are fundamental to the theory. A Cbi-Di controller
is obtained for the Mass-Spring-Damper system as an example.

Subsequently, the Cbi-Di control is extended to IPHS. A systematic control design
method for IPHS is shown, specializing the control by interconnection and damping
injection to IPHS.

The IPHS model of the CSTR is used to synthesize a Cbi-Di controller for a general
reaction of m species.

• Chapter 4 : The IPHS model of a Gas-Piston system is derived; a Cbi-Di controller
is then obtained using the framework of the Cbi-Di control for IPHS.

The Cbi-Di controller is then simulated using Matlab-Simulink to show the perfor-
mance of the controller.

• Chapter 5 : Conclusions and comments about future work are given in this chapter.

1.3 Main Contributions

The main contributions of this thesis can be summarized in the following points:

• The framework of the control by interconnection plus damping injection (Cbi-Di) is
extended to IPHS systems providing a systematic control design method for IPHS.

• The synthesis of an IPHS controller for a CSTR is given and it is shown that it
coincides with a controller obtained using an IDA-PBC type of design.

• A Gas-Piston system is used as case study; a Cbi-Di controller is designed and simu-
lations are provided to evaluate different performances.



Chapter 2

REVERSIBLE-IRREVERSIBLE
PORT HAMILTONIAN

SYSTEMS

This chapter recalls the definition of a port Hamiltonian system, along with its main char-
acteristics and properties. As an example, the PHS model of the classic mechanical Mass-
Spring-Damper system is obtained.

In the second part, the definition of an irreversible port Hamiltonian system is presented;
its main properties are analyzed, and the main differences with the definition of a PHS
system. As an example of the framework, the IPHS models of two systems are shown: a
non-isothermal RLC system, which is a system with reversible-irreversible phenomena and
a CSTR chemical reactor which is a purely irreversible system.

2.1 Port Hamiltonian Systems - PHS

The framework of port-Hamiltonian system (PHS) arise from the first principle of the ther-
modynamic and its application to complex multiphysical systems ([36], [37]). The port-
Hamiltonian system theory formalizes the basic interconnection laws together with the power
preserving energy-storing elements by a geometric structure, using the Hamiltonian func-
tion as the total energy of the system ([25], [27], [37], [35]). This approach has been used to
model complex and multiphysical system since energy serves as the lingua franca between
the systems.

2.1.1 The PHS formulation

Definition 1. An input/state output/port PHS is defined by the dynamical equation

ẋ(t) = [J(x)−R(x)]
∂H

∂x
+ g(x)u(t)

y(t) = g>(x)
∂H

∂x

(2.1.1)

where x(t) ∈ <n is the state space vector, u(t) ∈ <m is the input of the system, H(x) : <n →
< is the Hamiltonian energy function and g(x) ∈ <n×m is the input map. The matrices
J(x) ∈ <n×n, R(x) ∈ <n×n are respectively, the structure matrix and the dissipation matrix
of the system which satisfy J = −J> and R = R> ≥ 0. The interconnection matrix J(x)

4



2.1. PORT HAMILTONIAN SYSTEMS - PHS 5

by its skew-symmetric property is power conserving. The resistive matrix R(x), by its non
negative property express the internal dissipation energy of the system.

The energy balance equation of the function H(x) express the first principle of the
thermodynamics. Taking the time derivative of the energy function

dH

dt
=
dH>

dx

dx

dt

= −dH
>

dx
R
dH

dx
+
dH>

dx
gu

= −dH
>

dx
R
dH

dx
+ y>u ≤ u>y (2.1.2)

because R ≥ 0 and where u>y is an external supply power; inequality (2.1.2) shows that the
PHS cannot store more energy than the one supplied from the external port. Now, consider
the following definition.

Definition 2 ([21]). The Poisson bracket is defined with respect to a constant skew-
symmetric matrix J = −J>, acting on any two smooth functions Z,G as

{Z,G}J =
∂ZT

∂x
(x)J

∂G

∂x
(x) (2.1.3)

The structure matrix J not only represents the energy flow between different physical
systems domains, but it is also related to a simpletic structure called Poisson bracket (Def-
inition 2) which is also skew symmetric due to the structure matrix J . If J is a Poisson
structure, then it satisfies the integrability conditions which are refered as Jacobi identities
[37]. The properties of the Poisson bracket implies the existence of energy conservation
laws as they define conserved quantities. As we shall see in the next chapter, the energy
conservation is fundamental in the passivity based control techniques (PBC).

The dynamical equations of the PHS, with dissipation matrix R = 0, can be written in
terms of the Poisson bracket as

dx

dt
= {x, U}J + g(x)u(t)

2.1.2 A key property: the Casimir functions

A key property of the PHS framework is the existence of structural invariants. Let us
consider a real function C and let us explore the equation

∂C>

∂x
(J(x)−R(x)) = 0 (2.1.4)

Suppose that equation (2.1.4) has a solution. From the time derivative of C along the
trajectories of the port Hamiltonian system (Definition 1), it follows

dC

dt
=
∂C>

∂x

[
(J −R)

∂H

∂x
+ gu

]
=
∂C>

∂x
gu (2.1.5)

If we set u = 0, the function C(x) remains constant along the trajectories of the PHS,

with no dependency of the Hamiltonian function H. Furthermore, if ∂C>

∂x g = 0 then the
invariance holds for any input u. Functions C(x) that satisfy equation (2.1.4) are called
Casimir functions of the system and its existence has implications on the stability analysis
of a PHS system ([37], [36], [25], [27], [35]). Consider then the following definition.
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Figure 2.1. Mass Spring Damper system.

Definition 3 ([37]). A Casimir function for an input-output port PHS (Definition 1) is
any function C(x) : <n → < which satisfies

∂C>

∂x
(J(x)−R(x)) = 0 (2.1.6)

Furthermore, as it was shown in (2.1.5), by setting u = 0 then

dC

dt
= 0

Thus, the Casimir function is a conserved quantity of the system for u = 0, independently

of the Hamiltonian H. If ∂C>

∂x g = 0 then the invariance holds for any input u.

The previous results on the Casimir function can be summarized in the next proposition

Proposition 1 ([37]). The function C(x) : <n → < is said to be a Casimir function for
the PHS in Definition 1 if and only if

∂C>

∂x
J(x) = 0,

∂C>

∂x
R(x) = 0, x ∈ <n (2.1.7)

As we see, the Casimir functions act as invariant structures for a PHS system. This
definition is fundamental in PBC techniques which aim at shaping the Hamiltonian energy
function. Next we give as an example of the PHS modeling the mass-spring-damper system.

2.1.3 Example: The MSD system

As an illustrative example, we consider the classical benchmark of the mass-spring-damper
which is a mechanical system with dissipation. Let us consider Figure 2.1; the PHS formu-
lation of the MSD is done following the Newton’s second law:

Mq̈ = F − kq − f q̇
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where q is the relative position of the system. The term kq is the force of the spring acting
on the mass M which is proportional due to Hooke’s law; the term f q̇ is the force of the
damper acting on the mass. The Hamiltonian energy of the system is then

H(q, p) = k
q2

2
+

p2

2M

Where p is the momentum of the system. The MSD system has the PHS form

ẋ =

(
q̇
ṗ

)
=

([
0 1
−1 0

]
−
[
0 0
0 f

])(
kq
q̇

)
+

(
0
1

)
F

y =
(
0 1

)(kq
q̇

)
= q̇

(2.1.8)

where the structure matrix J of the system, the dissipation matrix and the input map are,
respectively

J =

[
0 1
−1 0

]
, R =

[
0 0
0 f

]
, g =

(
0
1

)
The structure matrix J satisfies the skew-symmetric property J = −J> and the dissipation
matrix is such that R = R> ≥ 0 verifying the non-negative condition.

2.1.4 Casimir functions of the MSD system

Let us explore for Casimir functions of the system (2.1.8) by setting u = 0. By Proposition
1 we take C(q, p) : <2 → < such that the system of partial differential equations (PDE)

∂C>

∂x
J(x) = 0

∂C>

∂x
R(x) = 0

hold for every x = (q, p) ∈ <2; note that ∂C>

∂x =
(
∂C
∂q

∂C
∂p

)
. The Casimir function then has

to satisfy ∂C
∂q = ∂C

∂p = 0 with solution C = k ∈ < being any real constant; which shows that
there are not non trivial Casimir functions for the MSD system.

