
UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Repositorio Digital USM https://repositorio.usm.cl

Departamento de Arquitectura Arq_paso

2021-05

A Limited-memory

Levenberg-Marquardt algorithm for

solving large-scale nonlinear

least-square problems

Sanhueza Román, Ariel Omar

https://hdl.handle.net/11673/54320

Repositorio Digital USM, UNIVERSIDAD TECNICA FEDERICO SANTA MARIA
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la gente que me acompañó en este proceso, sobre todo al final de este, tomó un rol
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proceso. Mis padres me ayudaron antes y durante la pandemia, y sin su apoyo
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ayudaron nada en el maǵıster, pero sin ellos mi vida habŕıa sido much́ısimo más
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Obviamente, un agradecimiento infinito a mi polola, Renata, que me ha acompañado
durante muchos procesos que he tenido. Ha estado de cerca conmigo en muchos mo-
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durante mi postgrado y ahora, finalizando este maǵıster. Fue un apoyo indispens-
able para mi: me escuchó cuando necesitaba ser escuchado, me aconsejó cuando lo
necesité, y siempre me apoyó en todas las decisiones que he tomado, aunque algunas
parezcan rid́ıculas o poco cuerdas a ojos ajenos. Siempre estuvo de mi lado. Creo
que su apoyo tiene un valor especial, pues se que estamos en sintońıa en muchas
cosas de la vida, y por lo tanto, se que me entendió cuando necesitaba ayuda. Por
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podido dar todo lo que he dado en este proceso. Probablemente habŕıa desistido de
muchas cosas que logré, y también, posiblemente habŕıa tomado caminos que ahora
no me parecen los más adecuados. Independientemente de lo que depare el futuro
para nosotros, que uno no puede asegurar, tú tienes un lugar importante en mi, y
eres parte del resultado de lo que soy hoy en d́ıa. Eso no cambiará jamás. También
gracias por dejarme colarme en tu departamento, aunque parezca chistoso, logré
avanzar un montón durante ese tiempo.
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dios, habŕıa sido todo mucho mas dif́ıcil, tanto académica como emocionalmente. Yo
igual soy catete, medio raro para algunas cosas, pero los cabros siempre apañaron
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Resumen

En esta tesis se propone un solver para sistemas de ecuaciones no-lineales sobrede-
terminados de gran escala, basado en Levenberg-Marquardt. Tradicionalmente, el
método de Levenberg-Marquardt requiere la solución de un sistema de ecuaciones
lineales que involucra la matriz Jacobiana y su transpuesta. Este sistema de ecua-
ciones lineales es equivalente a las ecuaciones normales de un problema de mı́nimos
cuadrados lineal. Desafortunadamente, Levenberg-Marquardt no es un método ade-
cuado para problemas de gran escala debido al requerimiento de la matriz Jacobiana.
Cuando la dimensión del problema es grande, el cálculo y almacenamiento expĺıcito
de la matriz no es posible, debido al alto uso de memoria. La gran mayoŕıa de los
algoritmos para problemas de gran escala están diseñados para problemas de opti-
mización sin restricciones, y estos requieren del gradiente de la función objetivo, el
cual involucra a la Matriz Jacobiana transpuesta. Si bien existen algoritmos matrix-
free de bajo costo computacional que aproximan el producto de la matriz Jacobiana
por un vector, aproximar el producto de la transpuesta de la matriz Jacobiana por
un vector requiere un mayor costo de cómputo. En esta tesis se propone el uso
de Levenberg-Marquardt en conjunto con un nuevo algoritmo, basado en LSQR,
llamado nsLSQR. El método nsLSQR resuelve un problema de mı́nimos cuadrados
lineal utilizando una aproximación con diferencias finitas y una aproximación, de
cualquier ı́ndole, de la matriz Jacobiana transpuesta. Para aproximar el producto
de la matriz Jacobiana transpuesta por un vector, se propone un algoritmo, basado
en cuantización, para aproximar la matriz Jacobiana. Mediante el uso de cuan-
tización, el uso de memoria es reducido significativamente, respecto a una matriz
expĺıcitamente almacenada. Combinando la aproximación cuantizada y nsLSQR,
se propone un algoritmo, el cual denominamos lm-nsLSQR (Levenberg-Marquardt
nsLSQR), que permite minimizar el residuo de un sistema de ecuaciones no-lineales
sobredeterminado de gran escala.

Palabras clave : large-scale problems, overdetermined system of equations, non-
linear problems, Levenberg-Marquardt, Krylov subspace, LSQR, Quantization.
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Abstract

In thesis a method to solve large-scale overdetermined nonlinear system of equations
is proposed. The method is based on the Levenberg-Marquardt method. Tradition-
ally, the Levenberg-Marquardt requires the solution of a linear system of equations
that contains the Jacobian matrix and its transpose. This linear system of equation
is equivalent to the normal equation of a linear least-square problem involving the
Jacobian matrix. Unfortunately, the Levenberg-Marquardt is not a suitable method
for large-scale problems due to the requirement of the Jacobian matrix. For large-
scale problems, the computation and explicit storage of a matrix is prohibited due
to its high memory usage. Some algorithms for large-scale problems have been de-
signed but most of them are aimed for unconstrained optimization problems and
they require the gradient of the objective function, which involves the transpose
of the Jacobian matrix. There are some computationally cheap matrix-free meth-
ods to approximate the product of the Jacobian matrix times a vector. However,
to approximation of the transpose of the Jacobian times a vector is not cheap to
compute, and matrix-free algorithms usually demands a high computational effort.
In this thesis, the Levenberg-Marquardt is used in combination with a novel solver
for linear least-square problem, called nsLSQR. The nsLSQR method is based on
LSQR, and solves a linear least-square problem using a matrix-free finite difference
approximation to compute the product of the Jacobian matrix times a vector, and
use any available approximation for the transpose of the Jacobian matrix times a
vector. To approximate the product involving the transpose of the Jacobian matrix,
in this thesis an approximation method is proposed, based on Quantization. This
quantization builds a low-memory approximation of the Jacobian matrix, and the
transpose of this approximation is used. The quantized approximation use signif-
icantly less memory that a explicitly stored double precision matrix. Combining
the quantized approximation and nsLSQR, the proposed algorithm, which will be
called lm-nsLSQR (Levenberg-Marquardt nsLSQR), can handle large-scale nonlinear
problems.

Keywords : large-scale problems, overdetermined system of equations, nonlinear
problems, Levenberg-Marquardt, Krylov subspace, LSQR, Quantization.
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Chapter 1

Introduction

The need for finding solutions of nonlinear problems arise commonly in many fields
of study. Some examples where nonlinear problem are used is in modeling natural
or physical phenomenon and in Machine Learning or data fitting problems. In the
former, the desired behavior that is needed to be modeled is approximated by means
of a nonlinear equation. In particular, the usage of differential equations is not rare.
Although linear models can be used for simple problems, more complex behavior
requires a higher degree or more complex functions Jouha, Oualkadi, Dherbécourt,
Joubert, and Masmoudi 2018; P. Hu, Cao, Zhu, and J. Li 2010. When these PDE
involve several terms and its degree of non-linearity is high, analytical solutions are
not always easy to compute. Some problems even are not know if an analytical
solutions exists under given initial conditions. For this reason, numerical solutions is
a method to handle, study and visualize the models designed for these phenomenon.
In the latter example, a model and its parameters are “trained” or fitted using a
dataset or available data. The aim is to produce a model capable of predict future
outcomes or events related to the given data. A measure of error is used to optimize
and decrease the error produced by the model over the data. Later, the trained
model can be used to guess new events or data that has not been seen yet by the
model. Although linear models can be used, its application are very restricted and
usually nonlinear models are preferred for more difficult problems. Neural Networks
is a typical nonlinear model used in Machine Learning problems Pouyanfar, Sadiq, Y.
Yan, Tian, Tao, Reyes, Shyu, S.-C. Chen, and Iyengar 2018; Du and Stephanus 2018,
and its training process usually involves a nonlinear objective function. The training
or fitting of these models demands high computational cost and efficient algorithms
are desired. Regardless of the application or field, when a nonlinear problem is tried
to be solved by numerical means, the nonlinear problem takes the form of a nonlinear
system of equations.

Formally, a nonlinear system of equations is expressed in the following form,

F(x) = 0, (1.1)

where F : Rn → Rm is a map, x represent the root of the problem and 0 is the
zero vector in Rm. If m < n the problem is called Under-determined nonlinear
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CHAPTER 1. INTRODUCTION

system of equations, if m > n the problem is an Over-determined nonlinear system
of equations. Otherwise is simply called a nonlinear system of equations.

From a variety of classical approaches, we remark at least two to handle these
kind of problems,

• The usage of Newton’s method and its related algorithms, like Quasi-Newton
methods.

• Application of unconstrained optimization methods. The approach is applied,
usually, over the residual of the function F.

For each of these approaches, several classical algorithms have been developed along
these years Kelley 1999; Nocedal and S. Wright 2000; Chong and Zak 2013; Kelley
1995. Some popular methods are the Newton’s method, Quasi-Newton methods,
gradient-based methods and trust-region methods. Most of these algorithms are still
used to our days, either in their initial form or with modification to improve their
performance to general or specific problems.

The focus of this thesis are over-determined problems, which usually appears in
nonlinear least square problems, discretization of functional or data fitting of non-
linear models. An approach for solving an over-determined problem is by means of
solving it in a least-square sense. This problem is usually solved as an unconstrained
optimization problem, where its residual is minimized. This is possible by defining
a function g as,

g(x) =
1

2
‖F(x)‖2

2, (1.2)

and solve the minimization problem given by,

min
x∈Rn

g(x). (1.3)

The incorporation of 1
2

in (1.2) is for later convenience in the computation of deriva-
tives.

Among the popular methods for solving such problems Nocedal and S. Wright
2000; Chong and Zak 2013 are Steepest descent with line search, trust-region methods,
Nonlinear Conjugate gradient method, Newton and Quasi-Newton methods, Genetic
Algorithms and some Derivative-Free methods. Although all those methods are pos-
sible to use over unconstrained optimization problems, not all are suitable for solv-
ing (1.3). This is mostly due to that general unconstrained optimization method
does not use the fact that g depends on F. For example, most of these methods
requires the gradient of g explicitly to compute some vectors or approximate the
Hessian matrix. However, note that

∇g(x) = JT (x) F(x), (1.4)

where J(x) is the Jacobian matrix of F. Such gradient is not possible to compute
easily without forming the Jacobian matrix explicitly. Another issue, which is the
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CHAPTER 1. INTRODUCTION

main focus of this work, is related to large-scale problems. Most of these methods
are suitable for small and medium scale problems, whose computational and stor-
age requirements remains under acceptable ranges. Unfortunately, for large-scale
problems, some methods have issues to handle it due to high computational require-
ments or matrices, overwhelming the available memory. As said previously, most
of these methods requires the gradient of g which depends on the transpose of the
Jacobian matrix of F. Forming an approximation of the Jacobian matrix for small
or medium-scale problems is not an issue at all since the available memory in the
computational system may be enough for building and storing the matrix explicitly.
This is not the case for large-scale problems where storing a matrix of size m× n is
prohibited. Some methods have been developed for solving large-scale problems, like
L-BFGS, nonlinear Conjugate Gradient and related methods, but those requires the
gradient which is an issue when solving (1.3). The gradient issue and its dependence
of the Jacobian matrix may be solved using Automatic Differentiation Nocedal and
S. Wright 2000 but this requires the use of external toolkits. To solve large-scale
problems, like usually found in Machine Learning, it is common to use the Steepest
descent or its stochastic modification Pouyanfar, Sadiq, Y. Yan, Tian, Tao, Reyes,
Shyu, S.-C. Chen, and Iyengar 2018. However, those methods usually exhibit a slow
convergence. Thus, in this thesis, we will present a method for solving (1.3) based in
the Levenberg-Marquardt method Marquardt 1963. This algorithm was developed for
solving Nonlinear least square problems and is related to the Gauss-Newton method.
Although this method was developed for this type of problems, it has been used in
other problems and this is an active research topic Lin, O’Malley, and Vesselinov
2016; Henn 2003; Finsterle and Kowalsky 2011; Bao, C. K. W. Yu, J. Wang, Y. Hu,
and Yao 2019. To handle the large-scale component of the problem, a matrix-free
approximation and a quantized representation of the Jacobian matrix will be used.

In chapter 2 we will review the current State of the Art related to nonlinear
equations for large-scale problems. Chapter 3 will describe some theoretical back-
ground, related to the problem and how it will be handled in this thesis. Chapter 4
will explain nsLSQR, a proposed algorithm for solving large-scale linear least-square
problems, designed to be used in the Levenberg-Marquardt method or related algo-
rithms. In chapter 5, the Quantization approximation is explained, which is one of
the central parts of our nonlinear solver and complements the nsLSQR algorithm.
Chapter 6 will explain the remaining components related to Levenberg-Marquardt,
the combination of the quantized approximation and nsLSQR, and will present the
final algorithms. Chapter 7 contains numerical experiments, testing the different
parts of the proposed methods and showing their results. Finally, but of no lesser
importance, chapter 8 shows the conclusion of our work and set some possible lines
for future work.
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Chapter 2

State of the art

Over-determined nonlinear system of equations arise commonly in different fields and
it is not rare to use classical algorithms to solve such problems. Since solving non-
trivial nonlinear problems is hard, iterative methods are usually used. A classical
approach for solving nonlinear problems is the usage of Line-search methods Nocedal
and S. Wright 2000. Let suppose that an unconstrained minimization problem is
desired to be solved, like the one presented in (1.3). For a current approximation
of the minimum, namely xi, these methods compute the next approximation in the
following iterative manner,

xi+1 = xi + αi pi,

for αi > 0 some real scalar and pi some direction vector or step. Different values
of the step pi generates different line-search methods. Usually, the value of pi is
a descent direction vector Nocedal and S. Wright 2000, i.e. a vector that satisfy
pTi ∇g(xi) < 0. This is an important desired property since for a sufficiently small
value of αi > 0, we have that

g(xi − αi∇g(xi)) < g(xi).

This shows that the value of the steplength αi also has an important role and, in
general, there is no a golden rule for its computation.

If αi is too small, the method suffers from a slow convergence. On the contrary,
if αi is too large, there is no guarantee that the method may converge. A simple
approach is to modify its value, for example, using a backtracking method, until
some properties or inequalities hold Nocedal and S. Wright 2000.

A popular line-search method is the Steepest descent method Nocedal and S.
Wright 2000, which is a well-known method in the Machine Learning research com-
munity. The Steepest descent method use as a step direction the negative of the
gradient of the function that is minimized, i.e. pSD

i = ∇g(xi). The method is based
in the fact that the negative of the gradient of a function points to the direction of
maximum decrease of a function Nocedal and S. Wright 2000. Unfortunately, it is
not widely used, mostly due to its slow convergence rate Nocedal and S. Wright 2000
and, in the Machine learning community, also due to its high computational cost. In
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Machine Learning problems, the gradient is composed by the sum of the gradient of
the loss function for each element in the dataset or training set. This requires the
evaluation of the gradient over the entire dataset, which is an issue for modern high-
demanding models, like deep neural networks, that requires a very large amount of
data to achieve a good prediction performance. A preferred version of the Steepest
descent method is the Stochastic Descent gradient method Pouyanfar, Sadiq, Y. Yan,
Tian, Tao, Reyes, Shyu, S.-C. Chen, and Iyengar 2018. This variation of the clas-
sic gradient method avoids the need of loading a large-scale dataset, reducing the
computational requirements of the method, by randomly choosing elements of the
dataset to be used in the gradient computation.

The Spectral Gradient Method, globalized in Raydan 1997, is a gradient method
where the calculation of the steplength differs from a steepest descent approach.
The method propose a fixed expression to compute the steplength, which has a low
computational cost and storage requirement. Despite its simple structure, in recent
years it has gained attention in the scientific community Dai and Zhang 2001; Biglari
and Solimanpur 2013; Hongwei, Z. Liu, and Dong 2017; Mohammad and Waziri 2019.
A modification to the Spectral method was proposed by La Cruz et al. Cruz and
Raydan 2003; Cruz, Mart́ınez, and Raydan 2006.

Another member in the set of line-search methods, that is also suitable for some
large-scale problems, is the Nonlinear Conjugate Gradient method Nocedal and S.
Wright 2000; W. Cheng, Xiao, and Q.-J. Hu 2009. Its usage is mostly due to its sim-
plicity and low-memory requirements. It is based on the linear Conjugate Gradient
method Saad 2003 but use the gradient of the objective function to optimize. The
step size is defined as follows,

pNCG
i+1 = −∇g(xi) + βip

NCG
i ,

where βi is a scalar that ensures that pNCG
i+1 and pNCG

i are conjugate. For the linear
Conjugate Gradient Method, the value of βi may be analytically computed. For
nonlinear problems, this is not possible. How to compute its value is an active
research field in the scientific community, and different approaches and values have
been proposed. See Nocedal et al. Nocedal and S. Wright 2000, Cheng et al. W.
Cheng, Xiao, and Q.-J. Hu 2009, Dai et al. Dai and Kou 2013, and Yuan et al. Yuan,
T. Li, and W. Hu 2020 for a survey of different computation strategies.

Newton-based methods are another classical approach to solve nonlinear prob-
lems, which are based on the Newton’s method Sauer 2011. For solving a nonlinear
system of equations like (1.1), the Newton’s method build iteratively the solution as

xi+1 = xi + ∆xNM
i ,

where the Newton step ∆xNM
i is computed from the following system of linear equa-

tions
J(xi) ∆xNM

i = −F(xi)⇔ ∆xNM
i = −J−1(xi) F(xi), (2.1)

where J(xi) corresponds to the Jacobian matrix of F evaluated at xi. The described
iteration procedure is performed until convergence. An important property of the
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Newton’s method is that converges quadratically to the solution Kelley 1995, for a
sufficiently close initial guess x0. The method is locally convergent Kelley 1995, but
there are different approaches to make the method globally convergent Kelley 1995;
Press, Teukolsky, Vetterling, and Flannery 1992. An important requirement of the
method, that is related to its memory storage requirements and the computational
cost of the method, is the Jacobian matrix. For large-scale problems, the storage of
this matrix is forbidden. An important modification to the Newton’s method is the
Jacobian-Free Newton-Krylov method (JFNK) Knoll and Keyes 2004. This method
is a matrix-free variation of the Newton’s method, where the linear system is solved
using a Krylov-based linear solver, like GMRes Saad 2003; Sauer 2011. Matrix-free
methods do not need explicit access to matrices but only requires its action over
arbitrary vectors, i.e. requires a procedure to compute the matrix-vector product.
Since such methods do not requires the matrix explicitly, they are suitable for large-
scale problems. For the JFNK, its matrix-free property is obtained by means of two
elements:

• The first one is the use of a Krylov-subspace method to solve the linear system
at each iteration. Krylov subspace linear solvers operates over the matrix in
a matrix-vector product only. Thus, if a procedure to compute the product
of the Jacobian matrix times a vector is given, Krylov subspace methods can
solve the linear system without forming the matrix.

• The second one, is the usage of a finite difference approach to approximate the
required product. An example of a second-order approximation of the product
J(xi) v is given by the following equation,

J(xi)v ≈
F(xi + εv)− F(xi − εv)

2ε
. (2.2)

A higher-order approximation is possible, however this increase the computa-
tional cost of such approximations. First-order approximation is also possible
at a single new function evaluation.

Both, Newton’s method and the JFNK method are restricted to nonlinear prob-
lems where m = n, that is, its number of unknowns equals its number of equations.
This is not the case for overdetermined nonlinear systems of equations. Other exam-
ples of method for large-scale problems for system of nonlinear equations with equal
number of equations and unknowns are Leong, Hassan, and Yusuf 2011; W. Cheng,
Xiao, and Q.-J. Hu 2009; Noor] and Waseem 2009; Abubakar and Kumam 2018;
Cruz, Mart́ınez, and Raydan 2006; Cruz and Raydan 2003. An approach to use
Newton’s method to solve overdetermined problem is by considering the property
that a minimum of (1.3) must satisfy ∇g(x) = 0. Note that ∇g : Rn → Rn. There-
fore, the Newton’s method can be used over the gradient of g(x). This would require
the Jacobian matrix of ∇g(x) or, equivalently, the Hessian of g(x). Let Hg(x) be
the Hessian matrix of g(x). The equivalent to the Newton equation (2.1) is given by

Hg(xi) ∆xNM
i = −∇g(xi), (2.3)
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and the update for the current solution is computed as

xi+1 = xi + ∆xNM
i = xi −H−1

g (xi)∇g(xi). (2.4)

An important remark of this approach is that the convergence to a minimum is not
guarantee. The reason for this is that the property of ∇g(x) = 0 is also satisfied in
a local maximum. Therefore, solving ∇g(x) = 0 using the Newton’s method may
convergence to a local minimum, a local maximum or even a saddle point.

Quasi-Newton methods Dennis and Moré 1977 is another branch of methods to
solve nonlinear problems that are widely used, and are closely related to Newton’s
method. Quasi-Newton methods are based on the idea of using an approximation
or “similar matrix” instead of J(xi) in (2.1) or an approximation of its inverse. In
general, Quasi-Newton methods for optimization or nonlinear problems, are based
on a quadratic model of the objective function at the current solution point, which
is given by the following equation,

mi(x) = g(xi) +∇g(xi)
T (x− xi) +

1

2
(x− xi)

T Bi (x− xi),

where Bi is the Hessian matrix of g(x), following the notation used in Nocedal and
S. Wright 2000. Note that this is just a second order Taylor expansion for g(x) at xi.
The main proposal of Quasi-Newton methods is to avoid the computation of the true
Hessian matrix. Instead, these methods update it at every iteration, starting from
an initial matrix B0. To compute the next matrix Bi+1, given Bi, Quasi-Newton
methods solves the following optimization problem,

min
Bi+1

‖Bi+1 −Bi‖, (2.5)

subject to Bi+1 being symmetric positive-definite and that the following equation
holds,

Bi+1si = yi, (2.6)

where si = xi+1 − xi and yi = ∇g(xi+1) − ∇g(xi). Equation (2.6) is known as
the Secant equation. The minimization problem (2.5) subject to the mentioned
restriction has a unique solution for Bi+1 Nocedal and S. Wright 2000. The use of
different norms in (2.5) give rise to different Quasi-Newton methods. An important
Quasi-Newton method is given by the DFP update formula, named by Davidon-
Fletcher-Powell. The DFP updates is given by

Bi+1 = (I − ρiyisTi )Bi (I − ρisiyTi ) + ρiyiy
T
i ,

where

ρi =
1

yTi yi
.

