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RESUMEN
En general, la representación de sistemas de tiempo continuo se realiza mediante

ecuaciones diferenciales lineales o no lineales. Actualmente, los dispositivos digitales,
que solo operan en tiempo discreto, son los encargados de interactuar con los sistemas
de tiempo continuo. Por lo tanto, los modelos muestreados son necesarios. La
precisión de estos modelos depende, entre otras cosas, del método numérico utilizado
para resolver la ecuación diferencial. Entonces, siguiendo la idea anterior, el interés
es estudiar el efecto del comportamiento entre muestras de las señales y del método
de integración numérica aplicado sobre el modelo de tiempo discreto resultante.

Las suposiciones hechas o el conocimiento que se tiene sobre las señales juega
un papel esencial en el modelo de datos muestreados obtenido. En particular, la
entrada al sistema generalmente se considera constante entre muestras, es decir,
que es generada por un retentor de orden cero. Sin embargo, se pueden emplear
dispositivos de orden superior para definir la entrada. Por ejemplo, las funciones
B-spline se pueden usar en el retentor como una función de interpolación para modelar
la suavidad de la entrada del sistema.

Por otro lado, la representación exacta de modelos de datos muestreados para
sistemas de tiempo continuo no siempre está disponible. Por lo tanto, se desarrollan
modelos aproximados, considerando que la estrategia de integración aplicada impacta
directamente en el modelo de datos muestreados obtenido. En el caso lineal, aparecen
ceros adicionales debido al proceso de muestreo. La ubicación de estos ceros de
muestreo se puede caracterizar cuando el período de muestreo tiende a cero. Además,
el interés es extender estos resultados a una clase de sistemas no lineales escritos en
forma normal.

En esta tesis establece la relación entre la interpolación, la estrategía de inte-
gración numérica y los modelos de datos muestreados para sistemas lineales y no
lineales. Específicamente, se estudia el impacto del retentor basado en funciones B-
spline y los métodos numéricos, tales como Runge-Kutta o series de Taylor truncadas,
en la caracterización asintótica de los ceros de muestreo, para el caso lineal, y las
dinámicas cero para sistemas no lineales. La precisión de los modelos aproximados
obtenidos se mide utilizando el error relativo y el error de truncamiento local para
sistemas lineales y no lineales, respectivamente. Además, exploramos cómo explotar
los modelos de datos muestreados aproximados para el diseño de una ley de control
de tiempo discreto universal para sistemas lineales estables.
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ABSTRACT
In general, the representation of continuous-time systems is made through

linear or nonlinear differential equations. Nowadays, digital devices, which can only
operate in the discrete-time domain, perform the interaction with continuous-time
systems. Therefore, sampled-data models are needed. The accuracy of these models
depends, among other things, on the numerical method applied to solve the equation.
Following the above idea, the interest is to study the effect of the signals’ intersample
behavior and the numerical integration on the resulting discrete-time model.

Knowledge or assumptions made on the signals play an essential role in the
obtained sampled-data model. In particular, the input to the system is usually
considered to be piecewise constant, i.e., generated by a zero-order hold. However,
higher-order devices can be used to define the input. For example, B-spline functions
can also be used in the hold device as an interpolating function to model the
smoothness of the system input.

On the other hand, the exact representation of sampled-data models for
continuous-time systems is not always available. Hence, approximate models are
developed, considering that the applied integration strategy directly impacts the
obtained sampled-data model. In the linear case, extra zeros appear due to the
sampling process. The location of these sampling zeros can be characterized as the
sampling period approaches zero. Furthermore, the interest is to extend these results
to a class of nonlinear systems written in normal form.

This thesis establishes the relationship between interpolation, numerical inte-
gration, and sampled-data models for linear and nonlinear systems. To be specific,
we study the impact of the B-spline generalized hold and numerical methods such
as Runge-Kutta or Truncated Taylor Series expansion on the asymptotic character-
ization of the sampling zero polynomial for the linear case and the sampling zero
dynamics for nonlinear systems. The accuracy of the approximate models obtained
is measured by using the relative error and the local truncation error for linear and
nonlinear systems, respectively. Moreover, we explore how to exploit the approximate
sampled-data models for the design of a universal discrete-time control law for stably
linear systems.
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CHAPTER 1. INTRODUCTION

1 | INTRODUCTION

1.1 Sampling and Sampled-Data Models
Most of real processes evolve in continuous-time. In practice, for control or

system identification, it may be useful to discretize them. Therefore, sampling and
sampled-data models have been investigated for linear and nonlinear deterministic
systems [1–10] and linear and nonlinear stochastic representations [2, 11–16].

A sampled-data model is assembled by a continuous-time system interfaced
by a digital/analog converter and an analog/digital sensor. Typically, the sampling
process is represented, as shown in Figure 1.1 [17]. This kind of hybrid system and
the associated discrete-time model are used in control, parameter estimation and
simulation [2].

Hold 
Device

Continuous-time
System 

Anti-Aliasing
Filter

Figure 1.1: Scheme of a sampled-data system

The elements of a sampled-data systems are shown in Figure 1.1: the hold device,
which is used to convert the discrete-time sequence {uk} into a continuous-time input
u(t). The plant, which defines the real system through a set of linear or nonlinear
differential equations. Then, the output ȳ(t) is processed, before taking samples,
by an anti-aliasing filter. Finally, the sampler device, that creates a discrete-time
sequence {yk} by instantaneous sampling at specific time instants {tk} with sampling
period h [2, 17].

Typically, discrete-time systems are represented in the z-domain using the shift
operator q, given by

quk = uk+1. (1.1)
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1.1. SAMPLING AND SAMPLED-DATA MODELS CHAPTER 1. INTRODUCTION

and the poles pi of the continuous-time are mapped to the discrete-time domain as
follows,

zi = ehpi (1.2)

The above idea reflects that, for a small sampling period, the poles of the
sampled-data model tends to the marginal location z = 1. Besides, for continuous-
time systems with relative degree greater than or equal to two, the zeros that appear
due to the sampling process converge, as the sampling rate approaches zero, to either
marginally stable or unstable locations, i.e., for the fast sampling case, shift operator
models cannot be directly related to the continuous-time model.

As a consequence, one could be interested in studying representations in the
γ-domain, using the delta operator δ [1, 18–20] defined in (1.3) because for high
sampling periods, there is a close relation to the continuous-time domain (1.4). This
alternative representation presents convergence and numerical advantages over shift
operator models [19,21,22].

δ = q − 1
h

=⇒ γ = z − 1
h

(1.3)

δuk = uk+1 − uk
h

(1.4)

δuk ≈
du(t)
dt

∣∣∣∣
u(t)=uk

; h ≈ 0 (1.5)

Based on (1.4), models in z-domain and γ-domain are related as follows:

Yq(z) = 1
h
Yδ(γ)

∣∣∣∣
γ= z−1

h

, (1.6)

Yδ(γ) = hYq(z)
∣∣∣∣
z=hγ+1

. (1.7)

The stability region of models in the shift operator is a circle of radius 1, whilst
the stability region corresponding to δ-operator models is a circle of radius 1/h as
shown in Figure 1.2. In addition, the poles in the δ-operator are given by

γi = ehpi − 1
h

. (1.8)

The above idea implies that when using incremental models in the γ-domain,
the discrete-time poles converge to locations that depend on h and, as the sampling
period approaches to zero, they converge to the corresponding continuous-time poles.
Since incremental models provide a close connection between continuous and discrete-
time domains, this kind of representation may be useful in applications such as
control [21–26].
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1.1. SAMPLING AND SAMPLED-DATA MODELS CHAPTER 1. INTRODUCTION

00 1

Figure 1.2: Comparison of the stability regions when using the shift operator q and the
incremental operator δ.

0

Figure 1.3: Comparison of the stability regions for discrete-time models and
continuous-time models.

Notice that there is a direct transformation between the continuous-time poles pi
and their discrete-time counterpart (1.2)-(1.8). However, for the continuous-time zeros,
we only have a simple transformation when the sampling period approaches zero [27].
Hence, in [28], a novel relationship between real and sampled-data zeros, independent
of the sampling period, is proposed. On the other hand, non-uniform sampling
has been considered in [29–31]. In addition, poles and zeros can be transformed
into the z-domain using the matched pole-zero method (MPZ) [32, 33]. The MPZ
mapped all the poles and zeros as shown in (1.2). The later technique turns out
to be simpler than other methods frequently applied, and it is preferred for the
discrete-time approximation of continuous-time controllers [34, 35].

The sampling process naturally implies loss of information. For linear systems,
it is possible to obtain the exact sampled-data model as long as one makes appropriate
assumptions on the nature of the signals. The usual assumption about the input to
the system is that, between samples, it behaves piecewise constant, i.e., it is generated
by a zero-order hold (ZOH).

On the other hand, approximate models may be preferred because they are
related more directly to the parameters of the real system, they can be easier to
obtain than the exact sampled-data model, they may require fewer computations and
they are a consequence of the applied integration strategy [36]. Thus, approximate
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1.2. PROBLEM STATEMENT CHAPTER 1. INTRODUCTION

models may give further insights about the discretization process. As a consequence,
the analysis of the accuracy of approximate discrete-time models is needed. In
particular, for the linear case,it is measured using the relative error in frequency
domain [36–38].

The nonlinear sampled-data theory is less developed compared to the linear
case since it implies difficulties in solving nonlinear differential equations. The exact
model typically cannot be developed. Thus, the goal is to obtain approximate models
that are accurate in some sense. Then, the accuracy of such models depends on
the applied integration strategy, which can be affected by the assumptions made
on the smoothness of the input. Similarly to the linear case, there is an interest in
quantifying the accuracy of these models using the local truncation error in the time
domain [39–43].

Besides, the intersample behavior of the input can be modeled by higher-order
hold devices. For example, B-splines functions can be used in a generalized hold
with this aim. Therefore, it is possible to analyze the impact of such selection in the
resulting sampled-data model. In particular, we expect to provide further insights into
the discretization process: how the smoothness of the input signal and the applied
integration strategy could impact in the asymptotic sampling zero polynomials, for
the linear case, and in the asymptotic zero dynamics, for nonlinear systems.

1.2 Problem Statement
In the current thesis, we focus on developing sampled-data models for linear

and nonlinear systems. The aim is to study issues such as the link between the
corresponding discrete-time model, the smoothness of the signals, and the applied
numerical integration method. The accuracy of the obtained approximate models
and the asymptotic relation between linear and nonlinear sampled-data models is
also studied. Besides, we explore the use of discrete-time linear models for the design
of a simple control law.

This thesis addresses the following hypotheses:

• Accurate sampled-data models can be obtained for continuous-time dynamical
systems, under assumptions or knowledge about the signals.

• Extra zeros and zero dynamics that appear in the discrete-time model as a
consequence of the sampling process can be interpreted due to the plant’s char-
acteristics, the interpolation assumptions, and the applied numerical integration
techniques.

• It is possible to establish a relationship between the hold used to generate the
continuous-time input and the integration strategy proposed.

• It is possible to design a wide-bandwidth control law for stably invertible linear
system based only on the continuous-time relative degree and high-frequency
gain.

Universidad Técnica Federico Santa María, Department of Electronic Engineering 4



1.3. OBJECTIVES CHAPTER 1. INTRODUCTION

1.3 Objectives
This project’s primary goal is to study the relationship between sampled-data

models, numerical integration, and interpolation. The specific objectives are the
following:

1. To express the generalized hold in terms of B-splines functions.

We consider the case when only the discrete-time input sequence is known.
Thus, the smoothness of the continuous-time system input is, in principle,
unknown. In this case, B-spline functions can be used in the generalized hold to
model the input or to describe an assumption about its intersample behavior.

2. To establish the connection between the interpolation assumption and the
presence of sampling zeros and sampling zero dynamics.

The interest is to characterize the sampling zeros (for linear systems) and
the zero dynamics (in the case of nonlinear systems), as the sampling period
approaches zero, for different interpolation assumptions.

3. To establish the link between numerical integration techniques and the obtained
approximate sampled-data models.

The interest is to evaluate the impact of the numerical integration in the
discrete-time model. In this context, time-discretization when using numerical
methods such as Runge-Kutta or Truncated Taylor series expansion allows to
gain further insights into the sampling process, and both can be applied for
linear and nonlinear systems.

4. To explore how to exploit approximate sampled-data models in the design of a
linear discrete-time control law.

Our interest here is to design a control law that stabilizes the real system
by knowing only the relative degree and the continuous-time system’s high-
frequency gain. Moreover, we expect to analyze the impact of including, or not,
knowledge about the asymptotic sampling zeros in the feedback law.

1.4 Thesis Organization and Contributions
Following the ideas presented above, the current thesis gives further insights

about the discretization process for linear and nonlinear systems. It can be separated
into two parts: the former covers sampled-data models for linear systems, while the
latter extends the nonlinear case results. The structure of the thesis is as follows:

Chapter 1: In this chapter, we present the thesis overview: motivation,
hypothesis and objectives. Also, a brief description of the main contribution is
given.
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1.4. THESIS ORGANIZATION AND CONTRIBUTIONS CHAPTER 1. INTRODUCTION

Chapter 2: In this chapter, a literature review is presented. We first introduce
different hold devices frequently used to model the continuous-time input to the
system. Then, a background on B-Spline Functions and their relationship with
the well-known Euler-Frobenius polynomials is given. Then, based on the holders
previously defined, we present the most common representations of discrete-time
models under different input signal assumptions. Moreover, for the linear case, the
exact sampled-data model is given. In particular, we study the zeros (linear case)
and zero dynamics (nonlinear case) of the corresponding sampled-data models for
fast sampling rates.

Chapter 3: We begin this chapter by presenting a novel equivalence for a
B-spline generalized hold, which will be used to model the input to the system
for linear and nonlinear models. One of the advantages is that this hold provides
different assumptions about the input smoothness since it is defined based on B-spline
functions. In fact, it can be interpreted, for example, as zero, first or second-order
hold when varying the order of the spline. Moreover, this hold is shown to be related
to the well-known Euler-Frobenius polynomials, which will be useful in the asymptotic
characterization of sampling zeros and zero dynamics.

Then, we develop exact and approximate (linear) discrete-time mod-
els when using Runge-Kutta methods as an integration strategy. We first
consider the case when the expansion order is greater than or equal to the continuous-
time relative degree r and hold order `. Then, the exact sampled-data model turns
out to be obtained. On the other hand, we consider the case when the expansion
order is lower than r + `, leading to an approximate model. For both models, the
polynomial of the sampling zeros are asymptotically characterized for fast
sampling rates. Finally, a simulation study is presented to quantify the relative
error in the frequency domain between the exact and the approximate model.

Chapter 4: In this chapter we propose a simple sampled-data control
law based only on the continuous-time relative degree and high-frequency
gain. We first analyze the continuous-time case to set ideas. Then, we extend the
results to the discrete-time domain where two approximate models are studied: the
first model is designed considering that the closed-loop bandwidth is chosen to be
significantly less than the Nyquist rate. In contrast, the second model covers the case
when the closed-loop bandwidth is near the Nyquist frequency.

Chapter 5: In this chapter, we study a class of nonlinear systems that can
be written in normal form. Thus, we develop an approximate sampled-data
model based on the B-Spline generalized hold and using truncated Taylor
series expansions as a numerical method. The corresponding discrete-time
system includes extra zero dynamics that can be characterized as the sampling period
approaches zero. In fact, it is shown that for fast sampling rates, the asymp-
totic zero dynamics converge to the asymptotic sampling zeros found in
the linear case. Moreover, we study the model’s accuracy through the
local truncation error associated with the state vector.
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1.5. ASSOCIATED PUBLICATIONS CHAPTER 1. INTRODUCTION

Chapter 6: This chapter details the conclusion of the current research work,
summarizes the contributions of the thesis and present some possible ideas for future
work.

1.5 Associated Publications
The results presented in this thesis have been published in journal and conference

papers as listed bellow:

• Journal Papers:

1. C. Sánchez and J.I. Yuz, «On the relationship between spline interpolation,
sampling zeros and numerical integration in sampled-data models,» Control
& System Letters, vol. 128, pp. 1-8, 2019.
doi:10.1016/j.sysconle.2019.04.006.