2.2 Irreversible Port Hamiltonian Systems - IPHS

The irreversible port Hamiltonian systems have been proposed in [32] and [33] as an exten-
sion of the port Hamiltonian system framework. IPHS encompass systems arising from the
irreversible thermodinamics by expressing as a structural property not only the first thermo-
dynamical principle, which is associated with the energy conservation, but also the second
thermodynamical principle, which is associated with the irreversible creation of entropy. In
this section, we give the classic IPHS definition proposed in [32]; this definition encompasses
systems that express purely irreversible phenomena. Further, the extended IPHS definition
([33]) is given, which encompasses systems with reversible-irreversible phenomena.
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2.2.1 The IPHS formulation

Definition 4 ([32]). An IPHS is defined by the dynamical equations

ẋ = J
(
x, ∂U∂x

) ∂U
∂x

+ g
(
x, ∂U∂x

)
u

y = g
(
x, ∂U∂x

)> ∂U
∂x

(2.2.1)

where x(t) ∈ <n is the state space vector, u(t) ∈ <m is the input of the system, U(x) :
<n → < is the Hamiltonian energy function which is a smooth function of the state x. The
structure skew-symmetric matrix is J = −J> and the input map is g ∈ <n×m. There exists
a smooth entropy function S(x) : <n → <. The non-linear modulating function R is defined
as

R
(
x, ∂U∂x

)
= γ

(
x, ∂U∂x

)
{S,U}J (2.2.2)

where γ
(
x, ∂U∂x

)
: <n → < is such that γ ≥ 0,i.e, a non linear positive function.

Let us see the balance equations of the energy function U(x) and entropy function S(x)
which express respectively, the conservation of the energy and the irreversible creation of
entropy. In effect, taking the time derivative of the energy function

dU

dt
= R

dUT

dx
J
dU

dx
+
dUT

dx
gu

= y>u

where {U,U}J = dUT

dx J
dU
dx = 0 due to the skew-symmetry of the structure matrix J ; which

express that the IPHS is a lossless dissipative system with supply rate y>u. Now taking the
time derivative of the entropy like function S(x) and setting u = 0 for simplicity, we get

dS

dt
= R

dS>

dx
J
dU

dx

= γ
(
x, ∂U∂x

)
{S,U}2J = σ ≥ 0

where σ is the internal entropy production and it shows that the entropy is an increasing
function of x and always positive.

As we see in Definition 4, the main difference with the PHS definition lies in the modu-
lating function R(x). In [32],[33] it has been seen that in fact, for thermodynamics systems,
J is a matrix whose elements are 1, 0,−1 and which is associated with the structure of
the IPHS. Thus represent the energy flow between different physical systems domains; the
modulating function R then captures the dynamical behavior of the system. Definition 4
is useful when one is modeling pure irreversible systems. In the next section we give the
example of a CSTR system which can be modelled as an IPHS exploiting Definition 4.

2.2.2 Example: The IPHS model of the CSTR system

In this section we present, as an example, a continuous stirred tank reactor (CSTR), which
is a system that can be interpreted within the framework of IPHS.

Let us consider a CSTR system with the following reversible reaction scheme:

m∑
i=1

ζiAi
r



m∑
i=1

ηiAi (2.2.3)
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with ζi, ηi being the constant stoichiometric coefficients for species Ai in the reaction. We
will consider the following assumptions for the standard operation of the reactor ([2], [13]):

Assumption 1. The following holds

1. The reactor operates in liquid phase.

2. The molar volume of each species are identical and the total volume V in the reactor
is constant through the reaction.

3. The initial number of moles of a species in the reactor is equal to the number of moles
of the inlet of the sames species.

4. For a given steady state temperature T and steady state input there is only one possible
steady state for the mass. This mean that each steady state temperature is associated
with a unique steady state temperature.

The IPHS model of the CSTR is [31].

ẋ(t) = RJ
∂U

∂x
(x) + gu(t)

with the state vector x =
[
n S

]T
, where n = (n1, ..., nm)T with ni the number of moles of

the species i inside the reactor; S(x) the total entropy of the system and U(x) the internal
energy function, and

J =


0 · · · 0 ν̄1

0 · · · 0
...

0 · · · 0 ν̄m
−ν̄1 · · · −ν̄m 0

 , ∂U∂x =


µ1

...
µm
T


where J is a constant skew-symmetric matrix whose elements are the signed stoichiometric
coefficients of the chemical reaction ν̄i = ζi − ηi, a number which is positive or negative
depending on whether the species i is a product or a reactant; ∂U

∂x corresponds to the
intensive variables with T being the temperature in the reactor and µi the chemical potential
of the species i; R is the modulating function and is given by

R =
rV

T

where r = r(n, T ) is the reaction rate which depends on the temperature and on the reactant
mole numbers vector n. The input vector is u = [u1, u2]T with u1 = F/V the dilution rate,
where F is the volumetric flow rate, and u2 = Q the heat flux from the cooling jacket; the
input map g is given by

g =

[
n̄ 0

φ(x) 1/T

]
with n̄ = ne − n, where ne = (ne1, ..., nem)T is the vector containing the numbers of moles
of species i at the inlet and φ(x) =

∑m
i=1(neisei − nisi) + nei

T (hei − Tsei − µi), where sei is
the inlet molar entropy,si is the molar entropy and hei is the inlet specific molar enthalpy
of species i.

In the next section a more general definition which encompass systems with reversible-
irreversible phenomena shall be shown.
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2.2.3 The Coupled PHS-IPHS formulation

The coupled PHS-IPHS system formulation has been defined in [33] to encompass systems
that express in its structure reversible-irreversible phenomena. They retained much of the
properties of the IPHS formulation as we shall see, expressing in its structure the first and
second thermodynamics laws. Let us define the coupled PHS-IPHS definition.

Definition 5 ([33]). A coupled PHS-IPHS is defined by the dynamical equation

ẋ = Jir
(
x, ∂U∂x

) ∂U
∂x

+ g
(
x, ∂U∂x

)
u

y = g
(
x, ∂U∂x

)> ∂U
∂x

(2.2.4)

where x(t) ∈ <n is the state vector, u(t) ∈ <m the input, the smooth function U(x) : <n → <
is the Hamiltonian and g ∈ <n×m is the input map. The difference with Definition 4 lies in
the skew-symmetric structure matrix Jir ∈ <n×n which is defined as

Jir
(
x, ∂U∂x

)
= J0(x) +R

(
x, ∂U∂x

)
J (2.2.5)

with J = −JT , J0 = −JT0 and there exists a smooth entropy like function S(x) : <n → <
which is a Casimir function of J0, i.e.,

∂S

∂x

>
J0 = 0. (2.2.6)

The non-linear modulating function R is defined as

R
(
x, ∂U∂x

)
= γ

(
x, ∂U∂x

)
{S,U}J

where γ
(
x, ∂U∂x

)
: <n → < is a non linear positive function.

The balance equations of the entropy function S(x) and the energy function U(x) goes
similar to Definition 4. Taking the time derivative of the energy function gives

dU

dt
=
dUT

dx
(J0 +RJ)

dU

dx
+
dUT

dx
gu

= yTu

where {U,U}Jir = dUT

dx (J0 + RJ)dUdx = 0 by skew-symmetry of Jir, expressing that the

coupled PHS-IPHS is a lossless dissipative system with supply rate yTu. By setting u = 0
and taking the time derivative of the entropy function, it follows that

dS

dt
=
dST

dx
J0
dU

dx
+R

dST

dx
J
dU

dx

= {S,U}J0 + γ
(
x, ∂U∂x

)
{S,U}2J

= γ
(
x, ∂U∂x

)
{S,U}2J = σ ≥ 0

where the term {S,U}J0 = 0 because of (2.2.6) and where σ expresses the internal entropy
production. The coupled PHS-IPHS formulation expresses the first and second principle,
and encompasses systems which have a reversible-irreversible phenomena.
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2.2.4 Casimir functions for Coupled PHS-IPHS

As in port Hamiltonian systems, one can look for Casimir functions for a coupled PHS-IPHS.
Let us take C a real function of the states of the systems and suppose that the following
relation holds

∂C>

∂x
Jir = 0 (2.2.7)

If we take the time derivative of C, with the condition (2.2.7), it follows that

dC

dt
=
∂C>

∂x

[
Jir

∂U

∂x
+ gu

]
=
∂C>

∂x
gu (2.2.8)

If u = 0 then (2.2.8) remains true for every C(x) along the trajectories of the PHS-IPHS,
independently of the Hamiltonian U(x).

Definition 6. A Casimir function for a coupled PHS-IPHS (Definition 5) is any function
C(x) : <n → < which satisfies

∂C>

∂x
Jir = 0 (2.2.9)

Furthermore, as it was shown in (2.2.8), by setting u = 0 then

dC

dt
= 0

Thus the Casimir function is a conserved quantity of the system for u = 0, independently

of the Hamiltonian U . If ∂C>

∂x g = 0 then the invariance holds for any input u.

Proposition 2. Let C(x) : <n → < be a Casimir function for the PHS-IPHS in Definition
5 if and only if

∂C>

∂x
Jir = 0 (2.2.10)

where Jir = −J>ir = J0 +RJ is the structure matrix of the PHS-IPHS.

Note that as J0 and J are skew-symmetric, it does not necessarily follow that ∂C>

∂x J0 = 0

and ∂C>

∂x J = 0.
The following section studies the example of a non-isothermal RLC system which is a

system than can be interpreted within the framework of the coupled PHS-IPHS.

2.2.5 Example: non-isothermal RLC system

Consider a RLC system connected in series including the dynamics of the thermal effects
of its electrical components. So we can consider that all electrical components, i.e, the
resistor r(S); the inductor L(S) and the capacitor C(S) are a function of the temperature
and therefore of the entropy of the system.

