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Introduction

A currently open question is whether the Higgs boson particle is truly elementary (i.e. pointlike),
down to distance scales much shorter than the Electroweak scale, or if, on the contrary, it is a
composite bound state of more fundamental degrees of freedom, whose physics should be revealed
at energies not far above the weak scale. In either case the discovery of this scalar particle was
truly remarkable. If it turns out to be elementary, it would be the first and only known example
of this kind in nature. On the other hand, if it turns out that the Higgs boson is a composite state
arising from some underlying strong dynamics, we would be in a situation that also presents new
characteristics compared to other known composite scalars. We elaborate on this last possibility in
the present thesis.

This thesis aims to be a pedagogical and self-contained theoretical review of some of the most
relevant aspects of general composite Higgs theories. It begins with section 1 reviewing the basics of
the Standard Model. Section 2 reviews some important characteristic of the Higgs boson: its most
important decay and production channels, as well as its radiative corrections. Section 3 explains
the hierarchy problem, and presents the best-known approaches that address this problem. In
section 4 we explain the composite sector of a composite Higgs theory and proceed to present
the CCWZ prescription, a fundamental tool when it comes to understand the low-energy and
confinement regime of a strong dynamic. Section 5 present the elementary and composite sectors.
In section 6 we introduce extra spin-0 and spin-1 resonances. Finally, in section 7 we introduce
the phenomenology of a particular composite Higgs model analyzed in Ref. [123] and in which the
author of the thesis was part.
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1 The Standard Model of Particle Physics

1.1 Quantum Field Theories

Modern particle physics is described in terms of quantum field theories (QFTs). A quantum field
theory constitutes a mathematical and conceptual framework that combines three of the major
themes of moder physics: classical fields, special relativity, and quantum mechanics, in addition to
some set of fundamental assumptions. The fundamental entities of these theories are quantum fields.
A quantum field is some data on spacetime [1]; it is a fundamental property of space. Technically,
a typical example of a classical (i.e. non-quantized) field is a section

φ : M → S (1.1)

in a vector bundle S over the spacetime manifold M . On the other hand, an example of a quantum
field is a linear map from the space of smooth sections of some vector bundle over spacetime to
operators. For each particle species, there will be a corresponding quantum field.

1.1.1 Lagrangians

The formulation of a (four-dimensional) quantum field theory begins with its description at the
level of a classical field theory, which eventually we proceed to quantize in order to obtain the
corresponding quantum field theory. The description of the field can be formulated in terms of a
Lagrangian or Hamiltonian formalism. In the Lagrangian formalism, the basic laws of a system
consisting of a collection of local fields φi are encoded in the action S, the time integral of the
Lagrangian function1 L of the system, which in turn can be written as the spatial integral of a
Lagrangian density2 L, namely

S :=

∫
L dt =

∫
L[φi, ∂µφi] d

4x (1.2)

where d4x is the integration measure in four-dimensional Minkowski space and i runs from 1 to the
number of fields. Now, the dynamics for such a Lagrangian system is determined by the principle
of least action, which states that the system evolves from one initial configuration at t1 to another
final configuration at t2 along the path in its phase space for which S has a minimum and δS = 0
holds. It follows from this principle that the evolution of the system is governed by the so-called
Euler-Lagrange equations

∂L
∂φi
− ∂µ

(
∂L

∂(∂µφi)

)
= 0 (1.3)

and for which there will be one such field equation for each field presented in the system. From the
point of view of the Hamiltonian formalism, the object of interest is the Hamiltonian function H,
the spatial integral of a Hamiltonian density H[φi, πi] which in turn is a function of the fields φi

1We will use a calligraphic script for densities and an italic script for integrated quantities.
2The word “density” is almost always omitted.
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and their conjugate momenta density3

πi :=
∂L[φj , φ̇j ]

∂φ̇i
(1.4)

where φ̇i[φj , πj ] = ∂tφi and it is implicitly defined by 1.4. The Hamiltonian density is formally
defined as the Legendre transform of the Lagrangian density

H :=

∫
H d3x =

∫ (
πiφ̇i[φj , πj ]− L[φi, φ̇i[φj , πj ]]

)
d3x (1.5)

The evolution of the system is then governed by the Hamiltonian field equations

φ̇i =
∂H
∂πi

and π̇i = −∂H
∂φi

(1.6)

The Lagrangian formulation of a field theory is, however, particularly suited to relativistic dynamics.
The simplest reason for this is that Lagrangians and all other expressions are explicitly Lorentz
invariant. In general, we require the following properties hold for the Lagrangian:

1. It is a function of the fields and their derivatives only, so as to ensure translational invariance.

2. It depends on the fields taken at one spacetime point xµ only, leading to a local field theory.

3. It is real, so that the total probability is conserved.

4. It is analytic function in the fields. This is not a general requirement, but is common to all
field theories that are solved via perturbation theory. In all of these, we expand around a
minimum, and this expansion mean that we consider a Lagrangian that is a polynomial in
the fields.

5. It is invariant under the Poincaré group, the external symmetry of the theory.

6. It is invariant under certain internal symmetry groups.

We impose two additional requirements:

7. Naturalness4: every term in the Lagrangian that is not forbidden by a symmetry should
appear.

8. Renormalizability: a renormalizable Lagrangian contains only terms that are of dimension
less than or equal to four in the fields and their derivatives.

The requirement of renormalizability ensures that the Lagrangian contains at most two ∂µ opera-
tions, and leads to classical equations of motion that are not higher than second order derivatives.
If the full theory of the nature is describe by a QFT, its Lagrangian should indeed be renormal-
izable. The theories that we will consider in this thesis and, in particular, the SM are, however,
only low energy effective field theories, valid up to some energy scale Λ. Therefore, we must in-
clude also non-renormalizable terms which have coefficients with inverse mass dimensions 1/Λn

with n = 1, 2, . . ..

3The fields φi and conjugates πi form an infinite dimensional phase space, because fields have an infinite number
of degrees of freedom.

4Do not confuse this concept with the one presented in (3.2.4).
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1.1.2 Symmetries

The central role of symmetry was a primary lesson of the physics of the first half of the 20th
century [2]. Symmetries in QFT have a strong predictive, or explanatory, power. The main
consequences of the various types if symmetries are summarized in Table (1.1).

Table 1.1: Symmetries and consequences

Type of symmetries Consequences

Spacetime
Conservation of energy, momentum,

and angular momentum

Global (exact) Conserved charges

Global (spon. broken) Massless scalars

Global (spon. & expli. broken) Massive scalars

Local (exact) Interactions, massless spin-1 mediators

Local (spon. broken) Interactions, massive spin-1 mediators

Discrete Selection Rules

In the Standard Model, only local symmetries are imposed. Similarly, in most of the extensions
of the Standard Model, only local and discrete symmetries are imposed. While it is possible,
in principle, to impose also global continuous symmetries, this is rarely done in current modern
buildings.

1.1.3 Gauge Theories

A gauge theory is a field theory involving a local internal symmetry group, known as gauge groups,
under which the Lagrangian of the theory is invariant. Many interesting theories in physics, like
the Standard Model of elementary particles, are gauge theories. The main idea underlying a gauge
theory is that symmetry generate interaction. For each group generator of the gauge group will
necessarily arise a corresponding vector field called a gauge field. Gauge fields are included in the
Lagrangian to ensure its invariance under the gauge transformations (called gauge invariance).
When such a theory is quantized, these quanta of the gauge fields are called gauge bosons. If the
gauge group is non-commutative, then the gauge theory is referred to as non-abelian gauge theory.

The specific kind of Lie group in a gauge theory (its dimension, whether it is abelian or not,
whether it is simple or splits as a product of several factors, and so on) is reflected in interesting
ways in the physics. For example, in the case of the Standard Model (see 1.7), it turns out that:

1. The fact that there are 8 gluons, 3 weak gauge bosons and 1 photon is related to the dimensions
of the Lie groups SU(3)C and SU(2)L ×U(1)Y.

2. The fact that gluons interact directly with each other while photons do not is related to the
fact that SU(3)C is non-abelian while U(1)EM is abelian.

3. The fact that the strong, weak and electromagnetic interactions have different strengths
(coupling constants) is related to the product structure of the gauge group 1.7 (GUTs built
on simple Lie groups like SU(5) have only a single coupling constant).
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1.2 The Standard Model

1.2.1 Introduction

The Standard Model (SM) of particle physics is a gauge quantum field theory describing three of the
four known fundamental interactions in the nature, namely, the electromagnetic, weak and strong
interactions, as well as classifying all known elementary particles. An array of experimental results
confirm every feature of the theory to a high degree of precision, at the level of testing higher order
perturbation theory.

The local internal symmetry group of the Standard Model is

GSM := SU(3)C × SU(2)L ×U(1)Y (1.7)

which combines the SU(2)L × U(1)Y Glashow-Salam-Weinberg theory of electroweak interactions,
together with the SU(3)C theory of Quantum Chromodynamics describing strong interactions.

1.2.2 Fields and Notation

Fermions (quarks and leptons) in the SM are simple structureless (as far as we know) spin-1/2
particles. They are modelled by Dirac spinors ψn with four components n = 1, . . . , 4, which are
functions of the spacetime coordinates xµ = (t, x, y, z). Free Dirac fermions obey the Dirac equation

(i/∂ −m)ψ = 0 (1.8)

Let i and α be the flavour/generation and color indices respectively, and L,R chiral indices; then
the fermionic content of the Standard Model can be labelled as follows:

1. Left-handed lepton doublets:
LiL ∈ (1,2,−1/2) (1.9)

2. Right-handed lepton singlets:

eiR ∈ (1,1,−1), νiR ∈ (1,1, 0) (1.10)

3. Left-handed quark doublets:
QαiL ∈ (3,2, 1/6) (1.11)

4. Right-handed quark singlets:

uαiR ∈ (3,1, 2/3), dαiR ∈ (3,1,−1/3) (1.12)

Massless gauge boson are spin-1 particles with two polarization states (left-handed and right-
handed). They are modelled by a four-component vector potential Aµ(x) with a Lorentz index
µ = 0, 1, 2, 3. Although there is only one type of photon mediating electromagnetic interactions, in
general there will be n = dim(G) types of gauge bosons mediating the a corresponding gauge inter-
action with gauge group G. Massless gauge bosons are physical degrees of freedom and therefore
must carry energy and momentum themselves; to describe these physical features, and following
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the successful theory of Maxwell on electromagnetism, we introduce in a similar way the a kinetic
energy term

L = −1

4
F aµνF

aµν (1.13)

Conditions must be imposed on every Aaµ(x) to select only the physical degrees of freedom, as
different Aaµ(x) can give rise to the same physics. The massless gauge bosons presented in the
Standard Model are:

5. Gluons GAµ with field strength tensor:

GAµν = ∂µG
A
ν − ∂νGAµ − gsfABCGBµGCµ (1.14)

where A = 1, . . . , 8 and fABC are the SU(3)C structure constants.

6. W bosons W I
µ with field strength tensor:

W I
µν = ∂µW

I
ν − ∂νW I

µ − gεIJKW J
µW

K
ν (1.15)

where I = 1, 2, 3 and εIJK is the is the totally antisymmetric symbol.

7. B boson Bµ with field strength tensor:

Bµν = ∂µBν − ∂νBµ (1.16)

Finally, scalar bosons are spin-0 particles modelled by Klein-Gordon equation

(�+m2)φ = 0 (1.17)

As far as we know, the Higgs Boson is the only fundamental scalar in the Standard Model:

8. Higgs doublet:

H =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
∈ (1,2, 1/2) (1.18)

9. Conjugate Higgs doublet:
H̃ = iσ2H∗ ∈ (1,2,−1/2) (1.19)

In each of the previous cases, the first two numbers in bold correspond to the dimension of
the multiplets under SU(3)C × SU(2)L while the third number corresponds to their hypercharge.
The electric charge Q, the third component of weak isospin I3 and the hypercharge Y satisfies the
so-called Gell-Mann-Nishijima formula

Q = I3 + Y (1.20)

Finally, the Standard Model contains 26 free parameters that have to be input by hand. There are
the Yukawa couplings yi of the 12 fermions, the three gauge couplings g, g′ and gs, the 2 parameters
describing the Higgs potential, µ and λ, the 8 mixing angles of the PMNS and CKM matrices, and
the strong CP phase θ.
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1.3 Strong Interaction

The existence of certain similarities between QCD and CH models makes it worthwhile to review
some relevant aspects of the first theory.

1.3.1 Basic Structure

The strong interaction is described by Quantum Chromodynamics (QCD), which is a non-abelian
gauge theory based on a local symmetry SU(3)C. Each quark flavour constitutes a color triplet
in the fundamental representation of SU(3)C. All other particles are color singlets and do not
experience strong interactions. The corresponding gauge fields (i.e. the gluons) transform under
the complexified adjoint representation of the real Lie algebra su(3), namely

sl(3;C) ∼= C⊗ su(3) (1.21)

while the gauge invariance ensures that they are massless. The QCD Lagrangian may be written
as

LQCD = −1

4
GAµνG

Aµν +
∑
j

Q̄j(i /D −mj)Qj (1.22)

= −1

4
GAµνG

Aµν +
∑
j

∑
α,β

Q̄αj (iγµ(δαβ∂µ + igst
A
αβG

A
µ )−mjδαβ)Qβj (1.23)

where j ∈ {u, d, c, s, t, b} is a flavour index and α, β ∈ {r, g, b} are color indices. Here gs is the
strong coupling constant, tA are the generators of SU(3)C related to the Gell-Mann matrices by
tA = λA/2, and the structure constants fABC are defined by

[tA, tB] = ifABCt
C (1.24)

The gluon field tensor GAµν is given by Eq. 1.14 while the covariant derivative is defined by

Dµ = ∂µ + igsGµ (1.25)

where

Gµ =
8∑

A=1

GAµ (x)tA (1.26)

is the so-called gluon potential matrix.

1.3.2 Asymptotic Freedom

The strong coupling constant gs is not quite constant, but it depends on the characteristic energy
scale of the processes. From the renormalization group equation, the strong structure constant

αs :=
g2
s

4π
(1.27)
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can be shown to have the following 1-loop scale-dependence:

αs(Q
2) ' 4π

β0 ln(Q2/Λ2
QCD)

(1.28)

as a function of the momentum transfer scale Q2. Here β0 = 11 − 2nf/3 with nf the number of
active quark flavor. Moreover, one of the striking properties of QCD is asymptotic freedom [3, 4]
which states that

the strong coupling αs increases with increasing distance or decreasing scale and de-
creases with decreasing distance or increasing scale.

This strange behavior of the strong coupling has been verified in high-energy experiments to very
high precision [5]. Indeed, from 1.28

lim
Q2→∞

αs(Q
2) = 0 (1.29)

hence the term asymptotic freedom. The integration constant

ΛQCD ' 250 MeV (1.30)

is an intrinsic scale of QCD, known as confinement scale. This parameter establish the scale at
which non-perturbative effects take over. For energy scales much above ΛQCD the theory is weakly
coupled (asymptotic freedom). On the other hand, for small scales (i.e. for Q2 → Λ2

QCD) the run-

ning coupling diverges5 and the theory is strongly coupled (confinement), signalling the breakdown
of perturbation theory and any ideas of treating quarks as quasi-free particles. Consequently, a
phase transition must occur when energy scale varies from higher to lower one.

The strong interaction scale ΛQCD allows us to introduce the notion of light quarks, the ones
having masses much smaller than the strong scale, and heavy quarks, the ones having masses much
larger than strong scale. The up and down flavours are qualified for light quarks, whereas the
charm, bottom, and top may be regarded as heavy. The strange quark is an exception.

1.3.3 Chiral Symmetry Breaking

Let us focus on the massless quark term that could be identified from the Lagrangian 1.22, namely

LQ[Qj ] =
∑
j

Q̄ji /DQj (1.31)

Any quark field Qj can be decompose as a linear combination of its chiral components: Q =
QjL +QjR. If we plug this decomposition into the QCD Lagrangian 1.31, then we can write

LQ[Qj ] = LQ[QjL] + LQ[QjR] (1.32)

5Because of this, ΛQCD is also called the Landau pole of QCD ; other terms found in the literature are the strong
interactions scale, QCD scale or hadronic mass scale.
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and the QCD interaction does not couple the left and right-handed quarks. On the other hand, as
an example, let us consider just up and down quark flavours. Still under the massless assumption,
we can write the quark term as

LQ[u, d] =
∑
i=u,d

Q̄jLi /DQjL +
∑
i=u,d

Q̄jRi /DQjR (1.33)

=
(
ūL d̄L

)
i /D

(
uL
dL

)
+
(
ūR d̄R

)
i /D

(
uR
dR

)
(1.34)

and so the up and down quarks may be regarded as two independent states of a new same ob-
ject, conveniently called left or right chiral doublet. The Lagrangian 1.33 is invariant under the
independent rotations of left and right doublets in their respective spaces. More explicitly,(

uL,R
dL,R

)
7→ UL,R

(
uL,R
dL,R

)
(1.35)

where UL,R ∈ SU(2)L,R. We then say that the massless quark part 1.33 of the QCD Lagrangian
has a (global) chiral symmetry

Gχ = SU(2)L × SU(2)R (1.36)

It turns out that non-perturbative strong effects induce the presence of quark vacuum condensates

〈Ω|ūαLu
β
R|Ω〉QCD = 〈Ω|d̄αLd

β
R|Ω〉QCD ∼ −4πf3

πδαβ (1.37)

generating dynamical quark masses, even if they had zero mass in the original QCD Lagrangian.
The presence of these condensates breaks spontaneously the chiral symmetry 1.36 down to the
so-called isospin subgroup6

SU(2)L+R (1.38)

which corresponds to rotations UL = UR. In fact, this is the symmetry realized in the spectrum;
it is the observed isospin symmetry. In Eq. 1.37, |Ω〉 is the ground state of QCD whose symme-
try group is 1.38, and fπ ' 93 MeV is the so-called pion decay constant. Note that as long as
mu = md > 0 in 1.22, the isospin symmetry is exactly conserved. According to the Goldstone theo-
rem, this spontaneous breaking must leads to the appearance of massless particles in the spectrum
of physical states - the Goldstone bosons - and taking place at some chiral symmetry breaking scale
λχ. Indeed, they can be identified with the triplet of pions7 π± and π0 in the limit mu,md → 0,
corresponding to pseudo-scalar mesons transforming in 3 of SU(2)L+R.

Finally, the actual small but non-zero difference between quark masses (i.e. mu 6= md > 0) also
break the chiral symmetry explicitly as well, and pions become pseudo-Nambu-Goldstone bosons
(pNGBs), acquiring the small masses that we actually measure. In general, if N denotes the number
of flavours presented in 1.22, then note that in the limit of equal mass quarks it possesses a global
SU(N)L+R isospin symmetry, and in the limit of massless quarks an SU(N)L × SU(N)R chiral
symmetry is present.

6Also called the vector subgroup.
7According to the Goldstone theorem there is one massless boson for each generator of a broken continuous

symmetry. Since SU(2)L × SU(2)R → SU(2)L+R, then (3 + 3)− 3 = 3; hence the three pions.
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1.3.4 Color Confinement

One of the prominent features of QCD at low-energy is color-confinement, which states that:

any strongly interacting system at zero temperature and density must be a color singlet
at distance scales larger than 1/ΛQCD.

The traditional physical interpretation of it consists in that at distances of order

1

ΛQCD
∼ O(10−15 m) (1.39)

interaction of quarks becomes very strong, and as a consequence isolated free quarks cannot exist in
nature (quark confinement). The color confinement of QCD is a theoretical conjecture consistent
with experimental facts; it remains as one of the most difficult problems in theoretical particle
physics [6].

1.3.5 QCD Phase Diagram

In summary, the essential features of hadron structure are color confinement and spontaneous chiral
symmetry breaking. The former binds colored quarks interacting through coloured gluons to color-
neutral hadrons; the latter brings in pions as Goldstone bosons and gives the essentially massless
quarks in the QCD Lagrangian a dynamically generated effective mass.

Nevertheless, both features will come to an end when hadronic matter is brought to sufficiently
high temperatures T or baryon chemical potential8 µB. Indeed, putting both concepts together,
we obtain a speculative QCD phase diagram as illustrated in Fig. (1.1); a central goal of heavy
ion collision experiments is to map this phase diagram of as a function of both thermodynamic
parameters [7–9]. In what follows, we proceed to comments a little about the different regions
present in the diagram:

i. For low temperature and low net baryon density, we have hadronic matter as confined phase.

ii. For high temperature and high baryon chemical potential, deconfinement sets in and the
chiral symmetry is restored, resulting in a phase consisting of unbound colored quarks and
gluons, called quark-gluon plasma (QGP). In heavy ion collision, reducing the beam energy
increases the µB of the QGP produced [10, 11] (principally because lower energy collisions
make less entropy but also because they deposit more of their baryon number in the plasma)
but it also reduces the temperatures achieved.

iii. Along the baryon chemical potential axis, and for low temperature, we are compressing cold
nuclear matter and we can reach a region of color deconfinement alongside a state of broken
chiral symmetry [12], i.e. quarkyonic matter [13–15], and whose formation requires only weak
attractive interactions. In such a scenario, color deconfinement would result in a plasma
of massive, unbound, and “dressed” quarks; the only role of gluons in this state would be
to dynamically generate the effective quark mass, maintaining spontaneous chiral symmetry

8The discussion is sometimes also given in terms of Net Baryon Density, i.e. the density of baryons minus the
density of antibaryons.
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Figure 1.1: A speculative phase diagram for strongly interacting matter. The QCD vacuum in
which we live, which has the familiar hadrons as its excitations, is but one phase of QCD, and
far from the simplest one at that. Because of asymptotic freedom, the high temperature and high
baryon density phases of QCD are more simply and more appropriately described in terms of quarks
and gluons as degrees of freedom, rather than hadrons [7].

breaking. They can moreover also combine to coloured bosonic diquarks. Deconfinement at
high density is believed to happen in the interior of neutron stars, where nuclear matter is
compressed under the star’s own weight to up to 10 times the normal nuclear density.

iv. At lower temperatures or higher densities, the above diquarks could condense to form a color
superconductor [16–18]. Conversely, heating such a superconductor would “evaporate” or
“melt” the condensate, just as it does for a normal superconductor, and we recover either the
massive quark phase, or the conventional QGP with restored chiral symmetry. The transition
between this two phases is likely first order.

v. Along the temperature axis, at zero µB, the phase diagram features a crossover9 from QGP

9Roughly speaking, crossover is a generic term to describe a smooth transition between two separate phases of
matter, upon changing some (thermal/non-thermal) parametres. The key point is that in a crossover, no canonical
“phase transition” occurs, although there is a drastic change in the phase of the system. Phase transitions are
classically defined à la Ehrenfest (discontinuities in the derivatives of the Free energy functional) or à la Landau
(symmetry-breaking mechanisms). A crossover is thus not associated with a change of symmetry, or a discontinuity
in the free energy functional, but typically it occurs in a region of the phase diagram, rather than a singular point.
Microscopically, in a crossover, the ground-state of the system changes radically (so that any perturbative expansion
around the original ground-state will fail to capture the new ground-state), but in a very smooth manner; i.e., without
any discontinuity in the thermodynamic observables (which is the hallmark of phase transitions).
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to ordinary hadronic matter as a function of decreasing T [19–21]. Increasing µB corresponds
to doping the QGP with an excess of quarks over antiquarks, and it is an open question
whether the crossover becomes a sharp first order phase transition beyond some critical point
(CEP) [9, 22]. By increasing the temperature, the surround constituent quark cloud10 melts
away and at som critical temperature Tc, it has “evaporated”, leaving pointlike quarks and
gluons. Here, Tc is known as the critical temperature transition and it is now well established
that the QCD transition is just a rapid crossover at [23–25]

Tc ' 155 MeV (1.40)

In this region there remains only one transition, the simultaneous onset of color deconfinement
and chiral symmetry restoration. A priori there is no reason for both the (de)confinement and
chiral symmetry restoration scales to be the same [26]. However, lattice studies11 at µB = 0
have shown that there deconfinement and chiral symmetry restoration in fact coincide [27].
Deconfinement by heating up nuclear matter is achieved by colliding heavy nuclei at enormous
energies, for example at the Relativistic Heavy Ion Collider (RHIC), or at the Large Hadron
Collider (LHC).

It turns out that the picture presented by lattice QCD for T ≥ 0 and µB = 0 cannot be
easily extended to the case of nonzero µB. In these cases, lattice calculations become extremely
difficult [28] mainly because standard Monte Carlo simulations can only be applied to the case where
either µB = 0 or it is purely imaginary. Simulations with µB 6= 0 are hindered by the sign problem,
see, for example, [28], though some mathematical extensions of lattice techniques [29–31] can probe
this region12. Also, the scaning of the diagram (1.1) is complicated from a theoretical point of view
due to the absence of first-principles theoretical calculations providing reliable guidance, as to the
whether there is a critical point in the phase diagram of QCD, or its location if it does exist [7,32]
(model calculations suggest the existence of a critical point, but disagree wildly on its location in
the (µB, T ) plane).

1.4 Electroweak Interaction

1.4.1 Basic Structure

The electroweak theory is based on the gauge group SU(2)L × U(1)Y. The Lagrangian describing
the electroweak interactions is

LEW = −1

4
W I
µνW

Iµν − 1

4
BµνB

µν (1.41)

+ (DµH)†(DµH)− µ2(H†H)− λ(H†H)2

+ L̄jLi /DLjL + ējRi /DejR + Q̄jLi /DQjL + ūjRi /DujR + d̄jRi /DdjR

+ (yeijL̄iLHejR + ydijQ̄iLHdjR + yuijQ̄iLH̃ujR + h.c.)

10A constituent quark is understood as a current quark surrounded by a cloud of virtual quarks and virtual gluons
excited from the “sea”. This cloud underlies the so-called constituent quark mass. In this way, hadrons consist of
“glued” constituent quarks.

11Lattice QCD is a discretized version of QCD in the Euclidean space time which reproduces QCD when the lattice
spacing goes to zero, that is in the continuum limit.

12Schwinger-Dyson equation techniques can also be employed to explore all region of the phase space [33,34]
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where the matrices ye,d,uij describe the Yukawa couplings between the single Higgs doublet H, and
the various flavours i and j of quarks and leptons. In the above, right-handed neutrinos could
be added, but since they are not necessary for the consistency of the theory, and it is not certain
whether they exist or are part of the low-energy theory, we have not added them to the picture.
The interactions are encoded in the covariant derivative

Dµ = ∂µ + ig
σI

2
W I
µ + ig′Y Bµ (1.42)

which for every particular case are given by

DµQiL =

(
∂µ + ig

σI

2
W I
µ + ig′

1

6
Bµ

)
QiL DµLiL =

(
∂µ + ig

σI

2
W I
µ − ig′

1

2
Bµ

)
LiL

DµuiR =

(
∂µ + ig′

2

3
Bµ

)
uiR DµeiR = (∂µ − ig′Bµ)eiR

DµdiR =

(
∂µ − ig′

1

3
Bµ

)
diR DµH =

(
∂µ + ig

σI

2
W I
µ + ig′

1

2
Bµ

)
H

with g and g′ being the SU(2)L and U(1)Y gauge couplings, respectively. The SU(2)L generators
are Pauli spin matrices obey the usual relation

[σI , σJ ] = 2iεIJKσ
K (1.43)

The different transformations of the L and R fields (i.e. SU(2)L is a chiral symmetry) is the
origin of parity violation in the electroweak sector. This also forbids any bare mass terms for the
fermions.