2. C. Sánchez and J.I. Yuz, «Approximate Nonlinear Discrete-Time Models
Based on B-Spline Functions», IEEE Access, vol. 8, pp. 143366-143374,
2020.
doi:10.1109/ACCESS.2020.3013829

• Conference Papers:

1. C. Sánchez y J.I. Yuz, «B-spline Generalized Hold for Nonlinear Sampled-
Data Systems,» 58th IEEE Conference on Decision and Control (CDC),
2019.

2. C. Sánchez, G.C. Godwin, J.I. Yuz, M. Serón y D. Carrasco, «Towards a
Simple Sampled-Data Control Law for Stably Invertible Linear Systems,»
IFAC World Congress, 2020.
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CHAPTER 2. LITERATURE REVIEW

2 | LITERATURE REVIEW

2.1 Continuous-Time Linear Systems
We are interested in obtaining the sampled-data version of the linear single-input

single-output (SISO) system given in (2.1).

G(s) = B(s)
A(s) = b

(s− z1) · · · (s− zm)
(s− p1) · · · (s− pn) ; n > m, (2.1)

where the roots of zi and pj are the continuous-time zeros and poles, respectively,
and r = n−m is the relative degree. The system (2.1) can be written in state-space
from as

ẋ(t) = Ax(t) +Bu(t) (2.2a)
y(t) = Cx(t), (2.2b)

where x(t) denotes the system state vector and the matrices are of appropriate
dimensions. Thus, the system transfer function is given by

G(s) = L{y(t)}
L{u(t)} = Y (s)

U(s) , (2.3)

where L{·} is the Laplace transform defined as follows [44,45]:

L{f(t)} =
∫ ∞

0
f(t)e−stdt = F (s) (2.4)

and the inverse Laplace transform is given by

L−1{F (s)} = 1
2πj

∫ σ+j∞

σ−j∞
F (s)estds (2.5)

Then, the system transfer function (2.3) can also be represented as:

G(s) = C(sI − A)−1B (2.6)

= Cadj(sI − A)B
det(sI − A) . (2.7)

Universidad Técnica Federico Santa María, Department of Electronic Engineering 8



2.2. THE HOLD DEVICE CHAPTER 2. LITERATURE REVIEW

The zeros of (2.7) can also be written as [46,47]

N(s) = det
[
sI − A −B
C 0

]
. (2.8)

Equation (2.8) will be a key tool in the following chapters.

2.2 The Hold Device
The process of discretization depends on knowledge or assumptions about the

intersample behavior of the signals, because these are in principle unknown. In
particular, the interpolating function chosen to model the system input plays a key
role in the discrete-time model. On the other hand, the corresponding sampled-data
model includes extra zeros (linear systems) or zero dynamics (nonlinear case) with
no counterpart in the continuous-time domain. Thus, there is an interest in studying
the impact of the hold device in the location of these sampling zeros and sampling
zero dynamics.

The usual assumption is that, between samples, the signal is piecewise constant,
i.e., is generated by a zero-order hold (ZOH) (see Figure 2.1), defined by

u(t) = uk; t ∈ [kh, kh+ h[ (2.9)

where tk = kh is the sampling instant, h is the sampling period and we have used
the notation u(kh) = uk.

20

(a) (b)

Figure 2.1: Impulse response for a Zero-Order Hold (Figure 2.1a) and a piecewise
constant signal (Figure 2.1b).

Under the ZOH assumption, the discrete-time zeros may converge to either
marginally stable or unstable locations. Thus, one can be interested in studying the
effect of higher-order hold devices, such as first-order hold (FOH) and fractional-order
hold (FROH). The FOH is defined by:

u(t) = uk + uk − uk−1

h
(t− kh); t ∈ [kh, kh+ h[ (2.10)
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2.2. THE HOLD DEVICE CHAPTER 2. LITERATURE REVIEW

u(t) = uk−1 + uk − uk−1

h
(t− kh); t ∈ [kh, kh+ h[ (2.11)

where the first device is based on a linear extrapolation and the second on a linear
interpolation [48, 49]. According to [48], when using second or higher-order systems,
the interpolating FOH provides a smoother output than the extrapolating FOH and
the ZOH. Otherwise, both FOHs have shown to improve the ZOH since the output is
smooth and has a frequency response without phase error.

A FROH [50,51] is given by

u(t) = uk + β
uk − uk−1

h
(t− kh); t ∈ [kh, kh+ h[ (2.12)

20

1

2

-1

(a)

20

1

(b)

20

1

(c)

Figure 2.2: Impulse response for: Extrapolating First Order Hold (Figure 2.2a),
Interpolating First Order Hold (Figure 2.2b) and Fractional-Order Hold (Figure 2.2c).

Notice that if the parameter β is chosen to be 0, u(t) corresponds to the ZOH
and for β = 1 it turns out to be the extrapolating FOH. It is also of interest to
consider the Laplace transform (2.4) of the hold devices (2.9),(2.10) and (2.12):

HZOH(s) = 1− e−sh
s

(2.13a)

HFOH(s) = (1− e−sh)2 (1 + sh)
hs2 (2.13b)

HFROH(s) = (1− βe−sh)1− e−sh
s

+ β

hs2

(
1− e−sh

)2
(2.13c)
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Other hold devices are based on the traditional holds previously defined to
improve the sampled-data model’s stability or accuracy. For example, in [52], a mixed
fractional order (MFROH) is defined as a combination of FROH and ZOH given by

u(t) =


uk + α

uk − uk−1

h
(t− kh); t ∈ [kh, kh+ ∆h]

uk + α
uk − uk−1

h
(∆h); t ∈ [kh+ ∆h, kh+ h], 0 ≤ ∆ ≤ 1,

(2.14)
where α is a parameter of the hold slope in the interval [kh, hk + ∆h] and ∆ is a
parameter describing the position of slope variation over the interval [kh, kh+∆h] [52].
Also, its Laplace transform is given by

HMFROH(s) = (1− e−sh)(1− α∆e−sh)
s

+ α
(1− e−sh)(1− e−s∆h)

hs2 (2.15)

Notice that for ∆ = 0, u(t) corresponds to the ZOH and for ∆ = 1 it corresponds
to the FROH. In [53, 54] the input is considered to be generated by a backward
triangle sample and hold (BTSH), which is a modification of the ZOH and is defined
as follows

u(t) =


ū(t)
fh

(t− kh); t ∈ ]kh, kh+ fh]

0; t ∈ ]kh+ fh, kh+ h],
(2.16)

where ū(t) is the ZOH (2.9) and f ∈ ]0, 1]. Then, the Laplace transform of (2.16) is
given by

HBTSH(s) = 1− e−shf
s

(
1
shf
− k

f

)
− e−shf

s
(2.17)

20
+

(a)
20

(b)

Figure 2.3: Impulse response for: Mixed Fractional Order Hold (Figure 2.3a) and
Backward Triangle Sampled and Hold (Figure 2.2c).

To conclude this section we present a more general hold device than the
one previous described, namely, a Generalized Hold Functions (GHF) [55–63]. A
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generalized hold can be characterized by its impulse response, which is the continuous-
time output obtained when the discrete-time input is the Kronecker delta δK [k] [1,55].

δK [k] =
 1 k = 0

0 Otherwise.
(2.18)

Then, the continuous-time signal generated by this hold device is given by [2]

u(t) =
∞∑

k=−∞
hg(t− kh)uk, (2.19)

where hg(t) is the impulse response, given by [2, 60]

hg(t) =
 1 t ∈ [0, h[

0 Otherwise.
(2.20)

In fact, ZOH and FOH can be thought of as a particular cases of this hold [2].
As mentioned before, the sampling zeros are function of the hold used to model the
input system and they may converge to unstable locations. Thus, GHF can be used
to assign these zeros to stable locations whether or not the continuous-time system
has non-minimum phase zeros [61].

In [57] a GHF that places sampling zeros to the origin is proposed. Moreover,
in [60] a GHF is used to protect cyber-physical system from the zero dynamics attack
which remains effective if the system in non-minimum phase. However, changing the
location of the zeros can imply an excessively large amplitude of the hold device [61].
In addition, using GHF can lead to sensitivity and robustness difficulties [59, 64].

20

Figure 2.4: Impulse response for a Generalized Hold Functions.

Following the ideas above, one could be interested in designing a generalized
hold to represent assumptions or additional knowledge about the input’s smoothness.
B-splines have been used with this aim ( see, for example, [58, 65]). In this thesis, we
are interested in studying the impact of B-spline generalized hold in the corresponding
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sampled-data model. Firstly, we introduce the Euler-Frobenius Polynomials, which
are defined in the z-domain through the Z- transform (see, for example, [5,66]):

Z{f(t)} =
∞∑
t=0

f(t)z−t = F (z), (2.21)

while the inverse Z-transform is given by

Z−1{F (z)} = 1
2πj

∮
Γ
F (z)zt−1dz. (2.22)

2.2.1 Euler-Frobenius Polynomials
The Euler-Frobenius polynomials are defined as follows

Bp(z) = bp1z
p−1 + bp2z

p−2 + · · ·+ bpp; p ≥ 1 (2.23)

bpk =
k∑
l=1

(−1)k−llp
(
p+ 1
k − l

)
; k = 1, . . . , p (2.24)

Moreover, they satisfy several properties [2, 27, 58,67], as listed below

• The coefficients can be calculated recursively. In fact, bp1 = bpk = 1 and

bpk = kbp−1
k + (n− k + 1)bp−1

k−1; k ≥ 2. (2.25)

• They satisfy the following differential relation

Bp+1(z) = z(1− z)dBr(z)
dz

+ (1 + pz)Bp(z); r > 1. (2.26)

• They coefficients are symmetrical

bpk = bpp+1−k, (2.27)

and they satisfy

Bp(z0) = 0 =⇒ Bp(z−1
0 ) = 0 (2.28)

Bp(z) = zp−1Bp(z−1). (2.29)

We next list the first Euler-Frobenius polynomials

B1(z) = 1 (2.30a)
B2(z) = z + 1 (2.30b)
B3(z) = z2 + 4z + 1 (2.30c)
B4(z) = z3 + 11z2 + 11z + 1. (2.30d)

From (2.30) we can notice that Bp(z) has marginally stable and unstable zeros
for p ≥ 2. This polynomials will be useful in the characterization of the asymptotic
sampling zeros and asymptotic zero dynamics in Chapters 3 and 5.
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2.2.2 Background on B-Spline Functions
B-splines [68–70] are piecewise polynomials functions that are usually smooth,

well-behaved, and continuous everywhere [71]. Moreover, they have minimal support,
i.e., they vanish outside the interval [ti, ti+k[, and they are positive on the interior of
such interval [69].

B-splines are defined for the nondecreasing knot sequence {t1, t2, . . . } at the
sampling instants {kh}. These functions have been used for interpolation, signal
processing, and image reconstruction [71] to identify continuous-time systems based
on non-uniform sampled data [30]. In fact, in [72] a relationship between B-splines
and control theory is established.

An `-th order B-spline is defined as follows

β`(t) =
`+1∑
p=0

(−1)p
`!

(
`+ 1
p

)
(t− ph)`µ(t− ph). (2.31)

where µ(t) is the unit step function:

µ(t) =
 0 t < 0

1 t ≥ 0.
(2.32)

In order to prevent the `-th order B-spline to go 0 as the sampling period is
reduced, a scaling factor 1/h` is included. Thus, we define β̃`(kh) = 1

h`
β`(kh). Then,

the first B-splines are given by

β̃0(t) = µ(t)− µ(t− h) (2.33a)

β̃1(t) = 1
h

(
tµ(t)− 2(t− h)µ(t− h) + (t− 2h)µ(t− 2h)

)
(2.33b)

β̃2(t) = 1
h2

(1
2 t

2µ(t)− 3
2(t− h)2µ(t− h) + 3

2(t− 2h)2µ(t− 2h)− 1
2(t− 3h)2µ(t− 3h)

)
(2.33c)

Figure 2.5 shows the B-splines functions defined above. Moreover, in [30, 73] it
is shown that B-spline functions are related to the Euler-Frobenius polynomials, i.e.,

Z {β`(kh)} = h`

`!
B`(z−1)

z
(2.34)

where B`(z) is the Euler-Frobenius polynomial of order `, given by (2.23)–(2.24).

Lemma 2.1 [105]: Consider the B-spline of order ` defined in (2.31). The i-th
derivative is given by

di

dti
β̃`(t) = 1

hi

i∑
j=0

(−1)j
(
i

j

)
β̃(`−i)(t− jh); i ≤ `. (2.35)
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20

1

(a)
20

1

(b)

20

2

3
(c)

Figure 2.5: Some B-splines functions: Zero-order B-spline (Figure 2.5a) First-order
B-spline (Figure 2.5b) and Second-order B-spline (Figure 2.5c).

Proof: Firstly, we consider the following definition:

B`(s) = L
{
β̃`(t)

}
= 1
h`

(B0(s))`+1 , (2.36)

where B0(s) is the Laplace transform of (2.33a), i.e., the Laplace transform in (2.13a).
Then, we consider the convolution property [58,65]:

β̃`(t) = 1
h
β̃`−1(t) ∗ β̃0(t). (2.37)

We establish the proof by induction. For i = 0 the result is trivial. Then,
for i = 1 we have that the Laplace transform of the first derivative can be written
as,

sB`(s) = 1
h
B`−1(s)(1− e−sh). (2.38)

Applying the inverse Laplace transform to (2.38), we have

d

dt
β̃`(t) = 1

h

(
β̃`−1(t)− β̃`−1(t− h)

)
. (2.39)

We now assume that (2.35) holds for i and we will prove that it also holds for
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i+ 1. Using (2.35), we obtain

di+1

dti+1 β̃`(t) = 1
hi+1

i∑
j=0

(−1)j
(
i

j

)
β̃(`−(i+1))(t− jh) −

1
hi+1

i∑
j=0

(−1)j
(
i

j

)
β̃`−(i+1)(t− (j + 1)h) (2.40)

= 1
hi+1

i∑
j=0

(−1)j
(
i

j

)
β̃(`−(i+1))(t− jh) +

1
hi+1

i+1∑
j=1

(−1)j
(

i

j − 1

)
β̃(`−(i+1))(t− jh) (2.41)

di+1

dti+1 β̃`(t) = 1
hi+1

(
β̃(`−(i+1))(t) + β̃(`−(i+1))(t− (i+ 1)h)

)
+

1
hi+1

i+1∑
j=1

(−1)j
((

i

j

)
β̃(`−(i+1))(t− jh) +

(
i

j − 1

)
β̃(`−(i+1))(t− jh)

)
(2.42)

= 1
hi+1

i+1∑
j=0

(
i+ 1
j

)
β̃(`−(i+1))(t− jh), (2.43)

which corresponds to the result in (2.35).

Lemma 2.2 [58, 105]: Consider the derivatives defined in (2.35), then the Z-
transform is given by

Z
{
di

dti
β̃`
∣∣∣
t=kh

}
= 1
hi

(z − 1)i
z`

B`−i(z)
(`− i)! ; i ≤ `. (2.44)

Proof: From (2.35), we have that

Z
{
di

dti
β̃`(kh)

}
= 1
hi

∞∑
k=0

 i∑
j=0

(−1)j
(
i

j

)
β̃`−i (kh− jh))

 z−k (2.45)

where we have used the definition of the Z-transform. Then,

Z
{
di

dti
β̃`(kh)

}
= 1
hi

i∑
j=0

[
(−1)j

(
i

j

) ∞∑
k=0

β̃`−i (kh− jh) z−k
]

(2.46)

According to [30], the sum over k can be written as shown in (2.34). Then,

Z
{
di

dti
β̃`(kh)

}
= 1
hi

B`−i(z)
z`−i(`− 1)!

i∑
j=0

(−1)j
(
i

j

)
z−j. (2.47)

Finally, the result in (2.44) is obtained

Z
{
di

dti
β̃`(kh)

}
= 1
hi

(z − 1)i
(`− i)!

B`−i(z)
z`

. (2.48)
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2.3 Discrete-Time Linear Systems
This section presents a review of sampled-data models for linear systems

under different hold device assumptions, i.e., ZOH, FOH, and FROH. In particular,
we introduce some solutions and approaches made by other authors in both shift-
and delta-operator. To conclude this section, we study the asymptotic behavior
of the sampling zeros polynomials and their relationship with the Euler-Frobenius
polynomials described in Subsection 2.2.1.