Although having an expression to compute Bi+1 easily from Bi, usually its inverse is
used. This reduce the computational complexity of the overall method by replacing
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a solution of a linear system of equation by a simple matrix-vector product. The
inverse of Bi, which is denoted by Hi = B−1

i , can be easily computed using the Sher-
man–Morrison–Woodbury formula Nocedal and S. Wright 2000. Using this formula,
the value of Hi+1 can be obtained as,

Hi+1 = Hi −
Hi yiy

T
i Hi

yTi Hi yi
+

sis
T
i

yTi si
.

The previously described approach is effective, but the BFGS method Nocedal and
S. Wright 2000, and its limited-memory version for handling large-scale problems,
L-BFGS Nocedal and S. Wright 2000, are preferred due to its performance. The
idea of the BFGS updating formula is similar to the DFP formula, but the secant
equation is applied over the approximated inverse of the Hessian, Hi+1, instead of
the approximated Hessian Bi+1. That is, the secant equation is given by

Hi+1yi = si.

So, the BGS optimization problem used to find Hi+1 is the following,

min
Hi+1

‖Hi+1 −Hi‖, (2.7)

subject to Hi+1 being symmetric positive-definite and to the secant equation (2).
The update formula in BFGS, analogous to the formula used in DFP, is

Hi+1 = (I − ρisiyTi )Hi (I − ρiyisTi ) + ρisis
T
i .

The selection of the initial approximation, H0, is not a trivial task and different
approach may be used. Classical options are the Identity matrix or an approximated
Hessian computed by Finite Difference Nocedal and S. Wright 2000. The solution of
the optimization problem, for instance (1.3), is computed iteratively as

xi+1 = xi − αiHi∇g(xi), (2.8)

where αi is chosen to ensure convergence. Note that the computation given by (2.8)
is similar to (2.4) since Hi in the BFGS notation is the approximation of the inverse of
the Hessian matrix of g(x). An important advantage of BFGS over Newton’s method
applied directly over ∇g(x) is that the step −Hi∇g(xi) is a descent direction for g(x)
at xi, since

∇g(xi)
T (−Hi∇g(xi)) = −∇g(xi)

THi∇g(xi) < 0.

This is ensured since Hi is positive-definite by construction. Using the Newton’s
method directly over ∇g(x) requires the true Hessian of g(x), which does not neces-
sarily is positive-definite and, therefore, may produce a non-descent direction. This
descent-direction property, its superlinear convergence Nocedal and S. Wright 2000
and its low computational requirements Nocedal and S. Wright 2000, makes BFGS a
widely used method for general unconstrained optimization problems. However, for

8



CHAPTER 2. STATE OF THE ART

large-scale problems the method may require a prohibited amount of memory stor-
age since the matrices Hi are usually dense. The Limited-memory BFGS Nocedal
and S. Wright 2000, or L-BFGS, is a modification to BFGS aimed to use BFGS for
large-scale problems. Note that the matrix Hi is used in a matrix-vector product
form, in (2.8). Also note that Hi+1 depends from Hi, ρi, yi and si. This analysis
may be repeated for Hi, recursively. So Hi+1 depends from H0 and all previous ρi,
si and yi. Using this, L-BFGS approximates the matrix-vector product of Hi+1 and
a vector by storing a fixed number of previous pairs {yi, si} and build the desired
product of Hi+1 implicitly using these vectors. Since storing all pairs from 0 to the
current iteration i is not feasible, L-BFGS only maintains an small fixed number of
such pairs of vectors. Due to its limited-memory property and good performance,
it has been used for training deep neural networks Badem, Basturk, Caliskan, and
Yuksel 2017; X. Liu, S. Liu, Sha, J. Yu, Z. Xu, X. Chen, and Meng 2018; Bot-
tou, Curtis, and Nocedal 2018 or large-scale problems Nocedal and S. Wright 2000.
More Quasi-Newton method exists and is an active research topic. For example,
in Leong et al. Leong, Hassan, and Yusuf 2011 and Hassan et al. Mohammad and
Santos 2018,a Quasi-Newton approach is used to build diagonal matrices, reducing
considerably the required memory of the algorithm.

Another popular method used to solve nonlinear problems, is the Gauss-Newton Sauer
2011, which is based on the Newton’s method. The idea of the the Gauss-Newton
method begins with the same approach used by the Newton’s method to solve an
overdetermined nonlinear system of equations. In (2.3), the matrix Hg(x) corre-
sponds to the Hessian matrix of g(x), which is given by,

Hg(x) = JT (x) J(x) +
m∑
i=1

fi(x)Hfi(x),

where J(x) is the Jacobian matrix of F, fi : Rn → R is the i-th component of the
function F and Hfi(x) denotes the Hessian matrix of fi(x). Since usually it is not
easy to compute Hg explicitly and also does not guarantee that will decrease the
function g(x), since the step ∆xi in (2.3) is not a descent direction for g(x), the
Gauss-Newton method approximates Hg using the first-order derivative information
only, i.e. Hg(x) ≈ JT (x) J(x). Using this approximation, the Gauss-Newton method
update the solution as

xi+1 = xi + ∆xGN
i ,

where the step ∆xGN
i is obtained solving the following linear system of equations

JT (xi) J(xi)∆xGN
i = −∇g(xi) = −JT (xi) F(xi). (2.9)

Note that the Jacobian matrix J(xi) is of size m × n. Therefore, the matrix
JT (xi) J(xi) is a square matrix of size n × n. Under suitable assumptions, the
method is locally convergent Nocedal and S. Wright 2000. A backtracking-line-
search strategy may be used to make it a globally convergent method Nocedal and
S. Wright 2000. Also, if the matrix JT (xi) J(xi) dominates over

∑m
i=1 fi(x)Hfi(x)
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in Hg, then the method may achieve quadratic convergence Nocedal and S. Wright
2000. Another important property of Gauss-Newton is that its step ∆xGN

i is a de-
scent direction, when J(xi) is full-rank and ∇g(xi) 6= 0. This is easy to prove, since
the matrix JT (xi) J(xi) is positive-definite if J(xi) is full-rank. Therefore, we have
that

〈∇g(xi),∆xGN
i 〉 = −∇g(xi)

T
(
JT (xi) J(xi)

)−1
JT (xi) F(xi) < 0,

since the inverse of a positive-definite matrix is also positive-definite. This is an
important property, that is not shared with the Newton’s method applied over∇g(x).

A mayor drawback of the Gauss-Newton method is when the matrix J(xi) is rank-
deficient or the matrix JT (xi) J(xi) is nearly singular. The Levenberg-Marquardt
method Marquardt 1963; Moré 1978; Nocedal and S. Wright 2000 use a regularization
parameter λ > 0, sometimes called damping factor, to overcome these issues. In
general, the Levenberg-Marquardt method is preferred over Gauss-Newton, and has
been used successfully in neural networks Ibrahimy, Ahsan, and Khalifa 2013; Smith,
B. Wu, and Wilamowski 2019 and also is an active research field Bilski, Kowalczyk,
and Grzanek 2018; Lin, O’Malley, and Vesselinov 2016; L. Chen 2016a; L. Chen
2016b; Huang and Ma 2019. Instead of solving (2.9), the Levenberg-Marquardt
method compute the step as(

JT (xi) J(xi) + λIn
)

∆xLM
i = −JT (xi) F(xi), (2.10)

where In denotes the n × n identity matrix. The update of the current solution is
given by xi+1 = xi + ∆xLM

i . Since the matrix JT (xi) J(xi) is guaranteed to be at
least semi-positive definite, the regularization parameter λ > 0 makes the matrix
positive-definite. Since the matrix JT (xi) J(xi) + λI is positive definite, the step
∆xLM

i is a descent direction for g(x). Also, note that the step is given by

∆xLM
i = −

(
JT (xi) J(xi) + λIn

)−1
JT (xi)F(xi)

This means that

• Larger values of λ makes the matrix λIn to be dominant over JT (xi) J(xi).
Therefore, JT (xi) J(xi)+λIn ≈ λIn and the step ∆xLM

i ≈ (λIn)−1 JT (xi)F(xi) =
1
λ
JT (xi)F(xi), that is, similar to an small gradient descent step.

• Smaller values of λ makes JT (xi) J(xi) to be dominant over In, making the
step closer to a Gauss-Newton step.

This impact of λ is important since taking larger values produce an step close to a
gradient descent approach, which is know to be convergent for an small steplength.
Smaller values produce an step close to a Gauss-Newton step and, therefore, improv-
ing the convergence. How to modify the value of λ at each iteration is a key element
in the Levenberg-Marquardt method and is still an important research topic Fan
and Pan 2009; Cui, Zhao, B. Xu, and Gao 2017. Marquardt proposed a simple
method of a constant factor used to increase or decrease the damping factor Mar-
quardt 1963, depending if the objective function is reduced. A more sophisticated
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approach was lately developed in Fletcher 1971. In Moré 1978, the work was ex-
tended and a more numerically stable method was proposed, where a trust-region
like approach was used in the computation of the damping factor. Also, the inequal-
ity g(xk +∆xk(λ)) < g(xk) was not used and the criteria for increase or decrease the
damping factor was related to the ratio between the actual reduction in the nonlinear
function and the predicted reduction of the linear model. This implementation is
more reliable than the original proposed by Marquardt and is still used in modern
implementation of some libraries, like the implementation contained in the Scipy
library1, for Python. Although the method posses good convergence properties and
general performance, it is not suitable for large-scale problems. Since it requires
the Jacobian matrix and its transpose, large-scale problem requires a prohibitive
amount of storage requirements. For this reason, the Levenberg-Marquardt method
is preferred for small or medium-scale problems. Note that using an approximation
like (2.2), it is possible to compute the matrix-vector product J(xi)v in a matrix-free
approach. Unfortunately, to the author’s knowledge, there is no a similar low com-
putational cost approximation for the product between the transpose of the Jacobian
matrix and a vector. It is possible to compute the product JT (xi)w in a matrix-free
approach Sanhueza and Torres 2017, but it has a high computational cost.

The more important issues for Newton type method, for large-scale problems, are

• Most of method requires a Jacobian matrix, the Hessian matrix or an approxi-
mation of it. For large-scale problem, the storage of such matrix is prohibited.
However, the L-BFGS method is capable of handling such issue.

• All previous algorithms, if used for solving (1.3), requires the gradient of g(x).
This, for large-scale problem, is an issue since

∇g(x) = JT (x)F(x).

Constructing and storing explicitly the matrix JT (x) is not feasible, and a
matrix-free approximation demands a high computational cost. If a cheap
procedure to compute the gradient of g(x), then previously described algorithm
are capable of handling efficiently a large-scale problem.

As noted, all previous issues are related to the computation of a large Jacobian matrix
or a gradient. An important approach to handle such issue is the use of Automatic
Differentiation Nocedal and S. Wright 2000; Griewank and Walther 2008, also called
Algorithmic Differentiation. Automatic Differentiation is an important tool that is
based in the idea that every function is a composition of fundamental functions like
sine, cosine, exponential and so on. Using the Chain rule, the derivatives are com-
puted implicitly. Using their forward mode or reverse mode, different ways to com-
pute the desired derivative, it is possible to compute dot products or matrix-vector
products between gradients, Jacobian matrix and other structures. This procedure is

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_

squares.html
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used in machine learning for training Baydin, Pearlmutter, Radul, and Siskind 2017
or to perform products needed by several non derivative-free methods like BFGS
(or its limited memory version), Newton method, Levenberg-Marquardt and other
algorithms W. Xu, Zheng, and Hayami 2016; Safiran, Lotz, and Naumann 2016;
X. Fu, S. Li, Fairbank, Wunsch, and Alonso 2015. Also, another advantage of Au-
tomatic Differentiation is that is suitable for parallelization Förster and Naumann
2013. It is important to note that Automatic Differentiation is different from Sym-
bolic differentiation, where there is a symbolic data structure that represent each
function. One of the main advantages of these types of methods is that does not
suffer from truncation errors Griewank and Walther 2008 and, even if it is similar
to symbolic mathematics, it is much faster. Unfortunately, this approach requires
that functions to be programmed using specific toolkits to performs the required
derivatives and this requirement is not possible to meet when functions and methods
were already programmed or implemented previously, or if their are an output from
another program or toolkit.

Given this context, in this thesis we propose a method for solving over-determined
nonlinear system of equations by means of an unconstrained minimization approach.
This problem is solved by the Levenberg-Marquardt method. As described, the
Levenberg-Marquardt method requires the Jacobian matrix and its transpose. To
handle large-scale problems, our approach combines the use of an approximation
based on finite-difference, to approximate the product of the Jacobian matrix, and
Quantization is used to approximate the transpose of the Jacobian matrix using
a restricted-memory approach. To solve the inner least-square problem, we also
propose a method based on LSQR, called nsLSQR or Non-Symmetric LSQR.

The idea of a low-memory or inaccurate approximation is not new and has been
tested in different methods and approaches. In Carson and Higham 2018 use the
Iterative refinement process to solve a linear system of equation, using three differ-
ent precision achieving good results and accelerating the solution process. Although
they use a higher precision to perform matrix factorization, their residual are com-
puted in a possible lower precision. In Bergou, Gratton, and Vicente 2016 the idea
of multi-precision approach is used in the Levenberg-Marquardt and gradients are
evaluated using a probabilistic models. Inspired for this work, in Bellavia, Gratton,
and Riccietti 2018 the Levenberg-Marquardt method is used to solve a a nonlinear
least-square problem, assuming that a full precision evaluation is expensive in com-
parison with a low precision evaluation. Those work show that solving a problem
with a lower precision is a suitable approach.

The idea of using quantization as an approximation approach was inspired by the
Sparsification concept and later from the quantization itself. The sparsification pro-
cess generate a sparse matrix from an initial dense matrix using some criteria Achliop-
tas and Mcsherry 2007, while Quantization is a lossy compression method Sayood
2006 where a large set of values, possible an infinite range, is mapped to a discrete
set of values. Quantization, as an important element in our proposal, is a very well
studied field Gray and Neuhoff 1998 and has been used in many areas. One of their
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recent and most popular uses is in deep neural networks, where their long training
times and high memory consumption needed to store their weights makes difficult
to use this methods in small devices such as phones. Aiming to reduce the neural
network size, quantization has been used in neural networks successfully. Their use
is not new Fiesler, Choudry, and Caulfield 1990 but its study and improvement are
still an active research topic Courbariaux, Bengio, and David 2015; P. Wang and
J. Cheng 2017; J. Wu, C. Yu, S. Fu, C. Liu, Chien, and Tsao 2019; Yang, Deng,
S. Wu, T. Yan, Xie, and G. Li 2020.
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Chapter 3

Theoretical background

In this chapter, the general mathematical model of our approach is given. Although
some equations were already defined in chapter 1, we will define again some of them
in this chapter for better readability of the explanation. Also the following notation
will be used for the rest of this thesis: In denotes the n × n identity matrix, ‖·‖
denotes the Euclidean two-norm, 0n denotes a zero vector in Rn and 1n denotes a
vector in Rn whose coefficients are all equal to one.

An over-determined nonlinear system of equation is given by the following prob-
lem,

F(x) = 0, (3.1)

where the (nonlinear) function F : Rn → Rm is defined as,

F(x) =


f1(x)
f2(x)

...
fm(x)

 =


f1(x1, x2, . . . , xn)
f2(x1, x2, . . . , xn)

...
fm(x1, x2, . . . , xn)

 .
As commented in chapter 1, a classical approach for solving (3.1) is by means of
solving an unconstrained minimization problem. Recall that since we are considering
an overdetermined problem, we have that m ≥ n. Let g(x) be the function defined
as,

g(x) =
1

2
‖F(x)‖2 =

1

2

m∑
i=1

f 2
i (x). (3.2)

Then, the minimization problem to be solved is given by the following equation

min
x∈Rn

g(x). (3.3)

It is clear that a solution of (3.1) is also a solution for (3.3), but the converse is not
necessarily true. There are an extensive amount of methods available to solve this
problem, each one with different properties. Some of them were already discussed
in chapter 2. Also mentioned in chapter 2, large-scale problems are difficult to solve
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for all discussed methods. The aim of this thesis is to propose a method capable of
solving large-scale overdetermined nonlinear system of equations, and the purpose
of this chapter is to give the general mathematical description required to introduce
our method. Our proposed method contains several inner components, and some of
them will be described here. Elements that requires a more extensive explanation
and detailed equations will be explained in subsequent chapters.

To begin with the explanation, the method proposed in this thesis will use the
Levenberg-Marquardt method, as a nonlinear solver. As briefly mentioned in chap-
ter 2, the Levenberg-Marquardt method is based on the following iteration

xi+1 = xi + ∆xi, (3.4)

starting from an initial guess x0. This initial guess can be a known estimated solution
or any other vector, although usually choosing carefully an initial guess can improve
the convergence of nonlinear methods. The value of the step ∆xi is computed by
solving the following system of linear equations

(
JT (xi)J(xi) + λiIn

)
∆xi = −JT (xi)F(xi), (3.5)

where J(xi) corresponds to the Jacobian matrix of F, evaluated at xi, and λi > 0
is a regularization parameter or damping factor. In practice, the value of λi is used
to avoid a singular matrix in the linear problem (3.5) and also is used for a trust-
region approach Kelley 1999, to get a globally convergent method. As explained
in chapter 2, the step computed by Levenberg-Marquardt is a descent direction for
g(x) and also the modification of the value of λi is used to speed-up the convergence
of the method when we are close to a solution or ensure the convergence when far
from the solution, using a step closer to a descent gradient approach. In general, the
Levenberg-Marquardt method converge quadratically under a set of assumptions Fan
and Pan 2009. Also mentioned in chapter 2, the damping factor has an important role
in the performance of the method and its an active research topic. The Algorithm 1
describe the general algorithm of the Levenberg-Marquardt.
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Algorithm 1 Algorithm of Levenberg-Marquardt

Require: A function F, the number of equations m, the number of unknowns n, an
initial guess x0, a tolerance η, λ0 > 0.

Ensure: An approximation solution xk for minx∈Rn
1
2
‖F(x)‖2.

1: for i from 0 to ∞ until some convergence criteria do
2: Build J(xi)
3: Solve the linear system

(
JT (xi)J(xi) + λiI

)
∆xi = −JT (xi)F(xi).

4: if The new trial solution xi + ∆xi improves the current solution xi then
5: xi+1 = xi + ∆xi
6: else
7: xi+1 = xi.
8: end if
9: Compute λi+1 from λi depending on the progress of xi+1 from xi.

10: end for
11: Return the current solution xi.

Several method can be used to solve (3.5). Since the matrix is positive-definite,
a Conjugate-Gradient Sauer 2011; Saad 2003 or Cholesky-decomposition Sauer 2011
are reasonable choices. It is important to note that the problem (3.5) are the normal
equations Sauer 2011 for the following regularized linear least-square problem

min
∆xi∈Rn

‖F(xi)− J(xi)∆xi‖2 + λi‖∆xi‖2, (3.6)

which is also equivalent to the following unregularized linear least-square problem

min
∆xi∈Rn

∥∥∥∥[F(xi)
0n

]
−
[
J(xi)√
λiIn

]
∆xi

∥∥∥∥2

. (3.7)

Since (3.5) is equivalent to (3.6) or (3.7), then a linear least-square solver is also a pos-
sible choice to compute the step ∆xi. There are different methods for solving linear
least-square problems and some are suitable for dense or sparse problems. An im-
portant method, related to the Krylov subspace family, is the LSQR algorithm Paige
and M. A. Saunders 1982a. The LSQR method is mathematically equivalent to the
Conjugate Gradient method over the Normal equations of the linear least-square
problem, but more stable and suitable for large sparse problems. An important
property of LSQR, shared with other Krylov subspace methods, is that it does not
require explicitly the matrix of the linear least-square but the product of the matrix
times a vector. In particular, LSQR applied over (3.6) requires two routines:

• A procedure to compute J(xk)v, where v ∈ Rn is an arbitrary vector.

• A procedure to compute JT (xk)w, where w ∈ Rm is an arbitrary vector.

If both procedures are given to LSQR, it is also suitable for large dense problems.
This means that LSQR may solve a least-square problem in a matrix-free way.

However for large-scale problems we have the following issues,
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• If the approximation or computation of an explicit matrix J(xk), whose size is
m×n, does not fit in the available system memory, the problem (3.5) nor (3.6)
can be solved.

• Sparse data structures is an interesting option. Unfortunately, it is not always
possible to know if the Jacobian matrix will be sparse at all iterations.

• The computation of the product of the transpose of the Jacobian matrix times
a vector requires a higher computational cost compared to the Jacobian matrix
times a vector.

The third reason given need a more detailed explanation. The Jacobian-Free
Newton-Krylov (JFNK) method Knoll and Keyes 2004, briefly described in chap-
ter 2, use a finite-difference approach to approximate the product of the Jacobian
matrix and a vector. If LSQR is used to solve (3.6) or (3.7), this finite-difference
approximation can be used to compute the product J(xk)v. Unfortunately, to the
author’s knowledge, a simple expression like (2.2) to compute the product JT (xk)w
at a low computational cost does not exist. There are some Matrix-Free approaches
to compute the transpose of the Jacobian matrix times a vector Sanhueza and Tor-
res 2017, but those demands extremely high computational cost. Therefore, it is
not possible to compute the missing required product, i.e. JT (xk)w, with a low
computational cost.

In this thesis, to solve the inner least-square problem found in the Levenberg-
Marquardt method, a variant of LSQR method is proposed, which we call nsLSQR
(Non-symmetric LSQR). This algorithm will be described in chapter 4. The main
advantage of this method is that can solve the least-square problem (3.6) or (3.7)
using any approximation of the product JT (xk)w, that is, does not require the ex-
act product result. That is, the algorithm may solve a least-square problem even
if the used approximation performs poorly. However, the usage of a good approx-
imation improves greatly the convergence rate of nsLSQR. To propose a complete
functional method, in this thesis we propose the use of Quantization to approximate
the Jacobian matrix at a low memory cost. Such approximation will be used to
approximate the needed product JT (xk)w. The proposed approximation depends of
the number of bits desired to use per element in the approximation matrix, that is
if more bits are used, the quality of the approximation improves. The importance
of the quantized approximated matrix is that an small number of bits may be used
to approximate the Jacobian matrix, reducing considerably the memory required
for its storage. Since using an small number of bits increase the error produced by
the quantized approximation, the resulting vector is an approximation and therefore
cannot be used in LSQR. For this,the usage of nsLSQR is required. This is the
reason why it was designed and proposed.
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Chapter 4

nsLSQR: non-Symmetric LSQR

In this section, the nsLSQR method will be explained in detail. nsLSQR is based in
the LSQR, briefly explained in section 3. The LSQR method requires two routines
to be used: a procedure to compute J(xi)v and a routine to compute JT (xi)w.
As explained in the same section, the former product is easy to compute using a
finite-difference approximation. However, the latter product pose some difficulties
regarding its memory requirement, for large-scale problems. The main contribution
of the nsLSQR is the capability of solving a linear least-square problem requiring
only two procedures:

• A procedure to compute J(xi)v.