The internal energy of the system U(Q,φ, S) shall be the sum of: the energy of the
capacitor; the energy of the inductor and some thermal related energy function Us(S) asso-
ciated to the components of the system, with Q being the charge of the capacitor; φ being
the flux of the inductor and S the entropy of the system.
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r(S)

C(S) L(S)

+

i

Vr Vc Vl

u

Figure 2.2. RLC circuit where each component includes the dynamics of the thermal
effects.

The energy then can be written as

U(Q,φ, S) =
1

2

Q2

C(S)
+

1

2

φ2

L(S)
+ Us(S) (2.2.11)

where the time variation of the internal energy is

dU

dt
=
∂U

∂Q
Q̇+

∂U

∂φ
φ̇+

∂U

∂S
Ṡ (2.2.12)

We denote ix, Vx with x = r, l, c as the current and voltage of the resistor, inductor and
capacitor, respectively. If we apply Kirchhoff’s laws then it is clear that

ir = il = ic = i

u = Vr + Vl + Vc

For each component the following laws hold

Vr = ir Vl = −Ldi
dt

i = C
dVc
dt

φ = Li Q = CVc

From this set of equations we have that Q̇ = φ
L ; the Kirchhoff law for the voltage of the

system gives the behavior of the flux as φ̇ = −QC −r
φ
L +u where u is the input of the system

which is the voltage source. The dynamical equation for the entropy S of the system follows
from equation (2.2.12); let us expand the equation and note that

dU

dt
= −r(S)

(
φ

L(S)

)2

+
∂U

∂S

dS

dt
+ yTe u (2.2.13)

From Gibb’s relation [4] it is known that ∂U
∂S = T (S). Taking u = 0 it follows that U̇ = 0,

as the internal energy variation must be zero, then it goes that

dS

dt
=
r(S)

T (S)

(
φ

L(S)

)2

= σr. (2.2.14)
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The term σr corresponds to the internal entropy production of the system. The PHS-IPHS
formulation of the thermodynamic RLC circuit is thenQ̇φ̇

Ṡ

 =

 0 1 0
−1 0 0
0 0 0

+
r

T

φ

L

0 0 0
0 0 −1
0 1 0

QCφ
L
T

+

0
1
0

u (2.2.15)

where

J0 =

 0 1 0
−1 0 0
0 0 0

 J =

0 0 0
0 0 −1
0 1 0

 R =
r

T

φ

L

Note that the RLC system (2.2.15) has the structure of the Definition 5 with a structure
matrix composed of an irreversible part related to the dissipation and a reversible part
related to Kirchhoff’s law.

2.2.6 Casimir functions of the non-isothermal RLC system

Now, we shall study if the non-isothermal RLC system (2.2.15) has useful Casimir functions.
By proposition 2, we have to look for a function C(x) : <3 → < such that

[
∂C
∂Q

∂C
∂φ

∂C
∂S

] 0 1 0

−1 0 − r
T
φ
L

0 r
T
φ
L 0

 = 0

It is easy to note that the system is reduced to

∂C

∂φ
= 0

∂C

∂Q
= − r

T

φ

L

∂C

∂S

As the first equation imposes that the Casimir has to have no dependency of the flux φ of
the system, there isn’t a non trivial solution that solves the PDE.

Even though the Casimir functions of a system when we have no input are usually trivial,
we shall see in Chapter 3 that they are proven to be a powerful tool in the energy-Casimir
approach when a control input u is considered.



Chapter 3

PASSIVITY BASED CONTROL
METHODS APPLIED TO IPHS

In the present chapter the main contributions of this thesis are shown. The framework of
the Passivity Based Control (PBC) with emphasis on the control by interconnection plus
damping injection approach (Cbi-Di) is presented.

We first recall the basics of the formulation applied to PHS. In order to do that, some
definitions about Lyapunov stability and Lasalle’s invariance principle are shown. As an
illustrative example, a Cbi-Di controller for the mass-spring-damper system (2.1.8) is ob-
tained. Subsequently, we extend the Cbi-Di framework to the control of IPHS; as we shall
see, Casimir functions shall be instrumental in the design. The notion of the availabil-
ity function shall complement the control design as it provides candidates for Lyapunov
functions for the irreversible part of the IPHS.

The example of the CSTR system, whose IPHS model has been obtained in section
(2.2.2), is used later to design a controller within the framework of the Cbi-Di controller for
PHS-IPHS.

3.1 Passivity Based Control of PHS

The Passivity based control framework has been used to model electrical, mechanical and
complex physical systems since the control design has a physical interpretation. The PBC
framework aims at rendering the closed-loop Hamiltonian function, which has been shown
to serve as a candidate for a Lyapunov function, to some desired and useful energy function,
which has a new a desired equilibrium dynamic. It provides a systematic framework to
achieve stabilization and asymptotic stability for a PHS, and has been used successfully for
control design ([25], [27], [37]).

In this section we give the standard definition of the Cbi-Di control for PHS; some
definitions concerning Lyapunov theorem and the Lasalle’s invariance principle are shown
as they are fundamental in the Cbi-Di approach to ensure stability and asymptotic stability
of the closed-loop system.

3.1.1 Lyapunov Stability Theorem

The Lyapunov stability analysis formalizes the idea that all systems shall tend to a minimum
energy state. It gives a powerful method in stability analysis of non-linear systems and in
the passivity based control framework for PHS it is fundamental, as the energy functions
are candidates for Lyapunov functions.

14
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Theorem 1 ([3]). Let D be a compact subset of the state space of a system, containing the
equilibrium point x0, and let there be a function V : D → <. The equilibrium point x0 is
stable (in the sense of Lyapunov) if V satisfies the following conditions:

1. V (x) ≥ 0, for all x ∈ D

2. V (x) = 0 if and only if x = x0

3. For all x(t) ∈ D,

dV (t)

dt
=
∂V (t)

∂x

∂x(t)

dt
≤ 0

Furthermore, if V̇ (x(t)) is strictly negative, i.e V̇ (x(t)) < 0, then the equilibrium is
said to be asymptotically stable

3.1.2 Lasalle’s Invariance Principle

The Lyapunov stability theorem guarantees asymptotic stability of the system if we can
find a Lyapunov function that is strictly decreasing away from the equilibrium point, as is
stated in Theorem 1; but the strictly negative derivative condition on Theorem 1 can be
relaxed while ensuring system asymptotic stability. First, we give a definition concerning to
an invariant manifold and a positively invariant set. Then we show the Lasalle’s invariance
principle.

Definition 7 ([15]). Let Ω ∈ <m ×Rn. The set Ω is said to be an invariant manifold if

(x(0), ξ(0)) ∈ Ω⇔ (x(t), ξ(t)) ∈ Ω,∀t ≥ 0 (3.1.1)

Given t = t0. A set Ω is set to be positively invariant if x(t0) ∈ Ω, then x(t) ∈ Ω for all
t ≥ t0.

For example, the multi level set Ωκ = {(x, ξ) ∈ <n ×<m | ξ = F (x) + κ} is an invariant
manifold, where κ is a vector of constants. Next, we define the Lasalle’s invariance principle.

Theorem 2 ([15]). Consider the non-linear dynamical system ẋ(t) = f(x(t)) with x(0) =
x0. Assume that Dc ⊂ D is a compact positively invariant set with respect to the non-linear
system, and assume there exits a continuously differentiable function V : Dc → < such

that V̇ (x)f(x) ≤ 0, x ∈ Dc. Let Ω
.
=
{
x ∈ Dc : V̇ (x)f(x) = 0

}
and let M be the largest

invariant set contained in Ω. If x(0) ∈ Dc, then x(t)→M as t→∞.

3.1.3 Control by Interconnection of PHS

The paradigm of control by interconnection has been used within the framework of passivity
based control techniques for stabilization. Control by interconnection aims at shaping the
Hamiltonian function and the structure matrices by state feedback with a controller, which
is also a PHS system; the closed-loop system has proven to be also a PHS. The next step
is to find useful Casimir functions for this new PHS, as they allow to move the equilibrium
point of the Hamiltonian energy function; this is done by solving a set of PDE [37].

We shall follow figure 3.1 for the control design; the first loop considers the control by
interconnection (Cbi) part, which is in charge of the stability of the system, while the second
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β(x)

PHS

PHS
Controller

KDI

x(t)

u(t) y(t)

yd(t) = gt ∂Hd

∂x

+

ui(t)

−

β(x)

uc(t)yc(t)

−
++

1

Figure 3.1. Control by interconnection plus damping injection control of a PHS.

loop considers the injection of damping (Di), which is in charge of the asymptotic stability
at the equilibrium.

Let us consider a PHS controller in the form

ξ̇(t) = [Jc(ξ)−Rc(ξ)]
∂Hc

∂ξ
+ gc(ξ)uc(t)

yc(t) = g>c
∂Hc

∂ξ

(3.1.2)

with ξ ∈ <nc the state space vector of the system, yc, uc ∈ <mc the output and input of
the system, respectively; a Hamiltonian smooth energy function of ξ, Hc : <nc → < with
gc ∈ <nc×mc the input map. The structure matrix of the system Jc is such that Jc = −J>c
and the dissipation matrix Rc satisfies Rc = R>c ≥ 0.