2.3.1 Shift Operator Models

uk
Hold

u(t)
G(s)

y(t)

h

yk

Gq(z)
Figure 2.6: General scheme for a sampled-data model

Discrete-time models for linear systems can be obtained either from state-space
representations or from transfer functions. The discrete-time function Gq(z) that
links the input samples {uk} with the output sequence {yk} is given by (see Figure
2.6)

Gq(z) = Y (z)
U(z) = Z{yk}

Z{uk}
, (2.49)

where Z{·} denotes the transform in the z-domain.

We consider that u(t) is generated by a ZOH. To compute the transfer function,
we need the Z-transform of Y (s) = G(s)U(s). Thus, we apply the inverse Laplace
transform (L−1{·}) to Y (s) and then the Z-transform of the sequences {y(kh)},
{u(kh)}.

GZOH(z) = Z{yk}
Z{uk}

=
Z{L−1{Y (s)}|tk}

z
z−1

(2.50)

= z − 1
z
Z
{
L−1

{
G(s)
s

}∣∣∣∣
tk

}
. (2.51)

The model in (2.51) is exact because the output samples are exactly recovered,
i.e., yk = y(kh). Moreover, this model has relative degree 1, which implies that it has
sampling zeros.
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Then, from the definitions of the inverse Laplace transform (2.5) and the
Z−transform (2.21), we have [8]

GZOH(z) = z − 1
z

1
2πj

∫ c+j∞

c−j∞

esh

z − esh
G(s)
s

ds. (2.52)

Since G(s) is strictly proper, the integration path can be closed and the integral
can be evaluated using the Residue Theorem [44]. Thus, closing the complex integral
to the left of the complex plain we obtain (2.53) and closing it to the right we get
(2.54) [2, 27]:

Gq(z) = z − 1
z

n∑
l=0

Ress=pl
{
G(s)
s

esh

z − esh

}
. (2.53)

Gq(z) = z − 1
z

∞∑
l=−∞

G[(log(z) + 2πjl)/h]
log(z) + 2πjl . (2.54)

For the particular case of a pure r-th order integrator, i.e., G(s) = s−r, the
following relation holds [74]:

∞∑
k=−∞

1
(log(z) + 2πjl)r = zBr−1(z)

(r − 1)!(z − 1)r , r ≥ 2. (2.55)

In addition, the discrete-transfer function when the input is generated by a
FOH [75,76] or a FROH [77,78] are respectively given by:

GFOH(z) =
(
z − 1
z

)2
Z
{1 + sh

hs2 G(s)
}
. (2.56)

GFROH(z) = β(1− z−1)
h

Z
{1− e−sh

s

G(s)
s

}
+ (1− βz−1)Z

{1− e−sh
s

G(s)
}
. (2.57)

Notice that when β = 0, we obtain the transfer function when using a ZOH (see
(2.51)). On the other hand, if β = 1 the transfer function (2.56) is obtained.

In addition, we are interested in deriving the sampled-data model from the
state-space representation. Thus, based on the ZOH assumption, the system (2.2)
can be represented in the discrete-time domain as:

xk+1 = Aqxk +Bquk (2.58a)
yk = Cxk (2.58b)

where we have used the notation xk+1 = qxk, and where the matrices are given
by [2]:

Aq = eAh, Bq =
∫ h

0
eA∆Bd∆. (2.59)
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Similarly to the result (2.6), the discrete-transfer function can be also written
as

Gq(z) = C(zIn − Aq)−1Bq. (2.60)

Moreover, we present the state-space representation when the continuous-time
input is generated the FOH defined by (2.10) [2][

xk+1
uk

]
=
[
Aq B1

q

0 0

][
xk
uk−1

]
+
[
B2
q

1

]
(2.61a)

yk =
[
C 0

] [ xk
uk−1

]
, (2.61b)

where
Aq = eAh (2.62a)

B1
q =

∫ h

0

(∆
h
− 1

)
eA∆Bd∆ (2.62b)

B2
q =

∫ h

0

(
2− ∆

h

)
eA∆Bd∆. (2.62c)

Notice that the previous sample uk−1 is considered as an extra state. This will
be a key tool to develop sampled-data models in Chapters 3 and 5.

We conclude this section with an example:

Example 1 Consider the continuous-time system G(s) = s−r, r > 0. We are
interested in the corresponding exact sampled-data model when the input is modeled
by a ZOH.

We can rewrite the n-th order integrator in state space form:
y1(t) = x1(t) (2.63)
ẋ1 = x2(t) (2.64)
... (2.65)

ẋr−1(t) = xr(t) (2.66)
ẋr(t) = u(t) (2.67)

Then, the model (2.63) can be represented as
ẋ(t) = Ax(t) +Bu(t) (2.68a)
y = Cx(t), (2.68b)

where the matrices A ∈ Rr× r, B ∈ Rr× 1 and C ∈ R1×r are expressed in the Brunovsky
form [79]:

A =
[

0 Ir−1
0 0

]
, B =

[
0(r−1)×1

1

]
(2.69a)

C =
[

1 0 · · · 0
]
. (2.69b)
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The associated sampled-data model, assuming a ZOH input, can be obtained
using (2.59). Thus, we have:

eAh = I + hA+ h2

2 A
2 + · · ·+ hr

r!A
r + · · · (2.70)

Notice that the matrices can be exactly obtained noticing that A is nilpotent,
i.e., Ar = 0. Thus, the exact sampled-data model of and r-th order integrator is given
by

xk+1 = Aqxk +Bquk (2.71a)
yk = Cxk, (2.71b)

where

Aq =



1 h h2

2! · · · hr−1

(r−1)!
0 1 h · · · hr−2

(r−2)!

0 0 . . .
. . .

...
...

...
. . . h

0 0 0 · · · 1


, Bq =



hr

r!
hr−1

(r−1)!
...
h2

2!
h

 (2.72a)

Cq =
[

1 0 · · · 0
]
. (2.72b)

2.3.2 Delta Operator Models
The theory of sampled-data systems is usually represented in the z-domain

associated with the shift operator q. However, one of the disadvantages of this
representation is that it does not converge to a continuous-time differential operator,
[18]. The latter implies that for small sampling period the corresponding continuous-
time system is not recovered. In particular, from (2.58), it can be noticed that

lim
h→0

Aq = I, lim
h→0

Bq = 0. (2.73)

Thus, one could be interested in using the δ-operator because the relation
between the continuous-time system and the associated discrete-time model can be
better expressed using incremental models. Also, it allows us to explicitly include
the sampling period in the description. From (1.3), it can be noticed that

δxk = q − 1
h

xk = xk+1 − xk
h

. (2.74)

Since the δ-operator is a difference, models expressed in the γ-domain are
similar to models obtained with the (continuous-time) differential operator. Then,
continuous-time insights can be used in the discrete-time representations [1].
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Applying (2.74) to the state-space representation (2.58), we obtain

δxk = Aδxk +Bδuk (2.75a)
yk = Cxk, (2.75b)

where

Aδ = eAh − I
h

, Bδ = Bq

h
. (2.76)

Notice that, for fast sampling rate, i.e., h→ 0, the matrices in (2.76) converge
to the continuous-time counterpart [18]. In addition, the transfer function in γ-domain
is given by

Gd(γ) = C(γI − Aδ)−1Bδ. (2.77)

2.3.3 Exact Sampled-Data Models
A subject of interest is when the sampling period approaches zero because the

polynomials of the sampling zeros can be asymptotically characterized in terms of
continuous-time relative degree, the assumptions about the system input, and the
sampling period. To study the asymptotic behavior of linear sampled-data models,
we first consider the case when the continuous-time system is an r-th order pure
integrator, i.e.,

G(s) = 1
sr
, r > 0. (2.78)

The corresponding discrete-time transfer function arising for a ZOH can be
obtained using (2.51). Furthermore, according to [27], Gq(z) approaches the following
model

Gq(z) = hr

r!
Br(z)

(z − 1)r . (2.79)

Notice that (2.79) only depends on the relative degree r and the sampling
period h. The polynomial of the asymptotic sampling zeros is defined by Br(·), which
is the Euler-Frobenius polynomial of order r given by (2.23)–(2.24).

For the case of the general system (2.1) when the sampling period goes to 0
the associated sampled-data model is given by [27],

Gq(z) = b
hn−m

(n−m)!
(z − 1)mBn−m(z)

(z − 1)n . (2.80)

According to [75], the corresponding discrete-time transfer function of (2.1)
when using a FOH when h→ 0 is given by

Gq(z) = b
hn−m

(n−m+ 1)!
(z − 1)mCn−m(z)

z(z − 1)n , (2.81)
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where

Cp(z) = Bp+1(z) + (p+ 1)(z − 1)Bp(z). (2.82)

In addition, the transfer function Gq(z) when using a FROH is given by
[77,80]

Gq(z) = b
hn−m

(n−m+ 1)!
(z − 1)mDn−m(z, β)

z(z − 1)n , (2.83)

where,

Dp(z, β) = βBp+1(z) + (1 + p)(z − β)Bp(z). (2.84)

This analysis can also be studied for representations expressed in δ-operator.
Thus, based on the ZOH assumption and for an r-th order integrator, the correspond-
ing sampled-data model in γ-domain is given by [2, 81]

Gd(γ) = Pr(hγ)
γr

, (2.85)

where the polynomial Pr(hγ) can be related to the Euler-Frobenius polynomials as
follows:

Pr(hγ) = Br(z)
r!

∣∣∣∣∣
z=1+hγ

(2.86)

The polynomials Pr(hγ) can be computed recursively, (See [2, 81])

Pr(hγ) =
r∑
l=1

(hγ)l−1

l! Pr−l(hγ), r ≥ 1, (2.87)

P0(hγ) = 1. (2.88)

and, when the sampling period goes to 0,

lim
h→0

Pr(hγ) = 1, r ≥ 1. (2.89)

The first Pr(hγ) polynomials are listed below,

P1(hγ) = 1 (2.90a)

P2(hγ) = 1 + h

2γ (2.90b)

P3(hγ) = 1 + hγ + h2

6 γ
2 (2.90c)

P4(hγ) = 1 + 3h
2 γ + 7h2

12 γ
2 + h3

24γ
3. (2.90d)
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From (2.90), it can be noticed that when using the δ-operator, the Euler-
Frobenius polynomials are explicitly represented as a function of the sampling period
and γ. Moreover, the discrete-time transfer function for the general system shown in
(2.1) is given by

Gd(γ) = b

∏m
i=1(γ − zi)∏n
i=1(γ − pi)

Pr(hγ). (2.91)

2.4 Approximate Sampled-Data Models
for Linear Systems

We have previously discussed that exact sampled-data representations can be
developed for linear systems. However, approximate descriptions are preferred since
they better preserve the real continuous-time system’s parameters. They can also
be easier to obtain than the exact model, and the methods can also be applied to
nonlinear systems.

Ordinary differential equations (ODEs) arise in many contexts, for example,
in physical problems. Thus, there is an interest in knowing the consequences of
modeling these problems using specific numerical approximations [40]. Linear and
nonlinear ODEs can be approximately solved, for example, using Euler integration,
Runge-Kutta methods, or Taylor series expansions. In fact, these two first methods
are based on Taylor series expansions.

2.4.1 Numerical Integration Strategies
Consider the Initial-Value Problem (IVP) written as [82,83]:

dy(t)
dt

= f(t, y(t)); y(t0) = y0, (2.92)

that has a unique solution on some specific interval. Then, integrating both sides, we
obtain: ∫ tn+1

tn
dy =

∫ tn+1

tn
f(t, y(t))dt (2.93)

y(tn+1)− y(tn) =
∫ tn+1

tn
f(t, y(t))dt (2.94)

Therefore, when the integral (2.94) is hard or impossible to compute, numerical
methods have to be used. Thus, in order to approximate a solution of (2.94), and
therefore of (2.92), we use Finite Difference Methods [84, 85].

We suppose that the numerical solution of the integral is as shown in Figure
2.7. Then, the area below the curve between tn and tn+1 is approximately given by
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0 tn-1 tn tn+1

f(tn+1)

f(tn-1)
f(tn)

Figure 2.7: Finite Difference Method

f(tn, yn)(tn+1 − tn). Thus,

y(tn+1)− y(tn) = f(tn, yn)(tn+1 − tn) (2.95)
y(tn+1)− y(tn) = f(tn, yn)∆t (2.96)
y(tn+1)− y(tn)

∆t = f(tn, yn) (2.97)

Equation (2.97) is known as Forward Difference Approximation [84]. If we
compute the area under the curve between tn−1 and tn, we have the Backward
Difference Approximation [84], which is given by

y(tn)− y(tn−1)
∆t = f(tn, yn) (2.98)

Notice that as ∆t approaches zero, the approximations (2.97) and (2.98) recover
the original ODE. On the other hand, we certainty know the value of y(t) at the
initial point t = t0. Thus, we can approximate the solution of (2.92) near the initial
condition, i.e., it is possible to estimate y(t) by approximating f(t, y(t)) ≈ f(t0, y(t0))
for t ∈ [t0, t0 + τ [, where τ > 0 is a real value sufficiently small [83]. Then, integrating
both sides, we have: ∫ t

t0
dy =

∫ t

t0
f(t′, y(t′))dt′ (2.99)

y(t)− y0 ≈ (t− t0)f(t0, y0), (2.100)

where we have used the notation y(tn) = yn. Then, knowing the initial value, the
sequence of next points will be

t1 = t0 + τ (2.101)
t2 = t1 + τ = t0 + 2τ (2.102)
t3 = t2 + τ = t0 + 3τ (2.103)
... (2.104)

tn+1 = tn + nτ. (2.105)
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Then, following (2.100), we have that:∫ t1

t0
dy =

∫ t1

t0
f(t′, y(t′))dt′ (2.106)

y1 − y0 ≈ (t− t0)f(t0, y0) (2.107)
y1 ≈ y0 + τf(t0, y0) (2.108)

Thus, we obtain the recursive scheme

yn+1 = yn + τf(tn, yn). (2.109)

Equation (2.109) is called the Forward Euler’s Method [40, 82, 83], which is
basically the forward difference approximation defined in (2.97).

Now, it is reasonable to ask how good is Euler’s approximation. In general,
numerical methods are chosen for their convergence, the order of convergence, and
stability characteristics. The first analyze whether the method approximates the
solution, and the second how rapidly it converges. We will discuss both in Subsection
2.7.2.

On the other hand, we are also interested in knowing the error behavior
between the numerical and the exact solution, i.e., whether the computed result
remains bounded in cases when the exact solution is bounded. This criteria is known
as stability and it may depend on the step size τ [40, 82].

012

Figure 2.8: Forward Euler Method Stability Region

Thus, let us suppose that

dy(t)
dt

= λy(t); y(t0) = y0. (2.110)

Then, using (2.109), we have that:

yn+1 = yn + τf(tn, yn) (2.111)
yn+1 = yn + τ (λyn) (2.112)
yn+1 = (1 + λ τ) yn, (2.113)
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which implies that

y1 = (1 + λ τ) y0 (2.114)
y2 = (1 + λ τ)2 y0 (2.115)
... (2.116)

yn+1 = (1 + λ τ)n+1 y0 (2.117)

The solution (2.117) is stable if and only if |1 + λ τ | ≤ 1. Then, for λ negative
and real, we have

−2 < λτ < 0 =⇒ τ < −2
λ
. (2.118)

Thus explicit Euler method requires a small step size τ to ensure stability. As
a consequence, it is necessary to apply methods that have better stability characteris-
tics.

So far, we have dealt with one-step methods. When using them, we obtain a
numerical solution from t0 to t1, starting from the initial value y0. Then, we iterate
from t1 to t2 using y1 as the new initial value. However, a numerical approximation
can be obtained considering ’the history’ available, i.e., instead of computing yn from
just the value yn−1, we could combine the values computed in past steps to generate an
approximation at the next step. This is the idea behind multistep methods [82].

A general from of linear multistep methods is given by [83]:

yn + a1yn−1 + a2yn−2 + · · ·+ akyn−k =
τ (b0f(tn, yn) + b1f(tn−1, yn−1) + · · ·+ bkf(tn−k, yn−k)) , (2.119)

where a0 = 1 and ai, bi are give constants, independent of τ . Moreover, if bi = 0, the
method is called explicit, otherwise it is implicit.