1.4.2 The Electroweak Symmetry Breaking

Gauge invariance does not allow mass terms in the Lagrangian neither for the gauge bosons nor
for chiral fermions. However, massless gauge bosons are not acceptable for the weak interactions,
which are known to be short-ranged, so that the gauge invariance must be spontaneously broken.
The Standard Model incorporates the minimal mechanism for the spontaneous symmetry breaking
of the electroweak sector

SU(2)L ×U(1)Y

U(1)EM

(1.44)

through the so-called Higgs mechanism [35–37], and which preserves the renormalizability of the
gauge theory [38]. In order to achieve the EWSB, the lowest energy state (i.e. the vacuum of the
theory, and denoted by |Ω〉) must not respect the gauge symmetry. The breaking is triggered for
the choice µ2 < 0 in the Higgs sector

LHiggs = (DµH)†(DµH)− µ2(H†H)− λ(H†H)2 (1.45)
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which is clearly13 O(4) ∼ SU(2)L × SU(2)R invariant (see 1.18). The Higgs doublet then acquires
a non-zero vacuum expectation value (vev):

v := 〈Ω|H|Ω〉 ≡ constant (1.46)

which in turn is a function of the vev’s vi := 〈Ω|φi|Ω〉. The vev v can be determined by rewriting
the Higgs potential as

V (H)→ V (vi) =
1

2
µ2

(
4∑
i=1

v2
i

)
+

1

4
λ

(
4∑
i=1

v2
i

)2

(1.47)

and choosing the vi’s in such a way that V is minimized; this yield the condition

v2
1 + v2

2 + v2
3 + v2

4 = −µ
2

λ
(1.48)

This picks out a vacuum manifold of degenerate vacuum states (all of which have a vev equal to v),
isomorphic to S3 in four dimensions. Now, and without loss of generality, we can choice the neutral
component of the Higgs doublet with a non-zero vev; to be precise 〈Ω|φi|Ω〉 = 0 for i = 1, 2, 4 and
〈Ω|φ3|Ω〉 = v, so that

〈Ω|H|Ω〉 =
1√
2

(
0
v

)
(1.49)

and v given by v2 = −µ2/λ. This vacuum is still invariant under the SO(3) rotations of the first
three dimensions. This corresponds to spontaneous breaking of symmetry from SO(4) to SO(3),
analogue of the isospin group. While the generators T 1, T 2, and T 3 − Y/2 are spontaneously
broken, the generator T 3 +Y/2 is not, so the U(1)EM of electromagnetism is not broken. Thus, the
electroweak SU(2)L × U(1)Y group is spontaneously broken to the U(1)EM subgroup14. We then
redefined the neutral component by φ0 = (h+ v)/

√
2, such that the physical field h (i.e. the Higgs

field) has a vanishing vev and positive mass squared. The Lagrangian of the Higgs sector expanded
around a new minimum U(1)EM describes three massless Nambu-Goldstone bosons (NGBs) which
are “eaten” as longitudinal component to form three massive vector bosons, W± and Z, and a
massless vector boson γ, namely

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
,

(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
(1.50)

plus one massive mode with mass m2
h = 2λv2 = −2µ2, the Higgs boson. The two couplings g, g′

can be expressed by the weak angle θW and the electromagnetic charge e as

g =
e

sin θW
, g′ =

e

cos θW
(1.51)

Remarkably, the electric coupling is smaller than the weak one: weak interactions are weak because
the mass of mW implies a short range, not because the coupling is small. The symmetry breaking
thus results in masses for vector fields

mW =
1

2
gv and mZ =

1

2
v
√
g2 + g′2 (1.52)

13Here, ∼ stands for locally isomorphic.
14Note that the U(1)EM would be broken as well if the φ+ field were also allowed to obtain a vev.
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and for fermions

mf =
1√
2
yfv (1.53)

1.5 Effective Field Theories

1.5.1 Effective Lagrangians

The Standard Model of the strong and electroweak interactions has been successfully tested to a
great precision. For example, the Electroweak Precision Tests (EWPTs) [39] performed in the last
few decades have achieved great success in establishing the model 1.41 as the correct description
of electroweak physics. Nevertheless, it is commonly accepted that the model does not have the
trademark of a really fundamental theory which allows predictions up to arbitrary high energy
scales, but it corresponds to a low energy description of a more fundamental theory just applicable
up to energies not exceeding a certain scale ΛSM above the EW scale. This perspective defines
the SM as an effective field theory15 (EFT), i.e. a theory valid at energies below some scale at
which new degrees of freedom or other phenomena might manifest themselves. The basic premise
of effective theories is that

the dynamics at low energies (or large distances) does not depend on the details of the
dynamics at high energies (or short distances). As a result, low energy physics can
be described using an effective Lagrangian that contains only a few degrees of freedom,
ignoring additional degrees of freedom present at higher energies.16

An EFT allows to consider a quantum field theory with a fundamental energy scale Λ at some
energies E much smaller than Λ, so that all observables will be expanded in powers of E/Λ what
allows to truncate higher energy contributions. The idea of EFTs are implicit in all descriptions of
physical phenomena. In particular, they are relevant in CH models because allow to systematically
investigate TeV-scale models without knowing the underlying high energy dynamics. Also, a key
observation in favour of the EFT approach is that the relevant effective operators are actually much
fewer than the vast possibilities of physics beyond the SM. The reduction to the Standard Model
at low energies proceeds via decoupling of heavy particles with masses of order ΛSM or larger; such
a decoupling at the perturbative level is described by the Appelquist-Carazzone theorem. The
natural criterion on whether an EFT description collapses or not is to check its unitarity. This
claim bases on the fact that EFTs does not describe all of the fundamental degrees of freedom
of the underlying theory. When energy is higher than the characteristic scale of the EFT, some
new degrees of freedoms will be excited consequently the unitarity is lost. Fermi’s theory of weak
interaction is a well known example.

Effective field theories are used in two distinct ways, namely the top-down approach and bottom-
up approach. In the former case, the high energy theory is well understood, but we find it useful to
have a simpler theory to do low energy physics. We integrate out heavier particles and match onto

15See, e.g. [40–42] for detailed reviews on EFTs.
16Naturalness, from this perspective, is the assertion that features of this effective field theory should not be

extremely sensitive to the structure of the underlying theory.
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a low energy theory. This procedure yields new operators and new low energy couplings. More
specifically, we expand the full Lagrangian as a sum of terms of decreasing relevance

Lhigh
IR' Llow =

∑
L(n)
low (1.54)

where the sum in n is an expansion in decreasing relevance. The Lagrangians Lhigh and Llow will
agree in the infrared (IR), but will differ in the ultraviolet (UV), and the only remnants of the
high-energy dynamics are in the low-energy couplings and in the symmetries of the EFT. The
desired precision tells us when to stop, i.e. how far we go with the sum on n. In the latter
case, the underlying theory is unknown and we construct the EFT without reference to any other
theory. Even if the underlying theory is known, we can also consider constructing the EFT from
the bottom-up if the matching is difficult, for example if the matching would have to be non-
perturbative in a coupling and hence is not possible analytically. Most of CH models are almost
completely indifferent to the way the theory looks in the far UV. They are work in a bottom-up
approach considering only composite resonances, but not the fields they are composed from. The
advantage of this approach is less “model-dependence” which allows us to investigate the general
idea of compositeness and its compatibility with current experimental data.

1.5.2 The Standard Model as an EFT

A search for new physics in the Higgs sector can either involve examination of specific models or
the use of effective field theories respecting the symmetries of the low energy physics. If the latter
approach is chosen and it is assume that the SM is a good approximation to physics at the weak
scale, then the Higgs properties and its deviations from the SM can be conveniently parametrized
and systematically studied by a bottom-up effective Lagrangian of the form

Leff = LEW +
∞∑
n=1

cn
Λn
On (1.55)

where LEW is given by 1.41 containing two- and four-dimensional operators only, On’s are (4 + n)-
dimensional operators containing only SM fields, cn’s stand for the corresponding Wilson Coeffi-
cients (dimensionless coupling constants containing all information about short-distance physics
above the scale Λ), and the series itself is an expansion in decreasing relevance with Λ an energy
scale of O(TeV). Here, the effective theory breaks down if the new physics contains physical states
much lighter than 1 TeV, since there would not be an energy scale that distinctly separates the
new physics from the SM; the dominant contributions of the new states can often be captured in
a few effective operators. The Lagrangian 1.55 is then used at energy scales much below Λ, where
the observed physics approximates the SM up to small corrections. While the higher dimensional
operators

∆Leff :=

∞∑
n=1

cn
Λn
On =

∞∑
n=1

L(n)
eff (1.56)

are generated at the new physics scale Λ, they are measured at the lower scale of the experiments.
Since we are interested in extensions of the SM, then 1.55 must satisfy the following requirements
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1. All effective operators L(n)
eff are GSM-invariant. This follows from requiring that the elec-

troweak breaking is indeed a phenomenon connected to the electroweak scale and not to Λ,
i.e. that for energies above the EW scale the complete Lagrangian is SU(2)×U(1)-symmetric.

2. The theory contains the assumption that no additional fields are present, such as coloured
scalars with masses O(MW ).

Once 1.55 is defined, the theoretical prediction for a given observable X is given by

Xth(cn) = XSM +
∑

cnXn (1.57)

where XSM is the SM prediction including loop corrections and Xn is the correction to X from the
operator On. After obtaining Xth, we can compare the theoretical predictions with the measured
value Xex of X and get constraints on the coefficients cn.

2 The SM Higgs Boson

2.1 Physics at the LHC

2.1.1 The Large Hadron Collider

The Large Hadron Collider (LHC) not only is the world’s largest and most powerful particle accel-
erator but it is also the world’s largest machine, consisting of a 27-kilometre ring of superconducting
magnets with a number of accelerating structures to boost the energy of the particles along the
way. The LHC is a proton-proton collider (although it also operates with collisions of proton on
nuclei, and nuclei on nuclei), located approximately 100 m underground and straddling the border
between France and Switzerland. The LHC occupies the tunnel formerly used for the LEP acceler-
ator in which electrons and positrons collided at center-of-mass energies up to 209 GeV. The LHC
contains 9593 magnets of different varieties and sizes which are used to direct the beams around
the accelerator. These include 1232 superconducting dipole magnets 15 m in length which bend the
beams, and 392 quadrupole magnets, each 5-7 metres long, which focus the beams, being capable
finally of producing magnetic fields of the order of 8.4 T at a current of 11.7 kA, and a maximum
proton beam energy of 7 TeV, leading to a maximum collision energy of 14 TeV. At full power,
the LHC will collide 2808 proton bunches or bunch trains, each approximately 30 cm long and
16 microns in diameter and containing 1.1 × 1011 protons, designed to reach a peak luminosity of
1034 cm−2s−1 or 10 nb−1s−1 and a billion proton-proton collisions per second. The spacing between
the bunches is 25 ns leading to collisions occurring every 25 ns (this is called the interbunch crossing
time); thus, at full luminosity there will be on average 25 interactions every beam crossing, most
of which will be relatively uninteresting.

2.1.2 Proton-Proton Collisions

Most of the particles of the SM have short lifetimes and cannot be found by themselves in nature.
This makes the study of these particles rather difficult. In order to more thoroughly understand
and study the particles of the SM, it is necessary to produce them artificially. This can be done
in one of several ways; however, the most common way is by colliding stable energetic particles
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together that have accessible energies greater than the rest mass of the particle of interest. The
available energy in a collision between two particles can be characterized by a Mandelstam variables
s (a Lorentz-invariant), given by

s := (p1 + p2)2 = (E1 + E2)2 − (~p 1 + ~p 2)2 (2.1)

where pi is the four-momentum of incoming particle i, Ei is its energy, and ~p i is its momentum
vector. The total energy available for physics experiments is maximized in the centre-of-momentum
frame (~p 1 = −~p 2), in which case the total centre-of-momentum energy is

ECoM =
√
s = E2 + E1 (2.2)

The LHC collides protons because they are relatively easy to obtain, their ability to achieve high
rates of collisions, and their minimal energy loss due to radiation when accelerated in a circle
(i.e. the LHC tunnel), compared to electrons. However, several additional issues do arise when
colliding protons. Protons are not fundamental particles, but a pretty sophisticated object. Over
the last half century, an understanding of the proton has developed in which it contains three
valence quarks embedded into a so-called sea, this last one defined as the collective and continuous
presence of virtual quark-antiquark pairs (referred as sea quarks) and gluons within the interior of
the proton; all of these particles -valence quarks, sea quarks and gluons- are generically referred
as partons. The existence of the sea is allowed and governed by the uncertainty principle, which
implies that they annihilate after a certain short period of time. The flavours of the three valence
quarks determine many of the characteristics of the proton, but the strong force and the sea of
antiquark-quark pairs are primarily responsible for its mass. Experimentally, this picture was estab-
lished based on a variety of probes, one of the most important being deep inelastic scattering (DIS).

Every parton carry a non-negligible amount of the proton momentum. The momentum distri-
bution functions fi(x,Q

2) of the partons within the proton are simply called Parton Distribution
Functions17 (PDFs) when the spin direction of the partons is not considered. They represent the
probability density of finding a parton i with longitudinal momentum fraction x (or equivalently,
with momentum p = xP ) inside a proton that carries a momentum P at a energy scale Q2. Parton
distribution functions are very important in proton-proton collisions, since calculating the cross
section for a specific hard parton process σ(pp→ FX) of two protons18 to produce a final state F
or our interest, is accomplished by summing over the sub-process cross sections convoluted in each
case with the parton distribution functions fi and fj , namely

σpp→FX =
∑
i,j

∫ 1

0

∫ 1

0
fi(x1, Q

2)fj(x2, Q
2)σij→F (x1P1, x2P2, Q

2) dx1dx2 (2.3)

where X is the inclusive scattering remnant, i, j are the possible initial state partons (gluon,
up quark, etc.), P1 and P2 are are the initial momenta of the protons, and σij→F is the cross
section for the specific process, derived as a function of initial state momenta and energy scale,
Q2. Consequently, the detailed knowledge of the PDFs for the proton is an essential component in
the calculation of the expected Higgs boson production rate at the LHC. Fortunately, the proton
PDFs are well known and the related uncertainties on the various Higgs production cross sections
are less than 10%.

17For an introduction to this topic, see for example [43].
18The discussion is generalizable to other hadrons.
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2.1.3 Luminosity

Two very important parameter characterizing the performance of a particle collider are the instan-
taneous luminosity and the integrated luminosity. The instantaneous luminosity L is the number
of particles passing each other per unit time through unit transverse area at the interaction point,
with typical units cm−2s−1. This value is a function of several beam parameters, such as the num-
ber of protons per bunch, the number of bunches, revolution frequency, as well as many other beam
specific characteristics. The reaction rate R is the number of scattering events per unit time for a
given process, and is given by19

R(s) =
dN

dt
(s) = σ(s)L (2.4)

where σ(s) is the total scattering cross section at squared CoM energy s. In the case of two colliding
beams like in the LHC, the beam density distribution is important in order to obtain an expression
for L. For the often fully justified Gaussian distributions, the luminosity is given by

L =
1

4π

N1N2

σxσy
kBfref (2.5)

where Ni is the number of particles per bunch, frev is the revolution frequency of the beams, kB
is the number of bunches, and σj are the standard deviations associated to the Gaussian profile
distributions of the beams.

The maximum luminosity, and therefore the instantaneous number of interactions per second,
is very important, but the final figure of merit is the so-called integrated luminosity. Over a period
of time ∆t = t2− t1, the number of events of interest for the given process is simply the integral of
the previous equation

N = σ

∫ t2

t1

L dt = σL (2.6)

where the cross section can be factored out of the integral as it is independent of time. The integral

L :=

∫ t2

t1

L dt (2.7)

is the integrated luminosity, with units of cm−2, though the use of pb−1 or fb−1 (inverse pico- or
femto-barns) is more common, with

1 b = 10−24 cm2 ' 2570.7 GeV−2 (2.8)

Note that the integral must be taken over the sensitive time, i.e. excluding possible dead time.
As we can see, the integrate luminosity is proportional to the total number of collisions collected.
Thus, for example, if a detector has accumulated 100 fb−1 of integrated luminosity, one expects to
find 100 events per femtobarn of cross-section within these data. The total data set obtained in
2010 at the LHC, for example, was 0.04 fb−1, compared to 5 fb−1 collected in 2011. Large integrated
luminosities correspond to large data sets, which allow for the study of rare processes.

19There will be another factor ε < 1 on the right-hand side, which represent the detection efficiency.
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2.2 The SM Higgs Boson

Since the discovery of the Higgs boson, it has been of utmost importance to perform a detailed
experimental investigation of its fundamental properties, a crucial requirement to establish the
Higgs mechanism as the basic way to generate the masses of the known particles. To this end, a
very precise prediction of the production cross sections and of the branching ratios for the main
decay channels is mandatory. The Higgs boson couplings to the fundamental particles are set by
their masses. This is a new type of interaction, very weak for ordinary particles, such as up and
down quarks, and electrons, but strong for heavy particles such as the W± and Z bosons and the top
quark. More precisely, the SM Higgs couplings to fundamental fermions are linearly proportional
to the fermion masses, whereas the couplings to bosons are proportional to the square of the boson
masses.

2.3 Higgs Decay Channels

In principle, the Higgs boson can decay to all SM particle. However, because of the proportionality
of the couplings to the mass of the particles involve ??, the largest branching ratios are to the more
massive particles.

(a) Difermion Decay. (b) Divector Decay. (c) Digluon Decay.

(d) Diphoton Decay.

Figure 2.1: Four relevant Higgs decay processes to be analyzed in this section.

2.3.1 Higgs Decay h→ ff̄

The transition amplitude M(h→ ff̄) of the lowest order process (2.2) is given by

−iM(h→ ff̄)(2π)4δ4(p1 − p2 − p3) = (2π)4δ4(p1 − p2 − p3)
[
ūs2(p2)

(
−i
mf

v

)
vs3(p3)

]
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so that
M(h→ ff̄) =

mf

v
ūs2(p2)vs3(p3) (2.9)

It follows that the average square transition amplitude is given by

〈|M(h→ ff̄)|2〉 =
∑
spin

∑
color

M∗(h→ ff̄)M(h→ ff̄)

= Nc

∑
spin

(
mf

mh
v̄s3(p3)us2(p2)

)(
mf

mh
ūs2(p2)vs3(p3)

)

= Nc

m2
f

m2
h

(∑
s2

ūs2(p2)us2(p2)

)
ji

(∑
s3

v̄s3(p3)vs3(p3)

)
ij

= Nc

m2
f

m2
h

Tr
[
(/p2

+mf )(/p3
−mf )

]
= Nc

4m2
f

m2
h

(
p2p3 −m2

f

)
(2.10)

where Nc is the number of colors: 1 for leptons and 3 for quarks.

Figure 2.2: Feynman diagram describing h→ f̄f at lowest order.

In the COM frame, we have

p1 = (mh, ~0 ), p2 = (Ef , ~p ) and p3 = (Ef ,−~p )

from where

mh = 2Ef and p2p3 −m2
f =

m2
h

2

(
1−

4m2
f

m2
h

)
and thus 2.10 reduces to

〈|M(h→ ff̄)|2〉 = Nc

2m2
fm

2
h

v2

(
1−

4m2
f

m2
h

)
(2.11)
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Finally, the partial decay width of the process is given by

Γ(h→ ff̄) =
1

8π

|~p |
m2
h

〈|M(h→ ff̄)|2〉

=
Nc

8π

m2
fmh

v2

(
1−

4m2
f

m2
h

)3/2

(2.12)

2.3.2 Higgs Decay h→ V V

The transition amplitude M(h→ V V ) of the lowest order process (2.3) is given by

−iM(h→ V V )(2π)4δ4(p1 − p2 − p3) = (2π)4δ4(p1 − p2 − p3)

[
ε∗µ(p2)

(
−i

2m2
V

v
gµν
)
ε∗ν(p3)

]
so that

M(h→ V V ) =
2m2

V

v
ε∗µ(p2)ε∗µ(p3) (2.13)

Figure 2.3: Feynman diagram describing h→ V V at lowest order.

It follows that the average square transition amplitude is given by

〈|M(h→ V V )|2〉 =
∑
spin

M∗(h→ V V )M(h→ V V )

=
∑
spin

(
2m2

V

v
εν(p2)εν(p3)

)(
2m2

V

v
ε∗µ(p2)ε∗µ(p3)

)

=
4m4

V

v2

∑
spin

εν(p2)ε∗µ(p2)

∑
spin

εν(p3)ε∗µ(p3)


=

4m4
V

v2

(
−gνµ +

p2νp2µ

m2
V

)(
−gνµ +

pν3p
µ
3

m2
V

)
=

4m4
V

v2

(
2 +

(p2p3)2

m4
V

)
(2.14)
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In a similar way to the previous case, we have in the CoM frame

p1 = (mh, ~0 ), p2 = (EV , ~p ) and p3 = (EV ,−~p )

from where

mh = 2Ef and p2p3 =
m2
h

2

(
1−

2m2
V

m2
h

)
and thus 2.14 reduces to

〈|M(h→ V V )|2〉 =
4m4

V

v2

(
3 +

m4
h

4m4
V

−
m2
h

m2
V

)
(2.15)

Finally, the partial decay width of the process is given by

Γ(h→ V V ) =
δV
8π

|~p |
m2
h

〈|M(h→ V V )|2〉

=
δV
4π

m4
V

mhv2

(
1−

4m2
V

m2
h

)1/2(
3 +

m4
h

4m4
V

−
m2
h

m2
V

)
(2.16)

where δV constitutes a statistical phase factor that corrects for double-counting when there are
identical particles in the final state: therefore δW = 1 and δZ = 1/2.

2.3.3 Higgs Decay h→ gg

The decay of the Higgs boson to gluons is mediated by quark loops in the SM. Despite the “loop
nature” of the process, we shall see that it must be taken into consideration in view of the strong
coupling between the Higgs and the top quark, which gives rise to a non-negligible decay rate
contribution [44]. For every particular case, there are actually two diagrams: one as depicted in
Fig. (2.4) and the other with the gluons exchanged as shown in Fig. (2.5).

Figure 2.4: First Feynman diagram describing h→ gg at lowest order.
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The transition amplitude M1(h→ gg) of the process shown in Fig. (2.4) is given by

−iM1(h→ gg)(2π)4δ4(p1 − p2 − p3) =

∫
d4q1

(2π)4

∫
d4q2

(2π)4

∫
d4k

(2π)4
(2π)4δ4(p1 − q1 + q2)

× (2π)4δ4(q1 − k − p2)(2π)4δ4(k − q2 − p3)

× (−1)Tr

[(
−i
mQ

v

) i(/q2
+mQ)

q2
2 −m2

Q

δnk

(
−igs

λbkl
2
γν
)

×
i(/k +mQ)

k2 −m2
Q

δlj

(
−igs

λaji
2
γµ
)
i(/q1

+mQ)

q2
1 −m2

Q

δin

]
× ε∗aµ (p2)ε∗bν (p3) (2.17)

where mQ is the mass of any quark Q present in the loop, and ε∗aµ (p2), ε∗bν (p3) correspond to the
transverse polarization vectors of the outcoming gluons. Also note the presence of the Kronecker
deltas ensuring color conservation at every vertex. In order to simplify 2.17, first note that

λbkl
2

λaji
2
δnkδljδin =

1

4
λbjiλ

a
ji =

1

4
Tr[λbλa] =

1

2
δab

On the other hand, we can evaluate the q1- and q2-integrals making use of two of the Dirac deltas
present in the integrand. Finally, solving for the transition amplitude we can write

M1(h→ gg) = − i
2
g2
s

mQ

v
ε∗aµ (p2)ε∗bν (p3)δab

∫
d4k

(2π)4

Tµν

D
(2.18)

where we have defined

Tµν := Tr
[
γµ(/k + /p2

+mQ)(/k − /p3
+mQ)γν(/k +mQ)

]
(2.19)

D := (k2 −m2
Q)[(k + p2)2 −m2

Q][(k − p3)2 −m2
Q] (2.20)

and we shall denote by Iµν the integral presented in 2.18. In order to calculate Iµν , let us first to
evaluate the spinor trace

Tµν = Tr
[
γµ(/k + /p2

+mQ)(/k − /p3
+mQ)γν(/k +mQ)

]
= 4mQ

[
pµ3p

ν
2 + 4kµkν − 2kµpν3 + 2pµ2k

ν − pµ2p
ν
3 + gµν(m2

Q − p2p3)− k2gµν
]

≡ 4mQN
µν (2.21)

The next task is to treat the denominator D. The usual method of Feynman parametrization

1

ABC
= 2

∫ 1

0
dz

∫ 1

0
dy

∫ 1

0
dx

δ(x+ y + z − 1)

(Ax+By + Cz)3
(2.22)

can be used to combine the factors presented in D, with A := k2 −m2
Q, B := (k + p2)2 −m2

Q and

C := (k − p3)2 −m2
Q. Then

Ax+By + Cz = (k2 −m2
Q)x+

[
(k + p2)2 −m2

Q

]
y +

[
(k − p3)2 −m2

Q

]
z

= (k2 −m2
Q)(x+ y + z) + 2k(p2y − p3z) + p2

2y + p2
3z

= (k2 −m2
Q)(x+ y + z) + 2k(p2y − p3z) (2.23)
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where in the last step p2
2 and p2

3 are zero since they express the masses of the gluons which are
massless. Evaluating the integral with respect to x, yield

1

ABC
= 2

∫ 1

0
dz

∫ 1

0
dy

∫ 1

0
dx

δ (x− (1− y − z))[
(k2 −m2

Q)(x+ y + z) + 2k(p2y − p3z)
]3

= 2

∫ 1

0
dz

∫ 1−z

0
dy

1[
k2 −m2

Q + 2k(p2y − p3z)
]3 (2.24)

Now, we complete the square by adding and subtracting the term (p2y − p3z)
2:

k2 −m2
Q + 2k(p2y − p3z) = k2 −m2

Q + 2k(p2y − p3z) + (p2y − p3z)
2 − (p2y − p3z)

2

=
[
k2 + 2k(p2y − p3z) + (p2y − p3z)

2
]
− (p2y − p3z)

2 −m2
Q

= [k + (p2y − p3z)]
2 − (p2

2y
2 + p2

3z
2 − 2p2p3yz)−m2

Q

= (k + p2y − p3z)
2 + 2p2p3yz −m2

Q

= (k + p2y − p3z)
2 − a2 (2.25)

where we have defined a2 := m2
Q − 2p2p3yz. Hence, our integral becomes

Iµν =

∫
d4k

(2π)4

∫ 1

0
dz

∫ 1−z

0
dy

8mQN
µν

[(k + p2y − p3z)2 − a2]3

Now we take the change of variable k → k − p2y + p3z which yield

Iµν =

∫
d4k

(2π)4

∫ 1

0
dz

∫ 1−z

0
dy

8mQN
µν

(k2 − a2)3 (2.26)

and so Nµν must be shift to

Nµν → [pµ3p
ν
2 + 4(k − p2y + p3z)

µ(k − p2y + p3z)
ν − 2(k − p2y + p3z)

µpν3 + 2pµ2 (k − p2y + p3z)
ν

−pµ2p
ν
3 + gµν(m2

Q − p2p3)− (k − p2y + p3z)
2gµν

]
= pµ3p

ν
2 + 4kµkν − 4kµpν2y + 4kµpν3z − 4pµ2k

νy + 4pµ2p
ν
2y

2 − 4pµ2p
ν
3yz + 4pµ3k

νz − 4pµ3p
ν
2yz

+ 4pµ3p
ν
3z

2 − 2kµpν3 + 2pµ2p
ν
3y − 2pµ3p

ν
3z + 2pµ2k

ν − 2pµ2p
ν
2y + 2pµ2p

ν
3z − p

µ
2p

ν
3 +m2

Qg
µν

− p2p3g
µν − k2gµν + p2

2y
2gµν + p2

3z
2gµν + 2kp2yg

µν − 2kp3zg
µν + 2p2p3yzg

µν

= 4kµkν − k2gµν + pµ3p
ν
2(1− 4yz)− pµ2p

ν
3(1 + 4yz − 2y − 2z) + pµ3p

ν
3(4z2 − 2z)