• A routine to approximate JT (xi)w.

The first procedure is the same requirement as the LSQR method. However, for
the second requirement, any routine that given a vector w of size m and returns
a vector of size n can be used. This is an important property since a more cheap
approximation can be used and still the problem will be solved. However, using a
poor approximation may slow down the convergence of nsLSQR considerably. See
section 7 for numerical experiments showing this issues. In particular, the nsLSQR
method was proposed to be used in combination with the quantized approximation,
which will be explained in detail in chapter 5. However, it is important to remark
that nsLSQR can handle the linear least-square problem with any approximation.
For this reason, the explanation and development of LSQR and nsLSQR will not be
tied to the quantized approximation in any case.

Before explaining and giving the details about the nsLSQR method, we will
introduce the LSQR method first. The description in this section is connected to
the solution of (3.7). For simplicity, the arguments of the Jacobian matrix J(xi) will
be omitted and will be treated as a matrix J . Also, the vector F(xi) from (3.7) will

be replaced by a vector b to make the notation more general. Also, the vector e
(j)
i

denotes the i-th canonical vector of Rj, that is, a vector of size j whose its coefficients
are all equal to zero except for the i-th coefficient, which is 1.
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4.1 LSQR method

Let us consider the following least-square problem,

min
∆x∈Rn

‖b− J∆x‖2. (4.1)

At the moment, we will not consider the regularization factor, i.e. λ = 0. How to
solve a regularized problem will be explained later in this chapter.

The LSQR Method is an algorithm to mainly solve a sparse linear system of
equations. It is mathematically equivalent to the Conjugate Gradient method for
the Normal equations Paige and M. A. Saunders 1982a of (4.1). Therefore, it is a
Krylov subspace method for the matrix JT J and the right-hand side vector JT b.
LSQR is based on the Bidiagonalization process proposed by Golub and Kahan Golub
and Kahan 1965. The method produces the following two recurrences at the k-th
iteration,

J Vk = Uk+1Bk, (4.2)

JT Uk+1 = Vk+1 B̂k+1, (4.3)

where Bk and B̂k+1 are lower and upper bidiagonal matrices, respectively, Vk ∈
Rn×k and Uk ∈ Rm×k are matrices such that in exact arithmetic V T

k Vk = Ik and
UT
k Uk = Ik holds. The recurrence requires a vector to begin with. For LSQR, the

recurrences (4.2) and (4.3) begin with vectors u1 and v1, defined as follows,

u1 =
b

‖b‖
, (4.4)

v1 =
JTb

‖JTb‖
. (4.5)

Note that the column space of Vk is an orthogonal basis of dimension k for Rn.
Therefore, if we compute an approximate solution for (4.1) restricted to the columns
pace of Vk, then we have that ∆x = Vkck for some ck ∈ Rk. Thus,

b− J ∆x = ‖b‖u1 − J Vk ck,

= ‖b‖Uk+1 e
(k+1)
1 − Uk+1Bk ck,

= Uk+1

(
‖b‖ e

(k+1)
1 −Bk ck

)
.

Therefore, the problem (4.1) is reduced to

min
∆x∈range(Vk)

‖b−J∆x‖2 = min
ck∈Rk

∥∥∥Uk+1

(
‖b‖e(k+1)

1 −Bkck

)∥∥∥2

= min
ck∈Rk

∥∥∥‖b‖e(k+1)
1 −Bkck

∥∥∥2

,

(4.6)
which is a least-square problem whose matrix Bk is of size (k + 1) × k. Note that
the matrix J of (4.1) is of size m × n. Therefore, compute a solution of (4.6)
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requires fewer elemental operations than solving (4.1), specially if k is considerably
smaller than n. The previous process is the mathematical core of LSQR. Using the
recurrences (4.2) and (4.3), which are easy to compute since the matrices Vk and
Uk are bidiagonal, an efficient QR decomposition and the bidiagonal structure of Bk

allows the LSQR method to solve the small least-square problem (4.6) efficiently.
This efficient procedure makes LSQR a powerful method for solving large sparse
linear problems. To compute the recurrences (4.2) and (4.3), the algorithm needs
the routines to compute the action of J and JT over arbitrary vectors Paige and
M. A. Saunders 1982b. If efficient and matrix-free procedures are available, then the
LSQR method is computationally and memory efficient Paige and M. A. Saunders
1982b.

For a regularized least-square problem, i.e. for λ > 0, LSQR use a simple ap-
proach. Note that the following regularized least-square problem

min
∆x∈Rn

‖b− J∆x‖2.+ λ‖x‖2, (4.7)

is equivalent to the following “augmented” non-regularized least-square problem

min
∆x∈Rn

∥∥∥∥[ b
0n

]
−
[

J√
λIn

]∥∥∥∥2

. (4.8)

Thus, LSQR solves (4.7) by means of solving the unregularized problem (4.8). Us-
ing this approach, the algorithm does not need modifications to handle regularized
problems.

4.2 Modification of LSQR: nsLSQR

Let us suppose that we have an approximation of J , denoted as J̃ , which is a
constrained-memory approximation of J . A constrained-memory approximation re-
stricts the amount of memory available for the storage of J . In particular, consider
that the constrained-memory approximation J̃ may range from a coarse approxi-
mation to a very accurate one. Recall that the Jacobian matrix in (4.1) is not
explicitly available; only the function F(x), which can be evaluated at any point.
Usually, the function F is nonlinear but also linear instances are possible if defined
as F(x) = b− Ax, for a matrix A ∈ Rm×n. Under this assumptions, we have that

• The product J v can be approximated using a finite-difference approximation.
This is possible since we have the function F.

• Since we have the approximation J̃ , we may approximate JT w as J̃T w.

Now, due to the approximations used, we need to modify the identities presented
in equations (4.2) and (4.3) since the Bidiagonalization Process proposed by Golub
and Kahan Golub and Kahan 1965 will no longer be valid. The reason for this is
that it depends on the transpose of the matrix of the least-square problem. Under
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our suppositions, the transpose of the Jacobian matrix is not available but just the
approximation J̃ , whose accuracy is unknown. This means that unlike Bk and B̂k+1,
the matrices obtained will no longer be bidiagonal.

Note that in LSQR the identities (4.2) and (4.3) are used to obtain uk+1 and vk+1,
respectively. Moreover, the matrix Vk obtained defines the subspace from where the
solution of the least square is computed. Therefore, a non-accurate or approximate
computation of (4.3) modifies space generated by the range of the matrix Vk. This
implies that the new computed vector vk+1 will be different from the computed in
LSQR and the resulting algorithm will no longer produce the same Krylov subspace
as LSQR. However, as long as the matrix Vk has linearly independent column vectors,
it is a valid subspace or basis for the purpose of solving a reduced least-square
problem. This is the key idea for our proposed extension.

For solving (4.1) with nsLSQR, we first compute the equivalent vectors of (4.4)
and (4.5) as follows,

ũ1 =
b

‖b‖
,

ṽ1 =
J̃Tb

‖J̃Tb‖
.

Although ũ1 = u1, the following vectors ũk are not necessarily equal to uk due to
the usage of J̃ . The k-the column of the identity (4.2) is computed as follows,

J ṽk = β1,kũ1 + β2,kũ2 + · · ·+ βk+1,kũk+1, (4.9)

where the product J ṽk is computed using (2.2) or a similar scheme. Note that the
product J ṽk may be computed using J̃ , but we use a finite difference approximation
that, in general, may be more accurate and in exact arithmetic, the value of the
stepsize can be small enough to achieve a required accuracy. This expansion will
provide us ũk+1. Our implementation use the modified Gram-Schmidt orthogonal-
ization Sauer 2011. Equation (4.9) will produce the following recurrence,

J Ṽk = Ũk+1 B̃k, (4.10)

where B̃k is no longer a bidiagonal matrix but a Hessenberg matrix of size (k+1)×k.
Also Ṽk 6= Vk. The (k+1)-th column of the analogous decomposition of equation (4.3)
will be computed as,

JT ũk+1 ≈ J̃T ũk+1 = α1,k+1ṽ1 + α2,k+1ṽ2 + · · ·+ αk+1,k+1ṽk+1, (4.11)

and will produce the following recurrence J̃T Ũk+1 = Ṽk+1Bk+1, where Bk+1 will be
a upper triangular (k + 1) × (k + 1) matrix. Note that Ũk 6= Uk. This second
expansion provides ṽk+1, which is also obtained using the modified Gram-Schmidt
orthogonalization, in our implementation. Thus, as long as αk+1,k+1 6= 0, we will be
able to obtain a new vector ṽk+1 for each inner iteration.
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Now, for each iteration k, we will restrict the subspace to the columns space of
Ṽk, which means ∆̃xk = Ṽk c̃k. Therefore, we have,

b− J ∆̃xk = ‖b‖ũ1 − J Ṽk c̃k,

= ‖b‖ Ũk+1 e
(k+1)
1 − Ũk+1 B̃k c̃k,

= Ũk+1

(
‖b‖ e

(k+1)
1 − B̃k c̃k

)
.

Thus, equation (4.1) is reduced to the following least-square problem,

min
∆̃xk∈range(Ṽk)

‖b− J ∆̃xk‖2 = min
c̃k∈Rk

∥∥∥Ũk+1

(
‖b‖e(k+1)

1 − B̃kc̃k

)∥∥∥2

,

= min
c̃k∈Rk

∥∥∥‖b‖ e
(k+1)
1 − B̃k c̃k

∥∥∥2

, (4.12)

which, like in equation (4.6), is also a smaller least-square problem with respect
to (4.1). Equation (4.12) allows us to obtain the approximated solution ∆̃xk = Ṽkc̃k.
Note that the difference between B̃k−1 and the following matrix B̃k is a new column
at the end of the matrix and k − 1 zeroes for the first k − 1 coefficients of the last
row. This small variation from the iteration k− 1 to k is used in other methods, like
GMRes Saad 2003, to perform an efficient QR decomposition. Our implementation
also use these fact to solve (4.12) faster. Although GMRes usually uses a plane
rotation, our implementation uses a Modified Gram-Schmidt procedure for simplicity.
For a regularized least-square problem, we propose to use the same idea used by
LSQR, i.e. solve (4.8).

Finally but of no lesser importance, we note that nsLSQR requires the storage
of the dense matrices Ṽk, Ũk and B̃k, whose memory requirements increase at each
iteration. Since the dimension of Ṽk, Ũk and B̃k depends on the number of iterations
k, more iteration increase its size and thus, the memory required for its storage. A
restart strategy Saad 2003; Fong and M. Saunders 2011 is a common approach in
Krylov-subspace methods to avoid the increase of memory produced at each iteration.
Giving two parameters tin and tout, the method iterates as usual until tin iterations
has been performed. Then, the current computed solution is used as a initial guess
and the method is executed from the beginning, dropping the current matrices Ṽk,
Ũk and B̃k. This procedure is repeated tout times. Using this approach, the larger
matrix stored in the method has size of m× tin. If tin < n, then the method will use
less memory compared to a non-restarted execution.

One question that may arise is the benefits of using nsLSQR instead of a direct
QR decomposition over the linear least-square problem, considering that nsLSQR
also have dense matrices that need to be stored. The answer to this is that, for
QR, a dense m × n matrix need to be computed. This is forbidden for large scale
problems. In contrast, although nsLSQR requires dense matrices, its memory usage
increase over each iteration. Also, nsLSQR computes an approximated solution at
each iteration and restart. Depending on the problems, the solution can be found
early in the iteration process, saving computations and memory.
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Algorithm 2 shows an outline of the algorithm described. Since a regularized
least-square is solved using a bigger unregularized problem, the Algorithm 2 does
not consider a value λ. Although the presented algorithm is general, it gives a general
idea of the structure of the algorithm. For now, the Algorithm 2 does not consider
the case of a breakdown, i.e. that αk+1,k+1 = 0 and βk+1,k = 0. More details will be
given later in this chapter.

Algorithm 2 General nsLSQR algorithm.

Require: A function F, a vector xi to evaluate the Jacobian matrix, a stepsize ε > 0
to be used in the finite-difference approximation, an approximation matrix J̃ , a
vector b, a tolerance η, a number of iterations tinner and touter to control the
restarts, an initial guess x0 which usually is set to be the zero vector

Ensure: An approximated solution ∆x.
1: for i from 1 to touter do
2: r := b− Jx0 using a finite-difference approximation.
3: ũ1 := r

‖r‖

4: ṽ1 := J̃T r
‖J̃T r‖

5: for k from 1 to tinner do
6: Compute ũk+1 from (4.9) using a modified Gram-Schmidt procedure.
7: Compute ṽk+1 from (4.11) using a modified Gram-Schmidt procedure.

8: Solve the least-square problem minc̃k∈Rk

∥∥∥‖r‖ e
(k+1)
1 − B̃k c̃k

∥∥∥2

, for c̃k.

9: ∆xk := Ṽk c̃k.
10: if The solution ∆xk fulfill a convergence criteria using the tolerance η then
11: Returns ∆xk.
12: end if
13: end for
14: x0 := x0 + ∆x
15: end for
16: Returns ∆xk.

4.3 Relation of nsLSQR and GMRes

There is an important relation between nsLSQR and GMRes, which is not evident
only with the development made in section 4.2. This relation can be obtained by
the use of equations (4.10) and (4.11). Remark that the identity (4.11) is given by,

J̃T Ũk+1 = Ṽk+1Bk+1. (4.13)

If we multiply (4.10) by J̃T , and then use the identity provided by (4.11), we obtain,

J̃TJṼk = J̃T Ũk+1 B̃k = Ṽk+1Bk+1 B̃k. (4.14)

Since Bk+1 is an upper Hessenberg matrix and B̃k is upper triangular, the product
Bk+1 B̃k results in an upper Hessenberg matrix. This is indeed the partial Hessenberg
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decomposition for the matrix J̃T J . Moreover, it will be the same decomposition we
will obtain if we solve the following linear system of equations using GMRes Saad
2003,

J̃TJ∆x = J̃Tb, (4.15)

where the orthonormalized Krylov subspace will be Ṽk and the partial Hessenberg
matrix will be Hk = Bk+1B̃k. Note that 4.15 is similar to the normal equations
of (4.1) but instead of using the matrix J we are using its approximation J̃ . This
shows that nsLSQR, at the k-th iteration, is solving (4.1) restricted to the k-th
Krylov subspace generated by J̃T J , which is,

Kk =

{
J̃T b, J̃TJ J̃T b, . . . ,

(
J̃TJ

)k−1

J̃T b

}
.

This shows that better approximations of J̃ will make nsLSQR to use a Krylov
subspace closer to the one generated by JT J , improving its convergence.

4.4 Breakdown in nsLSQR

Considering the equivalence between nsLSQR and GMRes, described in section 4.3,
we have at least two possible cases where the iteration in nsLSQR can breakdown.
These are

(i) When the solution of the linear system (4.15) is found, but it may not nec-
essarily be equal to the solution that minimizes (4.1) since the linear system
solved is not the normal equation of the least-square problem.

(ii) When the matrix J̃TJ is singular.

A breakdown also occurs if βk+1,k = 0. However, in this case, it means that the
solution of the least-square has been found, when the least-square is a zero residual
problem. For this reason, is not considered in the previous points. So if a breakdown
is found, we cannot compute either of the following vectors ṽk+1, and therefore,
the iterations cannot continue. This means that the coefficient αk+1,k+1 from equa-
tion (4.11) is zero. However, note that this breakdown is not related to the problem
itself but the method used to solve the equation. To continue the process to compute
an approximated solution, the method needs to extend the basis using a new linearly
independent vector. For simplicity, our implementation use a random orthogonalized
vector.

Also, note that the use of the regularizer λ > 0 modifies equation (4.15) as follows,(
J̃TJ + λ I

)
∆x = J̃Tb, (4.16)

which is the equivalent version of the approximated normal equations. For the second
breakdown case, a simple and effective way to handle the possible singularity of
J̃TJ + λ I is to modify λ. This will shift the eigenvalues of the matrix. Also, recall
that when the exact value of JT is used, the non-singularity is ensured just by adding
λ > 0 since JTJ will be symmetric and positive definite.
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4.5 Convergence and Least-Square Residual Anal-

ysis of nsLSQR

In section 4.2, the general outline of nsLSQR method was presented. The differences
between nsLSQR and LSQR were outlined, and the main mathematical equations
and procedures were described. However, an important desired property for any
numerical solver is the capability of ensuring convergence. This section describe
the convergence properties of nsLSQR. In this section we perform two theoretical
analyses. Firstly, we provide a convergence analysis for the least-square residual
obtained by nsLSQR; and secondly, we show that the least-square residual obtained
by nsLSQR is lower or equal compared ton the one obtained by GMRes when is used
to solve the equation (4.15). This imply that even if the approximation matrix J̃ is
accurate enough to make the linear system (4.15) a reasonable approximation of the
normal equations, using nsLSQR converge faster than using GMRes.

Before we begin with the analysis, we need to build an explicit representation of
the solution obtained by nsLSQR. Recall that nsLSQR minimizes the least square
residual shown in equation (4.12). For completeness, we repeat here a simplified
version,

min
∆̃xk=Ṽk c̃k

‖b− J ∆̃xk‖2 = min
c̃k∈Rk

∥∥∥‖b‖ e1 − B̃k c̃k

∥∥∥2

.

To solve this smaller least-square problem, we consider its reduced QR decomposition
of the matrix,

B̃k = Q̂k R̂k,

where Q̂k ∈ R(k+1)×k and R̂k ∈ Rk×k. For simplicity, in this section we will omit the
super-index (k+ 1) for the canonical vector e1. Now, we can obtain the least-square

solution, which will be denoted by c̃
(1)
k , using the normal equations as follows,

B̃T
k B̃kc̃

(1)
k = ‖b‖B̃T

k e1,

R̂T
k Q̂

T
k Q̂kR̂kc̃

(1)
k = ‖b‖R̂T

k Q̂
T
k e1.

If Rk is non-singular, which is the case for a regularized problem, then
(
R−1
k

)T
=(

RT
k

)−1
exist and considering that Q̂T

k Q̂k = I, then

R̂T
k Q̂

T
k Q̂kR̂kc̃

(1)
k = ‖b‖R̂T

k Q̂
T
k e1,

R̂kc̃
(1)
k = ‖b‖R̂T

k Q̂
T
k e1,

c̃
(1)
k = ‖b‖R̂−1

k Q̂T
k e1. (4.17)

Here, the super-index “(1)” denotes the solution found by nsLSQR. Later, in the
analysis, the super-index “(2)” in the solution will denote the solution obtained by
GMRes. This preliminary result gives us the necessary components to continue the
analysis.
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4.5.1 nsLSQR decreases monotonically the least-square resid-
ual

The analysis of the least-square residual can be obtained by direct computation of
it. In particular, we evaluate the least-square residual at the least-square solution
obtained in equation (4.17). We first take into account equation (4.10), which shows
J Ṽk = Ũk+1 B̃k, and then, we re-arrange the terms conveniently as follows,∥∥∥‖b‖ e1 − B̃k c̃k

∥∥∥2

=
∥∥∥‖b‖ e1 − Q̂k R̂kc̃

(1)
k

∥∥∥2

,

=
∥∥∥‖b‖ e1 − Q̂k R̂k

(
‖b‖ R̂−1

k Q̂T
k e1

)∥∥∥2

,

=
∥∥∥‖b‖ e1 − ‖b‖ Q̂k R̂k R̂

−1
k Q̂T

k e1

∥∥∥2

,

= ‖b‖2
∥∥∥e1 − Q̂kQ̂

T
k e1

∥∥∥2

.

Note that Q̂k is of size (k + 1) × k, thus Q̂k Q̂
T
k 6= Ik+1. However, we could obtain

the norm-2 by computing the inner product,∥∥∥e1 − Q̂kQ̂
T
k e1

∥∥∥2

= 〈e1 − Q̂kQ̂
T
k e1, e1 − Q̂kQ̂

T
k e1〉,

=
(
e1 − Q̂kQ̂

T
k ei

)T (
e1 − Q̂kQ̂

T
k e1

)
,

=
(
eT1 − eT1 Q̂kQ̂

T
k

)(
e1 − Q̂kQ̂

T
k e1

)
,

= ‖e1‖2 − 2eT1 Q̂kQ̂
T
k e1 + eT1 Q̂kQ̂

T
k Q̂kQ̂

T
k e1,

= 1− 2
∥∥∥Q̂T

k e1

∥∥∥2

+ eT1 Q̂kQ̂
T
k e1,

= 1− 2
∥∥∥Q̂T

k e1

∥∥∥2

+
∥∥∥Q̂T

k e1

∥∥∥2

,

= 1−
∥∥∥Q̂T

k e1

∥∥∥2

≥ 0.

Therefore, the residual of nsLSQR is given by,∥∥∥b− JṼkc̃(1)
k

∥∥∥2

= ‖b‖2
∥∥∥e1 − Q̂kQ̂

T
k e1

∥∥∥2

= ‖b‖2

(
1−

∥∥∥Q̂T
k e1

∥∥∥2
)
. (4.18)

Note that the vector Q̂T
k e1 equals the first row of Q̂k. This row has a new coefficient

from the iteration k to k + 1. So, we have that
∥∥∥Q̂T

k e1

∥∥∥2

≤
∥∥∥Q̂T

k+1e1

∥∥∥2

. Thus,

‖b‖2

(
1−

∥∥∥Q̂T
k+1e1

∥∥∥2
)
≤ ‖b‖2

(
1−

∥∥∥Q̂T
k e1

∥∥∥2
)
,

and so, ∥∥∥b− JṼk+1c̃
(1)
k+1

∥∥∥2

≤
∥∥∥b− JṼkc̃(1)

k

∥∥∥2

.
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Therefore, the residual of nsLSQR decreases monotonically up to the n-th iteration.
This means,

∥∥b− JVnc̃(1)
n

∥∥2 ≤
∥∥∥b− JṼkc̃(1)

k

∥∥∥2

, ∀ k ≤ n.