The interconnection of the PHS controller with the PHS system is done via the modulated
negative feedback, with β ∈ < (

u
uc

)
=

(
0 −β
β 0

)(
y
yc

)
(3.1.3)

Taking a standard PHS system (2.1.1), then the closed-loop system can be written as

(
ẋ

ξ̇

)
︸︷︷︸
xd

=


[

J −gβg>c
gcβg

> Jc

]
︸ ︷︷ ︸

Jd

−
[
R 0
0 Rc

]
︸ ︷︷ ︸

Rd


(
∂Hd(x,ξ)

∂x
∂Hd(x,ξ)

∂ξ

)
+

(
g
0

)
︸︷︷︸
gd

ui

yd =
(
g> 0

)(∂Hd(x,ξ)
∂x

∂Hd(x,ξ)
∂ξ

) (3.1.4)
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which is a PHS system with structure matrix Jd = −J>d , dissipation matrix Rd = R>d ≥ 0,
both matrices of order (n+nc)×(n+nc) and the input map gd with order (n+nc)×(m+mc),
where 0 is a null matrix of order nc ×mc; the closed-loop Hamiltonian energy function is
Hd = H +Hc.

The next step is to find structural invariant functions. The Casimir functions can be
restricted, without loss of generality, to the set of functions [37]

Ci(x, ξi) = Fi(x)− ξi, i = 1, .., l ≤ nc (3.1.5)

where Ci is the Casimir function associated to the state ξi of the controller and F (x) =
[F1, ..., Fl] ∈ <l is a collection of smooth functions Fi of x. If the Casimir function exists,
the relation ξ−F (x) = κ with κ = [κ1, ..., κl] ∈ <l a vector of constants that depend on the
initial states of the plant and the controller, holds on every invariant set Ω = {(x, ξ) ∈ <x×ξ |
C(x, ξ) = −κ}. The closed-loop Hamiltonian energy candidate to a Lyapunov function, can
be rewritten as a function of the states of the PHS system as Hd(x) = H(x)+Hc(F (x)+κ),
and the shaping control input as the negative feedback

ue = −yc (F (x) + κ) = −g>c
∂Hc

∂ξ
(3.1.6)

The Casimir functions are invariants of the structure of the closed-loop system (3.1.4), which

means that the relation ∂C>

∂xd
Jd = 0 is satisfied. This condition leads to the set of partial

differential equations known as matching equations

∂F>

∂x
J
∂F

∂x
= Jc

R
∂F

∂x
= 0

Rc = 0

∂F>

∂x
J = gcβg

>

(3.1.7)

The third equation in (3.1.7) is known as the dissipation obstacle ([37], [38]) since it dictates
that the variables of the system that has dissipation cannot be shaped. Assuming that such
F smooth function exists then the control action (3.1.6) shapes the Hamiltonian energy of
the system, and the function Hd(x) = H(x)+Hc(F (x)+κ) is a Lyapunov function candidate
for the closed-loop system and the system

ẋ = [J −R]
∂Hd

∂x
+ gui

yd = g>
∂Hd

∂x

is stable with respect to some desire equilibrium point x∗ for a particular choice of ξ∗.

3.1.4 Damping injection

The energy shaping control action renders the Hamiltonian energy function into a Lyapunov
function candidate for the system with a strict minimum in some desired equilibrium point
x∗ for a particular choice of ξ∗. The damping injection control action renders the system



18 CHAPTER 3. PASSIVITY BASED CONTROL METHODS APPLIED TO IPHS

asymptotically stable. Taking x∗ as the minimum of the Hamiltonian function, and setting
the control input

ui = −Kyd = −Kg> ∂Hd

∂x
(3.1.8)

where K = KT ≥ 0 is a symmetric semi positive matrix, guarantees asymptotic stability
for the closed-loop system at the point (x∗, ξ∗) by the application of Lasalle’s invariance
principle. In fact, with the control action (3.1.8) and setting M = gKgT ≥ 0 the closed-
loop system can be written as

ẋ(t) = (J −M)
∂Hd

∂x

Taking the time derivative of the closed-loop system we obtain

dHd

dt
=
∂H>d
∂x

(J −M)
∂Hd

∂x
= {Hd, Hd}J − {Hd, Hd}M
= −{Hd, Hd}M < 0

Since Hd is a Casimir function of J it follows that {Hd, Hd}J = 0. By Lasalle’s invariance
principle (Theorem 2, section 3.1.2) then the closed-loop system converges asymptotically
to x∗.

3.1.5 Example: Cbi-Di for the MSD system

In this section we design, as an example of the framework, a Cbi-Di controller for the MSD
system analyzed in section 2.1.3. Since the system has dissipation in the p coordinate, we
aim at rendering the closed-loop system to a point x∗ = (q∗, 0). Consider the PHS controller

ξ̇ = (Jc −Rc)
∂Hc

∂ξ
+ gcuc

We look for a Casimir function of the form C(q, p) = F − ξ such that ξ = F + κ, with
F ∈ < a smooth function of the states of the system and κ ∈ < a constant that depends on
the initial states of the controller and the system. For simplicity, we take β(x) = 1. The
gradient F with respect to the states of the system takes the form

∂F>

∂x
=
(
∂F
∂q

∂F
∂p

)
The first, second and fourth equation of (3.1.7) give, respectively

Jc = 0,
∂F

∂p
= 0,

∂F

∂x
= gc

where ∂F
∂p was expected to be null due to the dissipation obstacle on the coordinate of

the state. By taking gc = 1 for simplicity, and by simple integration F (q, p) = F (q) = q,
where it is easy to note that ξ = q. We choose the following Hamiltonian as a candidate
Lyapunov energy function

Hd = (k + k0)
(q − q∗)2

2
+

p2

2M
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where the energy of the controller is such that Hc = Hd − H, where we recall that H =

k q
2

2 + p2

2M . The controller energy function is then chosen as

Hc = k0
q2

2
− (k + k0)qq∗ +

(k + k0)

2
(q∗)2 = k0

ξ2

2
− (k + k0)ξq∗ +

(k + k0)

2
(q∗)2

The PHS controller can then be expressed as

ξ̇ = uc

yc = k0ξ − (k + k0)q∗
(3.1.9)

which is a controller with integral-proportional action. The energy shaping control action
is given by

ue = −g>c
∂Hc

∂ξ
= (k + k0)q∗ − k0ξ

For the damping injection control action, take K ∈ < such that M = gKg> ∈ <2×2 ≥ 0. A
possible choice for K is to take K = α ≥ 0 a tuning parameter which gives

M =

[
0 0
0 α

]
with M being a semi positive matrix. The damping injection control action can be obtained
as

ui = −Kg> ∂Hd

∂x
= −α

[
0 1

] [(k + k0)(q − q∗)
p
m

]
= −α p

m

The closed-loop system, with the addition of damping, can be written as[
q̇
ṗ

]
=

([
0 1
−1 0

]
−
[
0 0
0 α

])[
(k + k0)(q − q∗)

p
M

]

3.2 Passivity Based Control of IPHS

In this section the main contributions of this thesis are shown with the synthesis of a control
by interconnection plus damping injection (Cbi-Di) controller framework for the control of
IPHS. As IPHS retain much of the PHS, PBC techniques such as Cbi-Di can be further
explored to the control of IPHS. Thus we synthesize a Cbi-Di controller through a systematic
design. We shall exploit Definition 5 which encompass systems with reversible-irreversible
phenomena. This definition shows that an IPHS system can be seen as a composition
of a conservative part and an irreversible part. Furthermore, we shall exploit Definition 8
which is the availability function of an irreversible process and serves as candidate Lyapunov
function.

The control by interconnection plus damping injection is done following Figure 3.2. The
IPHS system is interconnected with an IPHS controller in the first loop through a state
space modulated function, and is in charge of placing the closed-loop equilibrium point.
The controller is used to render the closed-loop Hamiltonian energy function such that it
has a minimum at the desire equilibrium point and is now a candidate Lyapunov function
by the use of Definition 8. A second loop, with a damping injection control action is design
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to ensure asymptotic stability of the closed-loop system. The damping injection control
input is performed with respect to the closed-loop system output which is the conjugated
output to the closed-loop Hamiltonian function.

The final control input takes the form u = ue + ui where ue is the input due to the
energy shaping action and ui is the input due to the damping injection action.

3.2.1 Control by interconnection of IPHS

β(x)

IPHS

IPHS
Controller

KDI

x(t)

u(t) y(t)

yd(t) = gt ∂Ud

∂x

+

ui(t)

−

β(x)

uc(t)yc(t)

−
++

1

Figure 3.2. Control by interconnection plus damping injection control of an IPHS.