+ pµ2p
ν
2(4y2 − 2y) + gµν(m2

Q − p2p3 + 2p2p3yz) (2.27)

In the last step we have drop all terms that are linear in kµ, since in each case, the corresponding
integral will vanish (because the interval of integration is symmetric and the integrand is an odd
function). Since the first two terms of Nµν are apparently ultraviolet divergent, namely 4kµkν −
k2gµν , we shall need to employ dimensional regularization to perform the four-momentum integral.
In view of this, let us now divide the integral into two parts

Iµν = Iµν1 + Iµν2 (2.28)
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where Iµν1 contains the ultraviolet divergent terms and Iµν2 contains the rest. Let us first deal with
Iµν1 . In order to do this, we shall make use of the following d-dimensional integral

J(d; a2;α, β) :=

∫
ddk

(2π)d
(k2)α

(k2 − a2)β
(2.29)

=
i

(4π)
d
2

(a2)
d
2 (−a2)α−β

Γ
(
β − α− d

2

)
Γ
(
α+ d

2

)
Γ(β)Γ

(
d
2

) (2.30)

and due Lorentz symmetry, the following property holds:∫
ddk

(2π)d
(k2)αkµkν

(k2 − a2)β
=
gµν

d
J(d; a2;α+ 1, β) (2.31)

Therefore, we can write

Iµν1 = 8mQ

∫ 1

0
dz

∫ 1−z

0
dy lim

d→4

∫
ddk

(2π)d

(
4kµkν − k2gµν

)
(k2 − a2)3

= 8mQ

∫ 1

0
dz

∫ 1−z

0
dy lim

d→4
gµν

(
4

d
− 1

)
J(d; a2; 1, 3)

= 8mQ

∫ 1

0
dz

∫ 1−z

0
dy lim

d→4

igµν

(4π)
d
2

d

4

(
4

d
− 1

)
(a2)

d
2
−2Γ

(
2− d

2

)
(2.32)

Using the change of variable d = 4 + 2ε we find

Iµν1 = 8mQ

∫ 1

0
dz

∫ 1−z

0
dy lim

ε→0

igµν

(4π)2+ε

(
− ε

2

)
(a2)εΓ (−ε)

= 8mQ

∫ 1

0
dz

∫ 1−z

0
dy lim

ε→0

igµν

(4π)2+ε

(
− ε

2

)
(a2)ε

(
−1

ε
+ γE +O(ε2)

)
= 8mQ

∫ 1

0
dz

∫ 1−z

0
dy lim

ε→0

igµν

(4π)2+ε
(a2)ε

(
1

2
+O(ε)

)
=

8imQ

32π2
gµν

∫ 1

0
dz

∫ 1−z

0
dy (2.33)

where γE is the Euler-Mascheroni constant. On the other hand

Iµν2 = 8mQ

∫ 1

0
dz

∫ 1−z

0
dy

[∫
d4k

(2π)4

1

(k2 − a2)3

]
[pµ3p

ν
2(1− 4yz)− pµ2p

ν
3(1 + 4yz − 2y − 2z)

+pµ3p
ν
3(4z2 − 2z) + pµ2p

ν
2(4y2 − 2y) + gµν(m2

Q − p2p3 + 2p2p3yz)
]

= 8mQ

∫ 1

0
dz

∫ 1−z

0
dy

[
− i

32π2a2

]
[pµ3p

ν
2(1− 4yz)− pµ2p

ν
3(1 + 4yz − 2y − 2z)

+pµ3p
ν
3(4z2 − 2z) + pµ2p

ν
2(4y2 − 2y) + gµν(m2

Q − p2p3 + 2p2p3yz)
]

= −
8imQ

32π2

∫ 1

0
dz

∫ 1−z

0
dy

1

a2
[pµ3p

ν
2(1− 4yz)− pµ2p

ν
3(1 + 4yz − 2y − 2z)

+pµ3p
ν
3(4z2 − 2z) + pµ2p

ν
2(4y2 − 2y) + gµν(m2

Q − p2p3 + 2p2p3yz)
]

(2.34)
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Therefore

Iµν =
8imQ

32π2

∫ 1

0
dz

∫ 1−z

0
dy

1

a2
[pµ3p

ν
2(4yz − 1) + pµ2p

ν
3(1 + 4yz − 2y − 2z)

+pµ3p
ν
3(2z − 4z2) + pµ2p

ν
2(2y − 4y2) + gµνp2p3(1− 4yz)

]
(2.35)

This quantity will be multiplied with the polarization vectors of the gluons; but having in mind the
transversality of the polarization: ε∗aµ (p2)pµ2 = 0 and ε∗bν (p3)pν3 = 0, some terms vanish and then
the only remaining tensorial structure is

Iµν =
8imQ

32π2

∫ 1

0
dz

∫ 1−z

0
dy

[
pµ3p

ν
2(4yz − 1) + gµνp2p3(1− 4yz)

a2

]
=

8imQ

32π2
(pµ3p

ν
2 − gµνp2p3)

[∫ 1

0
dz

∫ 1−z

0
dy

1− 4yz

m2
Q − 2p2p3yz

]

=
8imQ

32π2
(pµ3p

ν
2 − gµνp2p3)

[
1

m2
Q

∫ 1

0
dz

∫ 1−z

0
dy

1− 4yz

1− ξ−1
Q yz

]
=

8i

32π2

1

mQ
I(ξQ) (pµ3p

ν
2 − gµνp2p3) (2.36)

Here, ξQ := m2
Q/2p2p3 and the new function I is a form factor given by

I(ξQ) := ξQ

[
2− (4ξQ − 1)

[
Li2

(
2

1−
√

1− 4ξQ

)
+ Li2

(
2

1 +
√

1− 4ξQ

)]]
(2.37)

where Lin is the polylogarithm function of order n. Finally, the transition amplitude M1(h→ gg)
is given by

M1(h→ gg) = − i
2
g2
s

m

v
ε∗aµ (p2)ε∗bν (p3)δab

[
8i

32π2

1

m
I(ξQ)(pµ3p

ν
2 − gµνp2p3)

]
=

g2
s

8π2v
I(ξQ)ε∗aµ (p2)ε∗bν (p3)δab(p

µ
3p

ν
2 − gµνp2p3) (2.38)

We need now to calculate the transition amplitudeM2(h→ gg) for the second diagram. To find
it, observe that if we shift in the first diagram Fig. (2.4) the variables p2 ↔ p3, µ↔ ν, a↔ b, i↔ k
and j ↔ l, then we get the second diagram Fig. (2.5).

Consequently, these transformations shift the transition amplitude 2.38 to

M2(h→ gg) =
g2
s

8π2v
I(ξQ)ε∗bν (p3)ε∗aµ (p2)δba(p

ν
2p
µ
3 − g

νµp3p2)

=
g2
s

8π2v
I(ξQ)ε∗aµ (p2)ε∗bν (p3)δab(p

µ
3p

ν
2 − gµνp2p3) (2.39)

which it turns out to be exactly the same as the first one. Therefore, the two diagrams contribute
equally to the total amplitude. It follows that the average square transition amplitude of the process
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(a) (b)

Figure 2.5: Second Feynman diagram describing h → gg at lowest order. Both left and right
diagrams are topologically equivalent.

(and taking into account the contribution due to all the quarks) is given by

〈|M(h→ gg)|2〉 =
∑
spin

∑
color

|
∑
Q

2M1(h→ gg)|2

= 4
∑
spin

∑
color

∑
Q

g2
s

8π2v
I∗(ξQ)εaρ(p2)εbσ(p3)δab(p

ρ
3p
σ
2 − gρσp2p3)


×

∑
Q

g2
s

8π2v
I(ξQ)ε∗aµ (p2)ε∗bν (p3)δab(p

µ
3p

ν
2 − gµνp2p3)


=

g4
s

16π4v2
|
∑
Q

I(ξQ)|2
∑

spin

ε∗aµ (p2)εaρ(p2)ε∗bν (p3)εbσ(p3)

[∑
color

δabδab

]
× (pρ3p

σ
2 − gρσp2p3) (pµ3p

ν
2 − gµνp2p3)

=
g4
s

16π4v2
|
∑
Q

I(ξQ)|2 [gµρgνσ] [8] (pρ3p
σ
2 − gρσp2p3) (pµ3p

ν
2 − gµνp2p3)

=
g4
s

π4v2
(p2p3)2|

∑
Q

I(ξQ)|2 (2.40)

In the COM frame the four-momenta are given by

p1 = (mh, ~0 ), p2 = (Eg, ~p ) and p3 = (Eg,−~p )

from where

mh = 2Eg, p2p3 =
m2
h

2
and |~p | = mh

2
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and thus 2.40 reduces to

〈|M(h→ gg)|2〉 =
g4
s

4π4v2
m4
h|
∑
Q

I(ξQ)|2 (2.41)

Finally, the partial decay width of the process is given by

Γ(h→ gg) =
1
2!

8π

|~p |
m2
h

〈|M(h→ gg)|2〉

=
α2
s

8π3v2
m3
h|
∑
Q

I(ξQ)|2 (2.42)

where we have expressed the result in terms of the strong structure constant 1.27. Due to the form
factor I(ξQ), the heavier quarks contribute significantly to the decay rate. In the SM, the only
quark that is heavy enough to make an important contribution through this decay channel is the
top quark, so we expect only this quark to play an important role.

2.3.4 Higgs Decay h→ γγ

Now we consider the Higgs decay into a pair of photons. The process presents a very small decay
width but is of quite remarkable importance for experimental researches, since energy and momen-
tum of γ-rays let very accurate measurements and so an accurate reconstruction of the Higgs mass.
Since the photon is massless there is no coupling between the SM Higgs and the photon. Instead,
this decay channel has two types of one-loop contributions at leading order: in one type of diagram
fermions propagate in the loop, while in the other the W boson propagates (see Fig. 2.1d). These
W loop diagrams are dominant and can interfere destructively with the subdominant top quark
loop. On the one hand the contribution from the fermion loop process can be carried out complete
parallel to the h→ gg decay; on the other hand, the calculation of the W boson loop consists of 13
different diagrams, including apart from the W boson also ghosts and would-be Goldstone bosons.
The full expression including both contributions from the fermion and W boson loops reads [45]

Γ(h→ γγ) =
α2

EMm
3
h

256π3v2

∣∣∣∣∣∣
∑
f

NcQ
2
fF1/2(τf ) + F1(τW )

∣∣∣∣∣∣
2

(2.43)

where Nc is the color factor (Nc = 1 for leptons, Nc = 3 for quarks), and Qf is the electric charge
of the fermion in the loop. The dimensionless loop factors for spin-1/2 and spin-1 particles are
given by

F1/2(τ) = 2[τ + (τ − 1)f(τ)]τ−2 (2.44)

F1(τ) = −[2τ2 + 3τ + 3(2τ − 1)f(τ)]τ−2 (2.45)

and the function f(τ) is defined as

f(τ) =

arcsin2√τ if τ ≤ 1

−1
4

[
ln
(

1+
√

1−τ−1

1−
√

1−τ−1

)
− iπ

]2
if τ > 1

(2.46)
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The parameters τi = m2
h/4m

2
i with i = f,W are defined by the corresponding masses of the heavy

loop particles. The electromagnetic constant in the coupling should be taken at the scale Q2 = 0
since the final state photons are real.

2.3.5 Higgs Boson Branching Ratios
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(a) SM Higgs branching
ratios as a function of Higgs
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90 < mH < 1000 GeV.
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Figure 2.6: Standard Model Higgs boson decay branching ratios and total width. Plots taken
from [46].

2.4 Higgs Production Channels

We turn now to the production of the Higgs boson in pp collisions. At the LHC, there are essentially
four mechanisms for the single production of the SM Higgs boson; they are depicted at low order
in Fig. (2.7). On the experimental side, the primary production mechanism for a Higgs boson in
hadronic collisions is through gluon-gluon fusion; on the theoretical side, it is the most challenging
process to compute because of the quark-loop.

2.4.1 Higgs Production gg → h

The primary production mechanism for a Higgs boson in hadronic collisions is through gluon-gluon
fusion, gg → h, which is shown in Fig. (2.7a). Analogously to the decay process h→ gg, the loop
contains all quarks with mass mQ > 0, and is totally dominated by the top quark because of the
strong Higgs coupling with the latter. The transition amplitudes M1(gg → h) and M2(gg → h)
for the production processes depicted in Fig. (2.8a) and Fig. (2.8b) are given by 2.38 and 2.39,
respectively.

It follows that the average square transition amplitude of the process is given by

〈|M(gg → h)|2〉 =
g4
s

4π4v2
m4
h|
∑
Q

I(ξQ)|2 (2.47)
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(a) Gluon-Gluon Fusion.
(b) Higgs Boson
Bremsstrahlung.

(c) Quark-Quark Fusion. (d) Vector Boson Fusion.

Figure 2.7: The four major partonic Higgs production processes at the LHC.

(a) First Feynman diagram describing
gg → h at lowest order.

(b) Second Feynman diagram describing
gg → h at lowest order.

Figure 2.8: Feynman diagram describing gg → h at lowest order.

and thus the cross section for the process is

σ(gg → h) =
1

2m2
h

∫
〈|M(gg → h)|2〉 (2π)4δ4(p1 + p2 − p3)

1

2s

d3~p 3

(2π)3

=
α2
s

64πv2
m2
h|
∑
Q

I(ξQ)|2δ(s−m2
h) (2.48)
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where
√
s is the energy in the gluon-gluon center-of-momentum frame and the function I is defined

by 2.37. What we have calculated in 2.48 is the cross section of the lowest order process gg → h
at the partonic level. However, at the LHC, two protons collide head-to-head and so we should be
more interested in the cross section at the hadronic level (see Fig. 2.9).

Figure 2.9: Hadronic gluon-gluon fusion process at the LHC. Here the two incoming protons carry
momenta P1 and P2.

Therefore, in our current process the hadronic cross section σhadronic(gg → h) can be obtained
through Eq. 2.3 by convoluting the partonic cross section 2.48 with the parton distribution functions
of the gluons

σhadronic(gg → h) =

∫ 1

0
dx1

∫ 1

0
dx2 g(x1, Q

2)g(x2, Q
2)σ(gg → h) (2.49)

where x1 and x2 are the longitudinal momentum fractions of each proton that is carried by a gluon
and g = g(x,Q2) are the PDF for the gluons. Let us analyse the cross section 2.49 for very high
energies; in this limit, we can consider the proton as massless. In the hadronic center-of-momentum
(HCoM), we have

P1 = (|~P |, ~P ), P2 = (|~P |,−~P ), and S = (P1 + P2)2 = 4~P
2

(2.50)

Hence, the s variable in the partonic center-of-momentum (PCoM) can be rewritten as

s = (p1 + p2)2 = (x1P1 + x2P2)2 = x1x2S ≡ τS (2.51)
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In addition, define de quantity τ0 := m2
h/S. Therefore, in the HCoM we have

σhadronic(gg → h) =
α2
s

64πv2
|
∑
Q

I(ξQ)|2
∫ 1

0
dx1

∫ 1

0
dx2 g(x1, Q

2)g(x2, Q
2)m2

hδ(s−m2
h)

=
α2
s

64πv2
|
∑
Q

I(ξQ)|2
∫ 1

0
dx1

∫ 1

0
dx2 g(x1, Q

2)g(x2, Q
2)m2

h

1

x1S
δ

(
x2 −

τ0

x1

)

=
α2
sτ0

64πv2
|
∑
Q

I(ξQ)|2
∫ 1

0

dx1

x1

∫ 1

0
dx2 g(x1, Q

2)g(x2, Q
2)δ(s−m2

h)

=
α2
sτ0

64πv2
|
∑
Q

I(ξQ)|2
∫ 1

0

dx1

x1
g(x1, Q

2)g
(
τ0/x1, Q

2
)

(2.52)

which has to be integrated numerically.

2.4.2 Higgs Production QQ̄→ V h

This process, depicted in Fig. (2.7b), is considered the main search mode for Tevatron but not so
much at the LHC. This is because Tevatron is a pp̄ collider and so the abundance of antiquarks in
the p̄ -beam increases the probability of create a Higgs through the Higgs Strahlung channel. This
is a different situation from the LHC, which is a pp collider, reducing considerably the probability
of extract an antiquark from the sea.

Let us start with the case V = Z depicted in Fig. (2.10a). Here, Feynman rules determine a
transition amplitude M(QQ̄→ Zh) given by

−iM(QQ̄→ Zh)(2π)4δ4(p1 − p2 − p3) =

∫
d4q

(2π)4
(2π)4δ4(p1 + p2 − q)(2π)4δ4(q − p3 − p4)

× v̄(p2)

[
−ig

2 cos θW
γµ(vQ − aQγ5)

]
u(p1)

×

−i
(
gµν − qµqν

m2
Z

)
q2 −m2

Z

(i2m2
Z

v

)
ε∗ν(p3) (2.53)

where vf and af are the vector and axial-vector coupling for the fermion f , respectively. It follows
that

M(QQ̄→ Zh) = −
gm2

Z

v cos θW
v̄(p2)γµ(vQ − aQγ5)u(p1)ε∗ν(p3)

×
(
gµν −

(p3 + p4)µ(p3 + p4)ν
m2
Z

)
1

(p3 + p4)2 −m2
Z

(2.54)
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(a) First Feynman diagram
contributing to QQ→ V h at lowest

order.

(b) Second Feynman diagram
contributing to QQ→ V h at lowest

order.

(c) Third Feynman diagram
contributing to QQ→ V h at lowest

order.

Figure 2.10: Feynman diagram describing QQ→ V h at lowest order.

Hence, the average square transition amplitude is given by

〈|M(QQ̄→ Zh)|2〉 =
∑
spin

[
−

gm2
Z

v cos θW
ū(p1)γµ(vQ − aQγ5)v(p2)εν(p3)

(
gµν −

(p3 + p4)µ(p3 + p4)ν
m2
Z

)

× 1

(p3 + p4)2 −m2
Z

] [
−

gm2
Z

v cos θW
v̄(p2)γρ(vQ − aQγ5)u(p1)ε∗σ(p3)

×
(
gρσ −

(p3 + p4)ρ(p3 + p4)σ
m2
Z

)
1

(p3 + p4)2 −m2
Z

]
=

g2m4
Z

v2 cos2 θW

ε∗σ(p3)εν(p3)

[(p3 + p4)2 −m2
Z ]2

(
gµν −

(p3 + p4)µ(p3 + p4)ν
m2
Z

)
×
(
gρσ −

(p3 + p4)ρ(p3 + p4)σ
m2
Z

)
Tr
[
γµ(vQ − aQγ5)(/p2

+mQ)γρ(vQ − aQγ5)

× (/p1
+mQ)

]
(2.55)
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In order to evaluate this last trace, we neglect the mass quark. Hence

〈|M(QQ̄→ Zh)|2〉 =
g2m4

Z

v2 cos2 θW

(v2
Q + a2

Q)

[(p3 + p4)2 −m2
Z ]2

[
p1p2M

2
Z + 2(p1p3)(p2p3)

]
(2.56)

For the PCoM we have

p1 = (|~p |, ~p ), p2 = (|~p |,−~p ), p3 = (EZ , ~p
′) and p4 = (Eh,−~p ′)

and thus the cross section for the process is

σ(QQ̄→ Zh) =
g2m2

Z

576πv2 cos2 θW

(v2
Qi

+ a2
Qi

)

s2(s−m2
Z)2

λ1/2(s,m2
h,m

2
Z)
[
λ(s,m2

h,m
2
Z) + 12sm2

Z

]
(2.57)

where λ = λ(s,m2
h,m

2
Z) is the so-called Käller function, triangle function or two-particle phase

space function, and which can be written in many forms

λ(s,m2
h,m

2
Z) = [s− (mh +mZ)2][s− (mh −mZ)2] (2.58)

= [m2
h − (

√
s+mZ)2][m2

h − (
√
s−mZ)2]

= [m2
Z − (

√
s+mh)2][m2

Z − (
√
s−mh)2]

= (s−m2
h −m2

Z)2 − 4m2
hm

2
Z

= s+m4
h +m4

Z − 2sm2
h − 2sm2

Z − 2m2
hm

2
Z

The cases W± depicted in Fig. (2.10b) and (2.10c) are very similar

σ(QuQ̄d →W+h) =
g2m2

W

576πv2

|VQuQ̄d |
2

s2(s−m2
W )2

λ1/2(s,m2
h,m

2
W )
[
λ(s,m2

h,m
2
W ) + 12sm2

Z

]
(2.59)

and

σ(Q̄uQd →W−h) =
g2m2

W

576πv2

|VQ̄uQd |
2

s2(s−m2
W )2

λ1/2(s,m2
h,m

2
W )
[
λ(s,m2

h,m
2
W ) + 12sm2

Z

]
(2.60)

which correspond to equal contributions. Here, Qu ≡ u, c and Qd ≡ d, s are considered massless
(as in the previous section). Therefore, the total cross section is given by

σ(QQ̄→W±h) = σ(QuQ̄d →W+h) + σ(QuQ̄d →W−h) (2.61)

= 2σ(QuQ̄d →W+h)

= 2σ(Q̄uQd →W−h)

2.4.3 Higgs Production QQ→ QQh

Although the gluon-gluon fusion process has the largest cross section, from the experimental per-
spective the vector boson fusion process QQ → V V → QQh is also important. This is because it
results in more easily identifiable final states consisting of just the decay products of the Higgs bo-
son and two forward jets from the break-up of the collinding protons. In contrast, the gluon-gluon
fusion process is accompanied by QCD radiation from the colour field, making the identification
of the Higgs boson final states less easy. The Feynman diagrams describing the six lowest order
processes QQ → ZZ → QQh and QQ → WW → QQh are shown in Fig. (A.1) and Fig. (A.2),
respectively (see Appendix A).
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2.4.4 Higgs Boson Production Cross Sections
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Figure 2.11: Higgs production cross sections and total cross section as a function of Higgs mass
at different pp collision energies. Here, pp → h corresponds to gluon-gluon fusion, pp → QQh to
vector boson fusion, pp→ V h to Higgs bremsstrahlung, and pp→ tth to quark-quark fusion in this
specific case with a top-antitop quark pair. Calculations were not performed for mh > 300 GeV for
the bottom three processes, as their cross sections were deemed too low. Taken from [46].

2.5 The Radiative Corrections to the Higgs Mass

At high energies, heavy particles from a not yet fully known high-energy theory might well con-
tribute to various processes. Therefore, we assume the Standard Model valid up to some scale ΛSM

from where new physics shows up. At higher energies new physics takes over, which implies that
we do not know how to compute loop diagrams with momenta larger than ΛSM, being forced to
cut such loops off at ΛSM. The dominant corrections to the Higgs masses are due to the particles
with the strongest couplings to the Higgs bosons. At n loops the quadratic cutoff dependence of
the radiative corrections of the Higgs mass has the form [47]

δm2
h,SM =

Λ2
SM

16π2
Cn(µ) (2.62)

where the n-loop coefficient Cn(µ) only depends on the gauge couplings g, g′, the Yukawa couplings
yf and the Higgs self-coupling λ. At 1-loop, the most dangerous radiative corrections come from
diagrams with the top quark, SU(2) gauge bosons, and the Higgs itself running in the loop (see
Figure 2.12), and is given explicitly by [47]

(δm2
h)top = −3y2

t

4π2
Λ2

SM (δm2
h)W± =

9g2

32π2
Λ2

SM (2.63)

(δm2
h)Higgs =

3λ

4π2
Λ2

SM (δm2
h)Z =

3g′ 2

32π2
Λ2

SM
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Therefore, neglecting the numerically insignificant light fermion contributions, the 1-loop coefficient
function C1 may be written as

C1 = −12y2
t +

9

2
g2 +

3

2
g′ 2 + 12λ (2.64)

The next-order correction, first calculated in Refs. [48, 49] and confirmed in [50] read

C2 = C1 +
ln(26/33)

16π2

[
18y4

t + y2
t

(
−7

6
g′ 2 +

9

2
g2 − 32g2

s

)
−87

8
g′ 4 − 63

8
g4 − 15

4
g2g′ 2 + 6λ(−6y2

t + g′ 2 + 3g2)− 24λ2

]
(2.65)

and numerically does not change significantly the 1-loop result.

Figure 2.12: Some of the leading one-loop corrections to the SM Higgs mass squared parameter
m2
H0 from: the top quark, the SU(2) gauge bosons, and the Higgs boson itself.

3 The Higgs Naturalness Problem

3.1 Introduction

The Standard Model describes all particle physics experiments performed to date with remarkable
success. At first sight, there seems to be no reason why it should not be the ultimate theory of
nature. However, a closer look reveals that there are good reasons for expecting physics beyond
the SM: the strong CP problem, neutrino oscillations, matter-antimatter asymmetry, the nature of
dark matter and dark energy, gauge couplings unification, stability of the electroweak vacuum, and
possibly the most important, the quantum gravity issue. Another of such motivations, the so-called
Higgs Naturalness Problem (HNP), is the subject of this thesis.
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The Higgs naturalness problem arises because the quadratically divergent 1-loop contribu-
tions 2.63 drive the Higgs mass mh,physical to unacceptably large values unless its bare mass pa-
rameter mh,bare were finely tuned in order to almost exactly cancels these 1-loop correction leaving
the small electroweak scale mass that we actually observe. Such cancellation might be technically
feasible, but seems ad hoc without a deeper explanation of why the cancellation terms would have
such fine-tuned values. This strongly suggests that the parametrization of the electroweak symme-
try breaking in terms of a fundamental scalar field is almost certainly an incomplete description,
which in turn has for many years been a guiding principle in the search for physics beyond the
SM, particularly for understanding the physics of electroweak symmetry breaking. This is just one
reason the SM is believe to lose its predictive power on phenomena at energy scale over O(TeV).
The naturalness problem of the Higgs sector is one of the deepest questions in particle physics, and
almost every one of its known solutions corresponds to a different vision of the universe. Identifying
the correct answer will not just solve a conceptual puzzle, but will change the way we think about
particle physics.