Notice that this lower bound for the residual is expected since it is a least-square
problem, but the key result is that the least-square residual decreases monotonically.
This is also valid for a regularized least-square problem, since it handled as a bigger
unregularized least-square.

4.5.2 Comparison of least-square residuals between nsLSQR
and GMRes

To perform the comparison between the least-square residual obtained by nsLSQR
and GMRes, we will follow a similar approach as the analysis performed before.
However, the algebraic manipulation will be different. Initially, we will compute the
least-square residual obtained at iteration k by nsLSQR. This will be denoted as
Case 1. Later, we will compute the least-square residual for GMRes. This will be
denoted as Case 2. In this analysis, we will use the reduced QR decomposition of the
matrix B̃k and its full QR decomposition. This means we use the following identity:

B̃k = Qk Rk =
[
Q̂k |qk+1

] [
R̂k

0

]
,

where Qk ∈ R(k+1)×(k+1) and Rk ∈ R(k+1)×k.

4.5.3 Case 1

For this first case, we again evaluate directly the least-square residual considering
the solution obtained by nsLSQR shown in equation (4.17), i.e.

c̃
(1)
k = R̂−1

k Q̂T
k ‖b‖ e1.
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Thus, the computation is as follows,∥∥∥b− J∆̃x(1)
∥∥∥2

=
∥∥∥‖b‖e1 − B̃k c̃

(1)
k

∥∥∥2

,

=
∥∥∥‖b‖e1 − B̃k R̂

−1
k Q̂T

k ‖b‖ e1

∥∥∥2

,

=
∥∥∥‖b‖e1 −Qk Rk R̂

−1
k Q̂T

k ‖b‖ e1

∥∥∥2

,

=

∥∥∥∥‖b‖e1 −Qk

[
R̂k

0

]
R̂−1
k Q̂T

k ‖b‖ e1

∥∥∥∥2

,

=

∥∥∥∥‖b‖e1 −Qk

[
R̂kR̂

−1
k Q̂T

k ‖b‖ e1

0

] ∥∥∥∥2

,

=

∥∥∥∥‖b‖e1 −Qk

[
Q̂T
k ‖b‖ e1

0

] ∥∥∥∥2

,

=

∥∥∥∥Qk

(
QT
k ‖b‖e1 −

[
Q̂T
k ‖b‖ e1

0

])∥∥∥∥2

,

=

∥∥∥∥Qk

([
Q̂T
k

qTk+1

]
‖b‖e1 −

[
Q̂T
k ‖b‖ e1

0

])∥∥∥∥2

,

=

∥∥∥∥[ Q̂T
k ‖b‖e1

qTk+1‖b‖e1

]
−
[
Q̂T
k ‖b‖ e1

0

] ∥∥∥∥2

,

=

∥∥∥∥[Q̂T
k (‖b‖ − ‖b‖) e1

qTk+1‖b‖e1

]∥∥∥∥2

,

= ‖b‖2 (qTk+1e1)2. (4.19)

Therefore, the least-square residual obtained by nsLSQR can also be represented as∥∥∥b− J∆̃x(1)
∥∥∥2

= ‖b‖2 (qTk+1e1)2.

4.5.4 Case 2

For this case, we need to obtain first the solution computed by GMRes for equa-
tion (4.15), at each iteration k. Fortunately, we have the partial Hessenberg decom-
position of J̃T J , which is shown in equation (4.14). In particular, we observe that
at the k-th iteration, GMRes minimizes the following residual:∥∥∥J̃Tb− J̃TJ∆̃x(2)

∥∥∥2

,

and, since we can represent ∆̃xk = Ṽk c̃
(2)
k , where c̃

(2)
k are the coefficients obtained

by GMRes, we have the following equivalent residual,

∥∥∥J̃Tb− J̃TJ∆̃x(2)
∥∥∥2

=

∥∥∥∥∥∥
∥∥∥J̃Tb

∥∥∥ e1 −Bk+1 B̃k︸ ︷︷ ︸
Hk

c̃
(2)
k

∥∥∥∥∥∥
2

,
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where we use the partial Hessenberg decomposition J̃TJṼk = J̃T Ũk+1 B̃k = Ṽk+1 Bk+1 B̃k.

The value of c̃
(2)
k , computed as the least-square solution, is given by,

c̃
(2)
k =

∥∥∥J̃Tb
∥∥∥(Bk+1 B̃k

)†
e1,

where the matrix
(
Bk+1 B̃k

)†
denotes the Moore-Penrose pseudo-inverse of Bk+1 B̃k.

Considering that c̃
(2)
k is the k-th solution found by GMRes and recalling the full QR

Decomposition of B̃k, then we have the following expression for the residual (4.1),

∥∥∥b− J∆̃x(2)
∥∥∥2

=
∥∥∥b− JṼk c̃

(2)
k

∥∥∥2

,

=
∥∥∥b− Ũk+1 B̃k c̃

(2)
k

∥∥∥2

,

=
∥∥∥‖b‖e1 − B̃k c̃

(2)
k

∥∥∥2

,

=
∥∥∥‖b‖e1 −QkRk c̃

(2)
k

∥∥∥2

,

=

∥∥∥∥‖b‖QQTe1 −Qk

[
R̂k

0T

]
c̃

(2)
k

∥∥∥∥2

,

=

∥∥∥∥Q(‖b‖QTe1 −
[
R̂kc̃

(2)
k

0

])∥∥∥∥2

,

=

∥∥∥∥‖b‖ [ Q̂T
k

qTk+1

]
e1 −

[
R̂kc̃

(2)
k

0

]∥∥∥∥2

,

=

∥∥∥∥‖b‖ [ Q̂T
k e1

qTk+1e1

]
−
[
R̂kc̃

(2)
k

0

]∥∥∥∥2

,

=

∥∥∥∥[‖b‖Q̂T
k e1 − R̂kc̃

(2)
k

‖b‖qTk+1e1

]∥∥∥∥2

,

= ‖b‖2
(
qTk+1e1

)2
+
∥∥∥‖b‖Q̂T

k e1 − R̂kc̃
(2)
k

∥∥∥2

,

= ‖b‖2
(
qTk+1e1

)2
+

∥∥∥∥‖b‖Q̂T
k e1 −

∥∥∥J̃Tb
∥∥∥ R̂k

(
Bk+1 B̃k

)†
e1

∥∥∥∥2

.

Therefore, the least-square residual obtained by GMRes is

∥∥∥b− J∆̃x(2)
∥∥∥2

= ‖b‖2
(
qTk+1e1

)2
+

∥∥∥∥‖b‖Q̂T
k e1 −

∥∥∥J̃Tb
∥∥∥ R̂k

(
Bk+1 B̃k

)†
e1

∥∥∥∥2

.

(4.20)
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4.5.5 Direct comparison of the least-square residual obtained
by nsLSQR and GMRes

Equations (4.19) and (4.20) show the explicit least-square residual for nsLSQR and
GMRes. In particular, we obtain the following quotient,∥∥∥b− J∆̃x

(2)
k

∥∥∥2

∥∥∥b− J∆̃x
(1)
k

∥∥∥2 =
‖b‖2

(
qTk+1e1

)2
+
∥∥∥‖b‖Q̂T

k e1 − R̂kc̃
(2)
k

∥∥∥2

‖b‖2
(
qTk+1e1

)2

= 1 +

∥∥∥‖b‖Q̂T
k e1 − R̂kc̃

(2)
k

∥∥∥2

‖b‖2
(
qTk+1e1

)2

= 1 + ρk

≥ 1

Re-arranging, we obtain,∥∥∥b− J∆̃x
(2)
k

∥∥∥2

= (ρk + 1)
∥∥∥b− J∆̃x

(1)
k

∥∥∥2

.

Therefore, we can conclude that the residual obtained by nsLSQR is less than or
equal to the residual computed by GMRes.

4.6 Implementation notes in nsLSQR

From Algorithm 2, it can be seen that nsLSQR does not have special procedures or
routines that requires an special implementation. Having “external” procedures to
compute an approximation for J(xi)v and JT (xi)w are the main requirements of
nsLSQR. However, two important topics need to be described here for completeness:

• How to efficiently solve the inner least-square problem found in nsLSQR, i.e.
how to efficiently perform the line 8 of Algorithm 2.

• What are the stopping criteria used in nsLSQR.

4.6.1 Efficient solution for the inner least-square problem

Line 8 of Algorithm 2 requires the solution of a k+1×k linear least-square problem,
given by (4.12). If we compute the QR decomposition Sauer 2011 of B̃k = QkRk

with Qk of size k+ 1× k and Rk of size k× k, we have that the solution of the least
square problem is given by the solution of the following linear system of equation:

Rk c̃k = ‖b‖QT
k e1,

as shown in (4.17). Since Rk is an upper triangular matrix, its solution can be
computed efficiently using a backward substitution approach Sauer 2011. Note also
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that the product QT
k e1 is the first row of Qk, so the matrix-vector product does not

need to be computed.

To obtain an efficient QR decomposition for the current matrix B̃k, let suppose
that we have the QR decomposition for the previous matrix, i.e. B̃k−1 = Qk−1Rk−1.
From (4.9) and the equality JṼk = Ũk+1B̃k we find that the structure of the matrix
B̃k is the following:

B̃k =

[
B̃k−1

0Tk−1

bk

]
,

where

bk =


β1,k

β2,k
...

βk,k
βk+1,k

 ∈ Rk+1,

where the coefficients βi,k are obtained from (4.9). That is, the submatrix from the
first to the k-th row and from the first to the k− 1-th column of B̃k is B̃k−1 and the
last row from the first to the k−1-th column are zero. Therefore, the new part from
B̃k−1 to B̃k is the last column of B̃k, i.e. bk. Therefore, the QR decomposition of
B̃k has the following structure

B̃k =

[
B̃k−1

0Tk−1

bk

]
=

[
Qk−1Rk−1

0Tk−1

bk

]
=

[
Qk−1

0Tk−1

qk

] [
Rk−1

0Tk−1

rk

]
.

Hence we only need to compute rk and qk, that is, the new column of Qk and
Rk. Note that the first k − 1 columns of Qk are the matrix Qk−1 and a rows of
zeroes, while the first k− 1 columns of Rk are the matrix Rk−1 and a rows of zeroes.
For simplicity, our implementation use the modified Gram-Schmidt method but in
general any orthogonalization method can be used. Let ri,k be the i-th coefficient of
rk. Then rk and qk are found by

bk =
k∑
i=1

ri,kqi,

where qi, for i ∈ {1, 2, . . . , k− 1} is the vector composed by the i-th column of Qk−1

and a zero as the last coefficient.

This approach requires the previous QR decomposition. This decomposition for
the first matrix, B̃1 is easy to compute, since

B̃1 =

[
β1,1

β2,1

]
,
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therefore, its QR decomposition is given by

Q1 =

 β1,1√
β2
1,1+β2

2,1
β2,1√

β2
1,1+β2

2,1

 ,
R1 =

[√
β2

1,1 + β2
2,1

]
.

The Algorithm 3 shows how to compute the new QR decomposition, given the
previous one and the new column of B̃k, i.e. bk. The notation A[a : b, c : d] denotes
the submatrix of A from the row a to the row b and from the column c to the column
d. This notation is introduced to denote slicing over matrices easily.

Algorithm 3 Compute the new QR decomposition

Require: The new column bk of B̃k, the previous QR decomposition Qk−1 and
Rk−1, the current iteration k.

Ensure: The new QR decomposition Qk and Rk.
1: Build a matrix Qk of size k + 1× k with all its coefficients equal to zero.
2: Build a matrix Rk of size k × k with all its coefficients equal to zero.
3: Qk[1 : k , 1 : k − 1] := Qk−1.
4: Rk[1 : k − 1 , 1 : k − 1] := Rk−1.
5: y := bk.
6: for i from 1 to k − 1 do
7: ri,k := 〈y,qi〉, where qi denotes the i-th column of Qk.
8: y := y − ri,kqi.
9: end for

10: rk,k := ‖y‖.
11: qk = y

rk,k
.

12: Return Qk and Rk.

Now that the update of the QR decomposition is available, the Algorithm 4
shows how to solve the inner least-square (4.12). It requires, as input, the QR
decomposition of B̃k−1, the vector bk and the scalar ‖b‖. It returns the solution c̃k.

Algorithm 4 Algorithm for efficient solution of inner least-square in nsLSQR.

Require: The new column bk of B̃k, the previous QR decomposition Qk−1 and
Rk−1, the scalar ‖b‖ and the current iteration k.

Ensure: The new QR decomposition Qk and Rk, and the solution c̃k.
1: Use Algorithm 3 to compute Qk and Rk from bk, Qk−1, Rk−1 and the current

iteration k.
2: Obtain the first row of Qk, denoted as q.
3: Solve Rk c̃k = ‖b‖q using backward substitution.
4: Return Qk, Rk and c̃k.
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4.6.2 Stopping criteria of nsLSQR

For general linear least-square problem, the stopping criteria are usually the same and
well-know. When solving (4.1), an intuitive option will be to measure the following
residual

‖rk‖ = ‖b− J∆xk‖2,

at every iteration of the least-square solver, where ∆xk correspond to the k-th solu-
tion found in the algorithm. However, note that the solution of (4.1) does not need
to be zero at the minimum. The value of the residual at the optimum value is com-
pletely problem-dependent. In exact arithmetic, we know that the problem (4.1) is
equivalent to its normal equations, which is a linear system of equations. Therefore,
the residual ∥∥r̃k‖ = ‖JT (b− J∆xk)

∥∥ , (4.21)

is zero at its solution. The residual given by (4.21) is the standard stopping crite-
ria for least-square problems, although usually is not computed directly but using
alternative and more stable expressions.

Unfortunately, in nsLSQR such residual cannot be computed easily. Note that
in nsLSQR we do not use JT but an approximation procedure or matrix, denoted
as J̃ . However, the precision of the approximation is not previously known so the
computation of r̃k is not feasible since replacing JT by the approximation does not
guarantee that the computed residual is close to the original residual. A matrix-free
method can be used, but its high computational cost also makes this alternative
unfeasible since the residual is computed at each iteration. A different stopping
criteria must be used in nsLSQR to be computationally feasible.

The following stopping criteria are used in our implementation of nsLSQR:

• Although we do know that the residual ‖b−J∆xk‖2 does not need to be zero,
we use it as an stopping criteria. This is mostly when we are solving a problem
that is actually zero-residual or when the user know the actual optimal residual
or a close value. For this criteria, a tolerance ηt is required.

• A second stopping criteria is when the computed solution, ∆xk, does not vary
significantly from iteration to iteration. That is, given a tolerance ηr and an
integer r > 0, we test the following expression,

‖∆xk −∆xk−1‖
‖∆xk‖

< ηr,

at each iteration. If the inequality holds for r continuously iterations, nsLSQR
stops and returns the current computed solution.

• When the computed solution is close to the actual solution, the progress from
iteration to iteration is reduced significantly. This can be seen as a saturation
or stagnation of the residual. Then, the last stopping criteria used in our
implementation is to stop the method when the saturation has been achieved.
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To measure this saturation, we require two parameters: a tolerance ηs and an
integer s > 0. The method compute a linear regression of the last s residuals
‖b − J∆xi‖2, for i ∈ {k − s, k − s + 1, . . . , k − 1, k}. Then, the slope of this
linear regression is compared against the tolerance ηs. If the slope is less than
the tolerance, then the method stop and returns the current solution.

4.6.3 Final algorithm of nsLSQR

For completeness, the Algorithm 5 is presented. This algorithm contains all the key
elements described in this chapter, included the implementation details and also the
stopping criteria. It is mainly based on the Algorithm 2 but with the implementation
details described.

Algorithm 5 nsLSQR algorithm

Require: A function F, a vector xi to evaluate the Jacobian matrix, a stepsize ε > 0
to be used in the finite-difference approximation, an approximation matrix J̃ , a
vector b, tolerance ηt, ηr and ηs, integers r and s, a number of iterations tin and
tout to control the inner and outer restarts, an initial guess x0 which usually is
set to be the zero vector

Ensure: An approximated solution ∆x.
1: for i from 1 to tout do
2: r := b− Jx0 using a finite-difference approximation.
3: ũ1 := r

‖r‖

4: ṽ1 := J̃T r
‖J̃T r‖

5: for k from 1 to tin do
6: Compute ũk+1 and bk from (4.9) using a modified Gram-Schmidt.
7: Compute ṽk+1 from (4.11) using a modified Gram-Schmidt.
8: if k is 1 then
9: Build the initial QR decomposition, Q1 and R1

10: Compute c̃1 = ‖b‖R−1
1 QT

1 e
(2)
1 by direct computation.

11: else
12: Solve the inner least-square using the Algorithm 4 with input bk, Qk−1,

Rk−1, the scalar ‖b‖ and the current iteration k. The vector c̃k is obtained.
13: end if
14: ∆xk := Ṽk c̃k.
15: if Some of the stopping criteria is meet for ηt, ηr and r, or ηs and s then
16: Returns ∆xk.
17: end if
18: end for
19: x0 := x0 + ∆x
20: end for
21: Returns ∆xk.
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4.7 Memory usage and complexity of nsLSQR

The proposed nsLSQR method was already described and its main algorithm was
presented in previous section. The missing description is the total memory required
by nsLSQR and its computational complexity.

4.7.1 Memory usage

The nsLSQR method, in contrast with LSQR, requires some dense matrices to be
stored. In LSQR, due to the bidiagonal property over its matrices, the storage is
very low. Since in nsLSQR the bidiagonal property is loss, the matrices are dense.
To have control over the memory usage of nsLSQR, two parameters were introduced
in the nsLSQR algorithms: tout and tin. The tin parameter controls how far the
basis produced by Ṽk will be extended. Once tin iterations has been executed, the
computed matrices are discarded. This process is repeated tout times. This process is
called restarting and is a classical approach to avoid an excessive usage of memory of
some Krylov subspace methods Saad 2003. When tout = 1 and tin = n, a full iteration
is performed and the solution is guarantee to be obtained, in exact arithmetic. The
reason of this is that Ṽn is a basis for Rn and the solution must reside in that space.
However, this configuration is unfeasible for large-scale problem since the matrix Ũn
is of size m × n, which is the same dimension for a full Jacobian matrix and under
our assumptions, that storage is prohibited. For this reason, a different configuration
is required for large-scale problems. However, convergence is not ensured.

In either case, for general values of tout and tin, and considering only the larger
structures in nsLSQR, the memory requirements are mainly based on the following
components:

• The matrix Ũ which is of size m× tin. Since the inner iteration is at most tin,
then a bigger matrix Ũ is not required.

• The matrix Ṽ of size n× tin.

• The matrix B̃ of size tin + 1× tin.

• The matrices for the QR decomposition. The matrix Q is of size tin + 1 × tin
while the matrix R is of size tin × tin.

• The storage of the approximation matrix. Let denote the memory usage of
the approximation matrix as ξmn, where ξ < 1 represent the compression or
reduction in the memory usage, with respect to a full Jacobian matrix.

Note that the memory requirements for B̃, Q and R is given by,

(tin + 1)tin + (tin + 1)tin + t2in = 3t2in + 2tin.
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Then, considering all the previous matrices, the complexity for memory usage in
nsLSQR is given by

O(mtin + ntin + 3t2in + 2t2in + ξmn).

When solving a large-scale problem and the nsLSQR method is going to be used,
these parameters and configuration must be selected carefully to have enough mem-
ory for all the components.

4.7.2 Computational complexity

To compute the complexity of nsLSQR, let f be the number of elemental operations
required to evaluate F. To make the expression more general, let suppose that h is
the number of elemental operations required to perform the product J̃Tw. Then, we
have the following items to consider for the computational complexity:

• The computation of J∆x.

• The computation of ũ1.

• The computation of ṽ1.

• The usage of the modified Gram-Schmidt to compute ũk+1 and ṽk+1.

• The solution of the reduced inner least-square problem.

• Compute the current solution ∆xk = Ṽk c̃k.

• The update of the solution for the next restart.

The computation of J∆x is done using a second-order finite-difference approxi-
mation,

J∆x ≈ F(xi + ε∆x)− F(xi − ε∆x)

2ε
.

This requires 2(m+n+f)+3 elemental operations. The computation of ũ1 requires
2m elemental operations, since a norm computation and then a division over each
component of the vector is needed. For ṽ1, h+2n elemental operations are required.
For the last two items, the computation of ∆xk = Ṽk c̃k requires nk elemental oper-
ations, while the update for the next solution requires n elemental operations.

Then, we need the elemental operation for the usage of the Gram-Schmidt to
compute ũk+1 and ṽk+1. Let us begin first with the ũk+1 vector computation. The
expression used to compute ũk+1 is given by (4.9), which is

J ṽk =
k∑
i=1

βi,kũi + βk+1,kũk+1.
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Computing J ṽk requires 2(m+n+ f) + 3 elemental operations, as mentioned previ-
ously. Since we are using the modified Gram-Schmidt method, we set y as J ṽk. The
first value β1,k is computed as 〈y, ũ1〉, which requires m elemental operations. Then,
y is updated as y := y−β1,kũ1, which requires 2m elemental operations. The second
values are computed as β2,k = 〈y, ũ2〉 and the update is computed as y := y−β2,kũ2.
This also requires 2m + m = 3m elemental operations. This process is repeated k
times, giving a total of 3km elemental operations to compute the values of βi,k for
i ∈ {1, 2, . . . , k} and the updates. Then, the computation of βk+1,k = ‖y‖ requires
m elemental operations. Finally, the computation of the new vector ũk+1 is given by

ũk+1 =
y

βk+1,k

,

which requires m elemental operations. Therefore, the total count of elemental
operations to compute all the values of βi,k and the new vector ũk+1 is

2(m+n+f)+3+3mk+2m = 2m+2n+2f+3+3mk+2m = m(3k+4)+2n+2f+3.

The process to compute ṽk+1 is similar, but instead of 2(m + n + f) + 3 elemental
operations initially, we require h due to the use of the approximation matrix. This
gives a total of h+ 3mk + 2m = h+m(3k + 2) elemental operations.

For the inner least-square problem, we observe the Algorithm 4. We require
the computational complexity of the computation of the new QR decomposition
from the previous one and the cost of solving the linear system of equations by
backward substitution. We can use a similar argument for the modified Gram-
Schmidt method than the used for ũk+1 and ṽk+1 and observing the Algorithm 3.
Since the current matrix B̃k is of size k + 1 × k, we have that the computation of
the new QR decomposition requires 3(k + 1)(k − 1) + 2(k + 1) = 3(k2 − 1) + 2k + 1
elemental operations. Combined with the number of elemental operations requires
to solve a linear problem by means of a backward substitution Sauer 2011, which is
k2 elemental operations, we have a total of 3(k2 − 1) + 2k + 1 + k2 = 4k2 + 2k − 1
elemental operations.