When higher derivatives of y(t) are available, then a common choice is to use
the Taylor Series Method. Thus, by repeating differentiation, it is possible to
find functions fi(t, y(t)), i = 1, 2, . . . ,m, which give values of ym(t), where m denotes
the order of the derivative [40]. Then, we write an m-th order Taylor series method
in the form

yn+1 = yn + τf1(tn, yn) + τ 2

2! f2(tn, yn) + · · ·+ τm

m!fm(tn, yn) +Rm(tn, yn), (2.120)

where we have used the notation yn+1 = y(tn+1) = y(tn + τ). The term Rm(tn, yn)
is called the remainder and is of the order of O(τm+1) [82]. Notice that the big O
notation O{·} is used to describe the asymptotic behavior of a specific function when
the argument approaches a particular value or infinity.
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Since the remainder term decays to zero rapidly, it can be neglected. Thus,
(2.120) can be written as

yn+1 = yn + τy(1)
n + τ 2

2! y
(2)
n + · · ·+ τm

m!y
(m)
n +O(τm+1). (2.121)

Notice that the Euler’s method corresponds to a special case of (2.121) when
the first two terms are considered. Multistep methods are more accurate than one-
step methods, however, they may impact the computational cost because multistep
methods require additional memory for function values at previous steps. In compar-
ison, multistage methods provides better efficiency since they generate values of the
solution and its derivatives within a single time step [86].

Consider (2.94), this time we will use the trapezoidal rule [87] to approximate
the integral. Thus, we obtain

yn+1 = yn + τ

2 [f(tn, yn) + f(tn+1, yn+1)] (2.122)

However, (2.122) requires us to know the value of the function at the time step
tn+1. To overcome this difficulty, we can approximate the term yn+1 on the right-hand
side using the forward Euler’s method (2.109), yielding:

yn+1 = yn + τ

2f(tn + τ, yn + τf(tn, yn)), (2.123)

which is typically written as

yn+1 = yn + τ

2(k1 + k2) (2.124a)

k1 = f(tn, yn) (2.124b)
k2 = f(tn + τ, yn + τf(tn, yn)) (2.124c)

The method presented in (2.124) is an example of a second-order Runge-Kutta
Method (RK2). Note that to generate a RK2, we need to approximate the integral
by a quadrature rule of the same order and then approximate k2 using (2.109). It is
important to recall that, even when Euler’s method have been proven to be inefficient,
in scheme (2.124), k2 is scaled by τ and therefore its error becomes smaller [41].

A general s-stage Runge-Kutta method is given by [82]:

yn+1 = yn + h
s∑
i=1

biki (2.125a)

ki = f

tn + h ci, yn
s∑
j=1

ai,j k1

 ; i = 1, . . . , s, (2.125b)

where ai,j, bi are real coefficients, where ci satisfy the condition:

ci =
i−1∑
j=1

ai,j. (2.126)
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Thus, given a value of s, (2.125) depends on s2 + s parameters which are not
unique. A common choice for them are found in the Butcher array for Runge-Kutta
Methods (see, for example, [40, 82,83]).

Example 2 Consider the general form of an RK2 method

yn+1 = yn + τ (b1k1 + b2k2) +O(τ 3) (2.127a)
k1 = f(tn, yn) (2.127b)
k2 = f (tn + τc2, yn + τa2,1k1) (2.127c)

We are interested in finding conditions over the coefficients a2,1, b1, b2, c2. Then,
we will use the first order Taylor polynomial for k2, around the point (tn, yn). This
yields to

f (tn + τc2, yn + τa2,1k1) ≈ f(tn, yn) +

τ

(
c2
∂f(tn, yn)

∂t
+ a2,1

∂f(tn, yn)
∂y

f(tn, yn)
)

+O(τ 2). (2.128)

Replacing in (2.127), we have

yn+1 ≈ yn+τ(b1 + b2)f(tn, yn) +

τ 2b2

[
c2
∂f(tn, yn)

∂t
+ a2,1

∂f(tn, yn)
∂y

f(tn, yn)
]

+O(τ 3), (2.129)

Then, we set

b1 + b2 = 1 (2.130a)

b2c2 = 1
2 (2.130b)

b2a2,1 = 1
2 , (2.130c)

where, considering condition (2.126), c2 = a2,1.

Notice that (2.127) can be expressed as a second-order Taylor series expan-
sion.

Definition 2.3 [41, page 134] A Runge-Kutta method is of order κ if, for sufficiently
smooth problems, the Taylor Series method coincides up to the term hκ.

2.5 Continuous-Time Nonlinear Systems
The majority of real processes have nonlinearities that cannot be ignored.

Contrasted with linear systems, it is not always possible to find closed-form expressions
for the solutions of nonlinear ODEs [88]. Thus, in order to simplify the problem, a
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standard option is to transform the nonlinear model into a linearized system and
make predictions about its behavior into a known region.

There are several options to perform a linearization; some are based on ap-
proximating the nonlinear system, however such approximation is only valid around
an equilibrium point. Besides, a control technique based on a linearized model can
exhibit poor robustness [89].

On the other hand, there are control strategies such as Feedback Linearization,
that allows to obtain a linear model that based on the representation of the nonlinear
system. This approach’s key idea is to obtain a fully or partially equivalent linear
system through a coordinate transformation and a suitable control law. Then, the
classical feedback techniques such as PID or pole placement could be applied [90].
Moreover, it is important to recall that feedback linearization does not depend on
approximations such as Taylor series expansion [91].

Typically, feedback linearization can be achieved in two forms: state-space
linearization (also known as full-state linearization) and input-output linearization.
In the former, the goal is to cancel the nonlinearities between the transformed inputs
and the transformed state variables, which results in a fully linearized state equation.
In contrast, the latter aims to linearize the mapping between the transformed inputs
and the original outputs. In this case, the state equation is only partially linearized
[89]. However, when using state-space linearization, a control law’s design is still
challenging because the output remains nonlinear. Therefore, input-output feedback
is preferable.

Moreover, it is not always possible to cancel nonlinearities in every system.
Therefore, the system must have a particular structure that allows us to linearize
it. Then, we consider a class of nonlinear single-input single-output (SISO) systems
affine in the input, i.e.,

ẋ(t) = f(x(t)) + g(x(t))u(t) (2.131a)
y(t) = h(x(t)), (2.131b)

where f(x(t)), g(x(t)) and h(x(t)) are sufficiently smooth, i.e., that all the derivatives
are well-defined and continuous, in a domain M ∈ R, containing the origin [39,
92].

2.5.1 Relative Degree
One of the basic properties of nonlinear systems is the notion of relative degree,

which is related to the number of times that ones need to differentiate the output
y(t) to make the input u(t) explicitly appear.

We explain this idea with the following example:

Universidad Técnica Federico Santa María, Department of Electronic Engineering 29



2.5. CONTINUOUS-TIME NONLINEAR SYSTEMS CHAPTER 2. LITERATURE REVIEW

Example 3 Consider the nonlinear system given by

ẋ1(t) = x2(t) (2.132a)
ẋ2(t) = −x2

1(t)x2(t) + u(t) (2.132b)
y(t) = x1(t), (2.132c)

we are interested in calculating the relative degree. Computing the derivatives of the
output y(t), we have,

ẏ(t) = ẋ1(t) = x2(t) (2.133)
ÿ(t) = ẋ2(t) = −x2

1(t)x2(t) + u(t), (2.134)

where we can notice that after the second derivative of y(t), the input appears in the
output equation. Thus, (2.132) is said to have relative degree 2. Notice that if the
y(t) = x2(t), the system is of relative degree 1.

Formally, the definition of relative degree is as follows:

Definition 2.4 [39, page 137] The nonlinear system 2.131 is said to have relative
degree r at a point x0 if

(i) LgLkfh(x) = 0 for all x in a neighborhood of x0 and for k = 0, . . . , r − 2

(ii) LgLr−1
f h(x0) , 0,

where Lg and Lf correspond to Lie derivatives.

The new notation defined above is a useful tool when repeating the calculation
of the output derivative. For example, if we consider that (2.131) has relative degree
r, computing the derivatives of the output y(t) we obtain

y(0)(t) = h(x(t)) (2.135a)

y(1)(t) = ∂h(x)
∂x

dx(t)
dt

= ∂h(x)
∂x

f(x) + ∂h(x)
∂x

g(x(t))u(t)

= Lfh(x) + Lgh(x)u(t). (2.135b)

Assuming relative degree r > 1, we have that y(1)(t) is independent of u(t),
therefore Lgh(x) = 0. This yields

y(2)(t) = ∂(Lfh(x))
∂x

(f(x(t)) + g(x(t))u(t)) = L2
fh(x(t)) + LgLfh(x)u(t). (2.136)

Again, assuming r > 2, then LgLfh(x) = 0. Repeating this calculation up to
k = r, we have that

y(r)(t) = Lrfh(x) + LgL
r−1
f h(x)u(t). (2.137)
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Notice that u(t) can be chosen in such a way that it cancels the nonlinearities
in (2.137). For example:

u(t) = 1
LgL

r−1
f h(x)

[
v(t)− Lrfh(x)

]
, (2.138)

which exactly linearizes the map between the original output y(t) and the transformed
input v(t) [89].

On the other hand, there are systems in which LgLr−1
f h(x) = 0 for all x in a

neighborhood of x0 and for k ≥ 0. In this case, the relative degree is not well-defined.
Nevertheless, it is possible to find a local coordinate transformation around x0 that
partially linearizes the nonlinear system (see, for example, [39, 92]). In what follows
we explore this idea.

2.5.2 Normal Forms
The theory of normal forms has been studied for continuous and discrete-time

nonlinear systems (see, for example [79,93–96]). Normal forms allow us to rewrite
the system as a chain of integrators followed by nonlinear dynamics. This particular
structure is called prime form [94]. Thus, we are interested in expressing (2.131) in
this form.

Firstly, we synthesize the results presented in Section 2.5.1 in the following
lemmas:

Lemma 2.5 [90, Page 231] Consider the nonlinear system (2.131) having relative
degree r = n (i.e., equal to the state dimension) at some point x = x0 and the
following coordinates transformation:

z(t) = Φ(x) =


φ1(x)
φ2(x)
...

φr(x)

 =


h(x)
Lfh(x)

...
Ln−1
f h(x)

 , (2.139)

then, there exists a nonlinear static feedback u(t) such that the closed-loop system in
the new coordinates is linear and controllable.

Since we are focused in a neighborhood of x0, a transformation of the type
(2.139) is called local diffeomorphism on R. Moreover, Φ(x) is not unique and
invertible, i.e., there exists a function Φ−1(z) and both functions, Φ(x) and Φ−1(z)
have continuous partial derivatives of any order [39].
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Thus, the new coordinates describe the system in Normal Form as

ż1(t) = ∂φ1(x)
∂x

dx

dt
= Lfh(x) = φ2(x) = z2(t) (2.140a)

ż2(t) = ∂φ2(x)
∂x

dx

dt
= L2

fh(x) = φ3(x) = z3(t) (2.140b)
... (2.140c)

żr−1(t) = ∂φr−1(x)
∂x

dx

dt
= Lr−1

f h(x) = φr(x) = zr(t) (2.140d)

żr(t) = ∂φr(x)
∂x

dx

dt
= v(t), (2.140e)

where

v(t) =

Lrfh(x)︸     ︷︷     ︸
a(z)

+LgL
r−1
f h(x)︸            ︷︷            ︸
b(z)

u(t)


∣∣∣∣∣∣∣∣
x=Φ−1(z)

; z(t) = (z1(t), . . . , zr(t)). (2.141)

Note that, according to Definition 2.4, b(z) , 0 for all z in the neighborhood of
z0 = Φ(x0). Besides, the nonlinear state feedback (2.138) is given by

u(t) = 1
b(z)(v(t)− a(z)). (2.142)

On the other hand, if the relative degree is not well-defined at some point x0,
it is possible to find r functions that partially linearizes the nonlinear system (2.131),
and n− r functions fixed arbitrarily to describe the internal dynamics.

Lemma 2.6 [39, Page 141] Consider the n-th order nonlinear system (2.131) having
relative degree r at x0, i.e., the relative degree is less than the state dimension. Then,
it is possible to find n− r functions φr+1(x), . . . , φn(x) such that a local coordinate
transformation around x0 is given by

z(t) = Φ(x) =



h(x)
Lfh(x)

...
Lr−1
f h(x)
φr+1(x)

...
φn(x)


, (2.143)

where φr+1(x) to φn(x) are chosen in such a way that ∂φi
∂x

g(x) = Lgφi(x) = 0 for all
x in the neighborhood of x0 and for r + 1 ≤ i ≤ n.
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In the new set of coordinates, the first r equations are given by (2.140). Then,
the n− r functions are defined as

żi(t) = ∂φi(x)
∂x

dx

dt
= Lfφi(x) + Lgφi(x)u(t); r + 1 ≤ i ≤ n, (2.144)

setting Lgφi(x) = 0, we have that

Lfφi(Φ−1(x)) = qi(z) = żi(t); r + 1 ≤ i ≤ n. (2.145)

Thus, an n-th order nonlinear system of the form (2.131) can be expressed in
normal form as follows

ż1(t) = z2(t) (2.146a)
... (2.146b)

żr−1(t) = zr(t) (2.146c)
żr(t) = v(t) (2.146d)

żr+1(t) = qr+1(z) (2.146e)
... (2.146f)

żn(t) = qn(z) (2.146g)
y(t) = z1(t) = h(t), (2.146h)

where v(t) is given by (2.141). Notice that this system is decomposed into a linear
subsystem of order r, which is a chain of r integrators, and a nonlinear subsystem
of order n − r, which is not directly affected the input u(t) and defines the zero
dynamics of the system [90].

2.5.3 Zero Dynamics
As mentioned before, in the linear case, we define the relative degree as the

difference between the number of poles and zeros in the transfer function. Therefore,
if r = n the system has no zeros; otherwise it has n− r zeros. Following this idea,
we have that qi(z) defines the system’s zeros (or internal) dynamics of an n-th order
nonlinear system relative having degree r.

In order to simplify the notation introduced in (2.143), we consider

z(t) = Φ(x) =
[
ζ(t)
η(t)

]
, (2.147)

where ζ(t) = [z1(t), . . . , zr(t)]T and η(t) = [zr+1(t), . . . , zn(t)]T . Then, to characterize
the zero dynamics, we choose an appropriate input u(t) to maintain the output y(t)
at zero. Therefore, supposing that the output and all of its derivatives are equal to
zero, we have that y(t) = h(x) = 0 for all t, it follows that

z1(t) = ż1(t) = ż2(t) = · · · = żr(t) ≡ 0 (2.148)
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Thus, the continuous-time zero dynamics are given by

η̇(t) = q(0, η(0)), (2.149)

for any initial condition φ(0, η(0)), and for an input

uzd(t) = −a(0, η)
b(0, η) . (2.150)

2.6 Discrete-Time Nonlinear Systems
We consider a discrete-time nonlinear system affine in the input uk, similar to

(5.1), using the shift operator model:

xk+1 = Fq(xk) +Gq(xk)uk (2.151a)
yk = Hq(xk), (2.151b)

where we have used the notation xk = x(kh) and h is the sampling period. Using the
local coordinate transformation in (2.147), then (2.151) can be written as

ζk+1 = a(ζk, ηk) + b(ζk, ηk)uk (2.152a)
ηk+1 = c(ζk, ηk) (2.152b)
yk = ζ1,k. (2.152c)

In addition, the necessary condition over the input uk in order to characterize
the internal zero dynamics of system (2.152) is given by [81]:

(uzd)k = −a(0, ηk)
b(0, ηk)

. (2.153)

2.7 Sampled-Data Models for Nonlinear Systems
For nonlinear systems, the exact sampled-data model is usually unknown or

impossible to compute [97]. Thus, the motivation has been to study the effect of
numerical integration methods on the obtained approximate sampled-data model.
To solve the differential equations, these models have been developed based on, for
example, Runge-Kutta methods [98–100] or truncated series expansion, e.g., Taylor
or Lie series methods [81,101–104].