3.2 The Naturalness and Hierarchy Problem

3.2.1 The Gauge-Hierarchy Problem

To understand the origin of the problem, we should start by remembering why we need the Higgs
in SM. The Higgs is necessary to get a renormalizable low energy effective electroweak theory [51]
and it also allows the generation of mass for the W± and Z bosons and fermions in a consistent
way. The W± and Z bosons violate unitarity bounds at tree-level indicating that the theory is non-
perturvative at ∼ 1 TeV. Interestingly, one scalar particle is sufficient to solve the renormalizability
problems arising form each of many different massive fields in the SM, of which each causes the
problem independently of the others. Now if we go one step further and whatever the theory is
beyond the SM, if it is supposed to be finite, for example if it were UV completed into string theory,
or more simply if it were the effective description of some condensed matter system, then the bare
mass parameter

m2
h,bare = 2λv2 = −2µ2 (3.1)

of the unrenormalized Lagrangian and the cutt-off ΛSM would be both physical, and the total Higgs
mass mh,physical could be written schematically as

m2
h,physical = m2

h,bare +

∫ ΛSM

0

dm2
h

dE
dE +

∫ ∞
ΛSM

dm2
h

dE
dE

= m2
h,bare + δm2

h,SM + δm2
h,BSM

= m2
h,bare + δm2

h (3.2)

with δm2
h,SM and δm2

h,BSM being the corresponding SM and beyond the SM radiative corrections,
and where E should be regarded as the energy of the virtual particles that run into the loop diagrams
through which m2

h,physical is computed. While δm2
h,BSM is a completely unknown contribution

resulting from energies at and above ΛSM, and so there is nothing we can tell about it before we
know what the BSM theory is, it turns out that δm2

h,SM comes from virtual quanta below the
cut-off and whose dynamics is by assumption well described by the SM. In consequence, the loop
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corrections contributing to this last term are, in good approximation, the sum of the four loop
contributions 2.63, namely

δm2
h,SM '

Λ2
SM

16π2
C1(µ) =

3Λ2
SM

16π2

(
−4y2

t +
3

2
g2 +

1

2
g′ 2 + 4λ

)
(3.3)

where yt, g, g
′ and λ are the top Yukawa coupling, the SU(2)W × U(1)Y gauge couplings and the

quartic Higgs self-coupling, respectively. In terms of masses the above expression becomes

δm2
h,SM '

3Λ2
SM

8π2v2

(
−4m2

t + 2m2
W +m2

Z +m2
h

)
(3.4)

where all the masses are determined by the well known mass-coupling relations

m2
t (µ

2) =
1

2
y2
t (µ

2)v2(µ2) m2
W±(µ2) =

1

4
g2(µ2)v2(µ2) (3.5)

m2
h(µ2) = 2λ(µ2)v2(µ2) m2

Z(µ2) =
1

4

[
g2(µ2) + g′ 2(µ2)

]
v2(µ2) (3.6)

On the one hand, the ATLAS and CMS collaborations at LHC observed a scalar boson with
properties appearing well consistent with the SM Higgs based on data collected in 2011 and 2012
in the γγ, ZZ∗, WW ∗, τ τ̄ and bb̄ final states [52, 53]. A combination of ATLAS and CMS results
for the Higgs boson mass from kinematical reconstruction has yielded [54]

mh,physical = 125.09± 0.24(stat.)± 0.11(syst.) GeV (3.7)

On the other hand, the only natural cut-off in the SM is the Planck scale mplanck =
√
~c/G, so

that20

ΛSM ∼ mplanck ∼ 1019 GeV (3.8)

and so if no new physics exists between the electroweak and Planck scales, the quantum corrections
to mh,physical would be of order |δm2

h,SM| ∼ (1019 GeV)2, dragging the dimensionful scale mh,bare

of the Higgs potential up to the Planck scale. Nevertheless, this destroy the stability of the weak
scale since the physical mass 3.7 is much smaller than the cut-off of the theory. In other words,
this implies that the bare mass parameter m2

h,bare (or equivalently, λ or µ and which is absolutely

free), must be a very large number

m2
h,bare ∼ (1019 GeV)2 (3.9)

which means that, at least in the context of the SM, the Higgs boson mass prefers to be close
to the very high scale. This raises the question: why is there such a huge hierarchy between the
“natural” cut-off 3.8 of the theory and the “natural” energy scale (the observed Higgs mass) of
the theory.? This is the gauge-hierarchy problem, also known as big-hierarchy problem or just the
hierarchy problem. This set a huge hierarchy between the weak and Planck scales, yet the quadratic
divergences of the Higgs sector imply that the two scales should be similar. This hierarchy puzzle
can be rephrased in terms of a question about the extremely small dimensionless parameter of the
theory:

mh,physical

mplanck
∼ 10−17 (3.10)

Why is this number so small but not zero?

20A point particle of mass mplanck

√
π is a black hole with radius equal to its Compton wavelength, a situation

which can not be dealt without a proper quantum theory of gravitation.
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3.2.2 The Yukawa-Hierarchy Problem

Apart from the inability to understand the extreme small parameter 3.10, the SM incorporates
another important hierarchy. Gauge interactions in the SM do not distinguish between the three
generations of leptons or between the three generation of quarks. These families only differ by their
mass values or, equivalently, their Yukawa coupling through 1.53. For example, in the quark case(

yu ∼ 10−5

yd ∼ 10−5

)
,

(
yc ∼ 10−2

ys ∼ 10−4

)
,

(
yt ∼ 1

yb ∼ 10−2

)
(3.11)

The values of the Yukawa couplings are not determined in the SM and so one could naturally
assumes that all of these parameters lie in the same range of magnitude. Since the experimental
evidence has shown this is not the case, one can ask: why there exist these three generations of
quarks and leptons, and why the measured Yukawa couplings for the three generations of quarks
and leptons display a striking hierarchy in sizes?. This is the Yukawa-Hierarchy Problem. As
with the gauge-hierarchy problem, there must be a deeper explanation for the Yukawa-hierarchy
problem, but this explanation must lie beyond the SM.

3.2.3 The Concept of Fine-Tunning

In order to see why there is also a so-called naturalness problem in the Higgs sector, first we
must introduce a precise definition of the concept of fine-tuning, for which we will use a criterion
introduced by R. Barbieri and G. F. Giudice [63]: consider an observable O = O(pi) as a function
of the most general parameters pi of the theory under study. The notion of naturalness is then
interpreted as the sensitivity of the observable with respect to variations in the model parameters.
To motivate the idea, define ∆pi , the amount of fine tuning associated to pi, by

δO
O

= ∆pi

δpi
pi

(3.12)

where δO is the change induced in O by a change δpi in pi. In terms of [64], roughly speaking the
parameter |∆−1

pi | measures the probability of a cancellation among terms of a given size to obtain a
result which is |∆pi | times smaller. Formally, we define the Barbieri-Giudice fine-tuning parameter
as

∆BG(O; pmax) := max
pi
{∆BG(O; pi) } (3.13)

where

∆BG(O; pi) :=

∣∣∣∣piO ∂O∂pi
∣∣∣∣ =

∣∣∣∣∂ lnO
∂ ln pi

∣∣∣∣ (3.14)

for every parameter pi. The Barbieri-Giudice parameter 3.13 turns the formulation of the natural-
ness problem from a vague æsthetic issue to a concrete semiquantitative question. Given the above
statistical interpretation of |∆−1

pi |, alternative variants to this parameter have also been proposed,
such as [64,65]

∆(O) :=

√∑
i

∆BG(O; pi) (3.15)
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nonetheless we will use throughout this thesis the convention 3.13. Finally, we avoid an unnatural
tuning by imposing

∆BG(O; pmax) < x (3.16)

so that a percentage variation of any of the parameters pi does not correspond to a percentage
variation of O more than x-times larger. As Barbieri and Giudice did, many authors choose21

x = 10 as a natural upper bound on ∆BG(O; pmax). The motivation is the subjective belief that
if the discrepancies between quantities were to be natural, they must be less than of one order of
magnitude; any x much greater than 10 will be classified as fine-tuned. Yet, as such, the choice of
a number is arbitrary. Applied to our current case, we have O = m2

h and pi = pmax = Λ2
SM, and so

the Barbieri-Giudice parameter reduce to

∆BG(m2
h; Λ2

SM) =

∣∣∣∣Λ2
SM

m2
h

∂m2
h

∂Λ2
SM

∣∣∣∣ =
|δm2

h|
m2
h

'
(

ΛSM

450 GeV

)2

(3.17)

The bigger is ∆BG, the more precise cancellation is needed to accommodate the observed Higgs
mass and the less “natural” the theory is. The above expression can also be found by rewritten
equation 3.2 as

m2
h0 = m2

h

[
1 + ∆BG(m2

h; Λ2
SM)
]

(3.18)

and so we say either “the corrections are ∆BG times the Higgs mass”, “a fine-tuning of one part
in ∆BG is required” or that “a fine-tuning of ∆−1

BG × 100 percent is required”. For example, if the
Standard Model were valid up to the cut-off scale ΛSM = 10 TeV, a fine-tuning of about one part
in 200 is required. Thus we see again a manifestation of the hierarchy problem. If we want the
Standard Model to be valid up to ΛSM = 100 TeV, the fine-tuning required is much greater, about
one part in 20000; on the other hand, around ΛSM = 1 TeV, the need for fine-tuning disappears
completely.

3.2.4 The Concept of Naturalness

There is almost certainly a “naturalness criterion” within every branch of science. For example,
in environmental sciences, it refers to the degree to which an area is pristine, free from human
influence, and characterized by native species [55]. In mathematics, its meaning is associated with
the intuitiveness of certain fundamental concepts, viewed as an intrinsic part of our thinking [56].
It can also be found in computer science, agriculture, in linguistics, etc. However, it is perhaps in
physics that the idea has been more influential for the development of the field itself. The concept
of naturalness can be funded in particle physics embedded inside two ideas.

Definition 3.1 (Structural Naturalness). The first way the concept of naturalness can be found
in particle physics is called structural naturalness and refers to the “æsthetic beauty” underlying a
theory.

Structural naturalness has been a powerful guiding principle for physicists as they try to con-
struct new theories. This may appear surprising since the final product is often a mathematically

21Since then, hundreds of authors have applied this criterion to various problems, from setting a naturalness contour
for SUSY particle search, to the fine-tuning problem of the neutrino seesaw mechanism. Barbieri and Giudice’s
sensitivity criterion has been widely adopted as the doctrine of naturalness judgment.
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sophisticated theory based on deep fundamental principles. However, these latter principles are
often inspired by criteria of simplicity and beauty. Structural naturalness is a powerful inspira-
tional principle but, of course, it cannot be used to validate a theory, and because of its subjective
character, it cannot be quantitatively defined.

Definition 3.2 (Technical Naturalness). The second way the concept of naturalness can be found
in particle physics is called numerical naturalness or technical naturalness, and represents a more
precise criterion that currently plays a fundamental role in the formulation of theoretical predictions
for new phenomena. The technical naturalness of a theory with cut-off Λ can be assessed by different
criteria:

1. A natural parameter ξ is one for which ξ ∼ Λ. A natural theory is one in which all of the
physical parameters are some combination of UV insensitive, natural, and symmetry-natural.

2. A ’t Hooft parameter or symmetry-natural parameter is a parameter ξ for which at any scale
µ the replacement ξ(µ) = 0 would increase the symmetry of the system. In this case the
physical parameter ξ(µ) is allowed to be very small, i.e. ξ � Λ, because the symmetry is
weakly broken somehow. Consequently, all the parameters associated with this approximate
symmetry are stable against radiative corrections, so that they do not receive significant
contributions from higher-order quantum effects.

3. A Dirac parameter is a dimensionless parameter ξ of order 1.

4. An unnatural parameter is a parameter ξ for which there is a fine-tunning at the cut-off scale
that produces m � Λ. This UV tuning somehow corrects for the large radiative corrections
of the low energy theory. An unnatural theory is fine-tuned. This is bad, because there are
no known physical mechanisms to produce fine-tuned theories. The only known explanation
for fine-tuning is accidental relations in the UV parameters.

Possibly, the first formulation of a technical naturalness criterion was made by Dirac, who
establishes that a physical theory is “natural” when all its dimensionless parameters are of order
1. This condition, however, is too restrictive because it would label as unnatural very successful
models such as the electroweak theory (fine structure constant α ∼ 10−2, electron Yukawa coupling
ye ∼ 10−6, and so on). Historically, a second criterion emerged inside the context of QFT in
which the issue of the quadratic growth (divergence) in corrections to scalar masses was first raised
by Kenneth G. Wilson [57]. Subsequently, in the late 1970s also Weinberg [58], Susskind [59]
and Gildener [60], amongst others, identified a naturalness problem concerning the mass of a
fundamental scalar field. Nonetheless, it was Gerard ’t Hooft who framed this issue in terms of a
principle, which he dubbed the naturalness condition [61, 62]; he argue that

at any energy scale µ, a physical parameter α(µ) (or set of parameters) is allowed to be
very small only if the replacement α(µ) = 0 would increase the symmetry of the system.

Consequently, all the parameters associated with this approximate symmetry are stable against
radiative corrections, so that they do not receive significant (i.e. O(1)) contributions from higher-
order quantum effects. Most of the parameters of the Standard Model are natural in the sense
of ’t Hooft. For example, the small quark and lepton masses are natural in the sense of ’t Hooft
despite being orders of magnitude smaller than the weak scale. This is because in the limit that
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all of the quark and lepton masses vanish, the Standard Model has a large chiral global symmetry.
On the other hand, there is no such recovered symmetry restoration when the Higgs mass goes to
zero since the H†H mass operator is invariant under all symmetries of the Standard Model and all
chiral symmetries. Hence, the mass of the Higgs boson fails ’t Hooft’s test22 and it is usually refer
in this sense that entails a problem of naturalness.

3.2.5 The Higgs Naturalness Problem

The bare mass parameter is not predicted by the SM, but when combined with the BSM corrections
loops δm2

h,BSM it should largely cancel the δm2
h,SM term, leaving behind the weak-scale physical

mass for the Higgs 3.7. Nevertheless, just inside the SM the correct weak scale can only emerge if the
tree level value mh,bare is an extraordinarily fine-tuned parameter; indeed, if we set ΛSM ∼ 1019 GeV
then note that

m2
h,physical = m2

h,bare + δm2
h

104 ∼ x · 1038 − y · 1038

so that
x− y ∼ 10−34 (3.19)

and hence mh,bare must cancels the SM 1-loop corrections with extraordinary precision in order to
reproduce the small observed mass. Therefore, in this context our “true” theory formula for the
observed Higgs mass requires the miraculous cancellation between the two a priori unrelated terms
m2
h,bare and δm2

h, and being accurate up to 34 significant digits, and so each of this terms must
be known with at least 34 digits accuracy even if we content ourself with an order one estimate of
mh,physical. In other words, the bare mass is extremely sensitive to the scale of new physics ΛSM and
the parameters in the theory need to be carefully fine-tuned to keep the Higgs mass at an accept-
able value of at most a few hundred GeV. Therefore, the square Higgs mass m2

h,bare is an unnatural
parameter in the theory under our previous technical naturalness criterion. This systematic cancel-
lation of dangerous contributions can only be brought about by the type of conspiracy that is better
known to physicists as a symmetry. But since in the SM there is no known such symmetry relating
the various couplings, this situation is considered to be very unnatural and makes us think that
there is more than just a “coincidence relation”23. This is the Higgs Naturalness Problem. There
is no equivalently disquieting equation in particle physics that apparently requires such dramatic
fine-tuning of quantum corrections. Only the cosmological constant has perhaps more mystery of
such large discrepancies compared to expectations. Interestingly, it is argue in Ref. [47] that in the
symmetric phase of the SM, the gauge-boson plus chiral-fermions sector is renormalizable without
the Higgs boson and a Yukawa sector and scalars are not required at all to cure the high energy
behaviour, because it is renormalizable on its own structure. Therefore, in the symmetric phase
the mass-degenerate Higgs fields in the complex Higgs doublet can be as heavy as we like. Since

22For a more detailed discussion, see e.g. Refs. [66,67]
23An interesting option was studied by M. J. G. Veltman in the context of dimensional regularization getting the

one-loop condition
−4m2

t + 2m2
W +m2

Z +m2
h ' 0

known as Veltman condition. This is satisfied for a value of the Higgs mass mh ' 314 GeV in flagrant conflict with
experimental data.
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unprotected by any symmetry, naturally we would expect the Higgses indeed to be very heavy.
Indeed, the “origin” of the Higgs mass is very different in the broken phase, where the mass is
generated by the Higgs itself 3.1 and in the symmetric phase, where is is dynamically generated by
the “Planck medium”.

The previous problem does not hold exclusively to the Higgs Boson. Indeed, a fine-tunning
issue arises whenever the radiative corrections to the mass of a fundamental scalar particle (spin-0
particle) is calculated. In contrast, fermion and gauge boson masses do not lead to problems of
this nature because there is a symmetry protecting its mass, e.g. a chiral symmetry for fermions
or a gauge symmetry for gauge bosons, and so they do not have the direct quadratic sensitivity
to ΛSM found in Eq. 3.4. For example, radiative corrections to fermion masses are logarithmically
divergent

δmf '
3α

4π
mf log

(
Λ2

SM

m2
f

)
(3.20)

and so in the fermion case these corrections are small, i.e. δmf < mf .

3.2.6 The Little-Hierarchy Problem

We now turn the argument in the other way around. Up to what scale can we expect the SM to
be valid if we suppose a fine-tuning of at most 1 part in 10 acceptable? The requirement sets an
upper bound

ΛSM . 1.4 TeV (3.21)

This is generally taken as an indication that a simple extrapolation of the SM beyond a scale
close to 1 TeV suffers from a naturalness problem because ultraviolet contributions to m2

h exceed
its physical value. We should then expect to find new physics below or around this energy scale,
whose presence is dictated by some symmetry and that naturally cancel the contribution from the
top quark. This argument leads to an optimistic prospect, as it sets the scale of new physics on the
reach of LHC. However, beginning around the year 2000, LEP experiment opened what we now
known as a “little-hierarchy problem” [68–70]. It turns out that upper bounds of the type 3.21 are in
a certain tension with the experimental lower bounds on the suppression scale ΛSM of higher order
operators, derived from fits to precision electroweak data [68,71], which typically require ΛSM & 10
TeV, ruling out new strong interactions at scales below about this scale; moreover, this problem
was exacerbated in the last few years by the first run of LHC experiments [72,73]. Therefore, since
LEP forbade new physics close to the weak scale, there must be a little hierarchy between the weak
scale and the scale of new physics; hence the name.

3.3 Some Approaches to the HNP

In the last decades, several theoretical extensions of the SM, attempting to provide a more satis-
factory picture of EWSB and conjecture the structure of the theory at the TeV scale, have been
proposed. In supersymmetry, new particles with masses at the TeV scale cancel divergent loop
corrections to the Higgs mass. In theories with extra-dimensions, the fundamental scale of gravity
is lowered from Mplanck to the electroweak scale, thereby removing the hierarchy. In so-called little
Higgs models, the SM is embedded in a larger symmetry group broken in such a way to provide
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the exact amount of new physics at the TeV scale to stabilize mh,bare. In technicolour, the source
of the problem, i.e. the Higgs boson being a fundamental scalar, is removed since the Higgs is a
fermion condensate. New particles and new (strong) interactions are predicted at the TeV scale.
Another one, the Composite Higgs (CH) scenario, is analysed in this thesis.

3.3.1 The Technicolor Approach

Technicolor (TC) was first proposed in 1979 by S. Weinberg [58] and L. Susskind [59] as one of
the first solution to the HNP. This model was inspire in QCD and replaces the Higgs boson with
a new strong interaction at a scale ΛTC of few TeV, which eventually triggers the electroweak breaks.

The hypothesis proposed a new asymptotically free strong gauge interaction GTC, called the
technicolor gauge group, often assumed to be24 SU(NTC), with its gauge coupling gTC being small
at very high scales (O(1015 GeV), say) and then growing to become strong and confining as we
descend in energy to

ΛSM ≡ ΛTC ∼ O(1 TeV) (3.22)

Also, a new set of 1
2Nf left- and right-handed doublets of Dirac fermions (known as technifermions)

is introduced, transforming under complex irreps. of GTC

TiL,R =

(
Ui
Di

)
L,R

(3.23)

If the TL are assigned to electroweak SU(2)L as doublets and the TR as singlets, with appropriate
U(1) couplings for all the technifermions, then they are massless and have a large global chiral
flavour symmetry

Gχ = SU(Nf )L × SU(Nf )R (3.24)

with SU(2)L × U(1)Y as a weakly gauged subgroup. When gTC becomes strong, this triggers the
production of bilinear technifermion condensates and technifermions acquire a dynamical mass
(technicolor indices are suppressed here):

〈Ω|ŪiLUjR|Ω〉TC = 〈Ω|D̄iLDjR|Ω〉TC ' −4πf3
TCδij (3.25)

where |Ω〉 is the ground state of TC and whose symmetry group is SU(Nf )V, the diagonal subgroup
of 3.24. The formation of these condensates will generate the spontaneous symmetry breaking25

Gχ → SU(Nf )V at the scale ΛTC. In other words, the technifermion chiral symmetry and the
electroweak group do not break until gTC becomes large enough that condensates 〈T̄iLTjR〉TC
form. Consequently, a number of N2

f − 1 massless Goldstone bosons result with decay constant
fTC = v ' 246 GeV, and three linear combinations of these Goldstone bosons are absorbed as the
longitudinal components of the W± and Z0 weak bosons, generating the weak boson masses

mW =
1

2
gfTC and mZ =

1

2
fTC

√
g2 + g′2 (3.26)

24i.e. SU(3)C × SU(2)L ×U(1)Y × SU(NTC) is now the total gauge group.
25Just as happens in QCD, there should also be an infinite tower of bound states -technihadrons- that can be

classified according to SU(Nf )V.
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Technicolor exploits our understanding of QCD dynamics, which result in an elegantly dynamical
explanation for the electroweak symmetry breaking, analogous to the phenomenon that causes chiral
symmetry breakdown in QCD. On the other hand, the mechanism is natural and stabilizes the weak
scale far below mPlanck. However, while TC can explain the masses of of the W ’s and Z, it has
no mechanics to generate mass for the ordinary quarks and leptons. The only natural possibility,
if we are to avoid introducing fundamental scalars, is to enlarge GTC to allow technifermions to
couple to quarks and leptons. This coupling is induced by gauge bosons of the enlarged group.
This approach is called extended technicolor26 (ETC), and the idea is to enlarge the gauge group
to

SU(3)C × SU(2)L ×U(1)Y × SU(NTC + 1) (3.27)

in which technifermions, quarks, and leptons live in the same representations. The technicolor group
will be an SU(NTC) subgroup of the last factor. While a beautiful idea, this proposal still runs
into a number of difficulties. Perhaps the most serious is the problem of flavour-changing neutral
currents. In addition to four-fermion operators which generate mass, there will also be four-fermion
operators involving just the ordinary quarks and leptons. These operators will not, in general,
respect flavour symmetries. Prior to the Higgs discovery, other serious problems have long been
noted, especially difficulties with precision studies of the Standard Model. The existence of a Higgs
much lighter than 1 TeV, and with width less than a few GeV, is particularly difficult to understand
in a Technicolor framework. Most proposals to understand this assume that the technicolor theory
is nearly conformal over a range of scales, with a light, SM-like Higgs a consequence.

3.3.2 The Supersymmetric Approach

Supersymmetry (SUSY) not only has played a most important role in the development of theoretical
physics over the last three decades, but also has strongly influenced experimental particle physics.
Supersymmetry was first proposed, in the context of hadronic physics, by Hironari Miyazawa in
1966 [74]; however, Miyazawa’s work was largely ignored at the time. Later, J. L. Gervais and B.
Sakita (in 1971) [75], Yu. A. Golfand and E. P. Likhtman (also in 1971) [76], and D. V. Volkov and
V. P. Akulov (1972) [77], independently rediscovered supersymmetry in the context of quantum
field theory, as a radically new type of symmetry of spacetime and fundamental fields. It was
also rediscovered in 1971 by Pierre Ramond [78] and, independently, John H. Schwarz and André
Neveu [79] in the context of an early version of string theory where it was a symmetry of the
two-dimensional world sheet theory. Shortly after it was realised by Wess and Zumino [80] the
characteristic renormalization features of four-dimensional supersymmetric field theories, which
identified them as remarkable QFTs. Since then, supersymmetry, along with its monozygotic
sibling superstring theory, has become the dominant framework for formulating physics beyond the
standard model27.

Supersymmetry is a symmetry that relates bosons and fermions. Since all matter particles are
fermions and all force carriers are bosons, this remarkable symmetry unifies matter and forces. In
a theory with supersymmetry, bosons and fermions appear in pairs of equal mass. The particle of
the Standard Model do not have this property, so supersymmetry, if it exists in nature, must be
spontaneously broken. If nature is supersymmetric, the partners of the known fermions (quarks and

26For a detailed discussion about Technicolor and its extensions see, e.g. [81] and [82].
27For a historical review on supersymmetry and string theory, see [83]
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Figure 3.1: Cancellation between fermionic top quark loop (left) and scalar stop squark tadpole
(right) in a supersymmetric extension of the Standard Model.

leptons) are complex scalar fields (with the same gauge charges). These particles are referred to as
squarks and sleptons. The partners of the gauge bosons are the gauginos. The fermionic partners of
the Higgs fields (supersymmetry requires a minimum of two Higgs doublets) are known as higgsinos.

There are several reasons why an elementary particle physicist wants to consider supersymmetric
theories. An important one is that radiative corrections tend to be less important in supersym-
metric theories, due to cancellations between fermion loops and boson loops; this happens because
superpartner-coupling constants are related to Standard Model-coupling constants by supersym-
metry, but superpartner-loops have the opposite sign from their Standard Model-partner because
of opposite spin-statistics. For example, in addition to the top quark loop, there is now a loop con-
taining a stop which tames the quadratic divergence of the Standard Model (Fig. 3.1). There are
actually two types of stops, one from an electroweak doublet, one from the singlet. For simplicity,
calling the mass of each of these scalars m̃t, the two Feynman diagrams yield

δm2
h = 3λ2

t

∫
d4k

(4π)4

(
− 1

k2 +m2
t

+
1

k2 + m̃2
t

)
(3.28)

The leading quadratic divergence cancels, leaving only a logarithmically divergent term:

δm2
h = − 3y2

t

16π2
m̃2
t log

(
Λ2

SM

m̃2
t

)
(3.29)

Other famous problems solved by SUSY include the vanishing or extreme smallness of the
cosmological constant and the issue of renormalisation of quantum gravity. Nevertheless, it must
be noted that while supersymmetry could solve most if not all of these questions, it cannot be
the full answer, since we know that supersymmetry cannot be exactly realised in nature: it must
be broken at experimentally accessible energies since otherwise one certainly would have detected
many of the additional particles it predicts.

3.3.3 The Anthropic Principle

The last thing we should probably mention is that the apparently unnatural value of the µ parameter
in the Higgs potential may also be motivated by the so-called anthropic argument, which states
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that

the parameters of the universe that we observe are governed by the requirement that they
must be able to support intelligent life, as otherwise we would not exist to observe our
universe.

Hence, according to the anthropic principle, a significant fine tuning in certain fundamental pa-
rameters is indeed present. If there is only one single universe, with the same laws and parameters
everywhere, this is far from a satisfactory physical explanation. However, it has been realized that
some physical theories can support the existence of separated domains in the universe in which
different parameters and even different gauge groups are applicable. For example, in chaotic in-
flation [84] different domains have different Higgs vacuum expectation values, selecting different
effective particle physics theories. Such domains could be regarded as, effectively, different uni-
verses. In a multiple universe theory, the anthropic requirement that we live in a universe with
viable parameters is as natural as is the good fortune that we happen to live on a planet that has
a temperature ideal for life 28.

4 The Composite Sector and the CCWZ Prescription

4.1 The Composite Higgs Program

As we have seen, the mass of the Higgs boson receives quadratically divergent radiative corrections
making it sensitive to the energy scale of any new physics which interacts with it and thus, in the
absence of cancellations, is expected to be of the same size as the highest scale in the underlying
theory; this rise the question of why the Higgs mass is not, for example, of the order of the Planck
mass. Composite Higgs models aim to solve this problem by postulating an scenario where the Higgs
particle is not elementary but instead the bound state of some new unspecified strongly coupled
constituents, being thus shielded from the UV physics by its composite nature and distinguished
from other composite resonances due to the Nambu-Goldstone symmetry, and where the measured
value of the Higgs mass demands in addition the existence of lighter exotic resonances. Composite
Higgs models are the leading alternative to supersymmetric models for physics beyond the standard
model presently tested at the LHC.

4.2 Composite Sector in Isolation

In a CH scenario, the mass of the composite Higgs would not receive corrections from the quanta
of the fields at arbitrarily high energies, instead they will interact with its constituents directly.
This phenomenon is realized in QCD, and we will see that CH models assemble a mechanism that
shares some similarities.