Now all the previous elemental operations need to be considered for tout and tin.
In particular, we have

• Since the line 2 of Algorithm 5 is executed tout times, we have a total of
tout(3m+ 2n+ 2f + 3), considering the difference with vectors.

• The vector ũ1 is created tout times, so we have a total of 2toutm elemental
operations.

• The vector ṽ1 is created tout times, so we have a total of tout(h+ 2n) elemental
operations.

• The current solution ∆xk is computed at each tin iteration and its complexity
depends on k. Also this is executed tout times. Therefore, its number of
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elemental operations is given by

tout

tin∑
k=1

nk = toutn
tin(tin + 1)

2
=
ntouttin(tin + 1)

2
.

• The update in line 19 of Algorithm 5 is repeated tout times, giving a total count
of ntout elemental operations.

• The computation of ũk+1 is realized for k ∈ {1, 2, . . . , tin}. This process is
executed tout times. Its number of elemental operations is given by

tout

tin∑
k=1

(3mk + 4m+ 2n+ 2f + 3) = 3mtout

tin∑
k=1

k + touttin (4m+ 2n+ 2f + 3) ,

= 3mtout
tin(tin + 1)

2
+

touttin (4m+ 2n+ 2f + 3) .

• A similar idea follows for the computation of ṽk+1. Its number of elemental
operations is given by

tout

tin∑
k=1

(3km+ h+ 2) = touttin(h+ 2) + 3mtout

tin∑
k=1

k,

= touttin(h+ 2) + 3mtout
tin(tin + 1)

2
.

• Finally, the inner least-square is solved for k from 1 to tin. This process repeated
tout times. Its number of operations is given by

tout

tin∑
k=1

(
4k2 + 2k − 1

)
= tout

(
4

tin∑
k=1

k2 + 2

tin∑
k=1

k −
tin∑
k=1

1

)
,

= tout

(
4
tin(tin + 1)(2tin + 1)

6
+ 2

tin(tin + 1)

2
− tin

)
,

= tout

(
4

3
t3in + 3t2in +

2

3
tin

)
.

The final expression, which will be shown directly to avoid a large expression, is
given by,

O
(
tout

(
2f(tin + 1) + h(1 + tin) + 3mt2in +

4

3
t3in

))
.

This expression was obtained by summing all the previous expression, i.e. the com-
putational cost of ũ1 and ṽ1, the computation of the current solution ∆xk, the
computation of ũk+1 and ṽk+1, and the solution of the inner-least square problem.
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Chapter 5

Quantization

In chapter 4 the nsLSQR method was explained. As shown, it can solve a linear
least-square problem only using an approximation for the product JT (xi) w. In
this chapter, an approximation strategy will be presented, with the aim of using
it as an approximation matrix for nsLSQR. This approximation proposal is based
on a quantized approximation of the matrix. This quantized approximation builds
a restricted-memory approximation of the Jacobian matrix, using quantization to
reduce the memory usage of the coefficients of the matrix. Later, its transpose is
used to approximate JT (xi) w. This restricted-memory approximation is represented
as an explicitly stored matrix whose coefficients use an user-specified number of
bits. This number of bits will define the parameters required by our quantization
procedure. The usage of a small number of bits will produce a matrix whose storage
requirements are considerably less than a full double precision matrix. However,
using an small number of bits may affect the performance of the matrix in the
transpose of the matrix-vector product, i.e. increase its error. This implies that our
approximation cannot be used with classical algorithms, for instance, LSQR. For
this purpose, the nsLSQR was constructed.

Following the terminology used in Sayood 2006, our method falls in the Scalar
Uniform Midterm Quantization category, which means that individual elements in
the structure will be quantized. More specific, our method quantize each of the co-
efficients of a vector. Then, a matrix is quantized column-by-column in a systematic
procedure.

5.1 Quantization approximation

5.1.1 Scalar quantization of a vector

Let p ∈ Rm be a vector whose coefficients are given by pi, for i ∈ Im = {1, 2, . . . ,m}.
Let P be the maximum coefficient of p in absolute value, i.e. P = maxi∈Im |pi|. We
have that each element in p is given by the following expression

pi = 2Pxi − P = P (2xi − 1), xi ∈ [0, 1].
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Let suppose that we want to approximate (quantize) the vector p using b bits.
This imply that we just have 2b possible values to store in memory. From the 2b

available numbers to use, we need one to represent the zero value. Although this
is not mandatory, it is desired to be able to represent accurately sparse matrices.
If zero is not representable in our representation, sparse matrices will be poorly
approximated by the quantized method. To get an even distribution of values among
positives and negatives values, we need 2b−1−1 values to represent positive numbers
and 2b−1 − 1 for negative numbers. Since 2b−1 − 1 + 2b−1 − 1 + 1 = 2b − 1, then one
value will be discarded from the total of available numbers, using b bits. Using the
following change of variables

yi = (2b − 2)xi = 2(2b−1 − 1)xi ⇔ xi =
yi

2(2b−1 − 1)
, yi ∈ [0, 2(2b−1 − 1)],

we have that

pi =
2P

2(2b−1 − 1)
yi − P =

P

2b−1 − 1
yi − P =

P

2b−1 − 1

(
yi −

(
2b−1 − 1

))
.

Setting

s = 2b−1 − 1

and

d =
P

s
,

we have that

pi = d (yi − s) , (5.1)

for yi ∈ [0, 2(2b−1 − 1)] = [0, 2b − 2].
Equation (5.1) is valid for all i ∈ Im since d and s does not depend of i and yi

is the independent variable to match pi. Note also that yi is defined to range from
0 to 2b − 2 = 2(2b−1 − 1). The quantization proposal is to approximate pi rounding
yi to its nearest integer. We will denote such rounded value as ỹi. The definition
of yi ∈ [0, 2b − 2] ensure that ỹi ∈ [0, 1, . . . , 2b − 2]. Therefore, the value of ỹi is
representable using b bits.

Finally, the proposed quantization approximation is given by

pi ≈ p̃i = d (ỹi − s) , (5.2)

where p̃i denotes the approximation of pi. Note that the value of yi is given by

pi = d(yi − s)⇔ yi =
pi
d

+ s.

The Algorithm 6 describe the quantization procedure defined previously. The
algorithm shows a procedure to approximate a vector p and return the scaling factor
d, the integer vector ỹ and the shift s.
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Algorithm 6 Algorithm to approximate a vector using scalar quantization

Require: A vector p of size m, a number of bits b
Ensure: A scalar d, a shift s and a vector ỹ, where p ≈ d(ỹ − s1m)

Compute the max value P = arg maxi∈Im |pi|.
Set s = 2b−1 − 1.
Set d = P

s

Compute y = 1
d
p + s1m

Compute ỹ rounding y to the nearest integer for each of its coefficients.
Return d, ỹ and s.

The error of the approximation depends on the error produced by rounding to
the nearest integer and scaled for d, since

|ei| = |pi − d(ỹi − s)| ,
= |d(yi − s)− d(ỹi − s)| ,
= |d(yi − s− ỹi) + s| ,
= |d(yi − ỹi)| ,
= d |yi − ỹi| ,

≤ d

2
.

Since d = P
s

= P
2b−1−1

, this shows that the error is reduced increasing b (equivalent
to having more quantization values) and having an small P . The latter is not relevant
since it depends on the input vector to quantize.

5.1.2 Initial approach for matrix approximation

The idea of our proposal is to approximate a matrix A ∈ Rm×n producing a matrix
Ãb ∈ Rm×n where each of its coefficients use b bits. The matrix Ãb will be represented
as

Ãb = TbDb, (5.3)

where Tb is a matrix of size m × n and Db is a diagonal matrix of size n × n. The
idea of this description is that easily represent the quantization approximation for
vectors given by the Algorithm 6, where the vector to quantize are the columns of
the matrix A. Let a1, a2, . . . , an be the columns of A. Then using the Algorithm 6
gives

a1 ≈ ã1 = d1(ỹ1 − s1m),

a2 ≈ ã2 = d2(ỹ2 − s1m),

...
...

an ≈ ãn = dn(ỹn − s1m).
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Note that since all the columns of A are quantized using b bits, s is equal in each
approximation. The scaling factor, di, is different for each column since it depends
on the value of its maximum coefficient in absolute value. Then, A is approximated
as

A ≈ Ãb =
(
Mb − s1m1Tn

)
Db, (5.4)

where

Db =


d1 0 . . . 0
0 d2 . . . 0
...

... . . .
...

0 0 . . . dn

 ,

and the k-th column of Mb is ỹk. The effect of s1m1Tn is to subtract s for all the
coefficients of the matrix. Setting Tb =

(
Mb − s1m1Tn

)
match (5.4) with (5.3).

It is important to note that our main idea to develop this approximation method
is to reduce the memory requirements to store a matrix, in particular, the Jacobian
matrix. The described approach achieve this considering that

• The diagonal matrix D does not need to be stored explicitly. It may be stored
as a vector.

• The shift matrix s1m1Tn only requires the storage of the shift s.

• The matrixMb contains positive integers only, since its columns the are rounded
values of positive numbers. Moreover, those integers are in the range [0, 2b−2]
so only b bits are needed to store each element.

A dense storage of A will require a total of 64mn bits of memory if we consider
that each element of A is a 64 bit float (double precision) which is usually the case
in most of linear algebra toolkits or current computer systems. The matrix Mb

requires bmn. If b < 64, there is a significant reduce of memory needed to store
the approximation matrix. The Algorithm 7 shows the quantization approximation
process.
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Algorithm 7 Algorithm to compute a quantization approximation of a given matrix

Require: A matrix A of size m× n, a positive integer b ≥ 2 of bits to use
Ensure: A matrix Mb, a diagonal matrix Db and a shift s.

1: Create a matrix Mb of size m× n with zeros, where each element use b bits.
2: Create a diagonal matrix Db.
3: for i from 1 to n do
4: Set v as the i-th column of the matrix A.
5: Use the Algorithm 6 with b bits over v and get the scaling factor di, the

approximation vector ṽ and the shift si.
6: Set the i-th column of Mb as ṽ.
7: Set s = si.
8: Set Di,i = di.
9: end for

10: Return Mb, Db and s.

5.1.3 Matrix approximation using quantization

The error between a scalar and its quantized approximation is bounded by

|ei| ≤
P

2b − 2
.

Since b is a parameter of our method, we can increase its value to reduce the error.
If P is small, then the error is also reduced but this value does not depend of our
method but the vector that is desired to approximate. This idea inspire the following
method of matrix approximation, which is the method used in our implementation of
the nonlinear solver. Suppose that using the matrix approximation method described
previously to compute an approximation for A using b1 bits we build a matrix M

(1)
b1

with a shift coefficient s1 and a diagonal matrix D
(1)
b1

such that

A ≈ Ã
(1)
b1

=
(
M

(1)
b1
− s11m1Tn

)
D

(1)
1 .

A remark here is that the notation of superscript denotes a counting, not a power
or exponent.

If ‖A − Ã
(1)
b1
‖ < ‖A‖ holds for some norm, we may expect that Ã

(1)
b1

+ Ã
(2)
b2

is

a better approximation of A, where Ã
(2)
b2

is the approximation matrix produced by

the proposed quantization method over A − Ã(1)
b1

using b2 bits. That is, the matrix

Ã
(2)
b2

is obtained using the Algorithm 7 to compute a quantized approximation of

A− Ã(1)
b1

. So, given a number L of matrix terms, which we call layers, we propose to
approximate A as

A ≈
L∑
i=1

(
M

(i)
bi
− si1m1Tn

)
D

(i)
bi
, (5.5)
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where the i-th components M
(i)
bi

, si and D
(i)
bi

are computed using the Algorithm 7
over the accumulated error matrix

A−
i−1∑
j=1

(
M

(j)
bj
− sj1m1Tn

)
D

(j)
bj
.

Note that using this proposal for quantization, the bits used for each layer does not
need to be the same. That is, we may have a set of L different bits {b1, b2, . . . , bL}
and to approximate each layer using a different precision.

The idea of using layers or terms of matrix approximation is based on the idea
that the approximation method proposed effectively decrease the norm of the error
matrix. The proof of this statement will be given in the section 5.2.

The Algorithm 8 shows a general description of the proposed quantization ap-
proximation procedure. Also, to reduce the computational cost of the approximation,
an additional parameter η is used by the algorithm as an stopping criteria if the rel-
ative error obtained using less than L layers is less than the tolerance. That is, when
building the j-th layer, the method test the following relative error

∥∥∥A−∑j
i=1

(
M

(i)
bi
− si1m1Tn

)
D

(i)
bi
,
∥∥∥
F

‖A‖F
< η, (5.6)

where ‖·‖F denotes the Frobenius norm. If (5.6) holds at the j-th layer or iteration
of the procedure, then the algorithms stop and the current result is returned.
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Algorithm 8 Algorithm to approximate a matrix using a quantization approach

Require: A matrix A of size m× n, a number L of layers, a list b = (b1, b2, . . . , bL)
with the number of bits to use in each layer, a desired minimum tolerance η.

Ensure: A list matrices M
(i)
bi

, each one using bi bits, a list with diagonal matrices

D
(i)
bi

and a list with shifts si. The length of each list is at most L and is less than
L if the tolerance is meet before L layers.

1: Set M as an empty list.
2: Set D as an empty list.
3: Set s as an empty list.
4: for k from 1 to L do
5: Set a matrix B = A −

∑k−1
i=1 (Mi − si1m1Tn )Di, where Mi is the i-th element

in the list M , Di is the i-th element in the list D and si is the i-th element in
the list s.

6: Use the Algorithm 7 over the matrix B using bk bits to get an approximation
matrix M̃ , a diagonal matrix D̃ and a shift s̃.

7: Add M̃i at the end of the list M .
8: Add D̃ at the end of the list D.
9: Add s̃ at the end of the list s.

10: Test (5.6). If the tolerance is reached with the current number of layers, end
the for loop. Otherwise, continue to the next iteration.

11: end for
12: Return M , D and s.

5.1.4 Quantization for Jacobian matrix approximation

The Algorithm 8 shows how to approximate any matrix given a set of parameters,
but recall that our aim is to couple the approximation in the Levenberg-Marquardt
algorithm, for solving (3.3). As already described in chapter 3, the matrix involved
in the required product is the Jacobian matrix. So, in this section we will show how
our method approximate the Jacobian matrix. As explained, the approximation
procedure for a matrix is based on a scalar quantization over each column vector of
the matrix. Since the input of our Levenberg-Marquardt solver is a general function
F and considering that building explicitly the Jacobian matrix is forbidden, we can
obtain a column of the Jacobian matrix using a finite-difference like approximation.
To compute the k-th column of the Jacobian matrix we use the k-th canonical vector,
e

(n)
k , since the Jacobian matrix is of size m× n. Computing a single column for the

Jacobian matrix at a time is enough to compute the quantization matrix successfully.
The Algorithm 9 shows a description of a procedure to quantize the Jacobian matrix.
The Algorithm 9 is similar to the Algorithm 8 but some additional performance
element have been considered. In section 5.3 more detailed for an implementation
will be given. The process is slightly different but follows the same idea of the
explained quantization process.
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Algorithm 9 Algorithm to approximate the Jacobian matrix using a quantization
approach

Require: The function F whose Jacobian will be quantized, dimension m and n,
the vector xi to evaluate the Jacobian matrix, a number L of layers, a list b =
(b1, b2, . . . , bL) with the number of bits to use in each layer, a desired minimum
tolerance η.

Ensure: A list M of matrices M
(i)
bi

, each one using bi bits, a list D with diagonal

matrices D
(i)
bi

and a list S with shifts si.
1: Set M as a list with L matrices of size m× n.
2: Set D as a list with L diagonal matrices of size n× n.
3: Set S as an empty list.
4: for k from 1 to n do
5: Build the canonical vector e

(n)
k .

6: Compute p := J(xi)e
(n)
k using a finite difference approximation (2.2).

7: for j from 1 to L do
8: Using the Algorithm 6 compute a value d, a vector y and the shift s using

bj bits.
9: Set Sk := s.

10: Set Dj[k, k] := d, where Dj[k, k] represent the k-th diagonal element of the
j-th matrix in the list D.

11: Set the k-th column of Mj to y.
12: Compute p := p− d(y − s1).
13: end for
14: end for
15: Drop unnecessary layers if the tolerance ηq is reached with less than L layers.
16: Return M , D and s.

The main modification of Algorithm 9 with respect to Algorithm 8 is that in the
former we obtain a column of the matrix. Then, we compute the L layers for that
column. In the latter algorithm, at each iteration a layer is computed entirely. This
modification is driven by the need to avoid unnecessary evaluation of the function
F. This is important if F has a high computational cost per evaluation. The rest of
both algorithm follows the same idea.

Note that since we are computing the matrix column-by-column, the Frobenius
norm of the error matrix can be updated within every iteration, avoiding its com-
putation at the final stage of the algorithm. Later, in section 5.3, a more detailed
description of a possible implementation will be given. It is important to consider
that our implementation is based on Algorithm 9.
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5.1.5 Compute the matrix-vector product of the transpose
of the Jacobian matrix

From (5.5) it is clear that an approximation for the transpose of a matrix A is given
by

AT ≈

(
L∑
i=1

(
M

(i)
bi
− si1m1Tn

)
Dbi

)T

=
L∑
i=1

Dbi

((
M

(i)
bi

)T
− si1n1Tm

)
. (5.7)

So in order to approximate the product ATw, which is our main objective for this
proposal, we need to compute

ATw ≈
L∑
i=1

Dbi

((
M

(i)
bi

)T
w − si〈1m,w〉1n

)
. (5.8)

5.2 Proof of norm decreasing of quantization ap-

proximation

The idea of using layers to approximate a matrix using quantization is based on
the idea of that each layer decrease the error between the source matrix and its
quantized approximation. The following theorem shows that the error, using the
squared 2-norm, decrease with each quantization over a vector. Since the Frobenius
norm is defined as the sum of the squared 2-norm of each column, it is clear that if
the vector norm is reduced, then the Frobenius norm also decrease.

Theorem 5.2.1. Let p ∈ Rm be a vector and p̃ be the approximation produced by
the Algorithm 6. Then ‖p− p̃‖2

2 < ‖p‖2
2 for all b ≥ 2.

Proof. If pi = 0 for all i, then

pi = 0 = d(yi − s)⇔ yi = s.

Algorithm 6 produce a vector p̃ whose coefficient are integer values from 0 to 2b− 2.
Since yi = s = 2b−1 − 1 is an integer and 2b−1 − 1 < 2b − 2 = 2(2b−1 − 1), it is
representable using b bits in our method. Then ỹi = yi for all i and p = p̃ = 0.

Suppose that p 6= 0. Since P = max1≤i≤m |pi| then there exist and index k such
that pk = −P or pk = P . If pk = −P , then

pk = −P = d(yi − s) =
P

s
(yk − s)⇔ yk = 0.

Since yk = 0 is an integer then ỹk = 0. Using b ≥ 2 bits allows to represent at least
from 0 to 22 − 2 = 2. Then 0 is a valid value in the representation by our algorithm
so pk − p̃k = 0. If pk = P then

pk = P =
P

s
(yk − s)⇔ yk = 2s = 2b − 2.
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Since yk = 2b − 2 is an integer, then ỹk = yk = 2b − 2. Using b ≥ 2 bits allows
to represent values from 0 to 2b − 2. Since 2b − 2 is in the available range, then
pk − p̃k = 0. This shows that p̃k has at least one element from p so the difference
p− p̃ contains at least one zero element. We need to prove that (pi − p̃i)2 ≤ p2

i for
all i such that |pi| 6= P .

Note that (pi − p̃i)2 = p2
i − 2pip̃i + p̃2

i = p2
i − (2pip̃i − p̃2

i ). We need to prove that
2pip̃i − p̃2

i ≥ 0.
Let pi = d(yi − s) and p̃i = d(ỹi − s). Then

2pip̃i − p̃2
i = 2d2(yi − s)(ỹi − s)− d2(ỹi − s)2,

= 2d2(yiỹi − s(yi + ỹi) + s2)− d2(ỹ2
i − 2sỹi + s2),

= d2(2yiỹi − 2syi − 2sỹi + 2s2 − ỹ2
i + 2sỹi − s2),

= d2(2yiỹi − 2syi + s2 − ỹ2
i ).

Since d2 > 0, we require that ci := 2yiỹi − 2syi + s2 − ỹ2
i ≥ 0. Note that the

quantized value is yi ≥ 0. Let yi = zi + δi, where zi ∈ N0 and 0 ≤ δi < 1. Then we
have that

ỹi =

{
zi, δi ≤ 0.5,

zi + 1, δi > 0.5.

We define L := {i ∈ {1, 2, . . . ,m} | δi ≤ 0.5} and U := {i ∈ {1, 2, . . . ,m} | δi >
0.5}. We will study both cases.

• Let suppose that i ∈ L. Then yi = zi + δi and ỹi = zi. Using this in ci we have

ci = 2(zi + δi)zi − 2syi + s2 − z2
i ,

= 2z2
i + 2ziδi − 2syi + s2 − z2

i ,

= z2
i + 2ziδi − 2syi + s2,

= z2
i + 2ziδi − 2syi + s2 + δ2

i − δ2
i ,

=
(
z2
i + 2ziδi + δ2

i

)
− 2syi+ s2 − δ2

i ,

= (zi + δi)
2 − 2syi+ s2 − δ2

i ,

= y2
i − 2syi+ s2 − δ2

i ,

= (yi − s)2 − δ2
i .

In order to have ci ≥ 0 we require that (yi − s)2 ≥ δ2
i . We need to study the

following cases

– Let suppose that yi ∈ N0. Then δi = 0 and yi = zi. Note that yi ∈
{0, 1, . . . , 2b − 2} = {0, 1, . . . , 2s}. Then (yi − s)2 ≥ δ2

i = 0 with equality
only if yi = s which is a possible value for yi.

– Let suppose that yi /∈ N0 so δi 6= 0. Since i ∈ L then 0 < δi ≤ 0.5. We
will study the possible cases for different values of zi.
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∗ If z = s, then (yi− s)2 = (zi + δi− s)2 = (s+ δi− s)2 = δ2
i ≤ δ2

i which
is true.

∗ If zi > s, then

zi − s > 0,

zi − s+ δiδi,

(zi + δi − s)2 > δ2
i .

Then the inequality holds.