Moreover, when discretizing a continuous-time system, the corresponding
sampled-data model includes extra zeros (linear case) or zero dynamics (nonlin-
ear case), which depends on the hold device used to generate the system input [17].
Based on the ZOH assumption, in [101], the nonlinear sampling zero dynamics were
described for the first time, while [81] proposed a truncated Taylor series expansion
to discretize nonlinear systems, explicitly characterizing the sampling zero dynamics.
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In [103, 104], a more accurate model than the proposed in [81] is presented for a
continuous-time system of relative degree two.

Higher-order hold devices have also been used to model the input. For example,
in [54], a discrete-time model is obtained considering that the input is generated
by a backward triangle sample and hold. In addition, Generalized Hold Functions
(GHF) can be used to arbitrarily place the zeros of the sampled-data model without
restricting the sampling period to be small [56]. The properties of GHF have been
used, for example, in [57] to shift the sampling zeros asymptotically to the origin
for fast sampling rates. However, the use of this kind of holds can give misleading
results [55]. On the other hand, non-uniform sampling has been considered in [29]
and [30].

Besides, normal forms are useful to characterize the resulting sampled-data
model under different assumptions on the system input (see, for example, [54,81,101,
103,105–107]). In what follows, we will review the truncated Taylor series expansion
since it can exploit the assumption used to model the system input.

2.7.1 Numerical Integration Strategies
Consider the nonlinear system (2.131) expressed in normal form as shown in

(2.143). As mentioned before, the first r states are described by a chain of integrators.
Thus, it is possible to obtain the corresponding sampled-data model when the applied
integration strategy is a Taylor series expansion up to the first discontinuous term at
the sampling instants t = kh. On the other hand, the remaining n− r functions can
be approximating using the Euler’s Method.

Following the above idea, in [2, 81] an approximate sampled-data model was
proposed by truncating the Taylor expansion based on the smoothness of system
input. Thus, under the ZOH assumption, we have that the corresponding exact
sampled-data model of (2.146) is given by

ζ1(kh+ h) = ζ1(kh) + hζ2(kh) + · · ·+ hr

r! [a(ζ, η) + b(ζ, η)u(t)]|t=α1
(2.154a)

ζ2(kh+ h) = ζ2(kh) + · · ·+ hr−1

(r − 1) [a(ζ, η) + b(ζ, η)u(t)]|t=α2
(2.154b)

... (2.154c)
ζr(kh+ h) = ζr(kh) + h [a(ζ, η) + b(ζ, η)u(t)]|t=αr (2.154d)
η(kh+ h) = η(kh) + h q(ζ, η)|t=αr+1

. (2.154e)

for some time instants kh < αi < kh+ h, i = 1, . . . , r + 1. Note that replacing the
unknown time instants by kh, we obtain an approximate discrete-time model. In
Chapter 5 we show that the truncated Taylor series method can exploit the B-spline
assumption on the system input to obtain a more accurate model than the usual one
based on a ZOH assumption.
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2.7.2 Local Truncation Error
In Subsection 2.4.1 it was mentioned that numerical methods were chosen based

on their convergence and order of convergence. In general, a method is said to be
convergent if, for all IVPs of the form (2.92)

lim
h→0
||y(tn+1)− ŷ(tn+1)|| = 0, (2.155)

where ŷ(tn+1) denotes the numerically computed solution and y(tn+1) refers to the
exact values.

Thus, the Local Truncation Error is defined to be the difference between the
true and the approximate solution within a single iteration of the method. Since
we are considering the local error, we assume that the current solution is exact, i.e.,
ŷ(tn) = y(tn) [82]. Moreover, if the error en+1 = ŷ(tn+1 − y(tn+1)) ∈ O(hκ+1) we say
that the method is of order κ.

Consider the numerical integration strategy (2.154). Then, it is possible to
estimate the local truncation error between the real and the approximate output
assuming that, at t = kh, the state ζ̂(kh) is equal to the true system state ζ(kh),
i.e., [2, 81]

y(kh+ h) = ζ1(kh+ h) = ζ1(kh) + · · ·+ hr

r! [a(ζ, η) + b(ζ, η)u(t)]t=α1
(2.156)

ŷ(kh+ h) = ζ̂1(kh+ h) = ζ1(kh) + · · ·+ hr

r! [a(ζ, η) + b(ζ, η)u(t)]t=kh . (2.157)

Then, the error is given by

ê = |y(kh+ h)− ŷ(kh+ h)| (2.158)

= hr

r!
∣∣∣[a(ζ, η) + b(ζ, η)u(t)]t=α1

− [a(ζ, η) + b(ζ, η)u(t)]t=kh
∣∣∣ (2.159)

≤ hr

r! L |ζ(α1)− ζ(kh)| , (2.160)

where L > 0 is the Lipschitz constant. Moreover, the state trajectory ζ(t) is bounded
in the form [83]

|ζ(α1)− ζ(kh)| ≤ C
eLh − 1
L

= O(h) (2.161)

Therefore, the local error truncation is of the order of hr+1.
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In Chapter 2, we discussed that discrete-time models depend on knowledge or
assumptions about the input signal. Also, it was mentioned that exact sampled-data
models for linear systems can be developed; however, extra zeros with no continuous-
time counterparts appear in the resulting model. Such zeros are called sampling zeros
and have been (asymptotically) characterized for different types of holds.

It is usually assumed that a zero-order hold generates the input to the continuous-
time system. However, there are different options to interpolate the continuous-time
input from the discrete-time sequence. When interpolating with high-order degree
polynomials, one can have the Runge’s phenomenon, which can be avoided using
piecewise polynomials functions such as B-splines [30].

Besides, its intersample behavior and its accurate modeling in the associated
discrete-time model may be of interest for system identification, state estimation or
prediction, and also for high-performance digital control strategies such as Model
Predictive Control (MPC) [108].

This chapter first explores the connections between the sampling zeros of
discrete-time models and the smoothness of the continuous-time system input. In
particular, we show that when a B-spline is used in a generalized hold then the order
of the Euler-Frobenius polynomial that characterizes the asymptotic sampling zeros
is increased by the order of the B-spline function used in the hold device.

In addition, we explore the connections between the sampling zeros and the
applied numerical integration strategy. Thus, we characterize the sampling zeros for
approximate sampled-data models using Runge-Kutta methods and truncated Taylor
Series expansions. Moreover, we show that the smoothness of the input (described by
spline interpolation) can also be exploited in these integration strategies, also playing
a role in the characterization of the sampling zeros.

Finally, a key issue for approximate sampled-data models is their accuracy. No
matter how fast the sampling rate is chosen, there will be a difference between the
continuous-time and the corresponding discrete-time model. Thus, we will present
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a numerical example in order to quantify the error using the relative error in the
frequency domain.

3.1 B-Spline Generalized Hold
In this section, we present one of the contributions in this thesis: a B-spline

generalized hold expressed as shown in Figure 3.1. Firstly, we consider that a B-spline
of order ` can be constructed from a weighted sum of shifted B-splines [71]

u(t) =
∞∑

p=−∞
upβ̃`(t− ph); (3.1)

where up denotes de weight of the B-spline at tp = ph [58]. Notice that since β̃`(t)
has minimal support, (3.1) can be rewritten as,

u(t) =
∑̀
p=0

uk−pβ̃`(t− kh+ ph); t ∈ [kh, kh+ h[ (3.2)

The objective is to represent the generalized hold in terms of known hold devices.
Thus, in Theorem 3.1, we show that a B-spline hold can be expressed by a hybrid
system composed by the interconnection of a digital filter followed by a ZOH and an
`-th order continuous-time integrator.

uk
F`(z) ũk ZOH u(`)(t) 1

s`

u(t)

Figure 3.1: Generalized B-spline Hold

Theorem 3.1 An `-th order B-spline hold is equivalent to the hybrid system shown
in Figure 3.1, where

F`(z) = 1
h`

(
z − 1
z

)`
. (3.3)

Proof: From (2.36) in Lemma 2.1 we have that

β̃`(t) = 1
h`
L−1


(

1− e−sh
s

)`+1
 . (3.4)

Notice that (3.4) is the output of the generalized hold when the input sequence
is a Kronecker delta uk = δk. In addition, note that the expression within brackets
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can be rewritten as

(
1− e−sh

s

)`+1

=
(
1− e−sh

)` (1− e−sh
s

)( 1
s`

)
, (3.5)

where the first term corresponds to pure time delays which are integer number of the
sampling period, the middle term corresponds to the unit Kronecker delta response
of a ZOH, and the last term corresponds to an `-th order integrator. Also, the first
term can be expressed in the z-domain as

Z
{
L−1

{
(1− e−sh)`

}∣∣∣
t=kh

}
= (1− z−1)` = (z − 1)`

z`
, (3.6)

which corresponds to the result presented in (3.3). �

Corollary 3.2 From Theorem 3.1 we have that

Ũ(z) = F`(z)U(z) (3.7)

where Ũ(z) = Z{ũk} and U(z) = Z{uk}.

Remark 3.3 In Figure 3.2, we notice that the output signal of the ZOH corresponds
to the `-th derivative of u(t) and it is piecewise constant. Therefore, derivatives
greater than ` are equal to zero in each sampling interval, i.e.,

u`+1(t) = u`+2 = · · · = 0. (3.8)

uk
F`(z) ũk ZOH u(`)(t) 1

s`

u(t)
G(s) yk

`-th order B-spline Hold

Figure 3.2: Generalized B-spline Hold and G(s)

3.2 Exact Sampled-Data Models Based on B-spline
Functions

Following the ideas presented in Section 2.3, there is an interest in studying the
impact of the B-spline holder in the corresponding sampled-data model. In particular,
we show the connection between the B-spline order and the asymptotic sampling
zeros polynomial. Firstly, in Theorem 3.4, we consider that the plant G(s) is an r-th
order pure integrator. Then, in Theorem 3.5 we analyze the general linear case.
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Theorem 3.4 Consider a sampled-data scheme, as shown in Figure 3.2, where the
input sequence is {uk}, the hold is an `-th order B-spline hold defined in Lemma
3.1 and the continuous-time system is G(s) = s−r, r > 0. The output sequence is
{yk = y(kh)}. Then the equivalent discrete-time transfer function is given by

Gq(z) = hr

(r + `)!
Br+`(z)
z`(z − 1)r . (3.9)

where Br+`(z) is the Euler-Frobenius polynomial defined in (2.23)–(2.24).

Proof: According to Lemma 3.1, an `-th order B-spline hold can be equivalently
represented as the system shown in Figure 3.1 Therefore, the corresponding discrete-
time model Gq(z) for the system in Figure 3.2 is

Gq(z) = F`(z)G̃q(z), (3.10)

where F`(z) is given by (3.3) and G̃q(z) is the ZOH discretization of

G̃(s) = 1
s`
G(s) = 1

sr+`
. (3.11)

Then, following the result in [27], the sampled-data model for (3.11) is given
by

G̃q(z) = hr+`

(r + `)!
Br+`(z)

(z − 1)r+` . (3.12)

where Br+`(z) is the Euler-Frobenius polynomial of order r + `. Then,

Gq(z) = 1
h`

(z − 1)`
z`

G̃q(z), (3.13)

which completes the proof. �

From Theorem 3.4, we notice that the order of the sampling zeros polynomial
corresponding to a system of relative degree r is increased exactly by the order of the
hold, `. In fact, this result is consistent with [27], given that a ZOH corresponds to
` = 0. We next extend the previous results to a more general continuous-time linear
system of relative degree r.

Theorem 3.5 Consider the sampled-data system shown in Figure 3.2, where the
input is generated by the `-th order B-spline hold (3.2) and G(s) is the continuous-time
system defined in (2.1). For fast sampling rates, the associated discrete-time transfer
function is given by

Gq(z) = b hr

(`+ r)!
B`+r(z)
z`(z − 1)r ; r = n−m. (3.14)

where Br+`(z) is the Euler-Frobenius polynomial of order r+` defined in (2.23)–(2.24).

Universidad Técnica Federico Santa María, Department of Electronic Engineering 40



3.3. APPROXIMATE SAMPLED-DATA MODELS
BASED ON B-SPLINE FUNCTIONS

CHAPTER 3. LINEAR SAMPLED-DATA
MODELS BASED ON

B-SPLINE FUNCTIONS

Proof: The `-th order B-spline hold can be equivalently represented as shown in
Figure 3.2, where G(s) is the continuous-time system in (2.1). Then, G̃(s) is given
by

G̃(s) = b

s`
(s− z1)(s− z2) . . . (s− zm)
(s− p1)(s− p2) . . . (s− pn) . (3.15)

Then, the discrete-time transfer function in (2.51) can be expressed as [8]:

G̃q(z) = (1− z−1) 1
2πj

∫ c+j∞

c−j∞

esh

z − esh
G̃(s)
s

ds. (3.16)

Introducing the variable s = ω/h, it follows that

G̃
(
ω

h

)
=
(
h

ω

)r (
h

ω

)`
b

(1− hz1
ω

) · · · (1− hzm
ω

)
(1− hp1

ω
) · · · (1− hpn

ω
)
. (3.17)

For fast sampling period, i.e., h ≈ 0, we can characterize the asymptotic model
by considering the following limit:

lim
h→0

h−rG̃q(z) = h`
b

2πj
(z − 1)
z

∫ c+j∞

c−j∞

eω

z − eω
1

wr+`
dω

ω
(3.18)

= h`
b (z − 1)
z(r + `)!

zBr+`(z)
(z − 1)r+`+1 . (3.19)

where the last equation (3.18) follows by taking into account that the complex integral
corresponds to the sampled-data model of an integrator of order r + ` (see equation
(2.55)). Then, considering Gq(z) = F`(z)G̃q(z):

Gq(z) = b

h`
(z − 1)`+1

z`
h`Br+`(z)

(r + `)!(z − 1)r+`+1 . (3.20)

�

Thus, we have shown that the Euler-Frobenius polynomial Br+`(z) characterizes
the asymptotic sampling zeros for any linear system of (continuous-time) relative
degree r, when an `-th order B-spline hold models the input.

3.3 Approximate Sampled-Data Models
Based on B-Spline Functions

In the previous sections, we have shown that the location of the (asymptotic)
sampling zeros depends on the continuous-time relative degree and on the hold
used. This section shows the impact of the numerical integration strategy applied to
discretize the continuous-time system and the characterization of the sampling zeros
that appear in the discrete-time model.
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In our analysis, we apply a Runge-Kutta numerical integration strategy to the
continuous-time system, also considering the smoothness of the input signal (modeled
using spline interpolation) to obtain the sampling zeros polynomial that appears in
the discrete-time model.

To develop the corresponding discrete-time model, we assume a system of
relative degree r that is numerically solved by a κ-th order Runge-Kutta method.
Then, assumptions on the input smoothness can also be introduced by including an
`-th order B-spline hold, as shown in Figure 3.2. Thus, in the following subsections
we obtain the characterization of the asymptotic sampling zeros for high-order Runge-
Kutta methods (κ ≥ r+ `) and for low-order Runge-Kutta methods (κ < r+ `).

3.3.1 High-Order Runge-Kutta Methods
The first result shows that, for an r-th order integrator, when the order of the

Runge-Kutta method is greater than or equal to r + `, then the exact sampled-data
model is obtained.

Theorem 3.6 Consider a sampled-data system, as shown in Figure 3.1, where the
input sequence is {uk}, the hold is an `-th order B-spline hold (3.5) and the continuous-
time system is G(s) = s−r, r > 0. The output sequence is {yk = y(kh)}. For a
high-order Runge-Kutta method, i.e., κ ≥ r + `, the equivalent discrete-time transfer
function is given by the expression in (3.9), i.e.,

Gq(z) = hr

(r + `)!
Br+`(z)
z`(z − 1)r . (3.21)

Proof: Consider that the normal form of the linear system in (3.11) given by

y(t) = x1(t) (3.22a)
ẋ1(t) = x2(t) (3.22b)

...

ẋr−1(t) = xr(t) (3.22c)
ẋr(t) = u(t) = xr+1(t) (3.22d)

ẋr+1(t) = u(1)(t) = xr+2(t) (3.22e)
...