We begin by postulating, in addition to the SM fermions and gauge fields, the existence of a
new unspecified strongly interacting sector carryng an ultracolor (UC) force29, conceptually similar

28For a more detailed discussion, see e.g. [85]
29We follow some of the terminology presented in [86].
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Figure 4.1: Diagram with some of the sectors that can be presented in a composite Higgs model.

to a QCD-like confining theory, and the presence of some ultrafermions which interact via gauge
group

GUC × SU(2)L ×U(1)Y (4.1)

where GUC is the gauge group of the new sector. This new strong sector is also endowed with a
global Lie group symmetry G, which hereafter we assume to be compact, connected and semi-simple
and with its low-energy regime just above the electroweak scale. The essential feature of composite
Higgs being a solution of the NP is the strongly-coupled nature of the underlying UV theory, by
which the Higgs mass is stabilized through dimensional transmutation generating a mass scale that
is reasonably insensitive to the detailed UV physics. Then, below that mass scale the theory will
appear as being hadronized into bound states whose masses are roughly given by the hadronization
scale. It is also assume that when the composite sector is consider in isolation30, strong effects
induce the presence of ultrafermion vacuum condensates breaking spontaneously G down to some
subgroup H ⊂ G at the cut-off scale

ΛSM ≡ ΛUC ' 4πf ∼ O(TeV) (4.2)

and where f is known as the decay constant (the analogue of the pion decay constant fπ in QCD); the
currently preferred value is around f ' 0.8 TeV [87], which gives a corresponding cuttof ΛUC ' 10
TeV. The parameter 4.2 is called the composition scale of the new sector, and describes the scale at
which the ultrafermions are confined and pNGBs, including the Higgs doublet, are produced [88];
conversely, above this scale the composite states cease to be the relevant degrees of freedom and
we begin to observe their internal constituents. The ΛUC is therefore an upper bound for a cut-off
of our forthcoming effective description. We are not going to make a distinction between a chiral
breaking scale and a composition scale as is the case with QCD at µ = 0; see section (1.3.5). The
mass of the composite Higgs would not receive correction from the energies which are higher than

30By this, we mean that we ignore the couplings of this sector with both the SM gauge fields and the SM fermions,
both of which break G explicitly.
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the inverse physical size `h of the Higgs:

`h ∼
1

ΛUC
(4.3)

i.e. the quanta of the fields at arbitrarily high energies will not interact with the Higgs as a
fundamental scalar anymore, but instead they will interact with its constituents directly. The
spontaneous breaking implies a number of

NNGB := dim(G/H) = dim(G)− dim(H) ≥ 4 (4.4)

composite NGBs, including one with the quantum numbers of the Higgs. From them, we must
be able to construct at least one SU(2)L doublet in order to identify the four real components of
the SM Higgs doublet (from where the constrain ≥ 4 follows) plus possible other scalars from an
enlarged Higgs sector. The breaking also introduces a manifold of degenerate vacua

Hvacua = { |Φ0〉 | 〈Φ0|V |Φ0〉 is minimal } (4.5)

of the composite sector; any of those degenerate vacua Φ0 defines a so-called reference vacuum
orientation, and without loss of generality, it can always be chosen at our convenience. It follows
the identification

H := StabG(Φ0) = { g ∈ G | g · Φ0 = Φ0 } (4.6)

and referred to as the corresponding reference invariant subgroup.

In order to work out the theory, first of all we must introduce a reference system in the Lie
algebra g of G and fix some basis of generators TA, divided into two categories

{TA}dimG
A=1 = {Ta}dimH

a=1 ∪ {T̂â}
dimG/H
â=1 (4.7)

and usually normalized as
Tr(TATB) = δAB (4.8)

On the one hand, the unbroken generators Ta span the subalgebra h ⊂ g of H, which are associated
to fields that do not lead to physical degree of freedom when describing the NBGs of the theory.
On the other hand, the broken generators T̂â expand the left coset space

G/H ∼= { exp(iαâT̂â) | αâ ∈ R } (4.9)

and they are associated with the physical degree of freedom describing the NGBs of the theory.
Consequently, a reference vacuum Φ0 can by fixed describing one of the degenerate vacua of the
composite sector, such that31

TaΦ0 = 0 and T̂âΦ0 6= 0 (4.10)

in order to be consistent with 4.6. At first, and from the viewpoint of the composite sector alone,
there is no preferred vacuum Φ0. Therefore, the embedding 4.6 is arbitrary (i.e. any embedding

31Note that by the second equation, we mean that {TâΦ0} constitute a linearly independent set.



4 THE COMPOSITE SECTOR AND THE CCWZ PRESCRIPTION 56

of H in G by different vacua Φ0 is completely equivalent), and so consequently the choice of
generators 4.7. Nevertheless, we will see that CH models demand the embedding of the EW group

GEW := SU(2)L ×U(1)Y (4.11)

in H. In fact, this is precisely what makes CH models so different from technicolor: the existence of
two separate phase transitions in the theory. Namely, at some large scale one passes from a regime
of free fermions to one of light bound states (including the Higgs doublet); this is followed by a sec-
ond transition at the usual weak scale where the Higgs develops a VEV and breaks SU(2)L×U(1)Y.
Consequently, it is convenient to choose the TA’s in such a way that the embedding of H contains
all the GEW generators.

Finally, the phenomenology of the NGBs can be analysed by a non-linear sigma model. The gen-
eral formalism will be analysed in section (4.5) through the so-called CCWZ prescription. Nambu-
Goldstone boson fields parametrise the angular fluctuations Φ = Φ(x) around any chosen reference
vacuum Φ0, and since we know that this fluctuations correspond to local transformations in the
directions of the T̂â’s, it will be convenient to perform the ansatz

Φ(x) = exp

(
i

√
2

f
φâT̂â

)
Φ0 (4.12)

We have parametrized the NGBs
φâ = φâ(x) (4.13)

arising from the general symmetry breaking G → H through the so-called Σ-model field or Gold-
stone matrix

Σ[φ] := exp

(
i

√
2

f
φâT̂â

)
(4.14)

describing the NGBs as the fluctuations along the G/H broken directions, and which transforms
in the fundamental representation of G. This matrix can be defined for any G→ H breaking and

it ubiquitously appears in CH models. The normalization factor
√

2
f has been chosen to obtain a

canonical kinematic term for the NGB fields. Nambu-Goldstone bosons enter in the picture through
the Goldstone matrix, but eventually they form multiplets of some representation of H.

If the composite sector is still consider in isolation, then the φ fields are exact NGBs and hence
they have no potential and their VEV’s are completely arbitrary, i.e, they are unobservable. This
is because the inherent arbitrariness in the choice of the vacuum implies any possible values in the
VEV’s of the NGB’s, giving rise to an ambiguity in their choice. In this way, it is possible to set,
in full generality, 〈φâ〉 = 0.

4.3 Vaccum Misalignment

Up to now we discussed the global symmetry of the composite sector consider in isolation and its
spontaneous breaking; now we need to introduce one of its sources of explicit breaking. As we
anticipated in the previous section, another important condition that is demanded in CH models
is that the electroweak group 4.11 must be entirely embeddable into H. This is because in the
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limit of vanishing couplings between the strong sector and the gauge bosons, the EW group should
preserve the reference vacuum Φ0, so we say that there is a perfect alignment, and hence whether
or not the weak interactions are broken becomes an alignment question. To be honest, the strongly
interacting sector G should also have an embeddable SU(3)C global symmetry associated to color,
but this is irrelevant for our considerations and so it will not be considered in what follows. The
existence of the embedding GEW ↪→ H will have important consequences for the phenomenology
of the models built upon the symmetry breaking.

On the other hand, it turns out that the interactions of the resonances in the strong sector with
the SM fields, i.e. with the gauge bosons (by gauging GSM ⊆ H) and fermions, explicitly break
the global symmetry, leading to a Higgs potential at loop level. Consequently, some NGBs become
pseudo Nambu-Goldstone bosons and their VEV 〈φâ〉 is not arbitrary anymore. Moreover, their
VEVs 〈φâ〉 become observable as it can not be set to zero by an exact symmetry transformation;
this uplifted the degeneracy of the vacua and fixes a true vacuum

Ω0 = Σ[〈φâ〉]Φ0 (4.15)

corresponding to the EW vacuum; this phenomenon is knows as a vacuum misalignment (see Fig.
(4.2a)). Finally, it will happen that a Coleman-Weinberg potential for the (composite) Higgs will be
generated at one loop due to its gauge and fermion interactions. However, the gauge contributions
are usually aligned with the EW gauge group, unlike the fermion contributions and which are
expected to be large because of the large top mass. The latest will effectively provide a VEV to the
Higgs field h, triggering the EWSB and the breaking SO(4) down to the custodial SO(3) group.

Since CH models are extensions of the SM, a more general subgroup H0 ⊂ G including the EW
group could be gauged (see Fig. (4.2b)). Therefore, among the NNGB Nambu-Goldstone bosons
resulting from the spontaneous breaking G→ H, there will be

Ne := dim(H0)− dim(H0 ∩H) ≥ 3 (4.16)

of them eaten to provide the longitudinal degrees of freedom of the corresponding gauge bosons
associated with the broken generators of H0, with at least three of them, say φ± and φ0, giving rise
to the known EW gauge bosons W±, Z0 (see Fig. 4.2b). The remaining NGBs φ become pNGBs
as result of the explicit breaking. Indeed, in the forthcoming discussions we will identify H0 with
the SM electroweak group: H0 = GSM.

In CH models the SM fields, apart from the Higgs, are typically considered as mostly elementary
and not belonging to the new strong sector. It turns out the misalignment of the external sector
GEW with respect to H is always possible to relate it with the value of the Higgs VEV through

v = f sin 〈φ〉 (4.17)

where 〈φ〉 is called the misalignment angle. This condition is conveniently expressed through the
fine-tuning parameter

ξ :=
v2

f2
= sin2 〈φ〉 ∈ (0, 1] (4.18)

which appears ubiquitously in the study of composite Higgs in the literature. Geometrically, it
determines the orientation of GSM with respect to H in the true vacuum Ω or degree of misalignment
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(a)

(b)

Figure 4.2: (a) Schematic representation of the gauging process of GSM; it breaks G explicitly, fixes
a non-zero VEV for the NGBs, and hence generates a vacuum misalignment. (b) Once GSM has
been gauged, the G→ H spontaneous breaking gives rise to at least four NGBs, say φ±, φ0 and h,
three of which are eaten as the longitudinal degrees of freedom of the EW gauge bosons W±, Z0.
The remaining unbroken gauge boson Aµ is the photon and the uneaten NGB h remains a physical
scalar.

(see Fig. (4.2a)), while algebraically it sets the size of the parametric suppression in all corrections
to the precision observables. The limit f →∞ (i.e. ξ → 0) with fixed v is thus a decoupling limit
where the Higgs stays light and all the other resonances become infinitely heavy. On the other
hand, the limit f → v (i.e. ξ → 1), at fixed v, constitutes a technicolor-like scenario.

4.4 The Toy Model SO(3)/SO(2)

To illustrate some of the above general ideas and to gain a better understanding of the issues in-
volved in realizing the Higgs as a NGB, we will consider in this section a simple toy model which
incorporates the ideas presented in the previous sections.

Consider a theory with a global SO(3) symmetry spontaneously broken to an SO(2) subgroup,
at a scale Λ ≡ ΛUC. The manifold of equivalent vacua isHvacua = S2, and for simplicity and without
loss of generality, we choose a representative vacuum Φ0 pointing along the third component

Φ0 = (0, 0, f)T (4.19)

and let Φ = Φ(x) be a triplet of real scalar fields parameterizing the fluctuations around the above
vacuum Φ0. We propose the following phenomenological Lagrangian describing our toy strongly-
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interacting composite sector:

L[Φ, ∂µΦ] =
1

2
∂µΦT∂µΦ− g2

∗
8

(ΦTΦ− f2)2 (4.20)

The parameter g∗ controls the interactions in our Lagrangian, and it is thus interpreted as an
effective low-energy coupling of the composite sector. Given our choice of Φ0 and taking into
account the conditions 4.10, the SO(3) generators, can be conveniently chosen as

T =
1√
2

0 −i 0
i 0 0
0 0 0

 (4.21)

and

T̂1 =
1√
2

0 0 −i
0 0 0
i 0 0

 , T̂2 =
1√
2

0 0 0
0 0 −i
0 i 0

 (4.22)

which are also conveniently normalized as Tr(TATB) = δAB. Indeed,

TΦ0 =
1√
2

0 −i 0
i 0 0
0 0 0

0
0
f

 =

0
0
0

 Unbroken generator

T̂1Φ0 =
1√
2

0 0 −i
0 0 0
i 0 0

0
0
f

 =
1√
2

−if0
0

 Broken generator

T̂2Φ0 =
1√
2

0 0 0
0 0 −i
0 i 0

0
0
f

 =
1√
2

 0
−if

0

 Broken generator

and note that the theory 4.20 is invariant, as shout it be, under SO(3) transformations

Φ 7→ exp(iαATA)Φ (4.23)

with A = 1, 2, 3 and αA ∈ R. Geometrically, the three generators T, T̂1 and T̂2 correspond to
rotations in the xy, xz and yz planes, respectively. As we said in the previous section, in order to
study the fluctuations around the vacuum Φ0 it is convenient to perform a field redefinition and
to trade the three Φ components as one radial coordinate σ = σ(x) plus two angular variables
φ1,2 = φ1,2(x) (the NGBs). We write

Φ = exp

(
i

√
2

f
φâT̂â

) 0
0

f + σ

 = Σ[φ1, φ2]

 0
0

f + σ

 (4.24)
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Note that this is not exactly the parametrization 4.12 since here we are including radial fluctuations.
The Goldstone matrix in this case is explicitly given by

Σ[φ1, φ2] = exp

i√2

f

 1√
2

 0 0 −iφ1

0 0 0
iφ1 0 0

+
1√
2

0 0 0
0 0 −iφ2

0 iφ2 0



=


φ2

2+φ2
1 cos φ

f

φ2

φ1φ2

(
−1+cos φ

f

)
φ2

φ1

φ sin φ
f

φ1φ2

(
−1+cos φ

f

)
φ2

φ2
1+φ2

2 cos φ
f

φ2
φ2

φ sin φ
f

−φ1

φ sin φ
f −φ2

φ sin φ
f cos φf

 (4.25)

where we have defined

~φ :=

(
φ1

φ2

)
∈ 2 of SO(2) (4.26)

and φ :=

√
~φ
T ~φ . The above expression for Σ can be simplify as

Σ[φ1, φ2] =


1− φ2

1
φ2

(
1− cos φf

)
−φ1φ2

φ2

(
1− cos φf

)
φ1

φ sin φ
f

−φ1φ2

φ2

(
1− cos φf

)
1− φ2

2
φ2

(
1− cos φf

)
φ2

φ sin φ
f

−φ1

φ sin φ
f −φ2

φ sin φ
f cos φf


=

12 −
~φ ~φ

T

φ2

(
1− cos φf

)
φ
φ sin φ

f

− ~φ
T

φ sin φ
f cos φf

 (4.27)

with inverse

Σ[φ1, φ2]−1 =

12 −
~φ ~φ

T

φ2

(
1− cos φf

)
− ~φ
φ sin φ

f

~φ
T

φ sin φ
f cos φf

 (4.28)

An analogous result is obtained in the more general spontaneous symmetry breaking pattern
SO(n)→ SO(n− 1) (see Appendix B). Therefore, the field Φ becomes

Φ = (f + σ)

(
~φ
φ sin φ

f

cos φf

)
(4.29)
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By substituting in the Lagrangian 4.20 we obtain, term by term:

1

2
∂µΦT∂µΦ =

1

2

[
~φ
T
∂µσ

φ
sin

φ

f
+

(f + σ)(φ∂µ~φ
T
− ~φ

T
∂µφ)

φ2
sin

φ

f
+
~φ
T

(f + σ)∂µφ

fφ
cos

φ

f

]

×

[
~φ ∂µσ

φ
sin

φ

f
+

(f + σ)(φ∂µ~φ − ~φ ∂µφ)

φ2
sin

φ

f
+
~φ (f + σ)∂µφ

fφ
cos

φ

f

]

+
1

2

[
(∂µσ) cos

φ

f
− (f + σ)∂µφ

f
sin

φ

f

]
×
[
(∂µσ) cos

φ

f
− (f + σ)∂µφ

f
sin

φ

f

]
=

1

2

[
(∂σ)2 +

(f + σ)2[(∂~φ )2 − (∂φ)2]

φ2
sin2 φ

f
+

(f + σ)2(∂φ)2

f2

]

=
1

2
(∂σ)2 +

1

2

(
1 +

σ

f

)2 [f2

φ2
sin2 φ

f
(∂~φ )2 +

f2

φ2

(
φ2

f2
− sin2 φ

f

)
(∂φ)2

]
=

1

2
(∂σ)2 +

1

2

(
1 +

σ

f

)2 [f2

φ2
sin2 φ

f
(∂~φ )2 +

f2

4φ4

(
φ2

f2
− sin2 φ

f

)
(∂φ2)2

]
where in the last line we have used the fact that (∂φ2)2 = 4φ2(∂φ)2. On the other hand, the
potential term yields:

g2

8
(ΦTΦ− f2)2 =

1

2
(g∗f)2σ2 +

g2
∗f

2
σ3 +

g2
∗
8
σ4 (4.30)

Putting these expressions together, the Lagrangian 4.20 becomes:

L =
1

2
(∂σ)2 − 1

2
(g∗f)2σ2 − g2

∗f

2
σ3 − g2

∗
8
σ4 (4.31)

+
1

2

(
1 +

σ

f

)2 [f2

φ2
sin2 φ

f
(∂~φ )2 +

f2

4φ4

(
φ2

f2
− sin2 φ

f

)
(∂φ2)2

]
In agreement with Goldstone’s theorem the φ’s describe two massless boson associated with the
two broken generators T̂1,2. The σ field has instead a mass

mσ = g∗f (4.32)

and in analogy with a strongly coupled sector, the σ field will be called a resonance. In fact, we
will generically call a resonance any particle that emerges from the composite sector aside from
the Goldstone bosons [89]. This mass also gives the strong sector confinement scale, conceptually
similar to the chiral symmetry breaking scale λχ in QCD. Furthermore, in a genuine strong the-
ory g could easily be of order 4π. Also note that every NGB is derivatively couplet. Thus, its
interactions are proportional to its momentum, and as p→ 0 it becomes a free field. This is clear
geometrically, since the potential is only a function of radial direction and not the angle, so there
can be no non-derivative terms containing θ(x) in the Lagrangian. These derivative couplings of
the NGBs is another general consequence of the SSB of a global symmetry, and is very important
in the discussion of composite Higgs interactions.
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The presence of doublet 4.26 in 4.42 evidences the realization of a SO(2)-invariance

~φ 7→ exp(iασ2)~φ (4.33)

which can be traced back up to one of the symmetries of the original Lagrangian 4.20, induces by
the unbroken generator T :

SO(2) = StabSO(3)(Φ0) ∼= { exp(iασ2) | α ∈ R } (4.34)

We say that 4.33 is a linearly realized symmetry as it acts in a linear and homogeneous way on
the field variables. On the other hand, there will be two non-linearly realized transformations
associated with the broken generators T̂â. Since SO(2) ∼= U(1), we can switch from state space (i.e.
R2 ↔ C) by defining

h :=
1√
2

(φ1 + iφ2) (4.35)

so that

φ1 =
1√
2

(h+ h∗) and φ2 =
1

i
√

2
(h− h∗) (4.36)

This switch the Lagrangian 4.42 into

L =
1

2
(∂σ)2 − 1

2
(g∗f)2σ2 − g2

∗f

2
σ3 − g2

∗
8
σ4 (4.37)

+
1

2

(
1 +

σ

f

)2
[
f2

|h|2
sin2

(√
2|h|
f

)
∂µh

∗∂µh+
f2

4|h|4

(
2|h|2

f2
− sin2

(√
2|h|
f

))
(∂|h|2)2

]

Now that the NGBs have been obtained the last ingredient to construct the model is to gauge,
with coupling strength e, the unbroken U(1) subgroup. This is achieved by replacing the derivatives
in the Lagrangian 4.20 with the corresponding covariant derivative

∂µΦ→ DµΦ = (∂µ + ie
√

2AµT )Φ (4.38)

where Aµ is a new U(1) gauge field with canonical kinetic term FµνF
µν and its gauge coupling with

Φ are elementary/composite interaction. The resulting Lagrangian

L[Φ, ∂µΦ] = −1

4
FµνF

µν +
1

2
(DµΦ)†DµΦ− g2

8
(Φ†Φ− f2)2 (4.39)

is gauge invariant provided the gauge field Aµ transform as

AµT 7→ U

(
AµT +

1

ie
∂µ

)
U † where U = eiα(x)T ∈ U(1) (4.40)

The gauging, since it selects one generator among three, breaks SO(3) explicitly to SO(2). The
effect of the gauging is also achieved in Lagrangian 4.42 by switching

∂µ~φ → Dµ
~φ = (∂µ + ieAµσ

2)~φ (4.41)



4 THE COMPOSITE SECTOR AND THE CCWZ PRESCRIPTION 63

so that

L = −1

4
FµνF

µν (4.42)

+
1

2
(Dσ)2 − 1

2
(gf)2σ2 − g2f

2
σ3 − g2

8
σ4

+
1

2

(
1 +

σ

f

)2 [f2

φ2
sin2 φ

f
(D~φ )2 +

f2

4φ4

(
φ2

f2
− sin2 φ

f

)
(∂φ2)2

]
and in Lagrangian 4.37 by switching

∂µh→ Dµh = (∂µ + ieAµ)h (4.43)

so that

L =
1

2
(∂σ)2 − 1

2
(g∗f)2σ2 − g2

∗f

2
σ3 − g2

∗
8
σ4 (4.44)

+
1

2

(
1 +

σ

f

)2
[
f2

|h|2
sin2

(√
2|h|
f

)
(Dµh)∗(Dµh) +

f2

4|h|4

(
2|h|2

f2
− sin2

(√
2|h|
f

))
(∂|h|2)2

]

Now a non-vanishing potential for h is no longer forbidden, which will be radiatively generated
by the gauge field loops. The potential gives in turn a non-vanishing VEV to our toy composite
Higgs h and the breaking of the U(1) gauge symmetry can take place. A vacuum misalignment
then take place by the now true vacuum of the theory

Ω0 = exp

(
i

√
2

f
〈φâ〉 T̂â

)
Φ0

It follows from one of the terms in 4.44 that

1

2

f2

|h|2
sin2

(√
2|h|
f

)
e2AµA

µ|h|2 =
1

2

(
ef sin

√
2|h|
f

)2

AµA
µ (4.45)

So, by setting the Higgs to its VEV 〈h〉 := V/
√

2, the gauge boson Aµ acquires a mass

mA = ef sin
V

f
= ev (4.46)

where v := ef sin(V/f) has been defined as the scale of the spontaneous symmetry breaking of
U(1).

4.5 The CCWZ Construction

When trying to understand the low-energy and confinement regime of a strong dynamic, there
are methods allowing us to work within this regime without the knowledge of the full underlying
theory and all the difficulties that this would imply. One of these approaches, nowadays known as
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the Callan-Coleman-Wess-Zumino (CCWZ) prescription [90, 91], constitute a full treatment that
allows to write general low-energy effective Lagrangians for strongly or weakly coupled theories
characterised by a generic G → H global symmetry breaking pattern, describing the Goldstone
bosons associated with the breaking and the heavy resonances. It is readily extended to incorporate
explicit symmetry breaking. Furthermore the generality of the method makes it an essential tool
for the systematic study of non-minimal cosets, when trying to go beyond the custodial minimal
model SO(5)/SO(4).

4.5.1 Non-linear Realization of a Symmetry

Now we proceed to derive the CCWZ prescription. Let us begin by identifying the degrees of
freedom that described the NGBs, one for each broken generators as predict by Goldstone’s theorem.
In order to do this, we consider all the configurations that are related to some fixed representative
vacuum Φ0 by a local G transformation, namely

Φ(x) = g · Φ0 (4.47)

and with · the appropriate action of G over Hvacua. For every g ∈ G we have

g = exp(iαATA) = exp(iαâT̂â + iαaTa) (4.48)

where TA denotes the full set of generators of the group G, and T̂â and Ta are the broken and
unbroken generators of G, respectively. The scalar fields αâ = αâ(x) are coordinates of the coset

space G/H at each point of spacetime, and the set of group elements exp(iαâT̂â) parametrizes this
coset space (see 4.9). Returning to 4.47, we note that not all of the fields αA are physical, but
some of them are redundant and they can be dropped from this ansatz. To see this, consider the
well-known fact that each element g ∈ G can be written in a unique way as a product of the form

g = exp(iθâT̂â) exp(iζaTa) (4.49)

This decomposition means that once we have a parametrization l(θ) = exp(iθâT̂â), each group
element g ∈ G can be uniquely decomposed into a product g = lh, where l is the representative
member of the coset to which g belongs and h(ζ) = exp(iζaTa) ∈ H connects l to g within the
coset. By applying 4.49 to the ansatz 4.47 we obtain

Φ(x) = Σ[θ]Φ0 (4.50)

from where we defined, now in a natural way, the Σ-model field or Goldstone matrix :

Σ[θ] := exp(iθâT̂â) ∈ G/H (4.51)

with θâ = θâ(x). Then each θâ, identified as a Nambu-Goldstone boson, can be seen as an angular
real-valued variable corresponding to an excitation around the reference vacuum Φ0 and in a direc-
tion defined by the corresponding generator T̂â. Nevertheless, it will be convenient sometimes to
work the Goldstone matrix as

Σ[φ] := exp

(
i

√
2

f
φâT̂â

)
(4.52)
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written in terms of canonically-normalized NGB fields

φâ(x) :=
f√
2
θâ(x) (4.53)

Note that the fields associated with the unbroken generators have been dropped out from the ansatz
and hence do not lead to physical degrees of freedom.

Next, we are interested in the action of the group G on the NGBs θâ. In order to find this
action, we consider the action of an arbitrary element g ∈ G over the Goldstone matrix 4.51. In
view of 4.49 we can decompose instead the product gΣ[θ] ∈ G in a unique way as

gΣ[θ] = Σ[θ′]h (4.54)

where we have set Σ[θ′] := exp(iθ′âT̂â), and clearly θ′â = θ′â[θ; g] and h = h[θ; g] = exp(iζa[θ; g]Ta) ∈
H. Hence, from 4.54 we have

Σ[θ′] = gΣ[θ]h† (4.55)

which defines a global transformation for every element Σ[θ] ∈ G/H, namely

Σ[θ]
g∈G7−−−→ Σ[θ′] = gΣ[θ]h† (4.56)

Without loss of generality, we assume θâ’s in the standard form. Then the non-linear realization of
G on the NGBs

θâ
g∈G7−−−→ θ′â = θ′â[θ; g] (4.57)

is given implicitly by 4.56 which is what we were looking for. From 4.55, and looking up to second
order in the fields, we find

θ′â = θâ + ξâ + · · ·
with g = exp(iξATA) and the dots stand for terms containing more than one power of NGBs or
transformation parameter. This is precisely the symmetry transformation that forbids the NGB
fields to have any potential and consequently allowing for any VEV. In accordance with 4.47,
expression 4.56 induces a symmetry transformation on the ansatz Φ(x)

Φ(x)
g∈G7−−−→ Φ′(x) = g · Φ(x) (4.58)

In view of transformations 4.57 and 4.58, we say that the fields θâ and Φ transform in a non-linear
realization of the group G. It it now convenient to introduce the algebra of generators of G, which
decompose as

[Ta, Tb] = if cabTc + if ĉabT̂ĉ = (Adh
a)
c
bTc (4.59)

[Ta, T̂b̂] = if c
ab̂
Tc + if ĉ

ab̂
T̂ĉ = (Ra)

ĉ
b̂
T̂ĉ (4.60)

[T̂â, T̂b̂] = if c
âb̂
Tc + if ĉ

âb̂
T̂ĉ (4.61)

where the structure constants f ĉab and f c
ab̂

vanish. Note that

(Adh
a)
c
b := if cab (4.62)
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define the adjoint representation of the Lie algebra h of the subgroup H, while

(Ra)
ĉ
b̂

:= if ĉ
ab̂

(4.63)

form a not yet specified H representation, and denoted by R. This representation R is the one
in which the NGBs transform under H. It can be identified, for any coset, by looking at the
decomposition under H of the adjoint of G, namely

AdG = AdH ⊕R (4.64)

In order to prove this, note that g = h ⊕ g/h as vector spaces. On the one hand, there is the
adjoint representation of h on the whole of g. On the other hand, the adjoint action of h on itself
is a subrepresentation, since the algebras of Lie subgroups must be Lie subalgebras. Furthermore,
from Eq. 4.60 we have that g/h is also closed under the action of h by the Lie bracket, as it implies
[k, h] ∈ g/h for every k ∈ g/h and every h ∈ h. Hence, the map

R : h→ End(g/h) (4.65)

h 7→ [·, h]

is a subrepresentation of the total representation of h on g. Since g = h ⊕ g/h, we have that
representation indeed decomposes as 4.64.