∗ If zi < s, then zi ≤ s − 1 since both zi and s are positive integer.
Then yi − s ≤ δi − 1. Since 0 < δi ≤ 0.5 then δi ≤ 1 − δi ≤ s − yi.
Then

(s− yi)2 ≤ δ2
i ,

(yi − s)2 ≤ δ2
i .

Then the inequality holds.

Then ci ≥ 0 for all i ∈ L and (pi − p̃i)2 ≤ p2
i for i ∈ L.

• Let suppose that i ∈ U . Then yi = zi + δi and ỹi = zi + 1. Replacing this in ci
we have

ci = 2(zi + δi)(zi + 1)− 2syi + s2 − (zi + 1)2,

= 2(z2
i + zi + δizi + δi)− 2syi + s2 − (z2

i + 2zi + 1),

= 2z2
i + 2zi + 2δizi + 2δi − 2syi + s2 − z2

i − 2zi − 1,

= z2
i + 2δizi + 2δi − 2syi + s2 − 1 + δ2

i − δ2
i ,

= (z2
i + 2ziδi + δ2

i )− 2syi + s2 + 2δi − 1− δ2
i ,

= (zi + δi)
2 − 2syi + s2 + 2δi − 1− δ2

i ,

= (y2
i − 2syi + s2) + 2δi − 1− δ2

i ,

= (yi − s)2 − (1− 2δi + δ2
i ),

= (yi − s)2 − (1− δi)2,

= (yi − s+ 1− δi)(yi − s− 1 + δi),

= (zi + δi − s+ 1− δi)(zi + δi − s− 1 + δi),

= (zi − s+ 1)(zi − s+ 2δi − 1).

Since i ∈ U , then 0.5 < δi < 1. Also note that zi ∈ N0. Then we need to study
the following cases:

– If zi = s, then

(zi − s+ 1)(zi − s+ 2δi − 1) = 2δi − 1.

Note that
1

2
< δi < 1⇔ 0 < 2δi − 1 < 1.

Then ci > 0 and the inequality holds.
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– If zi > s, then zi − s > 0. Then clearly ci > 0 and the inequality holds.

– If zi < s or zi ≤ s− 1, then zi − s+ 1 ≤ 0. Also

zi − s+ 2δi − 1 ≤ −1 + 2δi − 1,

zi − s+ 2δi − 1 = 2(δi − 1).

Since δi < 1 then zi − s + 2δi − 1 < 0. Then zi − s + 1 ≤ 0 and
zi − s+ 2δi − 1 < 0 so ci ≥ 0 and the inequality holds.

Then ci ≥ 0 for all i ∈ U .

Since ci ≥ 0 for both L and U , then ci ≥ 0 for all i ∈ {1, 2, . . . ,m} and the
theorem is proved.

The theorem states that the difference between the vector and its approximation
strictly decrease its norm with respect to the original vector. Since there is always a
value P in the approximation vector, each layer of the quantization has at least one
equal value so each layer produce a error vector with at least one zero element.

5.3 Implementation details of the quantization ap-

proximation

All the algorithms described in section 5.1.1 where presented with an easy descrip-
tion. It is important to remark that their description do not reflect an optimal or
a practical implementation. The main idea of these algorithms is to describe the
method and their keys components, not a particular implementation of it. Regard-
less of this, their actual implementation has a major role in the overall solver since a
poor implementation will impact in the memory usage and computation time of the
proposal. In particular, our method it is based on the idea of storing matrices whose
coefficients may use less than 8 bits, which is usually the minimum unity in most
modern computers. In this chapter, a proposal for an implementation of a quantized
matrix is given. The focus on this proposal is the possibility of storing matrices
whose coefficients may use less than 8 bits and also to be suitable for a parallel
implementation. The former is a major component, required to achieve a signifi-
cant reduce of memory usage while the latter is useful when parallel or distributed
resources are available.

5.3.1 Storage of integer matrices

The minimal unity of of a memory chunk in modern computers is 1 byte or equiv-
alently, 8 bits. This means that all structures that the computer read, writes and
interpret are composed at least by 8 bits or multiples of it. So a quantized matrix
M using 2 bits per element will use 8 bits per element if it is stored directly without
a proper data structure, specifically constructed to manage this issue, losing 3

4
of
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memory. To implement our proposal, it is necessary to build a specific data struc-
ture for this purpose. In this section we will explain briefly how our implementation
manage this issue.

Note that matrices M produced by Algorithm 7 using b bits contains positive
integers only, ranging from 0 to 2b−2. Since all the coefficients are positive integers,
there exist a binary representation of each one so we have that a matrix M

(i)
bi

may
be written as

M
(i)
bi

=

bi−1∑
k=0

2kM
(i)
bi,k
, (5.9)

where M
(i)
bi,k

denotes the k-th binary coefficient of the binary representation of all

coefficients from M
(i)
bi

. The number of bits bi defines the length of the sum (5.9). Our
proposal to achieve a true compression of the approximation matrix is to represent
the matrix Mbi in (5.4) as a sum of binary matrices, as shown in (5.9). The second
subindex k denotes the position in the binary representation of coefficients. As said
previously, the minimal unity of storage is 8 bits, so even that M

(k)
bi,i

is a binary
matrix, each of its elements need 8 bits for storage. To achieve the full compression
of our method, we propose the following approach to store each matrix M

(i)
bi,k

.

Note that by Euclidean division, we have that there exist an integer p and r such
that

n = 8p+ r.

Our proposal is to store the matrix M
(i)
bi,k

, whose dimension is m×n, as a matrix M̃
(i)
bi,k

of dimension m× p if r = 0 or dimension m× (p+ 1) if r > 0. For simplicity, we will
consider that r = 0 for all of our examples and explanations, since for r > 0 we can
fill the matrix with zeros until r = 0. The (i, j) element of M̃

(i)
bi,k

contains a positive
integer whose binary representation is given by the number from position (i, 8j) to

(i, 8j + 7) of M
(i)
bi,k

, similar of what is done for the function packbits from Numpy
library1. Using this packing and unpacking approach, the matrix is compressed and
decompressed in run time when it is needed. Equation (5.10) shows an example of
this compression approach. The left matrix contains, for example, seven rows of the
matrix M

(i)
bi,k

and eight columns. This matrix is compressed in the right vector, which
contains integers whose representations are given for columns in the left side matrix.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1
1 1 1 1 0 0 0 0
0 0 1 1 0 1 0 0
1 1 1 1 0 0 0 1
0 0 0 0 0 0 0 1


→



0
2
9

240
52
241
1


. (5.10)

1https://numpy.org/doc/stable/reference/generated/numpy.packbits.html?

highlight=packbits#numpy.packbits
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For example, taking the fifth row of the left matrix in (5.10), we have that

0 · 27 + 0 · 26 + 1 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 0 · 20 = 32 + 16 + 4 = 52,

where 52 is the fifth coefficient in the right-hand side. The previous procedure is
equivalent to multiply a m× 8 matrix by the following vector,

cbin =



27

26

25

24

23

22

21

20


=



128
64
32
16
8
4
2
1


. (5.11)

To compute the required memory that our data structure needs, recall that from
a matrix M

(i)
bi

of size m × n with positive integer coefficients, we produce bi binary
matrices, as in (5.9). Each of these binary matrices will be compressed to a matrix
of size m×p, where n = 8p, whose coefficients are positive 8 bits integers only. Since
each of these matrices are 8 bits integers, then the memory required to store one of
these matrices is given by 8mp = 8mn

8
= mn bits. Since we have bi of these matrices,

the total amount of memory required to store the matrix M
(i)
bi

using these represen-
tation and procedure is bimn, which is equivalent to the memory requirements that
a single matrix of bi bits per coefficients. So, our proposed method of compression
and data structure achieves the desired memory usage.

5.3.2 Implementation details for compression, decompres-
sion and usage of a quantized matrix

Note that the described scheme is for storage only. This is a data structure used
to be able to store matrices using less than 8 bits per coefficients, but in the actual
computation or usage of the matrix, it will be decompressed to retrieve its binary
representation. Also, note that this procedure transform matrices of size m× 8 into
a 8 bit integer vector of size m. The choice of packing from 8 columns of the binary
matrix is arbitrary and a bigger number of columns may be used. However, our
experiments shows that using combination of less than 8 bits achieves small errors
in the approximation matrices. This results will be shown in the chapter 7.

The Algorithm 10 describe the compression procedure of a m × 8 matrix, in
a simple manner. This implementation is simple to understand but requires an
intermediate matrix to store partial results. The Algorithm 11 shows a better and
more memory-efficient algorithm. By observing Algorithm 10 and 11, it is clear that
our proposal for quantization compress each row of the m× 8 matrix. We call this a
row-wise compression. A column-wise compression it is also possible. In either case,
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our proposed algorithm is suitable for parallelization since each of the rows can be
compressed in parallel.

Algorithm 10 Algorithm to compress (pack) a portion of a matrix

Require: An integer matrix A of size m× 8 to compress using b bits. It is required
that each integer in A fits using b bits.

Ensure: Returns a m× b matrix with 8-bit positive integers.
1: Let M be a matrix a zero-matrix of size m× b.
2: Let B be an intermediate matrix of size m×8, used to store intermediate results

for packing.
3: Let cbin be the vector defined in (5.11).
4: for k from 1 to b do
5: for i from 1 to m do
6: for j from 1 to 8 do
7: Let Ai,j =

∑b−1
d=0 cd2

d be the binary representation of Ai,j. Set Bi,j := ck−1.
8: end for
9: end for

10: Set the i-th column of M equal to Bcbin.
11: end for
12: Return M .

Algorithm 11 Algorithm to compress (pack) a portion of a matrix without an inner
matrix
Require: An integer matrix A of size m× 8 to compress using b bits. It is required

that each integer in A fits using b bits.
Ensure: Returns a m× b matrix with 8-bit positive integers.

1: Let M be a matrix a zero-matrix of size m× b.
2: Let cbin be the vector defined in (5.11).
3: for i from 1 to m do
4: for j from 1 to 8 do
5: Let Ai,j =

∑b−1
d=0 cd2

d be the binary representation of Ai,j.
6: for k from 1 to b do
7: Mi,b := Mi,b + 28−jck−1.
8: end for
9: end for

10: end for
11: Return M .

Algorithm 12 combines the Algorithm 9 with the Algorithm 11 to compress a Ja-
cobian matrix using our quantization approximation and the proposed data structure
and compression approach. Note that the algorithm stores the compressed matrix,
since this structure is what makes possible the reduction in memory usage, with
respect to the original matrix.
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Algorithm 12 Algorithm to compress a Jacobian matrix using a quantization ap-
proach

Require: The function F whose Jacobian will be quantized, dimension m and n,
the vector xi to evaluate the Jacobian matrix, a number L of layers, a list b =
(b1, b2, . . . , bL) with the number of bits to use in each layer, a desired minimum
tolerance η.

Ensure: A list M = {M2,M2, . . . ,ML}, where Mi is a list containing p matrices of

size m× b, a list D with diagonal matrices D
(i)
bi

and a list S with shifts si.
1: Create L empty lists Mi, for i ∈ {1, 2, . . . , L}.
2: Set D as a list with L diagonal matrices of size n× n.
3: Set S as an empty list.
4: Set i := 1.
5: Set Ai as a zero-matrix of size m× 8, for i ∈ {1, 2, . . . , L}.
6: for k from 1 to n do
7: Build the canonical vector e

(n)
k .

8: Compute p := J(xi)e
(n)
k using a finite difference approximation (2.2).

9: for j from 1 to L do
10: Using the Algorithm 6 compute a value d, a vector y and the shift s using

bj bits.
11: Set Sk := s.
12: Set Dj[k, k] := d, where Dj[k, k] represent the k-th diagonal element of the

j-th matrix in the list D.
13: Set the i-th column of Aj to y.
14: Compute p := p− d(y − s1).
15: end for
16: i := i+ 1.
17: if i > 8 then
18: i := 1.
19: for j from 1 to L do
20: Compress the matrix Aj using Algorithm 11 store its result in Ãj.
21: Add Ãj to Mj.
22: end for
23: end if
24: end for
25: Let M be a list containing all Mi, for i ∈ {1, 2, . . . , L}.
26: Drop unnecessary layers if the tolerance ηq is reached with less than L layers.
27: Return M , D and S.

Last but of no lesser importance, the Algorithm 14 shows the decompression
procedure, used to compute the matrix transpose-vector product between the quan-
tized matrix and an arbitrary vector. This is the only application that requires a
decompression of the data. It use the Algorithm 13 to decompress and perform small
products, for each of the m × b matrices. Since the required matrix is compressed,

54



CHAPTER 5. QUANTIZATION

the Algorithm 14 performs both operations at the same time: the decompression
and the transpose-vector product. Since we are multiplying an approximation of the
transpose of the Jacobian matrix, the input vector dimensions should be m. For a
parallel implementation of Algorithm 14, the for-loop from 1 to p can be executed
in parallel, since each pack can be decompressed in parallel. The Algorithm 13 is
difficult to understand at first glance, but its main idea is that the algorithm tra-
verses the matrix of size m× b, obtain its binary representation and use its binaries
coefficients to perform the product with the corresponding coefficient in the input
vector.

Algorithm 13 Algorithm to decompress and multiply a packed matrix

Require: A compressed matrix M of size m× b, a vector v of size m.
Ensure: Returns a vector y of size 8 with the result of the product for the transpose

of the uncompressed matrix m× 8 and v.
1: a := 08.
2: for i from 1 to m do
3: for j from 1 to b do
4: Let Ai,j =

∑7
r=0 cr2

7−r be its binary representation.
5: for k from 1 to 8 do
6: ak := ak + ck−1 vi, where ai and vi denotes the i-th component of a and

v, respectively.
7: end for
8: end for
9: end for

10: Return a.

Algorithm 14 Algorithm to perform the transpose of a quantized matrix and a
vector
Require: The list M , D and S returned from the Algorithm 12, a vector v of size

m.
Ensure: Returns a vector y of size n.

1: Let y := 0n.
2: p := n

8
.

3: for k from 1 to L do
4: a := 0n.
5: for t from 1 to p do
6: Set A to be the t-th matrix in the Mk list. A is of size m× b.
7: Let b be the output vector of Algorithm 13 with A and v.
8: Set from the 8(t− 1) + 1 to the 8t coefficient of a equal to b.
9: end for

10: y := y + a.
11: end for
12: Return y.
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5.4 Total memory usage and computational com-

plexity

In this final section of the Quantization chapter, we will show the total memory usage
of the proposed quantized approximation, along with its computational complexity.
Let suppose that we quantize a Jacobian matrix using L layers and the bits for each
layer is given by the set {b1, b2, . . . , bL}. Also, let f be the computational complexity
of a single evaluation of F.

5.4.1 Memory usage

To compute to total memory usage of our proposed quantized approximation, we
need to consider the following components per layer:

• The storage of the scaling diagonal matrix Di, for i ∈ {1, 2, . . . , L}. It can be
efficiently stored using an n-size vector.

• A single shift si is required for a specific layer.

• Recall from (4.12) that the m×n matrix Mi is compressed as bi matrices of size
m × p of 8 bit integers, where n = 8p for p a positive integer. Therefore, the
compressed used memory for a single matrix Mi is given by bi(8mp) = bimn.

Therefore, the memory used by a single layer is given by bimn + n + 1. For the L
layers, the total memory usage is given by

L∑
i=1

(bimn+ n+ 1) = mn
L∑
i=1

bi + nL+ L = O

(
mn

L∑
i=1

bi

)
. (5.12)

Expression (5.12) was obtained by summing the storage requirement of Di, the shift
value and the m × n integer matrix, compressed using bi bits, for each layer. The
expression (5.12) shows that the required memory of our quantized approximation
is slightly superior to the theoretical expected memory bimn per layer, but contains
the overhead produced by the storage of the shift and the diagonal matrix Di, which
is part of our representation for compression. Since usually L will not be too large
(in the experiments of chapter 7, L = 4 at most), the term nL and L are small
compared to the dominant mn

∑L
i=1 bi.

5.4.2 Computational complexity

Here, we remark two computational complexities that are relevant in this approxi-
mation. These are:

• The complexity of building our quantized approximation for the Jacobian ma-
trix J(xi). This consider the compression procedure.
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• The complexity of performing the product of the transpose of the quantized
matrix and a vector. This operation consider the decompression procedure
before performing the actual product.

For the building of the quantized approximation and its later compression, we
look at the Algorithm 12. The compression procedures has the following computa-
tional operations that needs to be considered:

• At each outer iteration a column of the Jacobian is computed through the
product J(xi)e

(n)
k . This is computed using a finite-difference approximation.

In our implementation, a second-order approximation was used, which is given
by the following expression

J(xi)e
(n)
k ≈

F(xi + εe
(n)
k )− F(xi − εe(n)

k )

2ε
.

This approximation consist in the following operations:

– The computation of xi + εe
(n)
k and xi − εe

(n)
k requires n + 1 elemental

operations for each vector operation. Since the one of the vector is the k-
th canonical vector, the actual sum or subtraction is efficiently performed
summing or subtracting the value of ε directly in the k-th position of xi.
This gives a total of 2n+ 2 elemental operations.

– Two function evaluations of F. This has a computational cost of 2f
elemental operations.

– The subtraction of F(xi + εe
(n)
k )−F(xi− εe(n)

k ), which is a subtraction of
an m-dimensional vector. This requires m elemental operations.

– Finally, the division by 2ε, which requires m+ 1 elemental operations.

Hence, the total count of elemental operations used to retrieve a single column
of the Jacobian matrix is given by 2n+ 2 + 2f +m+m+ 1 = 2(m+n+ f) + 3.
If this procedure is repeated for all columns of the Jacobian matrix, the final
number of elemental operations is given by 2n(m+ n+ f) + 3n.

• Line 10 of Algorithm 12 requires the usage of the Algorithm 6 to the quantized
column, the shift and its scaling factor. Without giving too much detail of
Algorithm 6, its more expensive operations are:

– Found the maximum value in the input vector requires m elemental op-
erations.

– Compute the vector y requires 2m+ 1 elemental operations.

– Rounding require proportionally m elemental operations.

Therefore, the elemental operations required by the Line 10 of Algorithm 6 is
approximately 4m+ 1. Also the Line 14 requires 3m elemental operations. All
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these lines are repeated L times per outer iteration. Therefore, the computa-
tional cost of the loop in Line 9 of Algorithm 12 is L(4m+1+3m) = 7Lm+L.
Since this is repeated n times, once per column, the total number of elemental
operations is n(7Lm+ L)

• From Line 17 to 23 of Algorithm 12, the compression procedure is realized.
Note that this procedure is executed at each “pack”. Under the assumption
that n = 8p, for p a positive integer, then the procedure is executed p times.
At each time, the Algorithm 11 is executed L times. The complexity of the
Algorithm 11 is given by the procedure of compressing an m × 8 matrix to
produce a m × b matrix. The general complexity of this is given by 8bjm,
for j ∈ {1, 2, . . . , L}. This procedure is repeated pL times, giving a final
complexity of

p
L∑
j=1

8bjm = 8pm
L∑
j=1

bj = mn
L∑
j=1

bj.

Summarizing, the overall complexity, considering all previous section of the compres-
sion algorithm, is given by

mn

(
2 + 7L+

L∑
j=1

bj

)
+ 2n2 + 2nf + n (3 + L) ,

or

O

(
mn

(
2 + 7L+

L∑
j=1

bj

)
+ 2nf

)
. (5.13)

Equation (5.13) shows that the complexity of the compression procedure depends
of the cost of the evaluation of F. Also depends on the number of layers and bits
used. This shows that the computational cost is higher than building a matrix but
the increased computational cost of building the matrix saves memory usage of the
matrix, which is a very important feature when the matrix does not fit in the available
memory. An important remark here is that we do not consider the computational
cost required to obtain the binary representation of a number. The reason for this is
that in our implementation, a table is pre-computed whose entries contains the 8-bit
representation from 0 to 255. The representation is of 8 bits since we are compressing
in packs of 8 columns. If a bigger pack is desired, the pre-computed table also need
to reflect this.

The next component that requires our attention is the computational complexity
of performing a matrix-vector product. In particular, we focus on the product of
our interest, which is the transpose of the quantized matrix and a vector. To get a
complexity for this procedure, we need to look first at the Algorithm 13. It receives
compressed matrix of size m × b and a vector of size m, and returns a vector of
size 8 with the result of the transpose of the compressed portion of the matrix and
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the input vector. Neglecting a product and the obtain of the binary representation,
which can be obtained efficiently using a pre-computed table, the procedure requires
approximately 8bjm operations, for j ∈ {1, 2, . . . , L}. Considering this and observing
the Algorithm 14, we have that the major computational task has the following
complexity:

• From Line 6 to 8 in Algorithm 14, the mayor computation is done by the
Algorithm 13. This procedure requires 8bjm operations. This procedure is
repeated p times.

• Line 10 requires n elemental operations.

Previous task are repeated L times. Therefore, the computation complexity of per-
forming a single transpose matrix-vector product is given by

nL+ 8pm
L∑
j=1

bj = nL+mn
L∑
j=1

bj (5.14)

Equation (5.14) shows that the computational complexity of performing a single

product is O
(
mn

∑L
j=1 bj

)
. This shows that using our quantized approach, com-

puting matrix-vector product is more computational demanding than realizing the
same product using an explicitly stored matrix. This is the cost that is payed to be
able to store a large-scale approximation matrix. From (5.14) also is clear that having
more layers and using more bits to approximate the matrix increase the computa-
tional cost of performing a single product. The reason for this is the required task of
decompression of the data, to be used as matrix to perform the desired product.
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Chapter 6

Proposed nonlinear solver

At this moment, several elements have been explained. All these components play
an important role in the principal focus of this thesis: the solution of large-scale
nonlinear problems. As mentioned in section 3, the algorithm that will be used is
the Levenberg-Marquardt method. Although in section 3 a brief description was
given, in this section we will give further details and also define some important
elements that need to be specified before making a practical implementation.

6.1 The Levenberg-Marquardt method

As briefly explained in chapter 3, the Levenberg-Marquardt method is an algorithm
proposed by Marquardt Marquardt 1963 to solve nonlinear least-square problems.
In our case, giving a function F : Rn → Rm with m ≥ n, we try to solve F(x) = 0
by means of solving the following unconstrained optimization problem

min
x∈Rn

g(x),

where g(x) is defined as

g(x) =
1

2
‖F(x)‖2,

for convenience. In chapter 3 a general algorithm was given, the Algorithm 1. How-
ever, such explanation was very general and some important details were not speci-
fied. These details are

• The construction of the Jacobian matrix and its transpose.

• The solution of the linear system of equations (3.5) or its equivalent least-square
problem given by (3.6).