ẋr+`(t) = u(`)(t) = xr+`+1(t). (3.22f)

where x = [x1(t), · · · , xr+`+1(t)]T is the state vector, y(t) is the system output and
u(`)(t) corresponds to the `-th derivative of u(t). This derivative is generated by the
ZOH in Figure 3.2, i.e. (see Lemma 3.1)

u(`)(t) = ũk; kh ≤ t < kh+ h. (3.23)
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According to Definition 2.3, using a Runge-Kutta expansion of order κ, corre-
sponds to perform a Taylor series expansion of the system in (3.22) up to the order
κ, which yields:

x1(kh+ τ) = x1(kh) + τx
(1)
1 (kh) + · · ·+ τκ

κ! x
(κ)
1 (kh) (3.24a)

x2(kh+ τ) = x2(kh) + τx
(1)
2 (kh) + · · ·+ τκ−1

(κ+ 1)!x
(κ)
2 (kh) (3.24b)

...

xr+`(kh+ τ) = xr+`(kh) + τx
(1)
r+`(kh) + · · ·+ τκ

κ! x
(κ)
r+`(kh), (3.24c)

where 0 ≤ τ < h. From Remark 3.3, higher-order derivatives are all equal to zero.
Then, replacing the derivatives by the associated states, we obtain:

x1,k+1 = x1,k + hx2,k + h

2!x3,k + · · ·+ hr+`−1

(r + `− 1)!xr+`,k + hr+`

(r + `)! ũk (3.25a)

x2,k+1 = x2,k + hx3,k + h

2!x4,k + · · ·+ h(r+`−1)

(r + `− 1)! ũk (3.25b)

...

xr+`,k+1 = xr+`,k + hũk, (3.25c)
where we have used the notation xi,k = xi(kh). Then, using Corollary 3.2, we can
rewrite (3.25) in the following state-space form:

zX(z) = AqX(z) +BqF`(z)U(z). (3.26a)
Y (z) = CqX(z). (3.26b)

where the matrices Aq ∈ R(r+`)× (r+`), Bq ∈ R(r+`)× 1 and Cq ∈ R1×(r+`) are given by,

Aq =



1 h h2

2! · · · hr+`−1

(r+`−1)!
0 1 h · · · hr+`−2

(r+`−2)!

0 0 . . .
. . .

...
...

...
. . . h

0 0 0 · · · 1


, Bq =



hr+`

(r+`)!
hr+`−1

(r+`−1)!
...
h2

2!
h


(3.27a)

Cq =
[

1 0 0 · · · 0
]
. (3.27b)

The matrices in (3.27) correspond to the exact sampled-data model of the
(r+ `)-th order integrator in (3.11) (see Example 1). Then, the discrete-time transfer
function is given by

Gq(z) = Cq(zI − Aq)−1Bq F`(z). (3.28)

Gq(z) = hr+`

(z − 1)r+`
Br+`(z)
(r + `)!

1
h`

(z − 1)`
z`

. (3.29)
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Thus, the result in (3.9) is readily obtained. �

Corollary 3.7 Similar to Theorem 3.5, if we consider a fast sampling rate and a
B-spline hold, the associated sampled-data model for the continuous-time system (2.1),
having relative degree r, can be asymptotically characterized by (3.14).

3.3.2 Low-Order Runge-Kutta Methods
We define a Runge-Kutta method to be of low order if κ < r + `. In this case,

the order of the method (i.e., the Taylor series expansion) is not sufficient to exactly
represent u(t) and its derivatives. As a consequence, in the following result, we obtain
an approximate sampled-data model for an r-th order integrator, whose sampling
zeros depend on the order of the Runge-Kutta method κ.

Theorem 3.8 Consider a sampled-data system, where the input sequence is {uk}, the
hold is an `-th order B-spline hold (3.2) and the continuous-time system is G(s) = s−r,
r > 0. The output sequence is {yk = y(kh)}. For a low-order Runge-Kutta method,
i.e., κ < r + `, the equivalent discrete-time transfer function is given by

G̃q(z) = Cq(zI − Aq)−1B̃q V (z)F`(z). (3.30)

where Aq and Cq are given in (3.27), B̃q is given by (3.35)-(3.36) and V (z) is given
by (3.34).

Proof: As in the proof of Theorem 3.6, a (low-order) Runge-Kutta method of order
κ corresponds to a truncated Taylor serie expansion of order κ, as given in (3.24).
Replacing the derivatives by the associated states (see equation (3.22)), we have that:

x1,k+1 = x1,k + hx2,k + · · ·+ hκ−1

(κ− 1)!xκ,k + hκ

κ! xκ+1,k (3.31a)

...

xr+`−κ,k+1 = xr+`−κ,k + · · ·+ hκ−1

(κ− 1)!xr+`+1,k + hκ

κ! xr+`,k (3.31b)

xr+`−κ+1,k+1 = xr+`−κ+1,k + · · ·+ hκ−1

(κ− 1)!xr+`,k + hκ

κ! ũk (3.31c)

...

xr+`,k+1 = xr+`,k + hũk. (3.31d)

Notice that (3.31a)-(3.31b) correspond to the κ-th order truncation of the
Taylor Series expansions and, thus, they are only an approximation of the exact
(finite order) expansion. On the other hand, equations (3.31c)-(3.31d) are exact since
the remaining terms of the Taylor Series expansion are equal to zero (see Remark
3.3).
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The expressions in (3.31) can be written in the z-domain. It can be noticed
that, for the last κ states in (3.31c)-(3.31d), the exact sampled-data model of a κ-th
order integrator is obtained (see Theorem 3.6). The last κ states can be expressed
in transfer function form which explicitly shows the presence of the Euler-Frobenius
polynomials, i.e.,

X1(z) = h

(z − 1)X2(z) + h2

2!(z − 1)X3(z) + · · ·+ hκ

κ!(z − 1)Xκ+1(z) (3.32a)

X2(z) = h

(z − 1)X3(z) + h2

2!(z − 1)X4(z) + · · ·+ hκ

κ!(z − 1)Xκ+2(z) (3.32b)

...

Xr+`−κ(z) =
[
hκBκ(z)
κ!(z − 1)κ + · · ·+ hκB2(z)

2!(κ− 1)!(z − 1)2 + hκB1(z)
κ!(z − 1)

]
F`(z)U(z) (3.32c)

Xr+`−κ+1(z) = hκ

κ!
Bκ(z)

(z − 1)κF`(z)U(z) (3.32d)

...

Xr+`(z) = hB1(z)
(z − 1)F`(z)U(z). (3.32e)

A state-space representation of the model (3.32) is given by

zX̃(z) = AqX̃(z) + B̃qV (z)F`(z)U(z) (3.33a)
Ỹ (z) = CqX̃(z) (3.33b)

where X̃(z) = [X1(z), X2(z) · · · , Xr+`−κ(z)]T , Ỹ (z) is the system output, the matrices
Aq ∈ R(r+`−κ)× (r+`−κ) and Cq ∈ R1×(r+`−κ) are as defined in (3.27), V (z) ∈ Rκ×1 is
given by

V (z) =



hκBκ(z)
κ!(z−1)κ

hκ−1Bκ−1(z)
(κ−1)!(z−1)κ−1

...
h2B2(z)
2!(z−1)2
hB1(z)
(z−1)


, (3.34)

and the matrix B̃q ∈ R(r+`−κ)×κ depends on r + ` and κ. When r + ` − κ ≤ κ,
then

B̃q =



hr+`−κ

(r+`−κ)! · · · hk

k! 0 · · · 0
hr+`−κ−1

(r+`−κ−1)!
hr+`−κ

(r+`−κ)! · · ·
hk

k!
...

...
...

. . . 0
h h2

2!
h3

3! · · · · · · hκ

κ!

 . (3.35)
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On the other hand, if r + `− κ > κ, then B̃q is given by

B̃q =



0 · · · 0
0 · · · 0
hκ

κ
0 0 · · · 0

hκ−1

(κ−1)!
hκ

κ! 0 ...
...

...
. . .

...
h2

2!
h3

3! · · ·
hκ

κ! 0
h h2

2!
h3

3! · · · hκ

κ!


=



0(r+`−2κ)×κ

hκ

κ! 0 · · · 0
...

. . .
...

h2

2! · · · hκ

κ! 0
h h2

2! · · · hκ

κ!


. (3.36)

Finally, the discrete transfer function corresponding to (3.32) is as defined in
(3.30). �

Corollary 3.9 Similarly as in Section 3.3.1, the sampled-data model corresponding
to the continuous-time linear system (2.1), having relative degree r, when using an `-th
order B-spline hold and for a given Runge-Kutta order κ < r+ ` can be asymptotically
characterized for fast sampling rates by the model (3.30), where the sampling zeros
are defined by the Euler-Frobenius polynomials that appear in V (z).

Remark 3.10 The results in Theorems 3.6 and 3.8 shows that, for a given order
κ of the Runge-Kutta method, the sampling zeros polynomials depend only on r + `.
Table 3.1 and Table 3.2 show the sampling zeros polynomials for Runge-Kutta methods
of order κ = 2 and κ = 3, respectively, and for different values of the relative degree
r and hold order `. Notice that when the high-order condition for the Runge-Kutta
method is satisfied (κ ≥ r + `) the sampling zeros are explicitly given by the Euler-
Frobenius polynomials (see equation (3.21)). On the other hand, if κ is lower than
r + `, then the sampling zeros polynomials are given by the transfer function (3.30)
in Theorem 3.8. Tables 3.1 and 3.2 also show that the sampling zeros polynomial
depend only on r + `, i.e., they are the same along the (anti) diagonals of the tables.

`
r 1 2 3 4

0 1 z + 1 z z2 + 4z − 1
1 z + 1 z z2 + 4z − 1 3z2 + 2z − 1
2 z z2 + 4z − 1 3z2 + 2z − 1 z3 + 9z2 − z − 1

Table 3.1: Sampling zeros for Runge-Kutta order κ = 2

In what follows, we present a numerical example to illustrate the results in
Theorem 3.6 and Theorem 3.8. In addition, we analyze the relative error associated
with the frequency response of the exact discrete-time model REx(ω) and the approx-
imate model RRK(ω) with respect to the continuous-time system. We consider the
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`
r 1 2 3 4

0 1 z + 1 z2 + 4z + 1 7z2 + 4z + 1
1 z + 1 z2 + 4z + 1 7z2 + 4z + 1 2z3 + 9z2 + 1
2 z2 + 4z + 1 7z2 + 4z + 1 2z3 + 9z2 + 1 2z4 + 37z3 + 33z2 − 5z + 5
3 7z2 + 4z + 1 2z3 + 9z2 + 1 2z4 + 37z3 + 33z2 − 5z + 5 5z4 + 16z3 + 2z2 + 1

Table 3.2: Sampling zeros for Runge-Kutta order κ = 3

following relative error measures:

REx(ω) =
∣∣∣∣∣G(jω)−Gq(ejωh)

G(jω)

∣∣∣∣∣ (3.37)

RRK(ω) =
∣∣∣∣∣G(jω)− G̃q(ejωh)

G(jω)

∣∣∣∣∣ , (3.38)

where G(jω) is continuous-time system, Gq(ejωh) and G̃q(ejωh) are the exact and
approximate discrete-time models, respectively.

Example 4 In this example we consider a continuous-time system of relative degree
r = 2, given by

G(s) = ω2
n

s2 + 2ξωns+ ω2
n

, (3.39)

where ξ = 0.5, ωn = 2. We consider the case where the continuous-time input u(t) is
generated by a second order B-spline hold, i.e., ` = 2. Our interest is to obtain the
discrete-time function G̃q(z) when using a Runge-Kutta method of order κ = 3.

According to (3.3), the digital filter corresponding to a second order B-spline
hold can be written as

F2(z) = (z − 1)2

h2z2 . (3.40)

From Theorem 3.8, the approximate discrete-time transfer function G̃q(z) when
using a Runge-Kutta method of order κ = 3 and sampling period h = 0.1 is given by

G̃q(z) = 0.0073(6.32z2 + 2.59z + 1)
z2(z2 − 1.58z + 0.657) . (3.41)

Notice that, the asymptotic zeros of G̃q(z) are given by Theorem 3.8 and they
are shown in Table 3.2, i.e., they are given by the polynomial 7z2 + 4z + 1. On the
other hand, according to equation (3.21), the exact discrete-time transfer function
Gq(z) is given by

Gq(z) = 0.0643(1.286z3 + 13.0z2 + 11.95z + 1)
24z2(z2 − 1.58z + 0.657) . (3.42)
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Figure 3.3: Sampling zero locations for the exact and the approximate discrete-time
models for different sampling periods.
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Figure 3.4: Relative errors REx(ω) and RRK(ω) for sampling periods h ∈ [0.001, 0.1].

According to Theorem 3.6, the asymptotic sampling zeros of Gq(z) are given by

Universidad Técnica Federico Santa María, Department of Electronic Engineering 48



3.4. SUMMARY

CHAPTER 3. LINEAR SAMPLED-DATA
MODELS BASED ON

B-SPLINE FUNCTIONS

the Euler-Frobenius polynomial of order r + ` = 4, i.e,. z3 + 11z2 + 11z + 1.

Figure 3.3 shows the movement of the zeros of the discrete-time models when
the sampling period h ∈ [ 0.001, 0.1 ]. Note that due to the scale of the figure only two
of the three sampling zeros of Gq(z) appear in the plot. Also, notice that the zeros of
the approximate discrete-time function converge to the zeros of the exact model as h
goes to 0.

Notice that (3.41) and (3.42) have the same poles. However, the approximate
discrete-time system has fewer zeros than the exact discrete-time model due to the
order of the Runge-Kutta method (κ = 3) compared to the continuous-time relative
degree plus the order of the hold (r + ` = 4).

In order to compare the accuracy of the discrete-time models with respect to
the continuous-time system, Figure 3.4 shows the relative errors in (3.37) and (3.38)
for three different sampling periods h = 0.1, h = 0.01 and h = 0.001. We notice
that the exact and approximate discrete-time models provide similar accuracy for low
and high frequencies. However, near the Nyquist frequency the exact discrete-time
model provides higher accuracy. Moreover, as the sampling period goes to 0, the error
between both models is reduced.

3.4 Summary
We have modeled the smoothness of the system input using a generalized hold

device based on B-Spline functions. It was previously established that the order of
the Euler-Frobenius polynomial, which characterizes the asymptotic sampling zeros,
depends on the continuous-time system relative degree. This chapter shows that the
order of the hold device increases the order of the sampling zeros polynomial.

We also characterized the asymptotic sampling zeros of (approximate) sampled-
data models using a Runge-Kutta method. Moreover, we have shown that the order
of the Runge-Kutta method applied to the continuous-time system directly impacts
the location of the zeros of the corresponding discrete-time model. In fact, we
obtained novel polynomials that characterize the sampling zeros when the order of the
integration strategy is low compared to the continuous-time system relative degree
and hold order.

In summary, we have shown that the presence of asymptotic sampling zeros can
be explained as a consequence of the integration strategy underlying the discretization
process and on (the assumptions on) how the continuous-time input is generated.
These results explicitly show that the sampling zeros are a consequence of how
the system is discretized: how the continuous-time input is generated and how the
differential equation description is translated into the discrete-time domain.

In Chapter 5, we extend these results to the sampling zero dynamics that
appear in approximate nonlinear discrete-time models.
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4 | CONTROL LAWFOR LINEAR
SYSTEMS

In this chapter our interest is on exploring how to design a discrete-time
control law based on approximate models. For this thesis we will use polynomial
pole-assignment (see, for example, [109]). We first analyze the continuous-time case
to set ideas.

The heuristic idea is that, at high frequencies, a continuous-time system of rela-
tive degree r behaves similarly to an r-th order integrator. The latter approximation
has been applied, for example, in [65, 110,111]. Thus, one should be able to design a
wide-bandwidth control law for stably invertible linear system by knowing only the
relative degree and high frequency gain.

The extension of the above idea to the discrete-time domain faces extra difficulty.
For continuous-time systems having relative degree two, the asymptotic sampling zero
is on the stability boundary, and for relative degree larger than two, the asymptotic
zeros lie outside the stability region. The presence of such non-minimum phase
zeros represent a significant complication, in particular for wide-bandwidth control
when the closed-loop bandwidth approaches the Nyquist rate for the given sampling
period [112].

Therefore, to address the sampling zero issue, two approximate models are
proposed: the former covers the case where the closed-loop bandwidth is significantly
less than the Nyquist frequency, while the second includes the asymptotic sampling
zero, i.e., this covers the case when the closed-loop bandwidth is near the Nyquist
frequency. Then, it is shown that the robustness properties of these two models differ
due to the presence of sampling zeros.