Contrary to the general ones, the transformations of the H subgroup act linearly on the NGBs,
and hence θâ’s transform in R as

θâ
g∈H7−−−→ θ′â = exp(iαaRa)

â
b̂
θb̂ (4.66)

The situation is different for the transformations along the broken generators; there is no simple
way to write them explicitly, not even at the infinitesimal level, aside from particular cases. The
theory that we can construct is therefore invariant under the linear realization of H, and besides
the NGBs θ it can contain any H-multiplets, which we collectively denote Ψ. The NGB fields θ
will play the role of the Higgs field in our description, while the Ψ will describe other fermionic and
bosonic composite resonances. For the case SO(5)/SO(4) we will analyse the introduction of some
of these composite resonances in Chap. 5.

Now, we would like to use the non-linear realization 4.57 of the group G to construct G-invariant
Lagrangians, and derivatives are needed to construct non-trivial invariants. The problem is that,
despite the fact that the symmetry is global, the non-linear realization involves the Goldstone
fields and therefore is spacetime dependent. Thus, derivatives have to be transform intro covariant
derivatives. Furthermore, the non-linearity of the transformation makes the transformation of ∂µθâ
complicate. Instead of starting with this object, we will consider the so-called Maurer-Cartan form

− Σ[θ]†i∂µΣ[θ] = dâµ[θ]T̂â + eaµ[θ]Ta =: dµ[θ] + eµ[θ] (4.67)

which belongs to the Lie algebra g of the G group and has simpler transformation properties.
Related to the vierbiens dâµ and spin connections eaµ we have introduced the shorthand notation

dµ[θ] := dâµ[θ]T̂â (4.68)

eµ[θ] := eaµ[θ]Ta (4.69)
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Note that
dµ = ηµνd

ν , dµ,â = dâµ and dµ,â = dµâ

and similarly for eµ. If the orthogonality relation Tr(TATB) = δAB is imposed, then dâµ and eaµ can
be obtain explicitly as follows:

dâµ[θ] = −Tr
(

Σ[θ]†i∂µΣ[θ]T̂â

)
(4.70)

eaµ[θ] = −Tr
(

Σ[θ]†i∂µΣ[θ]Ta

)
(4.71)

The Maurer-Cartan form transforms as

−Σ†i∂µΣ
g∈G7−−−→− (gΣh†)†i∂µ(gΣh†)

= −h(Σ†i∂µΣ)h† − hi∂µh†

= hdµh
† + h

(
eµ +

1

i
∂µ

)
h† (4.72)

From the above expression one can easily read off the transformations of dµ and eµ:

dµ[θ]
g∈G7−−−→ h[θ; g]dµ[θ]h[θ; g]† (4.73)

eµ[θ]
g∈G7−−−→ h[θ; g]

(
eµ[θ] +

1

i
∂µ

)
h[θ; g]† (4.74)

In particular, when rewritten in components the dµ symbol transforms as

dâµT̂â
g∈G7−−−→ h(dâµT̂â)h

† = dâµ(hT̂âh
†) = dâµ exp(iζaRa)

b̂
âT̂b̂

or

dâµ[θ]
g∈G7−−−→ exp(iζaRa)

â
b̂
db̂µ[θ] (4.75)

Equations 4.73 and 4.74 show that dµ[θ] and eµ[θ] transform under a local symmetry H, and that
in particular eµ[θ] transforms like a gauge field. It is thus possible to define a e-covariant derivative

∇µ := ∂µ + ieµ (4.76)

for the Ψ fields and an e-field strength tensor

eµν := ∂µeν − ∂νeµ + i[eµ, eν ] (4.77)

which transforms homogeneously with h in the adjoint representation

eµν 7→ h[θ; g]eµνh[θ; g]† (4.78)

Hence, the connection eµ allows to write general G-invariant couplings to the matter fields Ψ. The
d-symbol can be used to write the G-invariant leading order term

LNGBs =
f2

4
dâµ[φ]dµâ [φ] =

1

2
∂µφâ∂

µφâ +

∞∑
n=1

O
(
φ2n

f2n
(∂φ)2

)
(4.79)
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This is the low energy NGB Lagrangian, and it provides the NGB kinetic terms plus an infinite
set of two-derivative interactions. Those higher order operators in 4.79 are completely fixed for a
given choice of the G/H coset. Also, note that the parameter f in the above expression acquires
a practical meaning: it controls the strength of the NGB interactions. In concordance with the
results of section (4.4), we find that NGBs enter only with derivative coupling and no scalar po-
tential appears; these interactions grow with the external momenta and become non-perturbative
at energies O(4πf). Also, the derivative couplings of NGBs among themselves and with other
composite states do not modify the mass spectrum and do not contribute to the generation of the
Higgs mass.

We therefore have basically four ingredients: Σ, dµ, ∇µ and eµν on which a general g ∈ G
transformation acts as a local h[θ; g] ∈ H transformation belonging to the unbroken subgroup.
Thus, we just have to worry about built out H-invariant operators with these building blocks and
the standard group theory tools, and the full G-invariance will follow automatically. This is the
CCWZ prescription. The reason why this result in a systematic and simple procedure is that the
transformation rules are now entirely expressed in terms of the linear action of the matrix h[θ; g].

4.5.2 Gauge Sources

In order to add the description of the electroweak sector, we must generalize the situation to the
case where a subgroup H0 of the global group G is gauged. To extent the formalism, we introduce
the appropriate set of gauge fields through the gauge potential matrix

Aµ := AãµT̃ã (4.80)

where T̃ã correspond to the generators of the gauge subgroup H0. The gauge potential matrix 4.80
transforms in the standard way

Aµ
p(x)∈H07−−−−−→ p(x)

(
Aµ +

1

i
∂µ

)
p(x)† (4.81)

under a local transformation p(x) ∈ H0. It turns out that instead of gauging just H0 ⊆ G, it is often

convenient to gauge formally all the fields (i.e. T̃ã ≡ TA), promote them to a full multiplet in the
adjoint representation of G, couple it to the strong sector and eventually decouple the unwant ones
by an infinite kinetic term, which correspond to vanishing coupling strength. Therefore, some of
them will be made dynamical by the kinetic terms and the others will be regarded as non-dynamical
and eventually set to zero at the end of the calculation.

In this generalized CCWZ prescription, NGBs still transform implicitly according to 4.56 with
g ∈ G being a local element, and the Maurer-Cartan form is generalized to

− Σ[θ]†iDµΣ[θ] = dâµ[θ;A]T̂â + eaµ[θ;A]Ta =: dµ[θ;A] + eµ[θ;A] (4.82)

with
Dµ := ∂µ + iAµ (4.83)
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The above transforms as

−Σ†iDµΣ
g∈G7−−−→ − (gΣh†)i(∂µ + iAµ)(gΣh†)

= −h
(

Σ†iDµΣ
)
h† − hi∂µh†

= hdµh
† + h

(
∂µ +

1

i
eµ

)
h†

and hence the generalized dµ and eµ symbols transform as before:

dµ[θ;A]
g∈G7−−−→ h[θ; g]dµ[θ;A]h[θ; g]† (4.84)

eµ[θ;A]
g∈G7−−−→ h[θ; g]

(
eµ[θ;A] +

1

i
∂µ

)
h[θ; g]† (4.85)

Analogously, if Tr(TATB) = δAB is imposed then

dâµ[θ;A] = −Tr
(

Σ[θ]†iDµΣ[θ]T̂â

)
(4.86)

eaµ[θ;A] = −Tr
(

Σ[θ]†iDµΣ[θ]Ta

)
(4.87)

and Eq. 4.76 is generalized to
∇µ := Dµ + ieµ (4.88)

Two new covariant structures can be constructed from the field strength of the external gauge fields
as follows

fµν [θ;A] := Σ†[θ]FµνΣ[θ] (4.89)

= (f+
µν)aTa + (f−µν)âTâ

= f+
µν + f−µν

which transform as
f±µν [θ;A] 7→ h[g; θ]f±µν [θ;A]h†[g; θ] (4.90)

Finally, the 2-derivative non-linear sigma-model 4.79 trivially generalizes to

LNGBs =
f2

4
dâµ[φ,A]dµâ [φ,A] (4.91)

containing now not only NGB kinetic terms and derivative self-coupling, but also interactions
involving the gauge fields, which are all dictated by the local G-invariance and predicted in terms
of the scale f . Finally, and according to the formalism introduced in Ref. [90,91], the most general
Lagrangian invariant under a non-linearly realized group G, spontaneously broken to a linearly
realized subgroup H, should be written using the components dµ and the covariant derivative ∇µ
introduced before, that act on matter fields in representations of H.
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4.6 The CCWZ for the Minimal Coset SO(5)/SO(4)

The minimal choice we can think is H = GEW = SU(2)L × U(1)Y. Accordingly, it follows from
equation 4.4 that the minimal choice of the global symmetry is G = SU(3); indeed, SU(3) contains
an SU(2) and an additional U(1) that we can try to identify with the EW group. However it
must be discarded because of the lack of custodial protection that ensures that the corrections to
certain electroweak observables are sufficiently suppressed32. We will refer to this model as the
non-custodial minimal model. To have a custodial symmetry, the subgroup H has to be extended
to

H = SO(4) ∼ SU(2)L × SU(2)R (4.92)

which contains both the gauge group SU(2)L, as well as the custodial group SU(2)R. In this case
the minimal choice is

G = SO(5) (4.93)

Thus, the SO(5)/SO(4) symmetry breaking pattern constitutes the true minimal implementation
of a CH model [92]. We interpret the SU(2)L factor as the SM one and we identify the hypercharge
with the third SU(2)R generator. We refer to this latest model as the custodial minimal model or
minimal composite Higgs (MCH) model in the sense that delivers the minimal number of NGBs
fields and relies on the minimal number of symmetry generators but still obey custodial symmetry.
Nevertheless, in order to reproduce the correct hypercharge, one must enlarge the global symmetry
by including an extra unbroken U(1)X factor and define the hypercharge as

Y := T3R +X (4.94)

where T3R is the third SU(2)R generator of SO(5). Therefore the coset is actually

SO(5)×U(1)X/SO(4)×U(1)X (4.95)

The SU(4)/Sp(4) coset is usually considered as the next to minimal MCH model. However this is
a minimal choice when considering a description in terms of bound states of fermions [93,94].

In the MCH model, a number equal to

NNGB = dim SO(5)/SO(4) = 4

of NGBs arise, while
Ne = dimGEW − dimH ∩GEW = 4− 1 = 3

of them will be eaten as longitudinal components giving rise to the massive W±µ and Z0
µ gauge

bosons of the EW sector. As result, the composite sector does not contain composite resonances,
but only the pNGB Higgs 1.18 as a complex doublet of composite scalars of SU(2)L×U(1)Y and the
SM gauge fields. The generators of SO(5) and their convenient split into generators of SO(4) and
the broken ones can be found in Appendix (B.5). The manifold of equivalent vacua is Hvacua = S4

and the chosen representative vacuum configuration points along the fifth component

Φ0 = (0, 0, 0, 0, f)T

32This non-custodial minimal model, for example, derives in large corrections to the Peskin-Takeuchi T parameter.



4 THE COMPOSITE SECTOR AND THE CCWZ PRESCRIPTION 71

The five real components of Φ are conveniently parametrized with one radial coordinate σ = σ(x)
plus the four angular variables φâ = φâ(x) (the Nambu-Goldstone fields), as

Φ = Σ[φ]

(
~0

f + σ

)
= (f + σ)

(
~φ
φ sin φ

f

cos φf

)
(4.96)

with the Goldstone matrix given by

Σ[φ] =

14 −
~φ ~φ

T

φ2

(
1− cos φf

)
~φ
φ sin φ

f

− ~φ
T

φ sin φ
f cos φf

 (4.97)

and where we have defined the quadruple

~φ := (φ1, φ2, φ3, φ4)T (4.98)

living in the 4 of the unbroken SO(4). In view of the local isomorphism 4.92, the above NGBs
transform equivalently as a (2,2) of SU(2)L × SU(2)R, and so they can be expressed in terms of
the two Higgs doublet components φ+ and φ0 of 1.18 as

~φ =
1√
2


φ+ + φ+∗

i(φ+∗ − φ+)

φ0 + φ0∗

i(φ0∗ − φ0)

 (4.99)

The symmetry content of the theory consist on the linearly-realized action of the unbroken genera-
tors Ta, and the four non-linearly realized transformations associated with the broken generators T̂â.

Let us now turn to the determination of the dµ and eµ symbols. Those are defined in equa-
tions 4.86 and 4.87, respectively, one for each of the 10 generators of SO(5). As expected, only a
subset of those sources will be eventually made physical setting the unnecessary fields to zero. The
physical sources are the ones in the EW group, i.e H0 = GEW. Thus, we split the AAµ ’s in unbroken
and broken components

{AAµ } =
{
Aaµ = {Aαµ,L, Aαµ,R }, Aâµ = 0

}
(4.100)

and already setting the latter ones to zero. We make the identification:

{Aαµ,L} = { gW 1
µ , gW

2
µ , gW

3
µ } (4.101)

{Aαµ,R} = { 0, 0, g′Bµ } (4.102)

Therefore, the gauge potential matrix Aµ will be

Aµ = gW 1
µT

L
1 + gW 2

µT
L
2 + gW 3

µT
L
3 + g′BµT

R
3

=
g√
2
W+
µ (TL1 + iTL2 ) +

g√
2
W−µ (TL1 − iTL2 )

+ g(cos θWZµ + sin θWAµ)TL3 + g′(cos θWAµ − sin θWZµ)TR3
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where the second equality is written in terms of the mass eigenstates W±µ , Z
0
µ, and θW denote the

Weinberg angle. The dµ and eµ connections are given by

dâµ =
√

2

(
1

f
− 1

φ
sin

φ

f

) ~φ
T
·Dµ

~φ

φ2
φâ +

√
2

φ
sin

φ

f
Dµφâ (4.103)

eαµ,L = −Aαµ,L +
4i

φ2
sin2 φ

2f
~φ

T
tαLDµ

~φ (4.104)

eαµ,R = −Aαµ,R +
4i

φ2
sin2 φ

2f
~φ

T
tαRDµ

~φ (4.105)

where
Dµ

~φ = (∂µ + iAαµ,Lt
α
L + iAµ,Rt

α
R)~φ (4.106)

Now that the basic objects are known we can straightforwardly apply the general CCWZ machinery.
In particular, the non-linear sigma-model Lagrangian 4.91 is given by

LpNGB =
f2

4
Tr
(

Σ[θ]†iDµΣ[θ]T̂â

)
Tr
(

Σ[θ]†iDµΣ[θ]T̂â

)
=

f2

2|H|2
sin2

√
2|H|
f

(DµH)†(DµH) +
f2

8|H|4

(
2
|H|2

f2
− sin2

√
2|H|
f

)
(∂|H|2)2 (4.107)

By going to the unitary gauge, defined as usual by

H =
1√
2

(
0

〈h〉+ h(x)

)
(4.108)

where 〈h〉 denotes the Higgs VEV and h(x) describes the physical Higgs fluctuations, the above
Lagrangian is surprisingly simple

LpNGB =
1

2
(∂µh)2 +

g2

4
f2 sin2 〈h〉+ h

f

(
|Wµ|2 +

1

2 cos2 θW
Z2
µ

)
(4.109)

from which we immediately read two consequences:

1. In general, to compute the Higgs couplings in models where the Higgs is a pNGB, it is
important to note that 〈h〉 is not the same as the SM Higgs vacuum expectation value of
v ' 246 GeV. Instead,

ξ :=
v2

f2
= sin2 〈h〉

f
(4.110)

out of which we can extracted the definition of the physical EWSB scale v and its relation
with the Higgs VEV 〈h〉. The vector boson masses W and Z masses are then given by

mW = cos θWmZ =
1

2
gf sin

〈h〉
f
≡ 1

2
gv (4.111)

and the misalignment angle 〈φ〉 can be identify as

〈φ〉 =
〈h〉
f

(4.112)
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2. The Lagrangian 4.109 also contains an infinite set of local interactions involving two gauge
bosons and an arbitrary number of Higgs fields. By Taylor-expanding around h = 0 we have

f2 sin2

(
〈h〉+ h

f

)
= f2 sin2 〈h〉

f
+ fh sin

2 〈h〉
f

+ h2 cos
2 〈h〉
f
− 2h3

3f
sin

2 〈h〉
f
− · · ·

= v2 + fh2 sin
〈h〉
f

cos
〈h〉
f

+ h2

(
1− 2 sin2 〈h〉

f

)
− 2h3

3f
2 sin

〈h〉
f

cos
〈h〉
f
− · · ·

= v2

(
1 + 2

√
1− ξ h

v
+ (1− 2ξ)

h2

v2
− 4

3
ξ
√

1− ξ h
3

v3
− · · ·

)
and so we can easily compute the first few interaction terms:

g2

4
v2

(
|Wµ|2 +

1

2 cos2 θW
Z2
µ

)(
2
√

1− ξ h
v

+ (1− 2ξ)
h2

v2
− 4

3
ξ
√

1− ξ h
3

v3
− · · ·

)
(4.113)

In particular, this means that the SM couplings to the gauge bosons V ≡W±µ , Z±µ are modified
as follows

gV V h = gSM
V V h

√
1− ξ (4.114)

gV V hh = gSM
V V hh(1− 2ξ) (4.115)

In addition, we see that high-dimensional vertices with more than 2 Higgs arise, which could
might trigger new phenomena.

5 The Elementary and Resonance Sectors

5.1 The Elementary Sector

Up to now, we have not introduced the SM fermions in the picture neither their interactions with
the Higgs nor their mass generation. Standard Model gauge bosons and fermions constitute what
we will call the elementary sector, since we assume it to be neutral under the interactions of the
strong sector. The Lagrangian of this sector will be

LrOelem = −1

4
W I
µνW

Iµν − 1

4
BµνB

µν (5.1)

+ L̄jLi /DLjL + ējRi /DejR + Q̄jLi /DQjL + ūjRi /DujR + d̄jRi /DdjR

The analysis of the following sections is largely insensitive to the structure of light quarks and
lepton couplings because in most CH scenarios these couplings are too weak to contribute to the
resonances’ collider phenomenology (e.g. top partner’s phenomenology); hence we will be mainly
interested only in the third generation of quarks. As we will see, by the partial compositeness
hypothesis the fields of this sector must be though as the real elementary states of the theory;
consequently we will refer to them as elementary fields. This is in contrast to what we will called
SM fermions, which correspond to the fermions observed experimentally and constitute linear
superpositions of the above elementary fermions and resonances. In general, elementary fields will
be embedded in representations of G as a consequence of the partial compositeness hypothesis and
the embedding of composite operators. Henceforth in the thesis we will focus only in the minimal
CH model SO(5)/SO(4).
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5.2 The Resonance Sector

5.2.1 Landscape of the Resonance Sector

Depending on the global symmetry of the strongly interacting sector, there may be additional light
pNGB scalars (i.e. kaon-like particles) arising from the strong sector, giving rise to an extended
Higgs sector. On the other hand, at the scale ΛUC = 4πf the strong sector condenses and it
generates, on top of the pNGB Higgs, a set of resonances with typical mass

m∗ = g∗f (5.2)

with g∗ ∈ [1, 4π], and usually assumed to be the only ones below the cut-off of the model as
shown in Fig. 5.1. We will generically called a resonances any (composite) particle arising from
the composite sector aside from the Goldstone bosons (see Fig. 4.1). The SM gauge and fermion
fields are then considered as external sources. The spectrum of resonances is important not only
for the study of their on-shell production at the LHC, but also for assessing the compatibility of
the theory with EWPT, since loops of the new fermions contribute to the electroweak observables.
The upper bound on g∗ ensures that the loop expansion parameter (g∗/4π)2 is less than unity,
while the limit g∗ = 4π corresponds to a maximally strongly coupled theory in the spirit of naive
dimensional analysis. Is in this sense that the coupling g∗ measures how strong the coupling of the
model can become before it is replaced by a more fundamental description.

Figure 5.1: Schematic picture of the spectrum in a CH model and a top partners-resonances
interplay. Resonance and top partner masses are depicted by m∗ = mρ,mη and MΨ, respectively.

It turns out that any realistic realization of a CH model will assume the existence of a whole
spectrum of these kind of hadrons coming from the new strong sector. They will play an important
role by means of the partial compositeness hypothesis, through which the generation of fermion
masses can be achived. It is due this hypothesis, in conjunction with the measured value of the
Higgs mass, that the existence of lighter exotic resonances in the theory is demanded. Concretely,
it will be necessary the presence of colored composite spin-1/2 resonances with a mass below 2
TeV [95–99], one for each SM fermion, mixing with the SM fermions.

5.2.2 Partial Fermion Compositeness

Standard Model gauge field are coupled to the composite sector by gauging GSM ⊂ G, but coupling
SM fermions to this same strong sector could not be so intuitive, and in fact more than one
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possibility can be found in the literature. One way to go would be to write down bilinear couplings
to composite operators, of the form

Lmix = ytQ̄LOtStR + ybQ̄LObSbR + h.c. (5.3)

where QL = (tL, bL)T , tR and dR are usually taken only as the third generation of quarks in the SM

since they play the most prominent role, and the dimensionless parameters yt,bi defines how strong
the external perturbation is. The operator OS is a Lorentz scalar composite operator constituted
of strong sector fields forming Yukawa-like couplings. This mechanism for fermion mass generation
was adopted first in the context of Technicolor theories, and also in the first realizations of a
composite Higgs. For example, in minimal technicolor we have

(OS)ij = ψiRψL,j (5.4)

where ψL,R are the chiral techniquark fields, endowed with flavor indices i, j = 1, 2 in SU(2)L ×
SU(2)R. This mechanism, however, typically suffers from a severe flavor problem [100].

As a second possibility we introduce the so-called partial compositeness hypothesis, originally
proposed by D. B. Kaplan [101], and which constitutes nowadays in CH models the most appealing
way to break the Goldstone symmetry and generate the Higgs mass and the Yukawa couplings of the
elementary sector, through a mixing between these elementary states and operators of the strong
sector (i.e. with fermionic resonances), and without introducing too large flavour-violating effects.
The mechanism of partial compositeness postulates the existence of new elementary fermions with
the same quantum numbers to SM quarks and leptons, and that in the UV Lagrangian (i.e. above
the G-symmetry breaking scale) each chirality of these fermion couples linearly to a different com-
posite fermionic operator OL,R made of the composite fermions Ψ and the pNGB’s of the strong
sector

Lmix = yQL Q̄LOQ,R + ytRt̄ROt,L + ybRb̄ROb,L + h.c. (5.5)

where we have written the terms that concern just to a third family of elementary fermions, namely
QL = (tL, bL), tR and bR. Since the elementary sector does not respect the full global symmetry
G, once the composite and elementary sectors are coupled, the 1-loop effective potential generated
by the elementary-composite interactions will allow the Higgs to have a mass and fix its vacuum
expectation value in a GSM-breaking direction, where the proto-Yukawa couplings yL,R can be
viewed as spurions parameterizing the effects of the explicit breaking and which constitute matrices
in flavour space. This is very interesting as contrary to the SM case, where the Higgs potential is
some ad hoc term in the Lagrangian. Thus, in these models we have a dynamical explanation of
the electroweak symmetry breaking and the Higgs mass.

5.2.3 (Top) Partners

After the linear mixings in the fermion sector 5.5 are diagonalized, we will find that the resulting
physical SM states are a linear combination of elementary and composite degrees of freedom [89],
namely

|Physical〉i = cos θi |Elemental〉i + sin θi |Resonance〉i (5.6)

The effects of the strong dynamics are encoded in terms of the form factors of these SM states
in momentum space, in analogy with the form factors of the nucleons in low-energy QCD. It is
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expected, and for each family, there will be at least one spin-1/2 resonance for each gauge-invariant
composite local operator OL,R presented in 5.5. These kind of resonances are called partners. The
following are some of their fundamental characteristics:

1. Partners are multiplets of the unbroken symmetry H which in turn, as expected, should
contain the custodial symmetry SU(2)×SU(2) extending the electroweak symmetry SU(2)×
U(1).

2. Partners must carry QCD color because the composite fermionic operators must come in
color triplets in order to be consistently coupled with the quarks. Hence, due their coloured
nature, partners can be copiously produced at hadron colliders by QCD interactions.

3. The Partner’s mass originates from the strong sector confinement regardless of the breaking
of the EW symmetry. If they are charged, then they must thus be endowed with a Dirac mass
term, which means that both chiralities must be present with the same quantum numbers.
Following Eq. 5.2, the typical mass of the top partners will be represented by MΨ and so the
corresponding coupling gΨ is defined through

gΨ =
MΨ

f
(5.7)

4. The naturalness of electroweak symmetry breaking will depend on the mass of the top-
partners. That is in close analogy with the supersymmetric case, where naturalness is largely
controlled by the mass of the bosonic top partners, the stops. The common feature of all
scenarios is that the top partners need to be light for a reasonably natural theory, but the
way the tuning scales with the top-partners’ mass is instead different in each case [102].

In general, the Higgs potential is largely determined by the dynamics associated with the top quark
and the partners it mixes to, which are specifically called top partners. As expected, top partners
will play a prominent role.

In the MCH model context, top partner fields Ψ must have well-defined transformation prop-
erties under the unbroken SO(4) group. We will consider three cases: Ψ transforming in the

rΨ = 1, rΨ = 4, and rΨ = 9 (5.8)

of SO(4). Since partners are excited from the vacuum by the operators OiL,jR, it follows for
corresponding top partners Ψ4 and Ψ1 that

〈0|OL|Ψ4〉 6= 0 and 〈0|OR|Ψ1〉 6= 0 (5.9)

It is worth mentioning that fourth-generation quarks with SM-like chiral couplings are excluded
as they contribute through loops to the couplings of the Higgs boson, altering the Higgs boson
production cross-sections to values incompatible with observation [103, 104]. These constraints
on chiral quarks can be evaded by heavy vector-like quarks (VLQs) [105]: hypothetical spin-1/2
coloured particles that, unlike to fermions in the SM, both of their chiralities share the same
electroweak coupling; hence the qualification vector-like. Vector-like quarks are materialised in CH
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models as resonances discussed just above. Unlike other models33 predicting VLQs, it is perhaps
in CH models where they have their most crucial stand due their role stabilizing the loop-induced
Higgs potential and keeping the Higgs mass light [98,106]. Not only of theoretical interest due their
roles played in many BSM, VLQs constitute one active area of experimental search, such as the
carried out by both the ATLAS [107] and CMS [108] collaborations at the LHC. Since top partners
are heavy fermions coupled to top and bottom, the experimental searches for 4th family quarks
present a somewhat similar phenomenology, and can be used to derive bounds on particular CH
models [102].

5.3 Embeddings

5.3.1 Embedding Composite Operators

We now return to our problem of identifying suitable representations for the fermionic operators.
In order to simplify the possible choices, we focus on those that transform linearly under the
whole group SO(5). Apart from this, is an operator of the strong sector that transforms in some
representation rO of SO(5)×U(1)X and whose choice is, to some extent, free. Minimality and the
aim of reproducing explicit models considered in the literature, led us to consider two cases34

rO = 52/3 and rO = 142/3 (5.10)

The choice of a specific embedding for the composite operators will have two immediate conse-
quences. On the one hand, the embedding of the elementary sector will be immediately set. On
the other hand, the decomposition of these SO(5) embeddings under SO(4) will motivate the cor-
responding embedding of the (top) partners.