• Criteria for acceptance of the current computed solution ∆xi.

• Criteria for updating the damping factor λi.
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At this point, it is clear what is the proposal of this thesis regarding the first two
components: the construction of the Jacobian matrix never happens explicitly, but

• The algorithm is designed to never require the explicit Jacobian matrix, but
only its action over a vector, i.e. J(xi)v, for v arbitrary. This required product
is computed in our method using a finite-difference approximation.

• The algorithm also does not require the transpose of the Jacobian matrix but
only its action over a vector. Also, the matrix-vector product requirement can
be an approximation of any precision, i.e. does not need to be a high precision
approximation but a coarse one may also work. However, better approximation
improves the performance of the overall method. This product is approximated
by our quantized approximation, explained in chapter 5.

• Both previous items are combined to solve the inner least-square problem by
means of the nsLSQR method, explained in chapter 4. The benefits and also
the need of nsLSQR was already explained, but in summary it can be used
with the quantized approximation to successfully solve the linear least-square
problem, even if the approximation is not accurate.

The only missing elements to have a fully functional implementation of a Levenberg-
Marquardt method are the stopping criteria, the acceptance criteria for the current
solution and the update criteria for the damping factor. In this section we will briefly
expose the stopping criteria used in our implementation, while in the following sec-
tions the criteria for updating the solution and damping factor will be explained in
more detail.

Our implementation use three simple stopping criteria:

• Given a tolerance η, the method stops if the following expression holds,

‖F(xi)‖
‖F(x0)‖

, (6.1)

where x0 denotes the initial guess and xi the i-th computed solution.

• Given a tolerance ηd and an integer d, the method stops if the following ex-
pression holds

‖xi+1 − xi‖
‖xi+1‖

< ηd, (6.2)

for i ∈ {i− d, i− d+ 1, . . . , i}.

• As a safe guard method, if T iterations are executed, the method stops.
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6.2 Computation of damping factor

An important component that has not been discussed yet is the value and updating
criteria of the damping factor. As already explained in chapter 2 and 3, the damping
factor plays two mayor roles in the Levenberg-Marquardt method:

• Makes the matrix JT (xi)J(xi) non-singular by adding a positive value.

• The magnitude of the value of the damping factor can be used to speed-up the
convergence of the method when close to the solution or guarantee convergence
when far from the solution. In other words, its value can be used to build a
globally convergent method.

The damping factor is an important element in the performance of the Levenberg-
Marquardt method and still is an active research field Fan and Pan 2009; Cui, Zhao,
B. Xu, and Gao 2017. Although more robust method to compute the damping factor
exist, our implementation use a more simple approach. This is due to that the key
of our proposal is to propose a variant of a Levenberg-Marquardt method with novel
inner components, i.e. the usage of quantization and the nsLSQR. The usage of
more robust alternatives for computing the damping factor is an interesting path for
a future work. In particular, our implementation use a mix of methods in Kelley
1999; Marquardt 1963; S. J. Wright and Holt 1985. Basically, the approach is to
increase or reduce the damping value depending on the ratio between the actual
reduction of the new solution and the predicted reduction of the linear model.

As mentioned 3, the original proposal made by Marquardt in Marquardt 1963
was a simple criteria to increase or decrease λ. In general, the original proposal
of Marquardt is based on the solution of the linear system using a damping factor.
Using a set of criteria, the damping factor and the computed step is accepted or
rejected, requiring the computation of a new damping factor to obtain a new step.
Given a current approximate solution xi, a new step ∆xi is computed using the
damping factor λi. Let xi = xi−1 + ∆xi−1 be the approximate solution computed in
the previous iteration using λi−1 and ν > 1. To compute λi, Marquardt proposed:

• Compute a as the solution of(
JT (xi)J(xi) +

λi−1

ν
I

)
a = −JT (xi)F(xi).

If g(xi + a) ≤ g(xi), then the step is accepted. This means that λi = λi−1

ν
and

∆xi = a. Using this, the new approximated solution is xi+1 = xi + ∆xi. If the
condition is not meet, then test the next condition.

• Compute b as the solution of(
JT (xi)J(xi) + λi−1I

)
b = −JT (xi)F(xi).

If g(xi + a) > g(xi) and g(xi + b) ≤ g(xi), then the solution is accepted. Thus
λi = λi−1 and ∆xi = b. The new solution is computed as xi+1 = xi + ∆xi.
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• If the previous test also fails, then increase λ by successive multiplication by ν
until reach an integer k such that for a vector c as the solution of(

JT (xi)J(xi) + λi−1ν
kI
)
c = −JT (xi)F(xi),

that satisfies g(xi+c) ≤ g(xi). In such case, we have λi = λi−1ν
k and ∆xi = c.

The new approximated solution is xi+1 = xi + ∆xi.

As can be seen, the approach proposed by Marquardt is very simple. The main
idea is that to test if we can reduce the current damping factor as λi−1

ν
, trying to

speed up the convergence. If that fails to meet the acceptance criteria, which in
the case of the proposal of Marquardt its simply some reduction in the residual, we
try to achieve some progress using the current damping factor. If that also fails,
then we increase the current damping factor by a constant factor until acceptance.
Theoretically, this can always be achieved since we know that the the step computed
by the Levenberg-Marquardt method is always a descent direction for g(xi).

Although the simplicity of Marquardt’s approach, it is not used in practice. Based
on Fletcher 1971; Moré 1978; Kelley 1999, a more sophisticated approach will be used
in our method. The modification of the damping factor is based on how well the
linear model approximate the true function. The usage of a linear model is the base
of Newton-type methods. If the linear model differs greatly of the real function,
there is no reason to guarantee that solving the linear model will lead to a significant
improvement. So the damping factor is increased to make the algorithm closer to
a descent gradient approach. On the contrary, if the linear model is close to the
function, a method closer to Gauss-Newton is preferred to improve the convergence
rate. The actual reduction, ared, is computed as

ared = ‖F(xi)‖2
2 − ‖F(xi + ∆xi)‖2

2.

This is equivalent to the difference in the residual between the current solution
and the computed solution. It is called “actual” reduction since we are using F to
compute it, hence it represents the achieved reduction between the residuals. The
predicted reduction, pred, is computed as

pred = 〈J(xi) ∆xi,F(xi)〉 −
1

2

(
‖J(xi) ∆xi‖2 + λ‖∆xi‖2

)
.

It is computed as the difference in the residual between the current solution and the
residual obtained by using the linear model Kelley 1999, which is used to compute
the next solution in the inner least-square problem.

Given parameters 0 < ωd < 1 < ωi, µ0 ≤ µl < µh and considering that γ =
ared/pred, the step ∆xi computed using λi and the current solution xi, the used
method for updating the damping factor is given by

• If γ < µ0, then λi+1 = ωiλi and xi+1 = xi.

• If µ0 ≤ γ < µl, then λi+1 = ωiλi and xi+1 = xi + ∆xi.
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• If µl ≤ γ ≤ µh, then λi+1 = λi and xi+1 = xi + ∆xi.

• If µh < γ, then λi+1 = ωdλi and xi+1 = xi + ∆xi.

To avoid λi = 0, we require a minimum value λmin since the linear system (3.5)
could be singular for λ = 0. The general idea of the used method and its criteria of
acceptance and rejection is,

• The value of ωd is used to decrease the damping factor, while the scalar ωi is
used to increase its value. This process requires an initial damping factor.

• The values of µ0, µl and µh defines a range of acceptance in the mismatch of
pred and ared.

• If the ration γ is less than µ0, which is the minimum value of mismatch tol-
erated, then the computed step is rejected and the current solution is main-
tained. Also, the damping factor is increased. The rejection is due to the high
mismatch between the true function and its linear approximation. Since the
model does not reflect accurately the nonlinear function, the damping factor is
increased with the goal of making a step closer to a steepest descent method.

• If γ > µ0, then the step is accepted since µ0 represents the minimum value for
mismatch acceptance. However, depending on where γ is with respect to µl
and µh, the damping factor is increase, maintained or decreased.

Using this approach, we do not worry about the residual behavior along with the
iterations. We expect that if we are far from the solution, the linear model will be
not perform very well and hence, a bigger damping factor will be required to ensure
convergence.

6.3 lm-nsLSQR algorithm

All the components required to propose a completed algorithm were explained. In
this final section, we will show the final algorithm that will describe our proposed
nonlinear solver for large-scale overdetermined problems. We call the algorithm lm-
nsLSQR (Levenberg-Marquardt nsLSQR).

For readability, the set of input parameters will be given here and not in the
Algorithm 15 since the list is quite large. Also, to improve readability, will be
grouped depending on the purpose of the parameter. Those are

• Parameters for the Levenberg-Marquardt method itself:

– A function F.

– A vector x0 used as an initial guess.

– An initial damping factor λ0.
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– Scalar values used for increase or reduce the damping factor, i.e. values
for ωi and ωd.

– Scalar values for acceptance or rejection of solution and damping factor,
i.e. values for µ0, µl and µh.

– A tolerance η to be used by the lm-nslSQR method as a stopping criteria.

– A tolerance ηd and an integer value d, used for stopping the method when
no significant progress is made.

– A maximum number of iterations T for lm-nsLSQR.

• Quantized approximation parameters:

– An integer L to be used as the number of layers for quantization.

– A list b = {b1, b2, . . . , bL} of L bits to be used per each layer.

– A tolerance ηq, to be used in the quantized approximation as an accepted
relative error in the approximation.

• nsLSQR parameters:

– The number of iterations for tout and tin.

– A tolerance ηt to be used for the residual.

– An integer r and tolerance ηr used for to test the varying between itera-
tions.

– An integer s and tolerance ηs used to test the saturation of the residual.

• Finite-difference parameter: an scalar ε.

An important remark about the Algorithm 15 is that the quantized matrix does
not need to be computed at every iteration. Since there is chance that the current
step is not accepted, then the current solution also does not change. Therefore, the
matrix J(xi) remains the same and hence, there is no need to update the quantized
matrix.
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Algorithm 15 lm-nsLSQR Algorithm

1: Build the initial quantized matrix J̃ of J(x0) with parameters L, b and ηq.
2: for i from 0 to T do
3: Solve the linear least-square problem (3.6) using nsLSQR with parameters J̃

as the approximation matrix, current solution xi, regularization parameter λi,
iterations tout and tin, tolerances ηt, ηr and ηs, integers r and s. Obtain a
vector ∆xi.

4: Compute the ratio between of the predicted and actual reduction γ =
ared/pred, using (6.2) and (6.2).

5: if γ < µo then
6: λi+1 := ωiλi.
7: xi+1 := xi.
8: else if µ0 ≤ γ < µl then
9: λi+1 := ωiλi.

10: xi+1 := xi + ∆xi.
11: else if µ0 ≤ γ < µl then
12: λi+1 := λi.
13: xi+1 := xi + ∆xi.
14: else
15: λi+1 := ωdλi.
16: xi+1 := xi + ∆xi.
17: end if
18: if The step ∆xi was accepted then
19: Build the quantized matrix J̃ of J(xi+1) with parameters L, b and ηq.
20: end if
21: if Equation 6.1 holds for η or Equation 6.2 holds for ηd and d then
22: Return the solution xi+1

23: end if
24: end for
25: Return the current solution xi+1.
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Chapter 7

Numerical Experiments

In this section, we explain and show the results obtained by our numerical experi-
ments. Different numerical experiments will be performed to evaluate different aspect
of our proposed method. The following experiments will be performed:

• Section 7.1 analyzes the accuracy of the quantization approximation.

• Section 7.2 quantifies the induced error in the computation of the matrix-vector
product with J̃ .

• Section 7.3 evaluates the performance of the nsLSQR method when the number
of bits used for the quantized matrix is fixed, for several matrices.

• Section 7.4 evaluates the performance of the nsLSQR method for different
matrices using different number of bits combinations.

• Section 7.5 shows the difference between GMRes and nsLSQR.

• Section 7.6 analyzes the memory usage versus execution time of LSQR, using
an explicitly stored matrix and a matrix-free approach, and nsLSQR with
different quantized matrices.

• Finally, section 7.7 analyzes the performance of the proposed lm-nsLSQR
method.

The set of functions used in our experiments are different in nature and structure,
and were chosen to follow different patterns, density or statistical distribution. The
set of matrices selected corresponds to a mixture between test cases found in the
literature and test cases proposed. Notice that the Jacobian matrices are obtained
from a finite difference approximation (2.2), given F(x). In particular, the set of
linear and non-linear functions studied are the following:

(i) A linear function F(x) = b−Ax, where the coefficients of A and b are normally
distributed as N (0, 1). The size of the matrix A is m × n. It is important to
mention that this matrix is generated efficiently and deterministically each time
it is needed, to avoid its storage. This test will be denoted as Normal problem.

67



CHAPTER 7. NUMERICAL EXPERIMENTS

(ii) A linear function F(x) = b − Ax, where the coefficients of A and b are
uniformly distributed in [−1, 1]. The size of the matrix A is m×n. Same than
for the Normal problem, the matrix is not stored but generated when required
in a form of matrix-vector product. This test will be denoted as Uniform
problem.

(iii) The Quadratic Function proposed by Toint Toint 1987. The size of the problem
is given by m = 6(n− 3). This test will be denoted as Sparse problem I.

(iv) The Diagonal function pre-multiplied by a quasi-orthogonal matrix, which is
used in Cruz and Raydan 2003. The size of the problem is given by m = n.
This problem will be denoted as Sparse problem II.

(v) A modification of the Trigonometric function, based on Moré et al. work Moré
1978. It is defined by m functions and n input variables, where just m ≥ n is
required. The function is defined as follows,

f
(1)
k (x) = n+ k (1− cos(xi+1))− sin(xi+1)−

n∑
j=1

cosp+1(xj),

where k = n p+ i for i < n. This test will be denoted as Dense problem I.

(vi) A logarithmic function, defined by

f
(2)
k (x) = xp+1

i+1 log

(
n∑
j=1

x2
j + 1

)
+ xi+1,

where k = n p + i for i < n. The value of m and n is arbitrary, as long as
m ≥ n This test will be denoted as Dense problem II.

In all of experiments, unless explicitly specified other value, the vector used to
evaluate the Jacobian matrix is a random uniformly distributed vector in [−1, 1].
Regarding the problem size, the value ofm and n was chosen to require approximately
32 [GB] of memory for a fully stored matrix J . For clarity, we remark that such
matrix is never constructed nor stored explicitly. If the matrix were to be stored
explicitly, it will require 32 [GB] of memory. Specifically, the dimension used for the
test cases are the following, unless otherwise stated:

• For the normal and uniform problem, the dimensions were m = 80000 and
n = 50000.

• For the sparse problem I, the dimensions of the Jacobian matrix was m =
155982 and n = 26000.

• For the sparse problem II, the dimension of the Jacobian matrix was m = n =
64000.

• Finally, for the dense problem I and II, the dimension of the Jacobian matrix
were m = 80000 and n = 50000.
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7.1 Accuracy of the quantized approximation

This first experiment makes a direct comparison between the Jacobian matrix of
the used test problems and its quantized approximation. The Jacobian matrix that
is considered to be the reference matrix is computed by means of a finite-difference
approximation. The quantized approximation is constructed for different set of layers
and bits. In particular, the layers were from 1 to 4 and the number of bits were 2, 4,
6 and 8 for each layer. The computed error, for a matrix J and its quantized version
J̃b,L, where b represents the number of bits used in each layer and L is the number
of layers used, is computed as,

‖J − J̃b,L‖F
‖J‖F

, (7.1)

that is, the relative error using the Frobenius norm. For the normal and uniform
problem, since the structure of the matrix has a stochastic construction, the ex-
periment was realized 25 times, each one with a different normally and uniformly
distributed matrix. Then, a mean error was computed.

The Figure 7.1 shows the relative error (7.1) as a function of the physical memory
used to represent the quantized Jacobian matrix J̃b,L for each test case. For reference
purposes, on the right side of the plots, a magenta dashed line is included to show the
total memory that would have been required to store the matrix in double precision,
which is approximately 32 [GB] for each test case. The standard deviation for the
experiments was not included in the plots since it is imperceptible in the scale used.
It goes from 10−4 for 1 layer to 10−12 for 4 layers.

A clear conclusion from 7.1 is that using two bits, although is more cheap in terms
of memory usage, its performance is very poor. Its poor performance is expected,
since using only two bits per element implies that we are able to represent just 4
values. Our approach discard one of these values, so we have just 3 numbers left.
These are −P , 0 and P . In fact, using a 2 bit quantization approximation is more
close to a sparsification procedure. The reduce of error compared to use 4 bits, which
is just a few more bits per element is significantly. Some of the presented figures
shows important information that need to be remarked:

• Figure 7.1(c) shows the relative error for the Sparse I problem. Note that
although the Jacobian of this function is sparse, its performance is not so good
as expected. The reason for this is that its sparsity is more regular in the row-
wise direction than the column-wise direction. The quantized approximation
proposed quantize in a column-wise direction, which is affected by the sparsity
direction. Nevertheless, the relative error achieved is less than 10−8 using half
of the memory required for full storage of the original matrix. However, it
is clearly more convenient in this case to use a direct sparse representation
of the problem. The purpose of this test case is to show that the proposed
quantization can incrementally capture sparsity patterns.

• Figure 7.1(d) shows the relative error for the Sparse II problem. In this case,
the quantized approximation captures the sparsity of the Jacobian matrix,
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(a) Test case Normal problem
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(b) Test case Uniform problem
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(c) Test case Sparse I
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(d) Test case Sparse II
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(e) Test case Dense I
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(f) Test case Dense II

Figure 7.1: Mean relative error (7.1) for each test case between the Jacobian matrix
J and its quantized approximation J̃b,L, where b denotes the number of bits used per
layer and L the number of layers. The type of markers indicate the number of bits
used, and the quantity of markers from left to right represent the number of layers
used.

achieving a significant reduce in the error just by using two layers, regardless
of the bits for each layer. This shows that some sparsity patterns can be
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captured by our proposed method.

• Figure 7.1(e) shows the relative error for the test case Dense matrix I. The per-
formance is very competitive only using three layers, regardless of the number
of bits. The steep reduction of the relative error for the third layer is due to
the structure of the Jacobian matrix of this test case. Although the matrix is
dense, it has a fixed pattern in that most values are equal. This pattern is well
approximated by the layered system proposed.

• Finally, the last test case of this section is shown in Figure 7.1(f). Test case
Dense matrix II computes the Jacobian matrix of the linear combination of
logarithmic functions. The outcome may seem slightly similar to the outcomes
obtained for test case Normal matrix and Sparse matrix, but they differ in this
case since a greater number of layers with few bits is better than few layers
with more bits. For instance, three layers with 4 bits perform better than two
layers with 6 bits, even when the memory requirements are equal. This means
that in this test case the quantization approximates better J by increasing the
number of layers rather than by increasing the number of bits of each layer.

As a general conclusion, the plots of Figure 7.1 shows that a relative error close
to 10−6 is possible to achieve using 1

3
of the memory required by the full double

precision matrix.

7.2 Accuracy of the product using the quantized

approximation

In the previous section, the quantized approximation was evaluated in its accuracy
as an approximation matrix. In this subsection, we test the quantized matrix over
its desired context, i.e. the accuracy of the transpose of the quantized matrix times a
vector, compared to the vector JT (xi)w. To measure the error, 50 matrix transpose-
vector products are computed for each test case. Then, the mean error is computed.
Similar to Equation (7.1), we compute the error as follows:

‖JT vj − J̃Tbi,L vj‖
‖JT vj‖

, (7.2)

where vj, for j ∈ {1, 2, . . . , 50}, are randomly generated vectors where their coeffi-
cients follow a Uniform(0, 1) distribution.

The exact value of JT vj, for the purpose of this experiment, is computed follow-
ing Sanhueza et al. Sanhueza and Torres 2017 procedure. The expression used to
compute the product JT vj is the following,

JT (xi)w ≈=
n∑
i=1

〈J(xi)qi,w〉qi, (7.3)
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where qi for i ∈ {1, 2, . . . , n} is an orthonormal basis for Rn. In our experiments,
the orthonormal basis is the canonical basis. This approximation is matrix-free but
demands a high computation effort since it requires several matrix-vector product
of the Jacobian matrix, which is computed using a finite difference approach and
hence, it requires several function evaluations. Notice this is exactly the procedure
we want to avoid, but we need to use it here to obtain an accurate approximation
of JT vj for comparison. In this numerical experiment, we use the same values of
number of bits b and number of layers L already used in the previous section.

Same than for section 7.1, the purple dashed line represent the memory required
for an explicit double-precision matrix storage. The Figure 7.2 shows the results for
all test cases. The X-axis represent the memory used, while the Y -axis represents
the relative error. As expected from the results in section 7.2, using more bits and/or
layers increase the mean accuracy of the approximation, but increase the memory
requirements. Also, like in section 7.2, the standard deviation for the experiments
were not included in the plots since they are also imperceptible. It goes from 10−3

for 1 layer to 10−14 for 4 layers.
We observe that a relative error close to 10−5 is accomplished using less than a 1

3
of

the memory compared to the storage of the Jacobian matrix explicitly. Figures 7.2(e)
and 7.2(f) show an stagnation of the error when using only one layer, but a great
improvement is obtained as we increase the number of layers.

The conclusions from this experiments are the following,

• The accuracy of the approximation of the Jacobian matrix J by J̃Tb,L translates
into the product matrix-vector.

• The usage of more than one layers may improve the accuracy drastically.

• A good approximation is achievable using significantly less memory than an
explicit stored matrix.

7.3 nsLSQR using a fixed number of bits for the

quantized matrix

In this section we will test the nsLSQR with the quantized approximation, which
is the main contribution of this thesis. We know that the LSQR is a popular and
well-known method. One of the main question that arise in our proposed nsLSQR
method, combined with the quantized approximation, is how it performs compared
to LSQR, since in nsLSQR we use an approximated matrix and the relation built
in the method are different. For this reason, in this chapter and the afterward
we will test the nsLSQR method against the LSQR to solve a least-square problem
involving the defined functions in our test cases. This means finding y in the following
minimization,

min
y∈Rn
‖F(xi)− J(xi)y‖2 + λ‖y‖2,
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(a) Test case Normal problem
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(b) Test case Uniform problem
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(c) Test case Sparse problem I
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(d) Test case Sparse problem II
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(e) Test case Dense problem I
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(f) Test case Dense problem II

Figure 7.2: Relative error (7.2) for each test case between the Jacobian matrix JT

times vj and its quantized approximation J̃Tb,L times vj, where b denotes the number
of bits used per layer and L the number of layers. The type of markers indicate the
number of bits used, and the quantity of markers from left to right represent the
number of layers used.

for a uniformly distributed vector xi. Unlike the previous numerical experiment,
in this case we only perform the computation once per test case. To quantify the
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quality of the approximations of y found, we measure the following relative residual,

‖F(xi)− J(xi) y‖
‖F(xi)‖

, (7.4)

where y represents the solution obtained in each test case.
To perform the comparison, we use the fact that when we have the exact value for

JT v, nsLSQR is mathematically equivalent to LSQR. In particular, we will use the
computationally expensive approximation of Sanhueza et al. Sanhueza and Torres
2017 to obtain the value of JT v with nsLSQR to recover LSQR. In our numerical
experiments, this is denoted as Matrix-free LSQR.