Let us consider the IPHS controller

ξ̇ = R̄
(
ξ, ∂Uc

∂ξ

)
Jc
∂Uc
∂ξ

(ξ) + gc

(
ξ, ∂Uc

∂ξ

)
uc(t)

yc = gTc

(
ξ, ∂Uc

∂ξ

) ∂Uc
∂ξ

(ξ)

(3.2.1)

with ξ ∈ <nc the state space vector yc, uc ∈ <mc the output and input of the system,
respectively. The mapping gc(ξ) ∈ <nc×mc , a Hamiltonian smooth function Uc(ξ) and

R̄
(
ξ, ∂Uc

∂ξ

)
a modulating non-linear function. The interconnection between the states is via

the modulated power-preserving interconnection(
ue
uc

)
=

(
0 −β(x)

β(x) 0

)(
y
yc

)
(3.2.2)

where β(x) ∈ <. The closed-loop system, following the first loop of figure 3.2, between a
standard IPHS (2.2.4) and the IPHS controller (3.2.1) takes the form(

ẋ

ξ̇

)
=

(
Jir −gβgTc

gcβg
T R̄Jc

)
︸ ︷︷ ︸

Jd

(
∂Ud(x,ξ)

∂x
∂Ud(x,ξ)

∂ξ

)
+

(
g
0

)
ui (3.2.3)
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with 0 a null matrix of appropriate dimensions and a closed-loop Hamiltonian function
Ud(x, ξ) = U(x) + Uc(ξ). We look for structural invariant functions of the form Ci(x, ξi) =
Fi(x) − ξi, i = 1, .., l where F (x) = [F1, ..., Fl] ∈ <l is a collection of smooth well defined
functions Fi of x. Assuming that these invariant functions exist, then on every invariant
manifold the relation ξ − F (x) = κ with κ = [κ1, ..., κl] ∈ <l holds, where κ is a collection
of constants that depends on the initial states of the system and the controller. The closed-
loop Hamiltonian energy function can then be expressed in terms of the states of the plant
Ud(x) = U(x) + Uc(F (x) + κ), and the energy shaping control action as the negative state
feedback

ue = −β(x)g>c
∂Uc
∂ξ

(3.2.4)

The Casimir functions, which are invariants of the structure of the system, satisfy the

invariant relation ∂C>

∂x Jd = 0, with

Jd =

(
Jir −gβgTc

gcβg
T R̄Jc

)
The invariant condition gives(

∂FT

∂x (x) −I
)( Jir −gβgTc

gcβ(x)gT R̄Jc

)
= 0

where I is an identity matrix of proper dimension. This condition leads to the following set
of PDE

∂FT

∂x
(x)Jir = gcβg

T

−∂F
T

∂x
(x)gβgTc = R̄Jc

(3.2.5)

Taking transpose in the first equation in (3.2.5), we get JTir
∂F
∂x = gβT gTc but Jir = −JTir

then

−Jir
∂F

∂x
= gβT gTc = gβgTc (3.2.6)

Replacing equation (3.2.6) on the left hand side of the second equation in (3.2.5) it yields

∂FT

∂x
Jir

∂F

∂x
= R̄Jc (3.2.7)

The left hand side of (3.2.7) is a skew symmetric matrix so the right hand side should
also be a skew symmetric matrix, which is satisfied as Jc is skew-symmetric by definition.
Summarizing the results, we get the system of PDE

∂FT

∂x
(x)Jir = gcβg

T

∂FT

∂x
Jir

∂F

∂x
= R̄Jc

(3.2.8)

These are the matching equations for an IPHS with a controller in IPHS form, using the
state modulated interconnection (3.2.2). These matching equations are analogous to the
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case of control by interconnection of PHS with the difference that Jir depends on the mod-
ulating functions R and that the control structure Jc includes a modulating function R̄.
Assuming that the smooth function F (x) exists, the control law (3.2.4) shapes the closed-
loop Hamiltonian function as Ud(x) = U(x) +Uc(F (x+κ)). Furthermore, the energy-input
allows to interpret the closed-loop system as an IPHS. In effect, notice that

dx

dt
= RJir

∂U

∂x
− g βgc

∂(Uc ◦ F )

∂ξ︸ ︷︷ ︸
ue

(3.2.9)

Using the first equation in (3.2.8) and the skew-symmetric property of Jir, the relation
(3.2.9) can be rewritten as

dx

dt
= RJir

∂U

∂x
+ Jir

∂F

∂x

∂(Uc ◦ F )

∂ξ

= RJir
∂U

∂x
+ Jir

∂Uc
∂x

Finally, by simple factorization and adding an input ui to the closed-loop system, we get

ẋ = Jir
∂Ud
∂x

+ gui

yd = g>
∂Ud
∂x

(3.2.10)

where yd is the passive output defined with respect to Ud(x). This approach allows to
see the closed-loop system as an IPHS; i.e, without destroying the structure of IPHS, and
therefore it can be interconnected with others IPHS and interpreted within the framework
of the energy-Casimir plus damping design for control purposes. Next, we calculate the time
derivative of the entropy of the closed-loop system

dS

dt
=
∂S>

∂x
J0
∂Ucl
∂x

+R
∂S>

∂x
J
∂Ucl
∂x

= R
∂S>

∂x
J
∂U

∂x︸ ︷︷ ︸
σ(t)

+R
∂S>

∂x
J
∂Uc
∂x︸ ︷︷ ︸

σc(t)

where σ ≥ 0 is the internal entropy variation of the system and σc is the external entropy
variation due to the inputs of the system. As the control objective is to set a desired entropy,
σc = −σ in steady state.

The time variation of the closed-loop energy function is now given by

dUd
dt

= y>d ui (3.2.11)

Since the internal energy function of irreversible thermodynamic systems does not have a
strict minimum, it does not qualify as a candidate Lyapunov function. A standard candi-
date Lyapunov function for control purposes is the availability function ([1], [39], [19]). The
availability function (figure 3.3) uses the convexity of the internal energy with the assump-
tion that one of the extensive variables is fixed, to construct a strictly convex extension
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Figure 3.3. The red plot shows the internal energy of an irreversible process and the black
line is the supporting hyper plane at a point x∗. The availability function is the difference
between the two.

which serves as Lyapunov function for a desired dynamical equilibrium. This approach has
been widely used in the control of thermodynamic systems in the last decade ([16], [17],
[31]). We shall use the availability function as the target Lyapunov candidate function of
the closed-loop system for the irreversible part of the IPHS in the energy-shaping design.
The availability function is then defined as follows.

Definition 8 ([31]). The energy based availability function is x defined as

A(x, x∗) = U(x)− U(x∗)− ∂U

∂x
(x∗)T (x− x∗) (3.2.12)

with U(x) being the internal thermodynamic energy of the system and x∗ the desired equi-
librium point of a thermodynamic variable x.

3.2.2 Damping Injection

The energy shaping input shapes the energy of the system into a new equilibrium dynamics
and guarantees the closed-loop stability of the system in the sense of Lyapunov, but one
have yet to guarantee the asymptotic stability at the equilibrium point.

Let’s suppose that the closed-loop IPHS (3.2.10) has a minimum at x∗ and set a damping
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injection input as

ui = −Kyd = −Kg> ∂Ud
∂x

(3.2.13)

with K = K> > 0. We shall show that this control action renders the system dissipative,
i.e, adds a positive definite matrix M to the structure matrix Jir of the system. In fact, by
setting ui as the damping input in the closed-loop system (3.2.10) we get

ẋ(t) = (Jir − gKgT )
∂Ud
∂x

(3.2.14)

The time derivative of the closed-loop energy function is then given by

dUd
dt

=
dUTd
dx

(Jir − gKgT )
∂Ud
∂x

= {Ud, Ud}Jir − {Ud, Ud}M
= −{Ud, Ud}M < 0

since {Ud, Ud}Jir = 0 and whereM = gKgT ≥ 0. By Lasalle’s invariance principle (Theorem
2) the closed-loop system converges asymptotically to x∗, ξ∗ in the largest positively invariant
set Ω = {(x, ξ) ∈ <x×ξ | C(x, ξ) = −κ}.

Next, we give a proposition that encompasses the control by interconnection plus damp-
ing injection for IPHS.

Proposition 3. Let Σ be an IPHS system of order n given by Definition 5 and Σc be
an IPHS controller of order nc given in (3.2.1). Consider the interconnection between Σ
and Σc via the state modulated relation in (3.2.2). Without loss of generality, consider
the positively invariant manifold Ω = {(x, ξ) ∈ <x×ξ | C(x, ξ) = −κ} such that for every
relation ξi − Fi(x) = κi, i = 1, ..., l ≤ nc ≤ n it satisfies the PDE (3.2.8) and where
F = [F1, ..., Fl] ∈ <l, κ = [κ1, ..., κl] ∈ <l are a collection of smooth functions of the state
space x, and a collection of constants that depend on the initial states of the system and the
controller, respectively. The collection C(x, ξ) are Casimirs of the closed-loop system if the
collection of smooth functions F satisfy the PDE

∂FT

∂x
(x)Jir = gcβg

T

∂FT

∂x
Jir

∂F

∂x
= R̄Jc

If there exists a function Uc(ξ) such that the closed-loop Hamiltonian energy function Ud(x)
is a candidate for a Lyapunov function and has a strict minimum at the point (x∗) for a
particular election of ξ∗, then (x∗, ξ∗) is a stable equilibrium point for the closed-loop system.
Furthermore, the control action

ui = −Kyd = −Kg> ∂Ud
∂x

for a certain K = K> ≥ 0 such that M = gKg> ≥ 0 renders the system asymptotically
stable.