Finally, we analyze the form of the composite operators. Let us suppose the elementary sector
is embedded into rO-multipletes. Since the fermion resonances Ψ sit in representations rΨ of H
only, then this implies that [96]

O ∝ ΣΨ (5.11)

from where it follows that
O 7→ (gΣh†)(hΨ) = gO (5.12)

By dimensional analysis the proportionality constant is chosen to be f , the decay constant of the
strong sector and the characteristic energy scale of it. Hence, the composite operators will have
the form

OrO,rΨL,R := fΣΨL,R (5.13)

Notice that the embedded QL,R can not be contracted directly with Ψ because they live in different
spaces. The former transforms linearly under SO(5) as reported in 5.18 and 5.22, while Ψ transforms
under the non-linear representations of SO(4). For this reason one insertion of the Goldstone
matrix, transforming according to Eq. 4.56, is needed. Therefore the resonances ΨL,R, besides
being embedding in rΨ of H, must be “uplifted” to the representation rO of G in order to be

33VLQs also play a useful role in other models, like supersymmetry [109–111], and their phenomenology can be
studied in effective models, independently of the theoretical framework they come from (see, for instance, [112–117]).

34The phenomenology of the case rO = 10 is, in addition to those presented here, studied in Ref. [118].
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correctly coupled to the elemental states through 5.5. On the other hand if, for example, the
elementary sector is now embedded into a two-indices symmetric traceless tensor representation,
then the composite operators will have the form

OrO,rΨL,R := fΣΨL,RΣ† (5.14)

which can be used to construct the following G-invariant quantity:

Tr[O] = Tr[fΣΨΣ†] 7→ Tr[f(gΣh†)(hΨh†)(gΣh†)†]

= Tr[fΣΨΣ†] (5.15)

In this sense, any representation rΨ can be “dressed” with the matrices Σ to get representations of
G.

5.3.2 The Elementary Embedding rO = 5

As we have said, the embedding choice of the composite operators sets the embedding of the
elementary sector. Our first case is the fundamental 5 representation, where both chiralities Q5

L
and Q5

R of the elementary states (in this case, just top quark-like states) have representatives
couplings yL and yR to the strong sector, respectively. We write these interactions

L5,rΨ
mix = y5,rΨ

L Q̄5
LO

5,rΨ
R + y5,rΨ

R Q̄5
RO

5,rΨ
L + h.c. (5.16)

where we have defined the “incomplete” five-plets [118]

Q5
L :=

1√
2


ibL
bL
itL
−tL

0

 , Q5
R :=


0
0
0
0
tR

 (5.17)

with suitable transformation properties

Q5
L,R 7→ gQ5

L,R or (Q5
L,R)i 7→ gij (Q

5
L,R)j (5.18)

Q5
L,R 7→ Q̄5

L,Rg
−1 or (Q̄5

L,R)i 7→ (Q̄5
L,R)j(g

−1)ji (5.19)

under g ∈ G. The U(1)X charge for each five-plet is equal to 2/3.

5.3.3 The Elementary Embedding rO = 14

The second case correspond to a 14 embedding. The partial composite sector reads

L14,rΨ
mix = aΨTr

[
y14,rΨ
L Q̄14

L O
14,rΨ
R + y14,rΨ

R Q̄14
RO

14,rΨ
L

]
+ h.c. (5.20)
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with aΨ =
√

5/2,
√

2, 1 for rΨ = 1,4,9, respectively, and where we have defined the fourteen-
plets [118]

Q14
L :=

1√
2


0 0 0 0 ibL
0 0 0 0 bL
0 0 0 0 itL
0 0 0 0 −tL
ibL bL itL −tL 0

 , Q14
R :=

1

2
√

5


−tR 0 0 0 0

0 −tR 0 0 0
0 0 −tR 0 0
0 0 0 −tR 0
0 0 0 0 4tR

 (5.21)

with suitable transformation properties

Q14
L,R 7→ gQ14

L,Rg
−1 or (Q14

L,R)ij 7→ gikg
j
l(Q

14
L,R)kl (5.22)

Q̄14
L,R 7→ gQ̄14

L,Rg
−1 or (Q̄14

L,R)ij 7→ (Q̄14
L,R)kl(g

−1)ki(g
−1)lj (5.23)

under g ∈ G. The U(1)X charge is equal to 2/3.

5.3.4 Decomposing rΨ

The decomposition of rO of SO(5) under representations of SO(4) will allow us to identify the
resonances that can coupled and how they should be embedded. Indeed, note that

52/3 = 12/3 ⊕ 42/3 (5.24)

142/3 = 12/3 ⊕ 42/3 ⊕ 92/3 (5.25)

Therefore, in both cases we expect to find a 12/3 and/or a 42/3 in the low-energy spectrum. In
the last case this implies that, in addition to four-plets and singlets, the elementary states can also
mix with fermionic resonances that transform as nine-plets under SO(4). We proceed to analyse
the above cases in the next subsections.

5.3.5 The Resonance Embedding rΨ = 1

The singlet representation rΨ = 1 allows the introduction of a single exotic top-like partner, denoted
here through

Ψ1 := T̃ (5.26)

and whose Lagrangian is given by

LΨ1 = Ψ̄1i /DΨ1 −M1Ψ̄1Ψ1 (5.27)

Since it is a singlet of H = SO(4), it does not transform under CCWZ. The corresponding composite
operators are given by

O5,1
L,R = fΣΨ5

1L,R (5.28)

O14,1
L,R = fΣΨ14

1L,RΣ† (5.29)

where we have introduced the following 5 and 14 embeddings of SO(5) for this singlet partner

Ψ5
1 :=

(
04×1

Ψ1

)
(5.30)

Ψ14
1 := diag(01×4,Ψ1) (5.31)
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Table 5.1: Charges for the different states found in the models rO = 5 and 14. The conventions
Q = I3 + Y and Y = T3R +X are used.

Q I3 Y T3R X

T̃ 2/3 0 2/3 0 2/3

X5/3 5/3 1/2 7/6 1/2 2/3

X2/3 2/3 −1/2 7/6 1/2 2/3

T 2/3 1/2 1/6 −1/2 2/3
B −1/3 −1/2 1/6 −1/2 2/3

U8/3 8/3 1 5/3 1 2/3

U5/3 5/3 0 5/3 1 2/3

U2/3 2/3 −1 5/3 1 2/3

Y5/3 5/3 1 2/3 0 2/3

Y2/3 2/3 0 2/3 0 2/3

Y−1/3 −1/3 −1 2/3 0 2/3

Z2/3 2/3 1 −1/3 −1 2/3

Z−1/3 −1/3 0 −1/3 −1 2/3

Z−4/3 −4/3 −1 −1/3 −1 2/3

5.3.6 The Resonance Embedding rΨ = 4

The four-plet representation rΨ = 4 allows the introduction of top partners encoded through

Ψ4 :=
1√
2


iB − iX5/3

B +X5/3

iT + iX2/3

−T +X2/3

 (5.32)

where the subscripts denote the electric charge. It transforms under CCWZ as

Ψ4 7→ hΨ4 or (Ψ4)i 7→ hij(Ψ4)j = exp (iζaRa)
i
j (Ψ4)j (5.33)

Ψ̄4 7→ Ψ̄4h
−1 or (Ψ̄4)i 7→ (Ψ̄4)j(h

−1)ji (5.34)

for a generic element h[φ; g] ∈ SO(4). This four-plet Ψ4 is decomposable into two doublets of
SU(2)L, namely

Ψ4 ⊃
(
T
B

)
,

(
X5/3

X2/3

)
(5.35)

of hypercharge 1/6 and 7/6, respectively. The former has the same quantum numbers as the doublet
(tL, bL), whilst the latter contains a state of exotic charge 5/3 plus another top-like quark X2/3.
The Lagrangian of this four-plet Ψ4 of top partners is given by

LΨ4 = Ψ̄4i /∇Ψ4 −M4Ψ̄4Ψ4 (5.36)
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with /∇ = γµ∇µ given by

∇µΨ4 =

(
∂µ +

2

3
ig′Bµ + ieµ

)
Ψ4 (5.37)

The corresponding composite operators are given by

O5,4
L,R = fΣΨ5

4L,R (5.38)

O14,4
L,R = fΣΨ14

4L,RΣ† (5.39)

where we have introduced the following 5 and 14 embeddings of SO(5) for this four-plet of partners

Ψ5
4 :=

(
Ψ4

0

)
(5.40)

Ψ14
4 := diag(Ψ4, 0) (5.41)

5.3.7 The Resonance Embedding rΨ = 9

The nine-plet representation rΨ = 9 allows the introduction of top partners encoded through
symmetric, traceless 2-contravariant tensor field [119] (elements in the upper diagonal have been
omitted for clarity)

Ψ9 := (5.42)

1

2


−U8/3 + Y2/3 − Z-4/3

iZ-4/3 − iU8/3 U8/3 + Y2/3 + Z-4/3
U5/3√

2
− Y-1/3√

2
+

Y5/3√
2
− Z-1/3√

2

iU5/3√
2

+
iY-1/3√

2
+

iY5/3√
2

+
iZ-1/3√

2
−U2/3 − Y2/3 − Z2/3

− iY5/3√
2

+
iY-1/3√

2
+

iY5/3√
2
− iZ-1/3√

2

U5/3√
2

+
Y-1/3√

2
− Y5/3√

2
− Z-1/3√

2
iU2/3 − iZ2/3 U2/3 − Y2/3 + Z2/3


and transforming under CCWZ as

Ψ9 7→ hΨ9h
−1 or (Ψ9)ij 7→ hikh

j
l(Ψ9)kl (5.43)

Ψ̄9 7→ hΨ̄9h
−1 or (Ψ̄9)ij 7→ (Ψ̄9)kl(h

−1)ki(h
−1)lj (5.44)

This nine-plet Ψ9 is decomposable into three triplets of the SM gauge group SU(2)L, namely

Ψ9 ⊃

U8/3

U5/3

U2/3

 ,

Y5/3

Y2/3

Y-1/3

 ,

Z2/3

Z-1/3

Z-4/3

 (5.45)

separated according to their T 3
R = 1, 0,−1 for U ’s, Y ’s, and Z’s, respectively. The subscripts denote

the electric charge, and their hypercharge correspond to 5/3, 2/3 and −1/3 for each family. The
Lagrangian of this four-plet Ψ9 is given by

LΨ9 = Tr
[
Ψ̄9i /4Ψ9

]
− Tr

[
M9Ψ̄9Ψ9

]
(5.46)

with /4 = γµ4µ given by

4µΨ9 := ∇µΨ9 + iΨ9eµ =

(
∂µ +

2

3
ig′Bµ + ieµ

)
Ψ9 + iΨ9eµ (5.47)
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The corresponding composite operator is given by

O14,9
L,R = fΣΨ14

9L,RΣ† (5.48)

where we have introduced the following 14 embedding of SO(5) for this nine-plet of partners

Ψ14
9 := diag(Ψ9, 0) (5.49)

5.4 Interaction Between Partners

It is possible to construct interaction terms between the previous partners using SO(4)-invariant
objects at our disposal, namely Ψ1, Ψ4, Ψ9 and diµ. The following correspond to the terms of lowest
possible order:

1. Between Ψ1 and Ψ4 we have

LΨ1,4 = ic1,4(Ψ̄4)iγ
µdiµΨ1 + h.c. (5.50)

Indeed,

ic1,4(Ψ̄4)iγ
µdiµΨ1 7→ ic1,4(Ψ̄4)k(h

−1)kiγ
µhild

l
µΨ1

= ic1,4(Ψ̄4)kδ
k
l γ

µdlµΨ1

= ic1,4(Ψ̄4)lγ
µdlµΨ1

2. Between Ψ1 and Ψ9 we have

LΨ1,9 = i
c1,9

f
(Ψ̄9)ijd

i
µd

µ,jΨ1 + h.c. (5.51)

3. Between Ψ4 and Ψ9 we have

LΨ4,9 = ic4,9(Ψ̄9)ijγ
µdiµ(Ψ4)j + h.c. (5.52)

4. Between Ψ1, Ψ4 and Ψ9 we have

LΨ1,4,9 = i
c1,4,9

f3/2
(Ψ̄9)ijγ

µdiµ(Ψ4)jΨ1 + h.c. (5.53)

The dimensionless coefficients ci,j and c1,4,9 are expected of order unity from power counting argu-
ments [120].
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5.5 The Models MO

5.5.1 Identifying the Models

Finally, depending on whether the composite operators are embedded in 52/3 or the 142/3 of
SO(5)×U(1)X , this will give rise to the corresponding models

MO ∈ {M5,M14 } (5.54)

Taking into account all the information of the previous chapters, the Lagrangian LMO of each one
of the two previous models will be written as

LMO := LrOelem + LrOΨ + LrOmix (5.55)

We proceed to detail each one of the previous Lagrangians:

1. LrOelem correspond to the elementary sector Lagrangian 5.1 with QL,R embedded into the
representation rO of SO(5).

2. LrOΨ is the Lagrangian of the partners:

2.1 For rO = 5 the Lagrangian is given by

L5
Ψ := LΨ1 + LΨ4 + LΨ1,4

= Ψ̄1i /DΨ1 −M1Ψ̄1Ψ1 + Ψ̄4i /∇Ψ4 −M4Ψ̄4Ψ4 +
(
ic1,4(Ψ̄4)iγ

µdiµΨ1 + h.c.
)

(5.56)

2.2 For rO = 14 the Lagrangian is given by

L14
Ψ := LΨ1 + LΨ4 + LΨ9 + LΨ1,4 + LΨ1,9 + LΨ4,9 + LΨ1,4,9

= Ψ̄1i /DΨ1 −M1Ψ̄1Ψ1 + Ψ̄4i /∇Ψ4 −M4Ψ̄4Ψ4 + Tr
[
Ψ̄9i /4Ψ9

]
− Tr

[
M9Ψ̄9Ψ9

]
+

(
ic1,4(Ψ̄4)iγ

µdiµΨ1 + i
c1,9

f
(Ψ̄9)ijd

i
µd

µ,jΨ1 + ic4,9(Ψ̄9)ijγ
µdiµ(Ψ4)j

+ i
c1,4,9

f3/2
(Ψ̄9)ijγ

µdiµ(Ψ4)jΨ1 + h.c.

)
(5.57)

3. LrOmix is the corresponding compositness Lagrangian:

3.1 For rO = 5 the Lagrangian is given by

L5
mix := L5,1

mix + L5,4
mix (5.58)

where

L5,1
mix = y5,1

L Q̄5
LfΣΨ5

1R + y5,1
R Q̄5

RfΣΨ5
1L + h.c.

= y5,1
L f(Q̄5

L)IΣ
I
5Ψ1R + y5,1

R f t̄RΣ5
5Ψ1L + h.c. (5.59)

and

L5,4
mix = y5,4

L Q̄5
LfΣΨ5

4R + y5,4
R Q̄5

RfΣΨ5
4L + h.c.

= y5,4
L f(Q̄5

L)IΣ
I
i(Ψ4R)i + y5,4

R f t̄RΣ5
i(Ψ4L)i + h.c. (5.60)
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3.2 For rO = 14 the Lagrangian reads

L14
mix := L14,1

mix + L14,4
mix + L14,9

mix (5.61)

where

L14,1
mix =

√
5

2
Tr
[
y14,1
L Q̄14

L fΣΨ14
1RΣ† + y14,1

R Q̄14
R fΣΨ14

1LΣ†
]

+ h.c.

=

√
5

2

(
y14,1
L f(Q̄14

L )IJΣI
5ΣJ

5Ψ1R + y14,1
R f(Q̄14

R )IJΣI
5ΣJ

5Ψ1L + h.c.
)

(5.62)

and

L14,4
mix =

√
2Tr

[
y14,4
L Q̄14

L fΣΨ14
4RΣ† + y14,4

R Q̄14
R fΣΨ14

4LΣ†
]

+ h.c.

=
√

2
(
y14,4
L f(Q̄14

L )IJΣI
iΣ

J
5(Ψ4R)i + y14,4

R f(Q̄14
R )IJΣI

iΣ
J

5(Ψ4L)i + h.c.
)

(5.63)

and

L14,9
mix = Tr

[
y14,9
L Q̄14

L fΣΨ14
9RΣ† + y14,9

R Q̄14
R fΣΨ14

9LΣ†
]

+ h.c.

= y14,9
L f(Q̄14

L )IJΣI
iΣ

J
j(Ψ9R)ij + y14,9

R f(Q̄14
R )IJΣI

iΣ
J
i(Ψ9L)ij + h.c. (5.64)

5.5.2 The Models M5 and M14

Finally, we present the Lagrangians of the two models 5.54. On the one hand, the Lagrangian of
the model M5 including the lowest order interaction between the partners Ψ1 and Ψ4 is given by

LM5 = L5
elem + L5

Ψ + L5
mix

= −1

4
W I
µνW

Iµν − 1

4
BµνB

µν + Q̄5
Li /DQ

5
L + t̄Ri /DtR

+ Ψ̄1i /DΨ1 −M1Ψ̄1Ψ1 + Ψ̄4i /∇Ψ4 −M4Ψ̄4Ψ4 +
(
ic1,4(Ψ̄4)iγ

µdiµΨ1 + h.c.
)

+
(
y5,1
L f(Q̄5

L)IΣ
I
5Ψ1R + y5,1

R f t̄RΣ5
5Ψ1L + h.c.

)
+
(
y5,4
L f(Q̄5

L)IΣ
I
i(Ψ4R)i + y5,4

R f t̄RΣ5
i(Ψ4L)i + h.c.

)
(5.65)

where I = 1, . . . , 5 and i = 1, . . . , 4, and all terms carrying dimension-4 operators. On the other
hand, the Lagrangian of the model M14 including the lowest order interaction terms between the
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partners Ψ1, Ψ4 and Ψ9 is given by

LM14 = L14
elem + L14

Ψ + L14
mix

= −1

4
W I
µνW

Iµν − 1

4
BµνB

µν + Q̄Li /DQL + t̄Ri /DtR

+ Ψ̄1i /DΨ1 −M1Ψ̄1Ψ1 + Ψ̄4i /∇Ψ4 −M4Ψ̄4Ψ4 + Tr
[
Ψ̄9i /4Ψ9

]
− Tr

[
M9Ψ̄9Ψ9

]
+

(
ic1,4(Ψ̄4)iγ

µdiµΨ1 + i
c1,9

f
(Ψ̄9)ijd

i
µd

µ,jΨ1 + ic4,9(Ψ̄9)ijγ
µdiµ(Ψ4)j

+ i
c1,4,9

f3/2
(Ψ̄9)ijγ

µdiµ(Ψ4)jΨ1 + h.c.

)
+

√
5

2

(
y14,1
L f(Q̄14

L )IJΣI
5ΣJ

5Ψ1R + y14,1
R f(Q̄14

R )IJΣI
5ΣJ

5Ψ1L + h.c.
)

+
√

2
(
y14,4
L f(Q̄14

L )IJΣI
iΣ

J
5(Ψ4R)i + y14,4

R f(Q̄14
R )IJΣI

iΣ
J

5(Ψ4L)i + h.c.
)

+
(
y14,9
L f(Q̄14

L )IJΣI
iΣ

J
j(Ψ9R)ij + y14,9

R f(Q̄14
R )IJΣI

iΣ
J
j(Ψ9L)ij + h.c.

)
(5.66)

where I, J = 1, . . . , 5 and i = 1, . . . , 4, and with all terms, except LΨ1,9 and LΨ1,4,9 , carrying
dimension-4 operators.

5.6 The Sub-Models MO,Ψ

It turns out that sometimes it is possible and convenient to develop a simplified description of the
previous models in order to study the phenomenology of the production of specific top-partner
sectors. Any of these simplified models should capture the robust features of the above complete
constructions MO. In particular, robust and crucial features are the pNGB nature of the Higgs
and the selection rules associated with the small breaking of the corresponding global symmetry.
Depending on whether the composite operators are embedded into rO = 52/3 or 142/3, and partners
are in rΨ = 12/3, 42/3 or 92/3 of the unbroken SO(4), this will give rise to five sub-models. We
denote them by

MO,Ψ ∈ {M5,1,M5,4,M14,1,M14,4,M14,9 } (5.67)

and their classification is summarized in Table (5.2). Taking into account the information of the
previous sections, the Lagrangian LMO,Ψ of each one of the previous sub-models can be divided as

LMO,Ψ := LrOelem + LΨrΨ
+ LrO,rΨmix (5.68)

Table 5.2: The five sub-models shaped by the choices of the representations rΨ and rO.

rΨ = 1 rΨ = 4 rΨ = 9
rO = 5 M5,1 M5,4 −
rO = 14 M14,1 M14,4 M14,9
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As an example, the Lagrangian of the sub-model M5,4 would be

LM5,4 = L5
elem + LΨ4 + L5,4

mix

= −1

4
W I
µνW

Iµν − 1

4
BµνB

µν + Q̄5
Li /DQ

5
L + t̄Ri /DtR

+ Ψ̄4i /∇Ψ4 −M4Ψ̄4Ψ4

+
(
y5,4
L f(Q̄5

L)IΣ
I
i(Ψ4R)i + y5,4

R f t̄RΣ5
i(Ψ4L)i + h.c.

)
(5.69)

A detailed discussion of the sub-model M5,1,M5,4,M14,1 and M14,4 can be found in Ref. [102].
Nevertheless, in this Ref. authors consider the right-handed top quark tR emerging as a chiral
bound state of the strong dynamics, and so tR must belong to a complete multiplet of the unbroken
subgroup SO(4); moreover, since they do not want extra massless states, it must be a singlet. In
this context, the above Lagrangian will change to

LM5,4 = −1

4
W I
µνW

Iµν − 1

4
BµνB

µν + Q̄5
Li /DQ

5
L (5.70)

+ Ψ̄4i /∇Ψ4 −M4Ψ̄4Ψ4 + t̄Ri /DtR +
(
ic4,R(Ψ̄4)iγ

µdiµtR + h.c.
)

+
(
y5,4
L f(Q̄5

L)IΣ
I
i(Ψ4R)i + y5,R

R f(Q̄5
L)IΣ

I
5tR + h.c.

)
6 Extra Resonances

6.1 Spin-1 and Spin-0 Resonances

Since pNGB transform as a 4 of SO(4), other resonances must fall in one of the following represen-
tations

4⊗ 4 = 1⊕ 6⊕ 9 (6.1)

of SO(4). Therefore, the resonances can be equivalently encoded by one of the SU(2)L × SU(2)R-
representations

(1,1)⊕ (3,1)⊕ (1,3)⊕ (3,3) (6.2)

and so symmetry implies that the possible spin assignments are

1. A spin-0 state η ≡ (1,1)

2. Two spin-1 states ρL ≡ (3,1) and ρR ≡ (1,3)

3. A spin-0 state ∆ ≡ (3,3)

We will focus our analysis in the first two cases.

6.1.1 Spin-1 Resonances

On the one hand, and in view of Eq. 6.2, the existence of spin-1 resonances ρµL = (3,1) and
ρµR = (1,3), below the cut-off of the theory at ΛUC = 4πf , can be assume. They are parametrized
by a mass mρχ = gρχf and a coupling 1 < gρχ < 4π, which controls both the interactions among
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the resonances and the resonance-pion interactions (here χ ∈ {L,R}). This scenario has been
considered in [95]. Their description as triplet representations of SU(2)L × SU(2)R follows the
vector formalism presented in [121], where the fields transform non-linearly as

ρµχ = ρµaχTaχ , ρµχ 7→ hρµχh
† +

i

gρχ
(h∂µχh

†)χ (6.3)

under a transformation g ∈ SO(5), with h = h[φ; g] and the unbroken generators Taχ are defined in
Appendix (B.5). At leading order in derivatives, the most general Lagrangian allowed by Eq. 6.3
has the form [122]

Lρ =
∑
χ=L,R

Lkin
ρχ + Lρχ/pNGB + Lρχ/M

=
∑
χ=L,R

− 1

4g2
ρχ

ρµνχ ρχµν +
m2
ρχ

2gρχ
(ρµχ − eµχ)2 + LM+ρχ + Lmag

M+ρχ
(6.4)

where

LM+ρχ =
1√
2
αχiJ

µ
iχ(ρµχ − eµχ) + h.c. (6.5)

Lmag
M+ρχ

=
1

f
βiχJ

µν
iχ ρµνχ + h.c. (6.6)

The eµ symbol is given by Eqs. 4.104 and 4.105, and the field strength is defined as

ρµνχ = ∂µρνχ − ∂νρµχ + [ρµ, ρν ] (6.7)

Lagrangian 6.5 encodes fermion currents coupled to the spin-1 resonances, whereas Lagrangian 6.6
contains tensors of the 2nd rank made out of fermions and coupled to the resonance strength field.
The set of fermion currents and 2nd rank tensors constructable for the four first sub-models in the
list 5.67 can be found in Ref. [95].

6.1.2 Spin-0 Resonances

On the other hand, and again in view of Eq. 6.2, the existence of a spin-0 resonance η = (1,1), below
the cut-off of the theory at ΛUC = 4πf , can be assume. It is parametrized by a mass mη = gηf
and a coupling 1 < gη < 4π, which controls both the interactions among the resonances and the
resonance-pion interactions. As done for the ρ resonances, we write the effective Lagrangian by
focussing on the leading operators in a derivative expansion ∂/Λ that are relevant for ππ scattering.
The Lagrangian that is found reads [122,123]

Lη := Lkin
η + Lη/pNGB + Lη/M (6.8)

where

1. Lkin
η in the kinetic and mass term

Lkin
η =

1

2
(∂µη)2 − 1

2
m2
ηη

2 (6.9)
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2. Lη/pNGB is the Lagrangian coupling the pNGB sector and the η-sector

Lη/pNGB =
f2

4

(
2aη

η

f
+ bη

η2

f2

)
Tr[dµd

µ] (6.10)

where cubic and quartic self-interactions for η have been omitted, and aη, bη . O(1).

3. Lη/M is the Lagrangian relating the MO sector and the η-sector

Lη/M := Lder
η/M + Ltri

η/M (6.11)

where

3.1 Lder
η/M generates the derivative couplings

Lder
η/M =

αi

f
√

2
Jµi ∂µη + h.c. (6.12)

where the fermionic currents Jµi with i ∈ {Q,Ψ, QΨ } are summarized in Tables 6.1
and 6.2. We have divided for convenience the currents into the sub-models MO,Ψ, but
for every model MO we should sum the currents over the corresponding partners Ψ.

3.2 Ltri
η/M generates the trilinear fermion-fermion-scalar couplings

Ltri
η/M5,1

=
(
y5,1
L,η(Q̄

5
L)IΣ

I
5Ψ1R + y5,1

R,η t̄RΣ5
5Ψ1L + h.c.

)
η (6.13)

Ltri
η/M5,4

=
(
y5,4
L,η(Q̄

5
L)IΣ

I
i(Ψ4R)i + y5,4

R,η t̄RΣ5
i(Ψ4L)i + h.c.

)
η (6.14)

Ltri
η/M14,1

=

√
5

2

(
y14,1
L,η (Q̄14

L )IJΣI
5ΣJ

5Ψ1R + y14,1
R,η (Q̄14

R )IJΣI
5ΣJ

5Ψ1L + h.c.
)
η (6.15)

Ltri
η/M14,4

=
√

2
(
y14,4
L,η (Q̄14

L )IJΣI
iΣ

J
5(Ψ4R)i + y14,4

R,η (Q̄14
R )IJΣI

iΣ
J

5(Ψ4L)i + h.c.
)
η

(6.16)
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Table 6.1: Fermionic current for the sub-model M5,1 and M5,4.