In this experiment, we will fix total number of bits that will be used in our quan-
tized approximation. In particular, we will use 8 bits per coefficient with different
combinations. This implies that the quantized matrix uses 8 times less memory than
an explicit stored matrix using double precision. The combinations selected are the
followings:

• Four layers of 2 bits, denoted as 2− 2− 2− 2 in the legends of Figure 7.3.

• Two layers of 3 bits and one layer of 2 bits, denoted as 3− 3− 2.

• Two layers of 4 bits, denoted as 4− 4.

• One layer of 8 bits, denoted as 8.

For all the numerical experiments, we used a damping factor λ = 10−5, for
simplicity. The algorithm was executed with 50 restarts and 500 iterations per
restart. The tolerances described in chapter 4.6 were set to 10−8, and we also stop
them after 50 iterations if no significant progress is made. Note that, theoretically,
the algorithm decrease the residual monotonically in exact arithmetic, according to
chapter 4.5. However, we observe numerically that orthogonality of the matrices
Ṽk and Ũk is lost, and this implies that the residual may increase after reaching
saturation. At that point, the method is considered that has already converged and
it is stopped.

Figure 7.3 shows the numerical result obtained for the 6 test cases, described at
the beginning of this chapter. Notice that in Figure 7.3 we show a few numbers of
iterations since saturation was quickly achieved. Using Matrix-free LSQR, the final
relative residual of the normal equations range from 10−6 to 10−9 depending on the
problem.

An important conclusion from Figure 7.3 is that even in the case when we only
use 8 bits per element, the performance of a quantized matrix in nsLSQR is similar
to the Matrix-free LSQR in all test cases. Moreover, in the case Figure 7.3(e), we
observe a similar behavior in the relative residual for all the combinations of number
of layers and number of bits per layer even though that combination with few layers
did not show good results in the previous experiments, see Figure 7.1(e) and 7.2(e).
Another important remark here is that nsLSQR, using the parameters described in
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(c) Test case Sparse problem I
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(d) Test case Sparse problem II
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(e) Test case Dense problem I
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(f) Test case Dense problem II

Figure 7.3: Relative error (7.4) of the nsLSQR method for the different test cases,
achieved at each iteration. The type of marker defines the specific configuration of
bits to quantize the Jacobian matrix.

this section, use no more than 5GB, more than 6 times less than a fully stored matrix,
which use approximately 32GB. Considering this and the results from Figure 7.3,
we can conclude that nsLSQR may achieve similar residuals to LSQR but using
considerable less memory than fully stored the Jacobian matrix.
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7.4 nsLSQR using a variable number of bits for

the quantized matrix

In the previous section, nsLSQR was tested using different combinations of bits
summing a total of 8 bit per coefficient. One of the main conclusion from the
previous experiment is that a good performance can be achieved using almost any
combination of bits, giving a total of 8 bits although this is also problem dependent.
However, one question that now arise is how much is affected nsLSQR by using a
low-bit approximation? That is, if an small number of bits are used, how much
decrease the performance of nsLSQR? The experiments in this section will try to
answer such questions.

In this part we will test nsLSQR using quantized matrices that use a different
number of bits per coefficients. In particular, the combinations selected are one to
three layers of 2 bits, and one layer of 4 bits. In general, the aim is to use less than
8 bits for the quantized matrix. The setup of the experiment will be the same than
for section (7.3) regarding the parameters, test cases and residual measure.

Figure 7.4 shows the numerical results obtained for all of the test cases. Same
than for section 7.3, the experiments were executed for more iterations than the ones
shown in Figure 7.4, but they were limited due to saturation of residual.

The main conclusion of this experiment is that the number of bits may impact
considerably the performance of the nsLSQR method. For example, for Figure 7.4(e)
and Figure 7.4(f), the impact of a low-bit approximation is not significant. Even for
the Uniform problem, whose results are shown in the Figure 7.4(b), the results for
the combination 2 and 2 − 2 are relatively acceptable since its linear convergence
makes the result closer to the other combinations. However, for the rest of the cases,
the impact of the usage of a low-bit approximation is evident. In particular, we have
that

• For the Sparse problem I and II, whose results are shown in Figure 7.4(c) and
Figure 7.4(d), respectively, an early saturation is appreciated. This is reflected
in the fact that for early iterations, the method decrease the residual at a rate
similar to the other execution of nsLSQR. However at some point, the execution
of nsLSQR that use a 2 bit matrix saturates and the reduction of the residual
is extremely slow. Numerically, the residual is decreased at each iteration but
at small quantities that are almost imperceptible. Even the combination 2− 2
achieve an early saturation for the Sparse problem I.

• For the Normal problem, represented in Figure 7.4(a), a similar results can be
appreciated. Its result show how the convergence curve decrease faster when
more bits are used for the quantized approximation.
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(b) Test case Uniform matrix
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(c) Test case Sparse problem I
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(d) Test case Sparse problem II
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(e) Test case Dense problem I
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(f) Test case Dense problem II

Figure 7.4: Relative error (7.4) of the nsLSQR method for the different test cases,
achieved at each iteration. The type of marker defines a specific configuration of bits
to quantize a matrix.

7.5 Comparison between nsLSQR and GMRes

In section 4.4, the relationship and differences between GMRes and nsLSQR were
presented. In particular, we showed that both methods use the same Krylov subspace
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and that the main difference is in the inner linear least-square problem solved. These
numerical experiments complement the theoretical analysis included in chapter 4.3.

In nsLSQR, as a linear least-square solver, the problem solved is defined by (4.8),
if we consider a non-zero regularization parameter. In general, to use GMRes to
solve a least-square problem, we can solve its least-square problem. However, since
we are using a quantized matrix for the transpose Jacobian matrix, we cannot use the
normal equations directly. As shown in 4.4, the equivalent of the normal equations
for the quantized matrix is given by (4.16). This would be what GMRes would solve.
Therefore, although they use the same Krylov subspace to approximate a solution,
the computed approximation does not need to be same, since the original problem
and the inner least-square problem that need to be solved differs. To show this, we
will use the Dense problem I.
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(a) Least-square residual for nsLSQR and
GMRes.
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(b) Relative error between an approximated
solution using LSQR and the approximated
solution computed at each iteration using
nsLSQR and GMRes.

Figure 7.5: Results obtained using GMRes and nsLSQR to solve the same test
problem. Different markers represent a combination of a method and a specific
number of bits for the quantized matrix. For visualization purpose, the plot begins
at the 20th iteration and the markers are included every two iterations

Figure 7.5 shows the results obtained when using GMRes and nsLSQR to solve
the same problem. We remark again that even when the problem is the same, the
path to pursue the solution differs. If yk is the current computed solution, then the
Figure 7.5(a) shows the following relative residual

‖F(xi)− J(xi) yk‖
‖F(xi)‖

,

at each iteration, for GMRes and nsLSQR. Figure 7.5(b) shows the following result,

‖∆x− yk‖
‖∆x‖

,
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where ∆x is a computed solution using a matrix-free LSQR, and yk is the k-th
approximated solution of GMRes or nsLSQR. As shown in 7.5(a), the residual com-
puted at each iteration is similar for each method. A further difference is noted
in Figure 7.5(b), which shows how the difference between the computed solutions
increases with each new iteration. Although the difference is small, Figure 7.5 shows
that effectively there is a difference in the computation of the solution between both
methods, as expected given the results obtained in section 4.5. In both experiments,
the performance of the nsLSQR method is slightly better compared to GMRes. We
note that in Figure 7.5(a) the configuration with a lower value of the relative least-
square residual is effectively nsLSQR with a quantization of 2 bits. In Figure 7.5(b)
we observe that the best outcomes come from using nsLSQR with one layer of 2 bits
and 3 layers of 2 bits. In all cases, nsLSQR outperforms GMRes.

7.6 Memory usage of nsLSQR and LSQR

In this section, we will explain the experiment realized to show the difference in
the memory requirements and execution time between LSQR and nsLSQR. This is
indeed, an important question since we need to visualize what is gained and what is
the cost of using nsLSQR instead of LSQR.

The result of this section must be connected with the outcomes of section 7.4,
where we studied numerically the effect of using a quantized approximation with a
different number of bits by changing the number of layers. As shown in section 7.1
and 7.2, we observed that if we use more bits per coefficient of the quantized matrix,
we obtain a better approximation. However, using more bits will require more mem-
ory, as explained in section 5.4. Thus, there is a trade-off between using less-memory
and getting an early saturation of the relative residual or faster convergence.

In this experiment, nsLSQR with different bit usage will be compared against
LSQR. To be precise in the use of LSQR in this numerical experiment, we need to
explicitly describe the two approaches we will use to solve a least-square problem.
Since the context of the least-square solver is to be used in the Levenberg-Marquardt
solver, there are some constrains. For instance, we do not have the Jacobian matrix
but only its function F. These two approaches are the following:

(i) Build and then explicitly store an approximation of the Jacobian matrix J .
Since we do not have explicitly the Jacobian matrix, we will approximate it
using a finite difference approximation for each column, which is easy to obtain
using the canonical vectors. Since the LSQR algorithm requires a small amount
of memory Paige and M. A. Saunders 1982c, the total memory usage of this
approach is mainly determined by the memory required for the explicit storage
of the approximated Jacobian matrix. This will be denoted as Explicit Jacobian
LSQR in our experiment.

(ii) Use of a finite difference approximation to compute the Jacobian matrix-vector
product, and use a matrix-free approximation for the product of the transpose
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of the Jacobian matrix and a vector Sanhueza and Torres 2017. This product
is computed as,

JT (xi)w ≈
n∑
i=1

〈J(xi)qi,w〉qi,

where qi for i ∈ {1, 2, . . . , n} is an orthonormal basis for Rn. In our case, the
canonical basis is used. The memory usage of this approach is considerably
less than the previous approach since the Jacobian does not need to be stored.
However, this is a more computational intensive approach since it requires
several matrix-vector products and function evaluations. This is what before
we called Matrix-free LSQR. We have repeated the definition of Matrix-free
LSQR for completeness.

It is important to mention that the quantized approximation of the Jacobian
matrix requires less memory than the explicit Jacobian matrix, but the computa-
tional cost of a matrix transpose-vector product is higher using our compression
and decompression method, as explained in section 5.3. To compare LSQR with
nsLSQR, considering the two approaches presented, we solve the same problem and
plot the computation time vs the memory requirements needed by each method. In
this case, we solved the Dense problem I, i.e. the extended trigonometric function.
The dimension of the Jacobian matrix here is 51200× 32000, which requires approx-
imately 13 [GB] for full storage. We use here a smaller matrix than before because
we need to store it explicitly, which was not needed before. The parameters for
nsLSQR consider five quantization matrices. The matrices use 2, 4, 8, 16 and 32 bits
per coefficient, respectively. All methods are iterated 50 times.
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Figure 7.6: Theoretical memory usage and execution time of nsLSQR and two ver-
sions of LSQR. The memory used and the execution time required are normalized
by the outcomes obtained by the two versions of LSQR used.

In Figure 7.6 we observe the outcome of this numerical experiment. As high-
lighted before, the Explicit Jacobian LSQR algorithm is the one that uses the great-

80



CHAPTER 7. NUMERICAL EXPERIMENTS

est amount of memory but, at the same time, it is the fastest. Its high memory
requirement is due to the explicit storage used, and its low computational time is
due to that its matrix-vector product is faster since the matrix is explicitly available.
However, recall that in this numerical experiments we were able to use the Explicit
Jacobian LSQR since the problem was relatively small. For larger problems, this
is unfeasible. On the other hand, the Matrix-free LSQR is the algorithm that uses
the least amount of memory, but it has one of the longest execution times. This is
due to the high computational cost of computing the matrix-free transpose of the
Jacobian matrix times a vector. Note also that the execution time using a quantized
matrix of 32 bits is higher than a matrix-free approach. This is mostly due to the
overhead of the implementation of the quantization method. In particular, since
our quantized implementation has a maximum of 8 bits per coefficient, to compute
a 32 bit quantized matrix we use four layers of 8 bits, which adds an additional
complexity to the procedure. For all the configurations of nsLSQR, we clearly ob-
serve that the higher the number of bits used, the more time it needs. This is also
mainly related to the overhead required in the quantization procedure. Although
using fewer bits for quantization reduces considerably the execution time, results for
chapter 7.4 show that the combination of bits used in the quantized matrix affects
directly the performance of nsLSQR. For instance, using one layer of 2 bits may be
faster but it may saturate the relative residual obtained by nsLSQR early, as show
in section 7.4. Therefore, there is a trade-off between a possible early saturation of
the relative residual and having a faster computation.

7.7 Performance of lm-nsLSQR method

This last section of experiments will focus in the missing part of our thesis: the
nonlinear solver. As explained in chapter 3 and chapter 6, our method is based on the
Levenberg-Marquardt method. The main issue of this method to be used in large-
scale problem is the solution of the inner least-square. However, the effectiveness
of the quantized approximation and nsLSQR was showed in previous experiments.
Therefore, the only missing part is to combine all methods proposed in this thesis
to build the nonlinear solver.

The lm-nsLSQR method was used over all of the test cases, even the linear ones.
Recall that even that Levenberg-Marquardt is used for nonlinear problems, is capable
of solving linear ones.

In this case, we have enough information from previous experiments to select a
bit combination for the quantized matrix. In particular, in this experiments, the
quantized matrix was constructed using three layers: two layers of 3 bits and one
layer of 2 bits.

For the parameters for the nsLSQR method inside the lm-nsLSQR method, the
method was executed for 20 restarts and 500 iteration per restart. The relative
residual tolerance for the nsLSQr method was set to 10−8 and the tolerances for sat-
uration and progress solution to 10−10, to have some guarantee of the precision in the
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computed solution. nsLSQR was stopped if no progress in the solution was achieved
for 30 iterations, and for the saturation stopping criteria, the last 100 residual were
considered. The damping parameter is given by the Levenberg-Marquardt method.
For the initial guess, the zero vector was always used.

In general, the Levenberg-Marquardt method or similar Newton-based methods
converge faster and in less iteration if the initial guess is close to the solution. How-
ever, modifying accordingly the damping factor, the Levenberg-Marquardt should
be capable of converging to a local minimum even if the initial guess is far from
the solution. For this experiment, the initial guess was a vector whose coefficients
where uniformly distributed in [−1, 1] to use a general vector not related to the
problem and thus, not necessarily close to the solution. The tolerance for the rel-
ative residual was set to 10−6. For the progress stopping criteria, if the relative
error of the last 100 computed solution is less than the tolerance 10−10, the method
also stops. The number of iterations was set to 10000, as a safe-guard method.
As for the damping factor updating parameters, the following values were used:
λ0 = 10−2, λmin = 10−10, ωd = 0.1, ωi = 10, µ0 = 10−4, µl = 0.25 and µh = 0.75.
The values of µ0, µl and µh comes from Moré 1978. The value of λ0 and λmin are
arbitrary, although a better choice for an starting λ0 may reduce the number of it-
erations. Finally, the values for ωd = 0.1 and ωi = 10 are taken from Marquardt
1963.

Figure 7.7 shows the result of the experiment. Each plot shows the residual of
‖F(xi)‖
‖F(x0)‖ at each iteration. Note that plots in Figure 7.7(c) and Figure 7.7(d) does
not converge to 0, since these problems are not zero-residual. However, it reach a
local minimum of the residual function. The rest of problems are zero-residual and
is expected to converge to zero, which is the case in our results, where the tolerance
10−6 is achieved for those problems.
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(e) Test case Dense problem I
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(f) Test case Dense problem II

Figure 7.7: Normalized residual of the nonlinear system of equation, at each iteration
of lm-nsLSQR, for the different test cases.
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Conclusion

The origin of this thesis proposal and topic was the solution of a large-scale overde-
termined nonlinear system of equation. The work done in Sanhueza and Torres
2017 was a first step in the fulfillment of that objective. In that previous work,
a fully-matrix free was developed and initially, the idea was to couple the matrix-
free approximation with a Newton’s method. However, although using a minimum
amount of memory, its high computational time make the method impractical in
a lot of scenarios, where the nonlinear function to be solved has a medium to high
computational cost for a single evaluation. This thesis is an evolution of the previous
work, and the main objective was achieved.

In the first sections, from section 1 and section 2, the problem and different
method how to solve it were presented. Although different method exist, each one
with different properties, many of them has requirements that are unavailable in a
general overdetermined nonlinear system of equations, i.e. the availability of the
nonlinear function only makes some components, like the gradient of the residual of
the nonlinear function, hard to compute. This thesis proposed a nonlinear solver
based on the Levenberg-Marquardt method, which was named as lm-nsLSQR. The
Levenberg-Marquardt method use our proposed nsLSQR method, which was de-
scribed in section 4, to solve its inner least-square problem. The main property of
the proposed nsLSQR method is that does not require the exact product of the trans-
pose of the linear matrix but only an approximation of it. To propose a even more
robust method, a quantized approximation was proposed in section 5 that approxi-
mate the Jacobian matrix using a restricted-memory approach. This approximation
use the Quantization technique to compute a low-memory approximation of the Ja-
cobian matrix. This quantized approximation is used in nsLSQR to approximate the
product of the transpose of the Jacobian matrix and a vector.

From section 1 to section 6, the aim is to present the mathematical development,
equations and expression along with the algorithms required to visualize the proposed
methods. In section 7, several numerical experiments were performed with the aim to
validate the proposed components, i.e. validates the quantized approximate, the per-
formance of nsLSQR as a linear least-square solver for large-scale problems, and the
lm-nsLSQR method as a competitive solver for large-scale nonlinear overdetermined
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problems. The first experiments performed tested the accuracy of the quantized ma-
trix in two context, as an approximated matrix and in the product of its transpose
and a vector, with respect to the original matrix. Our experiments showed that the
quantized approximation can obtain a low error for both application, if parameter
are selected optimally. Moreover, relative errors close to 10−6 are easy to obtain

using around the
1

3
of the memory required by a full double precision matrix. In

some problems, achieving small errors is possible using even less memory.

Later, the performance of the nsLSQR using a quantized matrix was tested.
Two experiments were performed. The first one compared LSQR against several
execution of nsLSQR with different quantized matrices, all of them using a total
of 8 bits per coefficient. The second one compared LSQR against nsLSQR using
quantized matrices whose bit usage varies from 2 bits to 6 bits. The performed tests
shows interesting results. The most important one was that nsLSQR, combined with
the quantized approximation, can handle a large-scale least-square problem using
considerably less memory than a common least-square solver with a fully stored
matrix. nsLSQR quickly reduce the residual of the least-square problem, even when
using quantized matrices of around 6 bit in total. Even more, in our all test cases,
when using 8 bits for the quantized matrix, nsLSQR showed almost no difference
compared with LSQR. This is a very important result, since a quantized matrix
using 8 bits per coefficient requires 8 times less memory than a fully double-precision
matrix. That is, if a matrix of a least-square problem requires 32GB of storage, the
problem can be solved by nsLSQR using around 4GB, which probably will fit in
almost all machines around there. However, an important results also obtained in
the experiments of subsection 7.4, is that the convergence of nsLSQR can be harmed
if the approximation matrix performs poorly. In particular, if the quantized matrix
uses too few bits, the nsLSQR may converge extremely slow or saturate too early
the residual. Although this early saturation and slow-convergence was not observed
in all our test cases, it need to be considered before setting the parameters for the
quantized matrix.

If the quantized matrix produce an approximation whose error is relatively small,
one is tempted to use it directly to solve the normal equations of the least-square
using a more classical or traditional linear solver. In section 4 we proved that the
nsLSQR reduce the residual of the least-square monotonically and also that the
residual computed at the k-th iteration of nsLSQR is a lower bound of the residual
computed at the k-th iteration computed by GMRes using the approximated nor-
mal equations. This is an important claim and this was tested in the experiment
showed in subsection 7.5. Although we only tested this using one of our test cases
and the difference is small, the results also showed that effectively the residual ob-
tained by nsLSQR is smaller than the one obtained using GMRes. Although it was
mathematically proved, the experiment was realized to confirm numerically this find.

In subsection 7.6 an important comparison was tested. For a large-scale problem,
we know that is unfeasible to store the matrix explicitly. However, this is also
the faster approach to use, for instance, the LSQR method. On the other hard,
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one option is to use a fully matrix-free approach, using a method similar like the
used in Sanhueza and Torres 2017. However, it is known that such approximation
demands a high computational time. In subsection 7.6, an experiment was performed
to visualize where nsLSQR can fit between this two sides of LSQR. The obtained
results showed that effectively LSQR using an explicitly stored matrix performs faster
than nsLSQR. However, nsLSQR use considerably less memory. On the other hand,
nsLSQR also use more memory than a fully matrix-free LSQR. However, depending
on how many bits are used for the quantized matrix, in general nsLSQR performs
much faster than a matrix-free version of LSQR. In general, using 8 bits, which
was the number of bits used in experiment presented in subsection 7.3, performs
considerably faster than a matrix-free LSQR and using much less memory. The
experiment showed how nsLSQR fits between these two approaches for using LSQR,
how there is a trade-of in memory and execution time in the quantized approximation
and finally, how nsLSQR is an interesting option for solving large-scale problem,
considering the memory required and the computational execution time demanded.

Last, but not least, the final experiment, presented in subsection 7.7, showed
the performance of the lm-nsLSQR solver. Since the effectiveness of nsLSQR was
already showed, is expected that the proposed Levenberg-Marquardt method can
minimize at each iteration the nonlinear problems used as test cases.

To summarize, we successfully developed

• An effective approximation procedure to approximate the Jacobian matrix.
In particular, this matrix con be used in nsLSQR without compromising the
convergence of the least-square solver.

• A linear least-square solver capable of handling large-scale matrices using the
proposed quantized approach.

• A nonlinear solver that combined with our quantized approximation and the
nsLSQR can handle effectively large-scale nonlinear problems.

Thus, we successfully accomplished the goals of this thesis.
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