Besides, we study whether, under some conditions, the roots of the nominal
and true closed-loop polynomials are close in some sense. The latter is one of the core
problems in perturbation theory, and a useful result in this context is the Ostrowski’s
Theorem [113, page 276]. Thus, a preliminary theoretical analysis is provided for
degree two, showing that the design based on the approximate model stabilizes the
true system for the continuous and sampled-data cases.
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4.1 Continuous-Time Control Law
In this section, we start considering an r-th order continuous-time system

having transfer function

Gc(s) = Bc(s)
Ac(s)

= b

sr + a1sr−1 + . . . ar
. (4.1)

We are interested in designing a continuous-time control law based on the
following approximate model:

G0(s) = B0(s)
A0(s) = b

sr
. (4.2)

Several designs are possible, however, we are focused in polynomial pole-
assignment. Thus, a biproper controller of order r − 1 can be designed such that:

C(s) = p0s
r−1 + . . .+ pr−1

sr−1 + . . .+ lr−1
(4.3)

with a target closed-loop polynomial of the form:

A∗cl(s) = A0(s)L(s) +B0(s)P (s) = (s+ α∗)2r−1. (4.4)

Note that the closed-loop poles are all assigned to s = −α∗. Then, using (4.2),
we have that the closed-loop polynomial is given by

sr
(
sr−1 + l1s

r−2 + · · ·+ lr−1
)

+K
(
p0s

r−1 + · · ·+ pr−1
)

= (s+ α∗)2r−1

=
2r−1∑
k=0

(
2r − 1
k

)
s2r−1−k(α∗)k (4.5)

Then, by equating coefficients, the controller parameters can be obtained as
follows:

l1 =
(

2r − 1
1

)
α∗ (4.6a)

l2 =
(

2r − 1
2

)
(α∗)2 (4.6b)

... (4.6c)

p0 =
(

2r − 1
r − 1

)
(α∗)r
b

(4.6d)

... (4.6e)

pr−1 =
(

2r − 1
2r − 1

)
(α∗)2r−1

b
(4.6f)
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On the other hand, the true closed-loop polynomial is given by

Acl(s) = Ac(s)L(s) +Bc(s)P (s), (4.7)

where Ac(s) and Bc(s) are given in (4.1) and L(s) and P (s) are given by (4.6). Once
the controller is designed based on the approximate model (4.2), it is necessary to
check if the true closed-loop stability is guaranteed, i.e., we need to check the robust
stability. A first attempt to measure the performance of C(s) is through the Robust
Stability Theorem (see, for example, [109,114]), namely

|T0(s)G∆(s)| < 1; ∀ s = jw, (4.8)

where T0(s) is the nominal closed-loop complementary sensitivity function given
by

T0(s) = G0(s)C(s)
1 +G0(s)C(s) , (4.9)

and G∆(s) is the relative model error, i.e.,

G∆(s) =
∣∣∣∣∣G(s)−G0(s)

G0(s)

∣∣∣∣∣ . (4.10)

The core hypothesis is that for α∗ positive and sufficiently large, the controller
(4.3) based on (4.2) will stabilize all systems of the form (4.1) provided that the
open-loop poles lie in a restricted region. Moreover, the true and nominal closed-loop
performance will be nearly indistinguishable.

On the other hand, the true closed-loop complementary function is defined
as

T (s) = Gc(s)C(s)
1 +Gc(s)C(s) , (4.11)

We introduce the following assumptions on the location of the open loop poles
of the true system.

Assumption 4.1 We assume that the poles, αi, i = 1, . . . , r of G(s), i.e., the roots
of the polynomial A(s) in (4.1), belong to a bounded region in the complex plane, such
that |αi| < M.

Assumption 4.2 We assume a high-bandwidth control loop, i.e., |α∗| �M .

Motivating by Assumption 4.2, we recall that at high-frequencies, for sampled-
data models, the role of the sampling zeros become important, since they because
the sampling impact the discrete-time response near the Nyquist frequency.

In what follows, we study the second order case in detail. Thus, we consider
the system

Gc(s) = b

(s+ α1)(s+ α2) , (4.12)
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which leads to the model (4.2), with r = 2, i.e.,

G0(s) = b

s2 . (4.13)

Then, based on the approximate model above, we design a suitable biproper
controller of the form

C(s) = p0s+ p1

s+ l1
, (4.14)

where the parameters are given by

p1 = (α∗)3

b
, p0 = 3(α∗)2

b
, l1 = 3α∗. (4.15)

Example 5 As a specific numerical example, we consider b = 1, α1 = 1, α2 = −1.
Based on the above discussion and Assumption 4.1, we consider several values of α∗
satisfying α∗ > M > |α1,2|.

Figure 4.1a shows the resulting normalized step responses of the closed-loop
transfer function, i.e.,

T0(s) = G0(s)C(s)
1 +G0(s)C(s) , (4.16)

achieved when using the nominal model (4.13). On the other hand, Figure 4.1b shows
the normalized step responses of the true closed-loop system, i.e.,

T (s)
T (0) = Gc(s)C(s)

T (0) (1 +Gc(s)C(s)) , (4.17)

when the same controller is applied to the true plant (4.12).
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Figure 4.1: Step response for (a) nominal and (b) true closed-loop.

Notice that the nominal and the true closed-loop responses (Figures 4.1a and
4.1b, respectively), are very similar except for the case when α∗ = 2. On the other
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hand, particularizing to the above problem, we have that

T0(s) = B0(s)P (s)
A∗cl(s)

, (4.18)

G∆(s) = −(α1 + α2)s+ α1α2

(s+ α1)(s+ α2) (4.19)

Taking s = jw and considering w = 0, yields to

T0(j0) = 1, G∆(j0) = −1. (4.20)

Hence, condition (4.8) is not satisfied and robust stability cannot be guaranteed
using this approach.

The remainder of this chapter is focused on deriving a relationship between
the bound M defined in Assumption 4.1 and the target closed-loop pole location α∗,
such that for the controller (4.14)–(4.15) is able to stabilize both, the approximate
model (4.13) and the true system (4.12).

4.2 Ostrowski’s Theorem
In this section, our interest is to find a bound between the roots of the nominal

and true closed-loop polynomials. We apply the Ostrowski’s Theorem, which is
described below.

Theorem 4.3 Consider two polynomials

f(s) = a0s
n + a1s

n−1 + · · ·+ an =
n∏
i=1

(s− θfi ) (4.21)

g(s) = b0s
n + b1s

n−1 + · · ·+ bn =
n∏
i=1

(s− θgi ), (4.22)

where a0 = b0 = 1. Let

T = 2 max
1≤k≤n

(
|ak|1/k, |bk|1/k

)
. (4.23)

Then the roots θfi and θgi of f(s) and g(s) can be enumerated in such a way
that

max
i
|θfi − θ

g
i | ≤ (2n− 1)

{
n∑
k=1
|ak − bk|T n−k

}1/n

. (4.24)

Proof: See [113]. �
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Remark 4.4 The above result provides a mean of estimating the differences between
the roots θfi and θgi in terms of the coefficients ai and bi. The result was embellished
by [115], where the factor (2n− 1) is replaced by (n− 1) if n is even, and by n when
is odd.

Theorem 4.3 provides a sufficient condition for asymptotic stability of the
closed-loop system given by the true system (4.12) and the controller defined by
(4.14)–(4.15), which is based on the approximate system (4.13). We study again the
second order case, however, a similar strategy is anticipated to apply for the general
case (4.1).

Theorem 4.5 Subject to Assumption 4.1, a sufficient condition for closed-loop sta-
bility of the true plant Gc(s), given in (4.12), under controller (4.14)-(4.15), is
α∗ ≥ κM , for some sufficiently large positive real number κ.

Proof: The numerator gain b cancels in the controller, so without loss of generality,
we consider b = 1. Thus, the system (4.12) can by rewritten as follows

Gc(s) = 1
s2 + t1s+ t2

= B(s)
A(s) , (4.25)

where t1 = α1 + α2 and t2 = α1α2. Also, we notice that the polynomials (4.21)-(4.22)
for this particular problem are given by

f(s) = s3 + 3(α∗)s2 + 3(α∗)2s+ (α∗)3 (4.26)
g(s) = A(s)L(s) +B(s)P (s)

= s3 + (l1 + t1)s2 + (t1l1 + t2 + p0)s+ (t2l1 + p1). (4.27)
Replacing the parameters in (4.15), considering Assumption 4.1, and defining S =
α∗/M . Then, the bounds for the coefficients in (4.26) and (4.27) are given by

|a1| ≤ 3SM, |b1| ≤ 2M + 3SM, (4.28a)
|a2| ≤ 3S2M2, |b2| ≤ 6SM2 +M2 + 3S2M2, (4.28b)
|a3| ≤ S3M3, |b3| ≤ 3SM3 + S3M3. (4.28c)

Therefore, based on Remark 4.4 and using (4.24), we have

max
i
|θfi − θ

g
i | ≤ 3

{ 3∑
k=1
|ak − bk|T n−k

}1/3

, (4.29)

where
T ≤2 max

(
3SM,

√
3SM,SM, 3SM + 2M,

(6SM2 +M2 + 3S2M2)1/2, (3SM3 + S3M3)1/3
)
. (4.30)

The first 3 elements do not contribute to the maximization since they are
smaller than the fourth element, yielding:

T ≤ 2 max
(
(3S + 2)M, ((3S2 + 6S + 1)M2)1/2, ((S3 + 3S)M3)1/3

)
T ≤ 2(3S + 2)M. (4.31)
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where the last inequality holds true for any S ≥ 0. Replacing T in (4.29) and
bounding each term |ak − bk|, we obtain

max
i
|θfi − θ

g
i | ≤ 3

{
(2M)T 2 + (6SM2 +M2)T + (3SM3)

}1/3

≤ 3M
{

8(3S + 2)2 + 2(6S + 1)(3S + 2) + 3S
}1/3

≤ 3M
{

108S2 + 129S + 36
}1/3

(4.32)

Thus, closed-loop stability is ensured if the right hand side of the above
inequality is less than |α∗| = SM . This yields

max
i
|θfi − θ

g
i | < |α∗|

⇐⇒ 3M
(
108S2 + 129S + 36

)1/3
< SM

⇐⇒ S3 − 27(36 + 129S + 108S2) > 0 (4.33)

which holds true for S = κ ≥ 2918. �

4.3 Stably Invertible Continuous-Time
Systems

In Sections 4.1 and 4.2, we considered continuous-time systems with no zeros.
This section considers more general linear systems provided that the polynomial
B(s) is Hurwitz, i.e., all its roots are located in the open left-half of the complex
plane [116].

We illustrate via a numerical study based on the following third order sys-
tem

Gc(s) = b (s+ β1)
(s+ α1)(s+ α2)(s+ α3) (4.34)

where β1 > 0. Note that the system has relative degree r = n−m = 2. Thus, design a
control law to place all the closed-loop poles at s = −α∗ using the approximate model
(4.13), which yields to the control law (4.14)- (4.15). Particularizing the system
(4.34), we choose b = 2 β1 = 4, α1 = −2, α2 = 2, α3 = 3. Figure 4.2 shows the
normalized true closed-loop response for different values of α∗. Notice that, similarly
to Example 5, as long as α∗ is sufficiently large the true closed-loop system is stable
(see Figure 4.2a), whilst, when α∗ is not sufficiently large, then the system can be
unstable (see Figure 4.2b).

4.4 Discrete-Time Control Law
Following the ideas presented in Section 2.3.3, in this section we propose a

controller based on an approximate model in shift or delta operator. For simplicity,
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Figure 4.2: Step response for normalized true closed-loop.

we express the time discretization in the δ-domain. However, the results can be easily
extended to the z-domain using (1.3).

Considering a sampling period h and assuming that a ZOH generates the system
input, we obtain the exact discrete-time model of the form:

G(γ) = Ac(γ)
Bc(γ) = b′

P̄r(hγ) (γm + cm−1γ
m−1 + · · ·+ c0)

γn + dn−1γn−1 + · · ·+ d0
, n > m (4.35)

where P̄r(hγ) is the sampling zeros polynomial. As mentioned before, for small h,
P̄r(hγ) converges to the asymptotic sampling zeros polynomial Pr(hγ) defined in
(2.87)-(2.90).

Once the sampled-data model is obtained, it is possible to design a discrete-time
control law based on the following approximate model:

G0(γ) = A0(γ)
B0(γ) . (4.36)

We again use polynomial pole assignment to design the controller of order
r − 1,

C(γ) = P ′(γ)
L′(γ) = p′0γ

r−1 + · · ·+ p′r−1
γr−1 + · · ·+ l′r−1

, (4.37)

where the parameters of the controller depend on the approximate model chosen, for
example, it is possible to study two cases:

G1
d(γ) = b′

γr
(4.38)

G2
d(γ) = b′

Pr(hγ)
γr

. (4.39)

The first model covers the case where the closed-loop bandwidth is significantly
less than the Nyquist frequency π

Ts
. The second model includes the asymptotic
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sampling zeros and, thus, model (4.39) covers the case when the closed-loop bandwidth
is near the Nyquist frequency. The nominal target closed-loop polynomial is

A∗cl(γ) = A0(γ)L′(γ) +B0(γ)P ′(γ) = (γ + α∗)2r−1 , (4.40)

where all the closed-loop poles are placed at γ = −α∗.

Using (4.36), the closed-loop polynomial is given by (4.5) with s replaced by
γ. Then, the parameters of the controller are as shown in (4.6). On the other hand,
using (4.39), we have

γr
(
γr−1 + · · ·+ l′r−1

)
+ b′ Pr(hγ)

(
p′0γ

r−1 + · · ·+ p′r−1

)
= (γ + α∗)2r−1 . (4.41)

Note that, the controller parameters depend on h. On the other hand, the real
closed-loop polynomial is given by

Acl(γ) = Ac(γ)P ′(γ) +Bc(γ)L′(γ). (4.42)

4.5 Second Order Systems with no Finite
Zeros

Following the ideas presented in Section 4.1, we are interested in extending the
results to a simple sampled-data control law. Thus, we consider that the poles and
the zeros of the discrete-time system be α1, . . . , αn and β1, . . . , βm, respectively. The
following assumption which a region where the open loop poles and zeros lie.

Assumption 4.6 The poles and zeros of the discretized system (4.35) belong to a
bounded region in the complex plane, such that |αi, βi| < R < 1

h
.

Analogously to the continuous-time case, we consider a true second-order
discrete-time system given by

Gd(γ) = b′ Pr(hγ)
γ2 + t′1γ + t′2

=
b′ (1 + ν h2γ)
γ2 + t′1γ + t′2

(4.43)

Note that ν tends to 1 as h approaches zero. For the system (4.43), the proposed
controller is given by

C(γ) = p′0γ + p′1
γ + l′1

. (4.44)

Therefore, for relative degree r = 2, based on the approximate model G1
d(γ),

the parameters of the controller are as in (4.15) with s replaced by γ. On the other
hand, for the approximate model G2

d(γ), with P̄2(hγ) = (1 + γ h2 ), the parameters
are

p′1 = (α∗)3

b′
, p′0 = 3(α∗)2

b′
− h

2
(α∗)3

b′
, l′1 = 3α∗ − 3h2 (α∗)2 + h2

4 (α∗)3. (4.45)
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In what follows we often use the approximation ν ≈ 1, which is valid as
the sampling period approaches zero. We have the following result regarding the
closed-loop stability of the true and approximates systems:

Theorem 4.7 Consider the discrete-time model of the form (4.43). Then, for the
control law design based on G1

d(γ) in (4.38) and subject to Assumption 4.6, a sufficient
condition for closed-loop stability of the true closed-loop is that the nominal closed-loop
poles at γ = −α∗ satisfy 1

h
� α∗ � |α1,2|, i.e., 1

h
� α∗ > κ′R for some sufficiently

large positive real number κ′.