Proof. The proof has been shown in subsections (3.2.1) and (3.2.2)
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3.2.3 Cbi-Di control of the CSTR system

In this section a Cbi-Di controller for the CSTR system is obtained. Proposition 3 shall be
used in order to design the controller.

The CSTR system has states x =
[
n1 n2 · · · nm S

]>
. We shall parametrize the

design and look for Casimir functions of the form C1(n1, ξ1) = F1(n1)−ξ1,· · · , Cm(nm, ξm) =
Fm(nm) − ξm and Cm+1(S, ξm+1) = Fm+1(S) − ξm+1 such that ξi = Fi(ni) + κi with
i = 1, ...,m and ξm+1 = Fm+1(S) + κm+1.

We take a purely irreversible IPHS controller (2.2.1) as the CSTR is also purely irre-
versible; the controller then takes the form

ξ̇ = RcJc
∂Uc
∂ξ

+ gcuc

yc = g>c
∂Uc
∂ξ

(3.2.15)

where ξ =
[
ξ1 · · · ξm+1

]> ∈ <m+1, Jc ∈ <m+1×m+1, β ∈ < a scalar function and the
input map

gc =

 g11 g12

...
...

g(m+1)1 g(m+1)2


where each term gij = gij(ξ) can be dependent on the states of the system.

Since the CSTR is purely irreversible, we set as desired Hamiltonian energy function for
the closed-loop system, the energy based availability function

A(t) = Ud = U(x)− [U(x∗) +
∂UT

∂x
(x∗)(x− x∗)] (3.2.16)

where x∗ is the new equilibrium point. A simple choice for the energy of the controller is to
take Uc = Ud − U , hence

Uc = −[U(x∗) +
∂UT

∂x
(x∗)(x− x∗)]

=

m∑
i=1

(−µ∗ini + µ∗in
∗
i ) + (−T ∗S + T ∗S∗)− U(n∗1, · · · , n∗m, S∗)

The parametrization of the Casimir function and the election of the Controller leads to the
following condition on F

∂F

∂x
=


−µ∗1 0 · · · 0

0
. . . · · · 0

... · · · −µ∗m
...

0 0 · · · −T ∗


where by integration we have F (ni) = −niµ∗i , i = 1, ...,m and F (S) = −T ∗S. Notice that
the CSTR system is purely irreversible with structure matrix Jir = RJ and J0 = 0. By
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applying the first of the matching equations (3.2.8) it follows

∂F>

∂x
Jir = R


0 · · · 0 −µ∗1ν̄1

0 · · · 0
...

...
. . .

... −µ∗mν̄m
T ∗ν̄1 · · · T ∗ν̄m 0


And the right side of the first equation is

βgcg
> = β


g11n̄1 · · · g11n̄m g11φ+ g12

T
g21n̄1 · · · g21n̄m g21φ+ g22

T
...

. . .
...

...
g(m+1)1n̄1 · · · g(m+1)1n̄m g(m+1)1φ+

g(m+1)2

T


By equality, gi1 = 0 and gi2 = −Tµ∗i ν̄i,∀i = 1, ...,m with

β = R g(m+1)2 = −Tg(m+1)1φ g(m+1)1 = T ∗
ν̄i
n̄i

The equality g(m+1)1
n̄i

ν̄i
= T ∗ has to be true ∀i = 1, ...,m. The system has a solution if the

relation
n̄1

ν̄1
= · · · = n̄m

ν̄m
(3.2.17)

holds for every i = 1, ...,m. In [30], for batch reactors the equality (3.2.17) is the expression
of De Donder’s extent of reaction

n0i − ni
ν̄i

= δ

where this property can be extended to the CSTR under Assumption 1. This condition has
been obtained in [31] where an IDA-PBC like approach is used to design a controller for a
class of CSTR. Then the input map gc of the controller, can be written as

gc =


0 −Tµ∗1ν̄1

...
...

0 −Tµ∗mν̄m
T ∗/δ TT ∗φ(ξ)/δ

 (3.2.18)

The structure matrix Jc and the modulating function Rc of the controller are defined by
the third equation in (3.2.8)

∂FT

∂x
Jir

∂F

∂x
=
rV

T
T ∗


0 · · · 0 µ∗1ν̄1

...
. . .

...
...

0 µ∗mν̄m
−µ∗1ν̄1 · · · −µ∗mν̄m 0


As the right hand side of the third matching equation (3.2.8) is RcJc, then it follows that

Jc =


0 · · · 0 µ∗1ν̄1

...
. . .

...
...

0 µ∗mν̄m
−µ∗1ν̄1 · · · −µ∗mν̄m 0

 Rc =
rV

T
T ∗ (3.2.19)
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Note that by the parametrization of the Casimir functions, i.e, ξi = Fi(ni) +κi, i = 1, ...,m
and ξm+1 = Fm+1(S) + κm+1, then the controller energy can be written as

Uc(ξ) =

m∑
i=1

(Fi(ni) + κi) + (Fm+1(S) + κm+1)− U(n∗1, ..., n
∗
m, S

∗) (3.2.20)

Hence,
∂UT

c

∂ξ =
[
1 · · · 1

]
. The IPHS controller then takes the form

 ξ̇1
...

ξ̇m+1

 =
rV

T
T ∗


0 · · · 0 µ∗1ν̄1

...
. . .

...
...

0 µ∗mν̄m
−µ∗1ν̄1 · · · −µ∗mν̄m 0




1
...
1
1

+


0 −Tµ∗1ν̄1

...
...

0 −Tµ∗mν̄m
T ∗/δ TT ∗φ(ξ)/δ

uc

yc = gTc

1
...
1


The energy shaping control action is then given by ue = −βgTc ∂Uc

∂ξ , which results

ue = −rV
T

[
T/δ

−T∑m
i=1 µ

∗
i ν̄i − TT ∗φ(x)/δ

]
(3.2.21)

The closed-loop system then can be expressed as

ẋ(t) =
rV

T


0 · · · 0 ν̄1

0 · · · 0
...

0 · · · 0 ν̄m
−ν̄1 · · · −ν̄m 0



µ1 − µ∗1

...
µm − µ∗m
T − T ∗

+

[
n̄ 0

φ(x) 1/T

]
ui

By proposition 3, a damping injection input is needed to guarantee asymptotic stability.
We design K ∈ <2×2 such that M = gKg> ≥ 0. An easy choice is to take

K = α

[
0 0
0 T 2

]
for some tuning parameter α ≥ 0 which gives

M =


0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · α

 ∈ <m+1×m+1

The gradient of the Hamiltonian energy function Ud is

∂Ud
∂x

=
[
µ1 − µ∗1 · · · µm − µ∗m T − T ∗

]>
and then the damping injection input, which we recall can be computed as ui = −KgT ∂Ud

∂x ,
takes the form

ui = −α
[

0
T (T − T ∗)

]
(3.2.22)
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The closed-loop system becomes

ẋ = (−gKgT +RJ)
∂Ud
∂x

=

rVT


0 · · · 0 ν̄1

0 · · · 0
...

0 · · · 0 ν̄m
−ν̄1 · · · −ν̄m 0

−


0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · α




µ1 − µ∗1

...
µm − µ∗m
T − T ∗


Let us verify the time derivative of the closed-loop Hamiltonian function.

dUd
dt

= −∂U
>
d

∂x
M
∂Ud
∂x

= −α(T − T ∗)2 ≤ 0

where the asymptotic stability follows by Lasalle’s invariance principle in a sufficient small
region of T = T ∗ under Assumption 1, which states that there is only one equilibrium
for each temperature, and then V̇ = 0 only at T = T ∗. We point out that the controller
synthesized with the Cbi-Di framework for IPHS is equivalent to the one in [31] where an
IDA-PBC like approach was used.



Chapter 4

A CASE STUDY: THE
GAS-PISTON SYSTEM

This chapter presents the classical gas-piston system as a case study to illustrate the re-
sults of this thesis. The gas-piston system expresses reversible-irreversible phenomenon
and therefore can be expressed as a coupled PHS-IPHS, and it also represents a complex
mechanic-thermodynamic system. Simulations which evaluate the performance of the Cbi-
Di controller are given at the end of the section.

4.1 Coupled PHS-IPHS model of the Gas-Piston system

The system analyzed is shown in Figure 4.1. A perfect gas is contained in a cylinder
enclosed by a moving piston with no exchange of matter and a spring is attached to the
moving piston. We assume that the piston is not submitted to gravity. Since the system
has a reversible-irreversible phenomena, its behavior can be splitted in two energy analysis.

Firstly, the mechanical energy can be expressed as H(q, p) = 1
2mp

2 + 1
2Kq

2 where p is
the kinetic momentum, m the mass of the piston, K is the Hooke’s constant of the spring
and q the relative position of the piston.