M5,1 M5,4

JµQL = Q̄5
Lγ

µQ5
L JµQL = Q̄5

Lγ
µQ5

L

JµQR = Q̄5
Rγ

µQ5
R

= t̄Rγ
µtR

JµQR = Q̄5
Rγ

µQ5
R

= t̄Rγ
µtR

JµΨ1
= Ψ̄5

1γ
µΨ5

1

= Ψ̄1γ
µΨ1

JµΨ4
= Ψ̄5

4γ
µΨ5

4

= (Ψ̄4)iγ
µ(Ψ4)i

JµQLΨ1
= Q̄5

LΣγµΨ5
1L

= (Q̄5
LΣ)5γ

µΨ1L

JµQLΨ4
= Q̄5

LΣγµΨ5
4L

= (Q̄5
LΣ)iγ

µ(Ψ4L)i

JµQRΨ1
= Q̄5

RΣγµΨ5
1R

= t̄RΣ5
5γ
µΨ1R

JµQRΨ4
= Q̄5

RΣγµΨ5
4R

= t̄RΣ5
iγ
µ(Ψ4R)i

Table 6.2: Fermionic current for the sub-model M14,1, M14,4 and M14,9.

M14,1 M14,4 M14,9

JµQL = Tr
[
ΣT Q̄14

L ΣγµΣTQ14
L Σ
]

JµQL = Tr
[
ΣT Q̄14

L ΣγµΣTQ14
L Σ
]

JµQL = Tr
[
ΣT Q̄14

L ΣγµΣTQ14
L Σ
]

JµQR = Tr
[
ΣT Q̄14

R ΣγµΣTQ14
R Σ
]

JµQR = Tr
[
ΣT Q̄14

R ΣγµΣTQ14
R Σ
]

JµQR = Tr
[
ΣT Q̄14

R ΣγµΣTQ14
R Σ
]

JµΨ1
= Tr

[
Ψ̄14

1 γ
µΨ14

1

]
JµΨ4

= Tr
[
Ψ̄14

4 γ
µΨ14

4

]
JµΨ9

= Tr
[
Ψ̄14

9 γ
µΨ14

9

]
JµQLΨ1

= Tr
[
ΣT Q̄14

L ΣγµΨ14
1L

]
JµQLΨ4

= Tr
[
ΣT Q̄14

L ΣγµΨ14
4L

]
JµQLΨ9

= Tr
[
ΣT Q̄14

L ΣγµΨ14
9L

]
JµQRΨ1

= Tr
[
ΣT Q̄14

R ΣγµΨ14
1R

]
JµQRΨ4

= Tr
[
ΣT Q̄14

R ΣγµΨ14
4R

]
JµQRΨ9

= Tr
[
ΣT Q̄14

R ΣγµΨ14
9R

]
6.2 Bringing Together the Sectors

6.2.1 The Models MrO and MrO,rΨ Coupled to Spin-1 or Spin-0 Resonances

We can now joint the elementary sector, the resonance sector and the pNGB sector in order to
construct a composite Higgs model with all the above characteristics. The Lagrangian of these
models read

L∗O := LpNGB + LMO + L∗ (6.17)

where LpNGB is given by 4.107, LMO correspond either to 5.65 or 5.66, and L∗ is either 6.8 or 6.4.
Similarly, we can work with any of the four models 5.67. The Lagrangian of these sub-models then
read

L∗O,Ψ := LpNGB + LMO,Ψ + L∗ (6.18)
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where LMO,Ψ is now given by 5.68. For example, the Lagrangian of the sub-model M5,4 coupled to
a spin-0 resonance η reads

Lη5,4 = LpNGB + LM5,4 + Lη

=
f2

2|H|2
sin2

√
2|H|
f

(DµH)†(DµH) +
f2

8|H|4

(
2
|H|2

f2
− sin2

√
2|H|
f

)
(∂|H|2)2

− 1

4
W I
µνW

Iµν − 1

4
BµνB

µν + Q̄5
Li /DQ

5
L + t̄Ri /DtR

+ Ψ̄4i /∇Ψ4 −M4Ψ̄4Ψ4

+
(
y5,4
L f(Q̄5

L)IΣ
I
i(Ψ4R)i + y5,4

R f t̄RΣ5
i(Ψ4L)i + h.c.

)
+

1

2
(∂µη)2 − 1

2
m2
ηη

2 +
f2

4

(
2aη

η

f
+ bη

η2

f2

)
Tr[dµd

µ] +

(
αi

f
√

2
Jµi ∂µη + h.c.

)
+
(
y5,4
L,η(Q̄

5
L)IΣ

I
i(Ψ4R)i + y5,4

R,η t̄RΣ5
i(Ψ4L)i + h.c.

)
η (6.19)

7 Phenomenology of a Specific CH Model with a Spin-0 Reso-
nance

7.1 Introduction

Here, we show the basic result presented in Ref. [123] where the author of this thesis participated.
The work was realized under slightly different assumptions to the ones presented in the previous
sections. It explores the low energy effects from the interplay among an elementary, partner-
resonances and spin-0 resonance sectors in a SO(5)/SO(4) CH model framework. Such interactions
are encoded via derivative couplings of the scalar resonance η, assumed to be a singlet of SO(4),
with a complete set of SO(5)-invariant fermionic current. The elementary sector is embedded into
the cases rO = 5 and 14. In the former scenario, the embedding 5.17 is used, while in the latter
one the right-handed top quark tR emerges as a chiral bound state of the strong dynamics and
must thus belong to a complete multiplet of the unbroken subgroup SO(4), and given we do not
want extra massless states, it must be a singlet

Q14
L =

1√
2


0 0 0 0 ibL
0 0 0 0 bL
0 0 0 0 itL
0 0 0 0 −tL
ibL bL itL −tL 0

 , Q14
R = tR (7.1)

Finally, the decomposition 5.24 and 5.25 are taken into account in order to generate the four model
M5,1,M5,4,M14,1 and M14,4, where the the case rΨ = 9 was dropped. The top partners are encoded
by 5.26 and 5.32.
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7.2 Spin-0 Production and Decay

7.2.1 Spin-0 Branching Ratios

All the quark partners are colored, hence their pair-production at hadron colliders is QCD-driven,
being completely model-independent and insensitive to the degrees of compositeness of the associ-
ated SM quarks. Qualitatively, the top partner production is independent on whether both or only
one multiplet is present in the effective theory.

Figure 7.1: All branching ratios for the different η-decay modes at M5,4 by setting ξ = 0.2 and
aη = 1/2, and accounting for no currents, i.e αi = 0, as well as their constribution when αi = 1
(thick and dashed curves). Taken from Ref. [95].

Decays of the heavy resonance η may occur into single and double top partner’s final states (the
former accompanied by an associated SM quark), as well as into gauge and Higgs channels, e.g.
η → {hh,WW,Zh}. Fig. 7.1 gathers the branching ratios for two different cases α = 0, 1 (thick-
dashed curves) at M5,4 with ξ = 0.2 and by setting aη = 1/2 at 6.10, whose involved effective term
is responsible for the gauge and Higgs channels. Generically, these modes will be more relevant
rather than the fermionic channels as a consequence of the involve kinematics of both initial and
final states. It is worth noting that:

• No fermion-resonance currents (αi = 0) entails dominant dijet, top-pair and gauge, Higgs
channels, while sub-dominant single-double partners final states. The dijet channel is the
dominant one for Mη . 2 TeV, becoming sub-dominant with respect the W -pair for a higher
mass value.

• The scenario is altered after switching extra fermion-resonance couplings on (αi = 01. In-
deed, the dijet, top-pair and gauge, Higgs channels qualitatively diminish, with a notorious
enhancement for all the single and double partner final states in contrast. Despite this, the
former modes are still relatively the dominant ones.
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• The enhancement occurring at the partner final states, may be a slight departure, as in the
case of the mode bB, or even an rough increase of one or two orders of magnitude for the
tX2/3 and TT channels.

Analogous comments apply for the product of the scalar resonance production cross section times
the corresponding branching ratio. Once the scalar resonance are produced, their decays can
generate, aside from the gauge and Higgs channels, either a single or double quark partner in the
final states. A fuller top partner production mechanism is triggered by bringing QCD, EW and
Higgs-mediated interactions onto the stage.

7.2.2 Spin-0 Cross Sections

The role of spin-0 and spin-1 resonances on the pNGB scattering has been studied in [122], and
their experimental searches were explored for ξ = 0.1 in [124, 125]. Associated production cross
sections through the process pp → η where computed by using MadGraph 5. Fig. 7.2 displays all
the spin-0 production cross sections as a functions of the parameter Mη in the benchmark mass
range Mη ∈ [0.6, 3] TeV, for all the models at

√
s = 14 TeV, and setting αi = 1 for ξ = 0.1, 0.2. The

resonance production is slightly altered when the fermion-resonance current interactions of 6.12 are
included, therefore the situation αi = 0 coincides with the one in Fig. 7.2.

Figure 7.2: Production cross section for η in all four models at 14 TeV, for ξ = 0.1, 0.2 (thick and
thin curves), and by setting αi = 1. Taken from Ref. [95].

Keeping the SM top quark mass at its experimental observed value requires the proto-Yukawa
couplings y5,rΨ

L,R to be properly set, either through its predicted value and by implementing relations.
The scalar heavy resonances is predominantly yielded at the model M5,4 as it can be seen from
Fig. 7.2. In addition, a higher ξ-value enhances all the productions, although at M14,4 the production
is slightly increased. Notice that whether the elementary fermions are 5 or 14-embeddings, the four-
plet scenario favours higher production values rather than the singlet one. The scalar resonance is
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mainly yielded at M5,4, reaching rough cross section values of ∼ 150 pb (0.1 pb) at Mη ∼ 0.6 TeV
(3 TeV) for ξ = 0.2. Posterior decays of the heavy resonance may occur into single and double top
partner’s final states (the former accompanied by an associated SM quark), as well as into gauge
and Higgs channels, e.g. η → hh,WW,Zh.

7.3 Partner Production

7.3.1 Double Partner Production

The production of double-partner final states receives contributions from QCD as well as SM gauge,
Higgs, and η-mediated processes. Fig. 7.3 collects double-partner production cross sections only for
neutral final states, where we have constructed the pair cross sections for each value of the mass
parameter M4 = M1 = MΨ by interpolation using MadGraph 5 simulations, at 14 TeV LHC in all
the models for ξ = 0.2, and for a fixed scalar mass Mη ∼ 1.25 TeV.

Figure 7.3: Double-partner production cross sections at 14 TeV for ξ = 0.2, only for neutral final
states. Two different situations αi = 0, 1 (thick-dashed curves) are plotted to compare the impact
on the production from the fermion-resonance Lagrangian 6.12. Taken from Ref. [95].

Two different situations αi = 0, 1 (thick-dashed curves) display the impact on the production
from the additional fermion-resonance effects regarded here. Slight enhancements occurs at M5,4,
whereas vanishing-tiny contributions are induced at the rest of the models due to the implied f -
suppressed derivative couplings of 6.12. The final states TT and BB are dominantly produced via
pp collisions in M14,4 as the involved quark partner masses are smaller than the corresponding ones
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at M5,4. The final state X2/3X2/3 does not distinguish the elementary embeddings representation
as the involved partner masses are equal at both models. The same comments apply qualitatively
and quantitatively for the channel X5/3X5/3 as the involved partner masses are degenerate with the
corresponding one for X2/3. Generically, producing pairs either of X2/3 or X5/3 will be kinematically
favoured with respect to the double production of both T and B, because their relatively higher
masses. Likewise, the pair production of the singlet T̃ (Fig. 7.3) is favoured at M14,1, as the involved
masses result smaller at 14-elementary embeddings compared with the one at 5-scenario.

Figure 7.4: Feynman diagram contributing to the double partner production, where V = Z, γ and
with X ∈ {T,B,X2/3, X5/3, T̃ }. Taken from Ref. [95].

7.3.2 Single Partner Production

QCD induces the production of single-partner final states, together with the SM gauge, Higgs and
η-mediated processes for the case of neutral final states respectively, Fig. 7.5. These channels are
gathered in Fig. 7.7 and Fig. 7.3.

Figure 7.5: Feynman diagram contributing to the single partner production, where V = Z, γ and
with q standing for any up down-like quark conveniently couple to X ∈ {T,B,X2/3, X5/3, T̃ }.
Taken from Ref. [95].

Notice that the departures induced by the extra fermion-scalar couplings in 6.12 are only ex-
hibited at the neutral final states as they are sensitive to the mediation of the scalar resonance η
via derivative couplings at 6.12. Cross section values are generically increased by the presence of
the latter couplings, becoming notoriously enhanced at the channels tX2/3 and tT̃ for the models
M5,4 and M14,1 respectively.

The kinematic of less massive final states at the models M14,4 and M14,1 is responsible for
the relative dominance of the former with respect M5,4 and of the latter compared with M5,1 at
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Figure 7.6: Single-partner production cross sections at 14 TeV for ξ = 0.2 and for the neutral final
states. Two different situations αi = 0, 1 (thick-dashed curves) are plotted to compare the impact
on the production from the fermion-resonance Lagrangian 6.12. Taken from Ref. [95].

the neutral channels bB, tT, tT̃ , and at the charged final states bX2/3, bT̃ as well. Although some
cases do not obey this, like the mode tX2/3 and tX5/3, where the combined effect of fermion
diagonalization effects roughly suppress the induced contributions from the additional interactions
of 6.12. Despite the absence of the flavour-changing neutral couplings in the charge 1/3 sector [102],
and of the B → hb channel at M5,4, the final state bB is still possible at the four-plet models via

derivative couplings of 6.12 as it can be seen from Fig. 7.7. Yielding the singlet T̃ at the 14-
elementary embeddings results dominantly favoured rather than at the 5-scenario as the involved
masses result smaller at the former model.

7.4 Parameter Spaces

It has been derived here the parameter spaces allowed by the recent available LHC partner searches,
in terms of ξ and the mass scales Mη and MΨ. CMS has released [108] the results of searches for
vector-like quarks, 2/3 and −4/3 electrically charged, that are pair produced in pp interactions at√
s = 13 TeV, and decaying exclusively via the Wb channel. Events were selected requiring a lepton

and neutrino from one W , and a quark-antiquark pair from the other boson gauge. The selection
requires a muon or electron, significant missing transverse momentum, and at least four jets. A
kinematic fit assuming a pair production of 2/3 or −4/3 electrically charged vector-like quarks was
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Figure 7.7: Single-partner production cross sections at 14 TeV for ξ = 0.2 and for the charged final
states. Two different situations αi = 0, 1 (thick-dashed curves) are plotted to compare the impact
on the production from the fermion-resonance Lagrangian 6.12. Taken from Ref. [95].

performed and for every event a corresponding candidate quark mass was reconstructed. Upper
limits were set in [108] for the pair production cross sections as a function of the implied vector-like
quark masses. By comparing these limits with the predicted theoretical cross section of the pair
production, the production of 2/3 or −4/3 electrically charged vector-like quarks is excluded at
95% confidence level for masses below 1295 GeV (1275 GeV expected). More generally, the results
set upper limits on the product of the production cross section and branching fraction to Wb for
any new heavy quark decaying to this channel.

Such limits have been imposed in σ×Br for all of our models and are translated into exclusion
regions for the parameter spaces involved by ξ,Mη and MΨ. Computation of Br(T → Wb) and

Br(T̃ → Wb) is performed including a scalar resonance in the final states for the total width,
with a posterior simulation via MadGraph 5 of the pair production cross section of TT and T̃ T̃
at
√
s = 13 TeV for the four-plet and singlet models respectively. Fig. 7.9 gathers the allowed

parameter spaces (MΨ, ξ) for all the four-plet and singlet models, with a total decay width summing
the standard modes Wb,Zt and ht up (1st-2nd plots), and augmented by ηt (3rd-4th graphs).
Consequently, the branching ratio for any channel will be also Mη-dependent and will entail a
parametric dependence on the extra fermion-resonance interactions regarded here in 6.12. Their
impact is scanned along two different situations: the dashed border regions stand for the allowed
parameter spaces assuming extra fermion-resonance couplings weighted by αi = 1, whilst the others
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Figure 7.8: Parameter space (MΨ, ξ) obtained from recent bounds on top partners searches through
top-like decays into Wb final states: prior to the inclusion of the scalar η into the final states (1st-
2nd plots) and after its inclusion by setting Mη = 3 TeV (3rd-4th plots). Bound from [108] on top
partner searches through top-like decays into Wb final states have been imposed at all model. Two
situations have been explored αi = 0, 1 (thick-dashed border). Taken from Ref. [95].

zones denote no additional interactions, i.e. αi = 0. The scalar resonance mass is fixed at the
benchmark value Mη = 3 TeV at the 3rd-4th graphs. As a conclusion, the recent upper limits on
top-like partners production permit part of the parameter spaces from M14,4 and from the singlet
models if the scalar resonance η is disregarded, and whether the extra fermion-scalar interactions
are considered or not. By including the scalar field into the final states a strongly bounded region,
further constrained if the extra interactions in 6.12 are included, remains at M14,4 and M5,1 only. In
this sense, those extra couplings are useful in discerning models and refining further their involved
parameter space.

An additional insight into the parametric freedom of the assumed scenarios can be explored by
fixing the partner mass scale and letting the scalar resonance one to vary. This entails of course the
scalar resonance inclusion at the final states. Fig. 7.9 illustrates this by setting MΨ = 1.25 TeV. The
parameter spaces are notoriously split into a left and right-handed regions, with the intermediate
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Figure 7.9: Parameter space (MΨ, ξ) by fixing MΨ = 1250 GeV. Two situations have been explored,
αi = 0, 1 (thick-dashed border). Taken from Ref. [95].

excluded ranges Mη ∼ 1.2 − 1.4 TeV and Mη ∼ 0.9 − 1.2 TeV at the 14-embedding scenarios, and
with M5,1 favouring the higher scalar mass range ∼ 2.8− 3 TeV. The inclusion of extra derivative
couplings reduce a bit the higher and lower range masses at M14,4, shifting the range masses to a
lower one at M5,1, while strongly constricting the right handed region to Mη ∼ 1.2 − 1.6 TeV at
M14,1. Consistent ξ-values are still feasible.
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Appendix A Transition Amplitures for QQ→ V V → QQh

There are six channels of typeQQ→ ZZ → QQh, and another six of typeQQ→WW → QQh. We
begin with the channels that involve ZZ-fusion, with all the possibilities (at lowest order) depicted
in Fig. (A.1). Because the difficulties (due very large terms) at calculating explicit expressions for
the cross section for these processes, we will give just the transition amplitude for each case. Let
us analyse the first case, depicted in Fig. (A.1a). Feynman rules determine a transition amplitude
Ma(QQ→ ZZ → QQh) given by

−iMa(QQ
′ → ZZ → QQ′h)(2π)4δ4(p1 + p2 − p3 − p4 − p5) =

∫
d4q1

(2π)4

d4q2

(2π)4
(2π)4δ4(p1 − p3 − q1)

× (2π)4δ4(p2 − p4 − q2)(2π)4δ4(q1 + q2 − p5)ū(p3)

[
−ig
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(
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)]
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× ū(p4)

[
−ig
2cθ

γν
(
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)]
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(
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)
q2

1 −m2
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(
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)
q2

2 −m2
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Z

v
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′
)

(A.1)

from where

Ma(QQ
′ → ZZ → QQ′h) =

g2m2
Z

2v cos2 θ
gσσ

′
ū(p3)γµ

(
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)
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2
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The remain transition amplitudes are

Mb(QQ→ ZZ → QQh) =
g2m2

Z

2v cos2 θ
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Md(Q̄Q̄→ ZZ → Q̄Q̄h) =
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(a) Channel QQ′ →
ZZ → QQ′h.

(b) u-Channel
QQ→ ZZ → QQh.

(c) Channel Q̄Q̄′ →
ZZ → Q̄Q̄′h.

(d) u-Channel
Q̄Q̄→ ZZ → Q̄Q̄h.

(e) Channel QQ̄′ →
ZZ → QQ̄′h.

(f) s-Channel
QQ̄→ ZZ → QQ̄h.

Figure A.1: Feynman diagrams describing Higgs production process QQ → QQh of type QQ →
ZZ → QQh at lowest order.

On the other hand, all the possible channel (at lowest order) involving WW -fusion are depicted
in Fig. (A.2). Their transition amplitudes are given by
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(a) Channel QuQ
′′
d →

WW → Q′
dQ

′′′
u h.

(b) Channel Q̄uQ̄
′′
d →

WW → Q̄′
dQ̄

′′′
u h.

(c) Channel QuQ̄
′′
u →

WW → Q̄′
dQ̄

′′′
d h.

(d) Channel QdQ̄
′′
d →

WW → Q′
uQ̄

′′′
u h.

(e) s-Channel QuQ̄
′
d →

WW → Q′′
uQ̄

′′′
d h.

(f) s-Channel QdQ̄
′
u →

WW → Q′′
dQ̄

′′′
u h.

Figure A.2: Feynman diagrams describing Higgs production process QQ → QQh of type QQ →
WW → QQh at lowest order.

Appendix B Group Representations and Generators

B.1 Low Dimensional Accidental Isomorphisms

Important low dimensional accidental isomorphisms:

Spin(1) ∼= Z2 Spin(4) ∼= SU(2)× SU(2)

Spin(2) ∼= U(1) Spin(5) ∼= Sp(4)

Spin(3) ∼= SU(2) Spin(6) ∼= SU(4)
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Table B.1: Matrix Lie groups.

Group (Real) Dimension Compact Connected Simply Connected Components

GL(n;R) n2 No No No 2

GL(n;C) 2n2 No Yes No 1

SL(n;R) n2 − 1 No Yes No 1

SL(n;C) 2n2 − 2 No Yes No 1

O(n) n(n− 1)/2 Yes No No 2

SO(n) n(n− 1)/2 Yes Yes No 1

U(n) n2 Yes Yes No 1

SU(n) n2 − 1 Yes Yes Yes 1

Sp(2n) 2n2 + n No Yes No 1

Sp(2n;C) 4n2 + 2n No Yes Yes 1

B.2 The Goldstone Matrix for SO(n)/SO(n− 1)

From the spontaneous symmetry breaking SO(n)→ SO(n−1) there will be n−1 Nambu-Goldstone
bosons. The generators TA of SO(n) can always be split as

{TA}
n(n−1)

2
A=1 = {T̂â}n−1

â=1 ∪ {Ta}
(n−1)(n−2)

2
a=1 (B.1)

The non-broken generators Ta form an so(n − 1) algebra in the n irreducible representation of
SO(n), and can be written as

Ta =

(
ta ~0

~0
T

0

)
with ~0

T
= (0 0 · · · 0)︸ ︷︷ ︸

n−1

(B.2)

where {ta}
(n−1)(n−2)

2
a=1 must form an so(n − 1) algebra in the defining representation of SO(n − 1).

One way to write them is

(Ta)µν = (Tαβ)µν = − i
2

(δαµδβµ − δβµδαµ) (B.3)

with 1 ≤ α < β ≤ n − 1 and µ, ν = 1, . . . , n − 1. On the other hand, the n − 1 broken generators
T̂â can be written as

(T̂â)IJ = − i√
2

(δâI δ
n
J − δâJδnI ) (B.4)

with I, J = 1, . . . , n.

In this particular case of spontaneous symmetry breaking, the Goldstone matrix is given by

Σ[φ] =

1n−1 −
~φ ~φ

T

|~φ |2

(
1− cos |

~φ |
f

)
~φ

|~φ |
sin |

~φ |
f

− ~φ
T

|~φ |
sin |

~φ |
f cos |

~φ |
f

 (B.5)
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with inverse

Σ[φ]−1 =

1n−1 −
~φ ~φ

T

|~φ |2

(
1− cos |

~φ |
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)
− ~φ

|~φ |
sin |

~φ |
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|~φ |
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~φ |
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~φ |
f

 (B.6)

B.3 SU(2)× SU(2)

Every element of U ∈ SU(2)× SU(2) can be written as

U(θi, φj) = exp(iθiSi)⊗ exp(iφjSj) (B.7)

where i, j = 1, 2, 3 and

Si =
σi
2

(B.8)

with σi the Pauli matrices. The representations D(j1,j2) of SU(2)× SU(2) are given by two param-
eters j1, j2 ∈ Z+

0 /2. Explicitly

D(j1,j2)[U(θi, φj)] = exp
(
iθid(j1)(Si)

)
⊗ exp

(
iφjd(j2)(Sj)

)
(B.9)

where d(j) the corresponding irrep. of SU(2). Note that

dim(D(j1,j2)) = (2j1 + 1)(2j2 + 1) (B.10)

Table B.2: The first few representations of SU(2)× SU(2) and their dimensions.

dim (j1, j2)

1 (0, 0)

2 (1
2 , 0), (0, 1

2)

3 (1, 0), (0, 1)

4 (3
2 , 0), (0, 3

2), (1
2 ,

1
2)

5 (2, 0), (0, 2)

6 (5
2 , 0), (0, 5

2), (1
2 , 1), (1, 1

2)

7 (3, 0), (0, 3)

B.4 SO(4)

Every element of O ∈ SO(4) can be written as

O(θi, φj) = exp(iθiSi)⊗ exp(iφjSj) (B.11)

where i, j = 1, 2, 3 and

Si =
σi
2

(B.12)
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with σi the Pauli matrices. The representations D(j1,j2) of SO(4) are given by two parameters
j1, j2 ∈ Z+

0 /2 such that j1 + j2 ∈ Z+
0 , i.e. such that j1 and j2 are both simultaneously integers or

half-integers. Explicitly

D(j1,j2)[O(θi, φj)] = exp
(
iθid(j1)(Si)

)
⊗ exp

(
iφjd(j2)(Sj)

)
(B.13)

where d(j) the corresponding representations of su(2). Note that

dim(D(j1,j2)) = (2j1 + 1)(2j2 + 1) (B.14)

Table B.3: The first few representations of SO(4) and their dimensions.

dim (j1, j2)

1 (0, 0)

2 -

3 (1, 0), (0, 1)

4 (1
2 ,

1
2)

5 (2, 0), (0, 2)

6 -

7 (3, 0), (0, 3)

B.5 SO(5)

The 10 generators TA of so(5) are split as

{TA}10
A=1 = {Ta}6a=1 ∪ {T̂â}4â=1 (B.15)

with the Ta’s forming an so(4) algebra. Since Spin(4) ∼= SU(2)L× SU(2)R is the universal covering
space of SO(4), these generators in turn can be conveniently split as

{Ta}6a=1 =

{
TaL =

(
taL 0
0 0

)
, TaR =

(
taR 0
0 0

)}3

a=1

(B.16)

where

(taL)ij = − i
2

[
εabcδ

b
i δ
c
j + (δai δ

4
j − δaj δ4

i )
]

(B.17)

(taR)ij = − i
2

[
εabcδ

b
i δ
c
j − (δai δ

4
j − δaj δ4

i )
]

(B.18)
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with i, j = 1, 2, 3, 4 corresponding to generators of the subalgebras su(2)L and su(2)R, respectively.
Explicitly, they correspond to

t1L = − i
2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 t2L = − i
2


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 t3L = − i
2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



t1R = − i
2


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 t2R = − i
2


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 t3R = − i
2


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


On the other hand, the remaining four broken generators are given by

(T̂â)IJ = − i√
2

(δâI δ
5
J − δâJδ5

I ) (B.19)

with â = 1, 2, 3, 4 and I, J = 1, 2, 3, 4, 5. Explicitly, they correspond to

T̂1 =
1√
2


0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
i 0 0 0 0

 T̂2 =
1√
2


0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 0 0 0
0 i 0 0 0



T̂3 =
1√
2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 i 0 0

 T̂4 =
1√
2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 i 0


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