The perfect gas can be defined by its internal energy Ugas(S, V ) which is a function of
the entropy S of the system and the volume V of the perfect gas. The total energy of the

Figure 4.1. Gas piston system: a perfect gas contained in a cylinder closed by a moving
piston with no exchange of matter.

29
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system can then be expressed as the sum of both energies as

U(S, V, q, p) = H + Ugas =
1

2m
p2 +

1

2
Kq2 + Ugas(S, V ) (4.1.1)

where x = [S, V, q, p]> is the state space vector of the system. The gradient of the total
energy of the system is defined by

∇U(S, V, q, p) =
[
T −P Kq v

]>
where T is the temperature, P the pressure and v the velocity of the moving piston. We
suppose that the gas in the cylinder is subject to a non-reversible transformation due to the
mechanical friction when the piston moves; we assume a non-adiabatic transformation and
that the dissipated mechanical energy is transformed completely into a heat flow in the gas.
The opposing force due to friction can then be expressed as Fr = νv, ν > 0 and the force of
the spring is Fs = Kq due to Hooke’s law. The entropy balance equation takes the form

dS

dt
=

1

T
νv2

which represents the irreversible entropy flow at temperature T induced by the heat flow
νv2 due to the friction of the moving piston. The volume of the system can be written in
terms of the area and length of the moving piston as V (t) = Aq(t).

The gas-piston system is submitted to an external force u2 which is acting on the piston
and symbolized as F (t) in Figure 4.1. There exists an exchange of heat between the walls
of the piston and the exterior, which is described by the input u1 and described by Q̇(t).

The set of equations that describe the IPHS is the following

dS

dt
=

1

T
νv2 + u1

dV

dt
= A

dq

dt
= Av

dq

dt
= v

dp

dt
= AP − Fr − Fs + u2 = AP − νv −Kq + u2

where AP is the force that acts on the piston. The IPHS can be expressed as


Ṡ

V̇
q̇
ṗ

 =


R


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


︸ ︷︷ ︸

J

+


0 0 0 0
0 0 0 A
0 0 0 1
0 −A −1 0


︸ ︷︷ ︸

J0



T
−P
Kq
v


︸ ︷︷ ︸
∇U

+


0 1
0 0
0 0
1 0


︸ ︷︷ ︸
g=[g1,g2]

[
u1

u2

]
︸︷︷ ︸
u

(4.1.2)

The system can be expressed following Definition 5 as a coupled PHS-IPHS with modulating
function

R =
νv

T
(4.1.3)

and interconnection structure matrix Jir = J0 + RJ , where it is clear that it satisfies the
skew-symmetric property Jir = −JTir. The temperature of the system is modelled as an
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exponential function of the entropy T (S) = T0e
S/c ([7]) where T0 and c are constants that

depend on the system. Finally, the temperature, the volume and the pressure of the gas
inside the piston can be related with the law of the ideal gases as PV = rTN , where N is
the number of moles and r the ideal gas constant.

4.1.1 Cbi-Di control of the Gas-Piston system

In this section, we apply Proposition 3 to synthesize a Cbi-Di controller for the gas-piston
system. This system expresses irreversible phenomena in the entropy S and volume V of
the system; the momentum p and the position q express the reversible part of the system.
Note that the position and the volume are correlated by V (t) = Aq(t). Then, if a certain
equilibrium q∗ is imposed, then a certain equilibrium V ∗ = Aq∗ is obtained.

The design shall be divided in two parts: in a first approach, we design a controller which
stabilizes the system at the point (S, V, q, p) = (S, V ∗, q∗, 0) by using the input u2, which is
the force acting on the piston; in a second approach, a controller is designed to control the
purely irreversible process S of the system, by using the input u1 which is the exchange of
heat.

Step 1: Control of q,p and V

We look for Casimir functions for the system (4.1.2) of the form C(x, ξ) = F (x) − ξ such
that ξ − F (x) = κ. The aim is to render the mechanical part of the system, which relates
the position q and the momentum p of the system with the input u2. We take then as our
input map

g1 = [0 0 0 1]>

The IPHS controller is defined then by xc = ξ ∈ <, Jc ∈ <, β ∈ < a scalar, and the input
map gc ∈ <, where we take for simplicity gc = 1. The controller then takes the form

ξ̇ = RcJc
∂Uc
∂ξ

+ uc (4.1.4)

where Uc is the energy of the controller. By applying the matching equations (3.2.8), the
first one gives

∂F>

∂x
Jir =

[
−R∂F

∂p −A∂F
∂p −∂F∂p R∂F

∂S +A ∂F
∂V + ∂F

∂q

]
gcβg

>
1 =

[
0 0 0 β

]
From the equality it follows that

∂F

∂p
= 0, R

∂F

∂S
+A

∂F

∂V
+
∂F

∂q
= β

The election and solution of the PDE is motivated by the election of a proper energy
function for the system. Since the system has a reversible-irreversible phenomenon, we use
the framework of the availability function for the irreversible part. Further, the aim is to
render the closed-loop Hamiltonian function as

Ud1(S, V, q, p) = A1(S, V ) +
1

2m
p2 +

1

2
(K +K0)(q − q∗)2
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where A1(S, V ) = Ugas(S, V ) − [Ugas(S
∗, V ∗) − P ∗(V − V ∗)] is the availability function

(8) for the irreversible coordinate, associated to the volume of the system. We recall from
(4.1.1) that the internal energy of the system is

U(S, V, q, p) = H + Ugas =
1

2m
p2 +

1

2
Kq2 + Ugas(S, V )

Since the energy of the closed-loop system can also be expressed as Ud1 = H + Ugas + Uc,
then the simplest choice for the election of Uc is given by

Uc = Ud1 − U

= P ∗(V − V ∗)− Ugas(S∗, V ∗) +
1

2
K0q

2 − (K +K0)qq∗ +
1

2
(K +K0)(q∗)2

The controller energy suggests that the following elections

∂F

∂p
= 0,

∂F

∂S
= 0,

∂F

∂V
= α1,

∂F

∂q
= α2 + α3q

which gives F = α1V + α2q + α3

2 q
2, allow to express the energy of the controller as Uc =

F + κ = ξ with α1 = −P ∗, α2 = −(K +K0)q∗, α3 = K0 and κ = −P ∗V ∗ −Ugas(S∗, V ∗) +
1
2 (K +K0)q2

0 , which results in ∂Uc

∂ξ = 1.

The third equation of (3.2.8) gives the condition on the structure matrix Jc of the
controller, which results in Jc = 0 and β = AP ∗ − (K +K0)q∗ +K0q. The IPHS controller
can then be written as the simple integrator

ξ̇ = uc

The energy shaping control action is given by

ue1 = −βg>c
∂Uc
∂ξ

= −AP ∗ + (K +K0)q∗ −K0q (4.1.5)

By Proposition 3, for the damping injection, we take K1 ∈ < such that M1 = g1K1g
>
1 ∈

<4×4 ≥ 0. An easy choice is to take K1 = α1 ≥ 0 with α1 a tuning parameter, which gives

M1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 α1


a semi positive define matrix. The damping injection control input becomes

ui1 = −K1g
>
1

∂Ud1

∂x
= −α1

p

m
= −α1v (4.1.6)

The final control input is then given by u1 = ue1 + ui1.
The input ue1 shapes the energy of the system (4.1.2), which now has a strict minimum

at the point (S, V, q, p) = (S, V ∗, q∗, 0). Notice that the gas-piston system (4.1.2) can be
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rewritten as


Ṡ

V̇
q̇
ṗ

 =


R


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0


︸ ︷︷ ︸

J

+


0 0 0 0
0 0 0 A
0 0 0 1
0 −A −1 0


︸ ︷︷ ︸

J0




T
−(P − P ∗)

(K +K0)(q − q∗)
v


︸ ︷︷ ︸

∇Ud1

+


0 1
0 0
0 0
1 0


︸ ︷︷ ︸
g=[g1,g2]

[
0
u2

]
︸︷︷ ︸
u

(4.1.7)

Step 2: Control of S

Next, in a second control step, we aim at designing a control action for the entropy of the
system (4.1.7), which is the system that the input u1 shaped. As the aim is to shape the
entropy of the system at a point S = S∗, the desired Hamiltonian energy function, which
we set as Ud, is

Ud(S, V, q, p) = A2(S, V ) + Ud1(S, V, q, p)

= (Ugas − U∗gas)− T ∗(S − S∗) + P ∗(V − V ∗) +
1

2m
p2 +

1

2
(K +K0)(q − q∗)2

(4.1.8)
withA2(S, V ) = −T ∗(S−S∗) being the availability function (Definition 8) for the irreversible
coordinate associated to the entropy of the system.

Let us take the time derivative of the Hamiltonian energy function (4.1.8)

dUd
dt

=
dU>

dx

dx

dt

= ∇U>d (Jir∇Ud1 + gu)

= ∇U>d Jir∇Ud1 +∇U>d g2u2 (4.1.9)

We look for an input u2 = ue2 such that the time derivative of the desired Hamiltonian
energy Ud(t) of the system (4.1.7) satisfies

dUd
dt

= ∇U>d Jir∇Ud1 +∇U>d g2ue2 ≤ 0 (4.1.10)

Where the gradient of Ud is

∇Ud =
[
T − T ∗ −(P − P ∗) (K +K0)(q − q∗) p/m

]>
Expanding (4.1.10) and eliminating terms, it follows

dUd
dt

= ν
( p
m

)2 (T − T ∗)
T

− ν
( p
m

)2

+ (T − T ∗)ue2

= (T − T ∗)
(
ue2 + ν

( p
m

)2 1

T

)
− ν

( p
m

)2

If we select the input to be

ue2 = −ν
( p
m

)2 1

T
(4.1.11)
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then it is clear that
dUd
dt

= −ν
( p
m

)2

≤ 0,∀t (4.1.12)

A damping injection input can also be added; taking K2 ∈ < such that M2 = g2K2g
>
2 ∈

<4×4 ≥ 0 with K2 = α2 ≥ 0, gives

M2 =


α2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


a semi positive definite matrix. The damping injection control input is then

ui2 = −K2g
>
2

∂Ud
∂x

= −α2(T − T ∗) (4.1.13)

The final control input is then u2 = ue2 + ui2. The complete closed-loop system can be
written as


Ṡ

V̇
q̇
ṗ

 =




0 0 0 R
0 0 0 A
0 0 0 1
−R −A −1 0


︸ ︷︷ ︸

Jir

−α1


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


︸ ︷︷ ︸

M1

−α2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

M2




T − T ∗
−(P − P ∗)

(K +K0)(q − q∗)
v


︸ ︷︷ ︸

∇Ud

(4.1.14)
where the control action

u =

[
−ν
(
p
m

)2 1
T

(K +K0)q∗ −K0q −AP ∗
]

︸ ︷︷ ︸
ue

+−α1

[
0
p
m

]
− α2

[
(T − T ∗)

0

]
︸ ︷︷ ︸

ui

(4.1.15)

guarantees the asymptotic stability of the system at the desired equilibrium point.

4.2 Numerical Simulations

In this section simulations are shown for the gas-piston system. The Cbi-Di controller
synthesized in section 4.1.1, equation (4.1.15) is simulated in Matlab-Simulink for different
values of interest.

4.2.1 Simulated Cases

Firstly, as equation (4.1.15) shows, there are three tuning parameters: K0 which changes
the spring value and the damping parameters α1, α2. For simplicity, we take α1 = α2 = α.
The sum K +K0, which is the total spring constant, has to be positive hence K0 > −K.

As we take α1 = α2 = α, i.e, equal damping parameters, there are two tuning parameters
in K0 and α. In a first simulation, K0 shall remain constant while α takes different values;
next, α remains constant while K0 takes different values.
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4.2.2 Simulation Values

Table 4.1 shows the parameters which describes the Gas-Piston system with its simulation
values. The control objective is the volume and entropy of the piston, with a desired volume
of V ∗ = 0.03[m3] which gives q∗ = 0.6[m]; momentum p∗ = 0[Kg·m/s] and a desired entropy
of S∗ = 30[J/K].

Numerical values were taken from general applications that include electric generators,
hydraulic pumps and air compressors [18] while thermodynamics values were taken from [8].

4.2.3 Simulation Results

This section shows the simulation results with the simulation values of section 4.2.2.
Figure 4.2 and 4.3 show the state variables of the system for different α values, and

different K0 values, respectively. The objective variables are the volume and the entropy of
the system. The plot shows the entropy S of the system; the volume V of the piston and
the momentum p. We didn’t explicit show the position of the piston as this variable has a
linear behaviour with the volume of the piston.

The K0 parameter, which varies in figure 4.3 and which is related to the closed-loop
Hamiltonian function, shows that there is a trade off between the speed of the closed-loop
system and the oscillation of the states. The input u2 in figure 4.5, when K0 is moving,
shows that as K0 increases more energetic inputs we get; this is natural as more energetic
inputs are needed in order for the closed-loop to converge faster.

The entropy of the system, otherwise, has no relation with the tuning parameter K0

which is shown in input u1, figure 4.4 when α = 1. This is no surprise as the control action
acting on the entropy is entirely due to the heat flux.

The damping injection coefficient α is in charge of the asymptotic stability of the system
according to proposition 3; figure 4.2 shows the response of the system for different α
values. An increase of α produces a faster response on the dynamics of the system; as a
result, the control objective is reached faster. See, for example, the entropy, the volume and
the momentum of the system for α = 10. For this particular value, input u1, u2 in figures
4.4,4.5 with K0 = 0, show that as expected, inputs with faster initial response are needed
to guarantee a faster response of the closed-loop system.

The choice of α and K0 depends on the control requirements. If a faster response of the
closed-loop system is required, with no particular need of a low magnitude input, then a
high damping value should be selected.
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Figure 4.2. Simulation of the closed-loop system for different α values and with a fixed
K0 = 0.

m Mass of the system 5 Kg
q Relative position of the piston q(0) 0.2 m q∗ 0.6 m
p Momentum of the system p(0) 0 Kg m/s p∗ 0 Kg m/s
S Entropy of the system S(0) 10 J K−1 S∗ 30 J K−1

V Volume of the piston V (0) 0.01 m3 V ∗ 0.03 m3

P Presion of the system P (0) 254 N/m
ν Friction coefficient 1 Kg/s
v Velocity of the system v(0) 0 m/s
A Area of the piston 0.05 m2

T Temperature of the system T (0) 306 K
r Ideal gas constant 8.3 J K−1 mol−1

c Constant temperature model 500 K
N Number of moles 0.001 mol

Table 4.1. Variables and parameters of the gas-piston system with initial conditions.
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Figure 4.3. Simulation of the closed-loop system for differentK0 values and with a damping
injection constant of α = 1.
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Figure 4.4. Control input action u1(t) design for the gas-piston system for different K0, α
values.
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Figure 4.5. Control input action u2(t) design for the gas-piston system for different K0, α
values.



Chapter 5

CONCLUSION

This thesis considers the problem of passivity based control (PBC) of irreversible port
Hamiltonian systems (IPHS) which are an extension of the port Hamiltonian system (PHS)
framework for irreversible thermodynamic. The control design is based on the classical
PBC techniques for PHS such as control by interconnection (Cbi) and damping injection
(Di). To this purpose, an IPHS is controlled with a double control loop; the first loop is
in charge of the stability of the system by shaping the Hamiltonian energy function with
an energy shaping control design approach, where the Cbi is done by considering an IPHS
controller. In order to achieve this, the existence of Casimir functions, which relate the
states of the system and the controller, are fundamental. The result is a set of partial
differential equations whose solutions are the Casimir functions of the system. The energy
shaping controller then shapes the Hamiltonian energy of the closed-loop into a desired
energy function.

The second control loop guarantees the asymptotic stability of the system, through a
damping injection control action.

The result is then a controller which achieves asymptotic stability at a desired equilibrium
dynamic in the closed-loop system.

A proposition that summarize the Cbi-Di control for IPHS is given. Furthermore, a
Cbi-Di controller is obtained for a CSTR system as an illustrative example and the corre-
spondence of the controller with previously reported results using IDA-PBC is established.

A controller for a gas-piston system, which is a complex coupled mechanic-themodynamic
process, is synthesized and simulations for the system show the performance of the controller.
The closed-loop system is asymptotically stable and numerical simulations illustrate how
the entropy of the system, which represents the irreversibility of the process, follows the
reference with a tuning parameter which determines the speed of the closed-loop system
response.

5.1 Future Work

As the present thesis extends the Cbi-Di control for irreversible-reversible processes, an im-
portant application for future work is related to the control of micro-mechanical systems
with hysteresis, where piezoelectric systems are of particular interest and others coupled
mechanical-thermodynamical systems. Also, it would be interesting to compare the perfor-
mance of the Cbi-Di controllers with other frameworks for control of irreversible-reversible
systems.

Numerical simulations for the CSTR systems are also important, with the application
of the method, for example, to a Van Der Vusse Reactor ([34], [24]).

40
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[34] Héctor Ramı́rez, Daniel Sbarbaro, and Romeo Ortega. On the control of non-linear
processes: An ida-pbc approch. Journal of Process Control, 19:405–414, 03 2009.

[35] Arjan van der Schaft. Port-controlled hamiltonian systems: Towards a theory for control
and design of nonlinear physical systems. Journal of The Society of Instrument and Control
Engineers, 39, 02 2000.

[36] Arjan van der Schaft. Port-Hamiltonian systems: network modeling and control of non-
linear physical systems, pages 127–167. Springer, 2004.

[37] Arjan van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control. Springer
Publishing Company, Incorporated, 3rd edition, 2016.

[38] Arjan van der Schaft and Dimitri Jeltsema. Port-Hamiltonian systems theory: An
introductory overview. Foundations and Trends R© in Systems and Control, 1(2-3):173–378,
2014.

[39] B.Erik Ydstie. Passivity based control via the second law. Computers & Chemical
Engineering, 26(7):1037 – 1048, 2002.