Proof: As before, we consider b′ = 1 and a controller designed for the approximate
model given by

G1
d(γ) = 1

γ2 . (4.46)

We apply the controller to the true system (4.43), and we use again Theorem
4.3 (Ostrowski’s Theorem), where the polynomials are

f(γ) = γ3 + 3(α∗)γ2 + 3(α∗)2γ + (α∗)3 (4.47)

g(γ) = γ3 + (l′1 + t′1 + p′0
νh

2 )γ2 + (t′1l′1 + t′2 + p′0 + p′1
νh

2 )γ + (t′2l′1 + p′1), (4.48)

where the parameters p′i; i = 0, 1, 2 are given by (4.15). We consider Assumption 4.6
and define K = α∗/R. Then,

|a1| ≤ 3KR, |b1| ≤ 2R + 3KR + 3νh2 K
2R2, (4.49a)

|a2| ≤ 3K2R2, |b2| ≤ 6KR2 +R2 + 3K2R2 + νh
2 K

3R3 (4.49b)
|a3| ≤ K3R3, |b3| ≤ 3KR3 +K3R3. (4.49c)

Thus, proceeding as in the proof of Theorem 4.5, we have that
T ≤ 2 max

(
3KR + 2R + 3νh2 (KR)2, (3KR3 +K3R3)1/3,

(6KR2 +R2 + 3K2R2 + νh
2 (KR)3)1/2

)
(4.50)

where, as mentioned in (4.30), the first 3 terms in the maximization have been
discarded. Moreover, we have that ν ≈ 1, for small h, and hence νhKR ≈ hKR =
hα∗ � 1. Thus,

T ≤ 2 max
(
(4.5K + 2)R, (3K +K3)1/3R, (6K + 1 + 3K2 + 0.5K2)1/2R

)
T ≤ 2(4.5K + 2)R, (4.51)

where the last inequality holds true for any K ≥ 0. Thus, the distance between the
roots of the polynomials is bounded as

max
i
|θfi − θ

g
i | ≤ 3

{
(2R + 3νh2 K

2R2)T 2 + (6KR2 +R2 + νh
2 K

3R3)T + 3KR3
}1/3

≤ 3
{

(2R + 3
2R)(9K + 4)2R2 + (6KR2 +R2 + 1

2KR
2)(9K + 4)R + 3KR3

}1/3

≤ 3R
{

60 + 290K + 342K2
}1/3

. (4.52)
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where we have used that, since 1
h
� KR, then we have that

hKR� 1 =⇒ hK2R < 1 =⇒ νhK2R < 1 (4.53)

since ν ≈ 1 as h→ 0. Then, closed-loop stability is guaranteed if the right hand side
is less than |α∗| = KR. This yields

max
i
|θfi − θ

g
i | < |α∗|

⇐⇒ 3R
(
60 + 290K + 342K2

)1/3
< KR

⇐⇒ K3 − 27(342K2 + 290K + 60) > 0 (4.54)

Thus, taking K = κ′ ≥ 9235 the theorem is proved. �

Theorem 4.8 Consider the discrete-time model of the form (4.43). Then, for a
control law design based on (4.39) and subject to Assumption 4.6, a sufficient condition
for closed-loop stability of the corresponding sampled-data model is that the closed-loop
poles satisfy 1

h
≥ α∗ > κ′R for some sufficiently large positive real number κ′.

Proof: Again, without loss of generality, we take b′ = 1. We are interested in designing
a controller based on the approximate model that includes the asymptotic sampling
zeros. For relative degree r = 2, we have

G2
d(γ) = P̄2(hγ)

γ2 =
1 + γ h2
γ2 . (4.55)

We apply Theorem 4.3, where the polynomials are the same as shown in (4.47)-
(4.48), but with the parameters defined in (4.45). Then, considering Assumption 4.6,
defining K = α∗/R and using the triangle inequality, we have that the bounds for
ai; i = 1, 2, 3 are given by (4.49) and

|b1| ≤ 2R + 3KR + 3
2h(KR)2|ν − 1|+ h2

4 (KR)3|1− ν| (4.56a)

|b2| ≤ 6KR2 +R2 + h

2 (KR)3|1− ν|+ 3(KR)2 + h2

2 K
3R4 + 3hK2R3 (4.56b)

|b3| ≤ 3KR3 + (KR)3 + 3
2hK

2R4 + h2

4 K
3R5. (4.56c)

As before, we find a bound on T defined in (4.23). We then consider

T ≤ 2 max
(
3KR,

√
3KR,KR, |b1|, |b2|1/2, |b3|1/3

)
. (4.57)

In order to find the maximum, we consider that

KR < 1/h =⇒ hKR < 1 (4.58)
ν → 1 =⇒ |1− v|K < 1. (4.59)
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Then, we have that

T ≤ 2 max
(
R
(

2 + 3K + 3
2 + 1

4

)
, R

(
6K + 1 + 1

2K + 3K2 + 1
2K + 3K

)1/2
,

R
(

3K +K3 + 3
2K + 1

4K
)1/3)

T ≤ 2
(

3K + 15
4

)
R, (4.60)

where the last inequality holds true for any K ≥ 0. Replacing T in (4.24) and using
Remark 4.4, the distance between the roots of the polynomials can be bounded
as

max
i
|θfi − θ

g
i | ≤ 3

{(
2R + 3

2hK
2R2|ν − 1|+ h2

4 K
3R3|1− ν|

)
T 2+(

R2 + 6KR2 + 3hK2R3 + h2

2 K
3R4 + h

2K
3R3|1− ν|

)
T

+
(

3KR3 + 3
2hK

2R4 + h2

4 K
3R5

)}1/3

≤ 3
{(

2R + 3
2R + 1

4R
)

4
(

3K + 15
4

)2
R2+(

R2 + 6KR2 + 3KR2 + 1
2KR

2 + 1
2KR

2
)

2
(

3K + 15
4

)
R+(

3KR3 + 3
2KR

3 + 1
4KR

3
)}1/3

≤ 3R
{3495

16 + 1693
4 K + 195K2

}1/3
(4.61)

Thus, closed-loop stability is guaranteed if the right hand side is less than
|α∗| = KR. This yields

max
i
|θfi − θ

g
i | < |α∗|

⇐⇒ 3R
(3495

16 + 1693
4 K + 195K2

)1/3
< KR

⇐⇒ K3 − 27
(3495

16 + 1693
4 K + 195K2

)
> 0. (4.62)

Therefore, taking K = κ′ ≥ 5268 the theorem is proved. �

Example 6 We consider a second-order plant of the form (4.12). For a specific
numerical example we choose b = −6, α1 = 3, α2 = −2, i.e.,

Gc(s) = −6
(s+ 3)(s− 2) . (4.63)
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Then, its discrete-time model depends on the sampling period chosen. Table 4.1
shows the nature of the closed-loop response of the true system when the controller
designed based on the approximation G1

d(γ) = −6/γ2. Note that the blank entries are
not relevant since we consider only the case where α∗ ≤ 1/h.

α∗
1/h 10 20 100 1000 10000

5 Stable Stable Stable Stable Stable
10 Unstable Stable Stable Stable Stable
16 Unstable Stable Stable Stable
20 Unstable Stable Stable Stable
50 Stable Stable Stable
70 Unstable Stable Stable
100 Unstable Stable Stable
500 Stable Stable
800 Unstable Stable
1000 Unstable Stable
5000 Stable
10000 Unstable

Table 4.1: Robustness of the discrete-time model without considering sampling zeros

On the other hand, the closed-loop performance when the controller design is
based on the model (4.39) is shown in Table 4.2.

α∗
1/h 10 20 100 1000 10000

5 Stable Stable Stable Stable Stable
10 Stable Stable Stable Stable Stable
16 Stable Stable Stable Stable
20 Stable Stable Stable Stable
50 Stable Stable Stable
70 Stable Stable Stable
100 Stable Stable Stable
500 Stable Stable
800 Stable Stable
1000 Stable Stable
5000 Stable
10000 Stable

Table 4.2: Robustness of the discrete-time model considering sampling zeros

Therefore, for h small enough and for 1
h
� α∗ > R, the design based on G1

d(γ)
stabilizes the true system. However, when α∗ tends to 1

h
, the closed-loop stability

is not achieved. Hence, to ensure stability of the true closed-loop system when α∗

approaches 1
h
it becomes necessary to use the controller designed using G2

d(γ), i.e.,
the asymptotic sampling zeros must be added in the approximate model.
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Figure 4.3: Illustration of instability for h = 0.5.

Besides, the results are only suitable for h sufficiently small. For example,
considering h = 0.5 and varying α∗, the closed-loop response is unstable, even when
the asymptotic sampling zeros are included in the control law. This is illustrated in
Figure 4.3, where the maximum distance from the closed-loop eigenvalues from the
point − 1

h
is plotted as a function of α∗ ∈ (0, 1

h
). Note that this distance is larger than

1
h

= 2 in all cases, which implies that the closed-loop system is unstable.

4.6 Summary
In this chapter a high-gain control law was proposed for stably invertible linear

systems that depends only on the continuous-time relative degree and high-frequency
gain. In the first instance, the continuous-time case has been analyzed to establish
ideas. Thus, a preliminary theoretical analysis based on Ostrowski’s Theorem has
been provided for relative degree two, showing that the approximate model’s design
stabilizes the true system.

The results were extended to the discrete-time domain when the sampling
period is small, which is more challenging due to the presence of (asymptotic)
sampling zeros. Therefore, a methodology that specifically addresses the sampling
zero issue is developed. The methodology study two approximate models: the first
model covers the case where the closed-loop bandwidth is significantly less than the
Nyquist frequency, while the second includes the asymptotic sampling zeros, and, as
a consequence, the closed-loop bandwidth is near the Nyquist frequency.

The results show that when the nominal closed-loop poles approach the inverse
of the sampling period, it is necessary for the closed-loop stability of the true system
that the control design is based on an approximate model that includes the asymptotic
sampling zeros.
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5 | NONLINEAR SAMPLED-DATA
MODELS BASED ON B-SPLINE
FUNCTIONS

As mentioned in Chapter 2, the exact sampled-data model is not usually available
for nonlinear systems. In this chapter our interest is on studying the effect of the
numerical integration strategy applied to solve the (nonlinear) differential equation.
Analogous to the linear case, approximate sampled-data models can be obtained that
include extra zero dynamics that depend on the system input smoothness modeled
using B-spline functions as in Chapter 3.

The usual assumption is that a ZOH generates the input. However, spline
interpolation can represent a different assumption to introduce knowledge about the
continuous-time input smoothness.

This chapter first propose an approximate sampled-data model for an n-th
order nonlinear system having relative degree r when the input is generated by an `-th
order B-spline hold. We show how a truncated Taylor series expansion can discretize
the continuous-time system taking into account the smoothness of the input. It is
shown that the corresponding sampled-data model depends on the nonlinear relative
degree of the continuous-time system and on the order of the hold device.

Moreover, an explicit characterization of the sampling zero dynamics is given,
showing that these zero dynamics are asymptotically equal to the asymptotic sampling
zeros of the linear case when the sampling period goes to zero. Finally, we study the
accuracy of the applied integration strategy by analyzing the local truncation error
associated with the state vector.
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5.1 Approximate Sampled-Data Models
for Nonlinear Systems

Consider the class of nonlinear systems affine in the input, i.e.,

ẋ(t) = f(x(t)) + g(x(t))u(t) (5.1a)
y(t) = h(x(t)), (5.1b)

where x(t) is the state vector, the vector fields f(x(t)) and g(x(t)), and the output
function h(x(t)) are analytic in an open setM∈ R containing the origin [39].

Assumption 5.1 The system (5.1) has an equilibrium point x0 = 0. Then, note
that f(0) = 0 and g(0) , 0, otherwise ẋ(t) = 0 for any u(t) [94,95].

Moreover, there exists a local coordinate transformation Φ(x) = [ζ(t); η(t)]T ,
such that the nonlinear system (5.1) can be represented in normal form (see Subsection
2.5.2):

ζ̇(t) =


0
... Ir−1
0
0 0 · · · 0

 ζ(t) +


0
...
0
1

 (a(ζ, η) + b(ζ, η)u(t)) (5.2a)

η̇(t) = q(ζ, η) (5.2b)
y(t) = ζ1(t). (5.2c)

where ζ(t) = [φ1(x), . . . , φr(x)]T and η(t) = [φr+1(x), . . . , φn(x)]T .

Remark 5.2 The local coordinate transformation Φ(x) does not (locally) change the
equilibrium point. Thus, the proposed model (5.2) evolves in the neighborhood of
φ0 = 0. Thus, fundamental properties such as the controllability of the system remain
invariant [79,95].

Considering that Φ(x) is close to the origin, we have that

a(φ) = a(0) + a1~φ+ 1
2
~φTa2~φ+ . . . (5.3a)

b(φ) = b(0) + b1~φ+ 1
2
~φT b2~φ+ . . . (5.3b)

Remark 5.3 Considering Assumption 5.1 and Remark 5.2, we have that a(0) = 0
and b(0) , 0. Thus,

a(φ) = ā(φ) = a1~φ+ 1
2
~φTa2~φ+ . . . (5.4a)

b(φ) = b0 + b̄(φ) (5.4b)

We now focus in obtaining a sampled-data model for the continuous-time system
(5.1) when the input is generated by a B-spline hold. In particular, we are interested
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in the characterization of the extra discrete-time zero dynamics that appear due to
the sampling process.

Firstly, we present the sampled-data model for an n-th order integrator when
the input is generated by a B-spline generalized hold to set ideas. Then, we extend
the results to the nonlinear case.

Theorem 5.4 Consider the continuous-time system G(s) = s−n, where n > 0, and
consider that the input to the system is generated by a B-spline `-th order hold, as
shown in Fig. 3.2. The corresponding sampled-data model is given by

x̄k+1 = Aqx̄k +Bquk (5.5a)
yk = Cqx̄k (5.5b)

where matrices Aq, Bq and Cq are given in (5.13).

Proof: An n-th order integrator whose input is generated by an `-th order hold
can be written in normal form as shown in (3.22), i.e.,

y(t) = x1(t) (5.6a)
ẋ1(t) = x2(t) (5.6b)

...

ẋn(t) = u(t) (5.6c)
...

ẋn+`(t) = u(`)(t). (5.6d)

We recall that, according to Remark 3.3, (`+ 1)-th and higher order derivatives
of the input u(t) are all equal to zero. Thus, the corresponding discrete-time model
corresponds to a truncated Taylor series expansion (2.121) up to the order (n+ `) of
the system (5.6), i.e.,

x1(kh+ τ) = x1(kh) + τx
(1)
1 (kh) + · · ·+ τ (n+`)

(n+ `)!x
(n+`)
1 (kh) (5.7a)

x2(kh+ τ) = x2(kh) + · · ·+ τn+`−1

(n+ `− 1)x
(n+`−1)
2 (kh) (5.7b)

... (5.7c)
xn+`(kh+ τ) = xn+`(kh) + τx

(1)
n+`(kh), (5.7d)

where 0 ≤ τ < h. Then, model (5.7) can be expressed in state-space as

xk+1 = A1
qxk +B1

q ū(kh) (5.8a)
yk = Cqxk, (5.8b)
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where we have used the notation xk = x(kh). The matrices are

A1
q =


1 h · · · hn−1

(n−1)!

0 1 · · · ...
...

. . .
...

0 · · · 0 1

 , B
1
q =



hn

n!
hn+1

(n+1)! · · ·
hn+`

(n+`)!
hn−1

(n−1)!
hn

n! · · · hn+`−1

(n+`−1)!
...

...
...

...

h h2

2 · · · h`+1

(`+1)!

 (5.9a)

Cq =
[

1 0 · · · 0
]
. (5.9b)

Then, using (2.34) and (2.44) we can compute u(kh) and its `-th derivatives.
Thus, ū(kh) is given by

ūk(kh) =


u(kh)
u(1)(kh)

...
u(`)(kh)

 =


β̃`(t)
d
dt
β̃`(t)
...

d`

dt`
β̃`(t)



∣∣∣∣∣∣∣∣∣∣∣
t=kh︸                    ︷︷                    ︸

M


uk
uk−1
...

uk−`

 . (5.10)

Note that u(kh) and u(i)(kh), for i = 1, . . . , ` depend on uk and previous input
samples. These samples can be thought as auxiliary states for the previous sample,
i.e., (ξ1)k+1 = uk and (ξj)k = uk−j. The additional ` states can be represented as
follows:


ξ1
ξ2
...
ξ`


k+1

=



0 0 · · · 0
1 0 · · · 0
0 1 . . . 0
...

...
0 · · · 1 0


︸                      ︷︷                      ︸

E


ξ1
ξ2
...
ξ`


k

+


1
0
...
0

uk (5.11)

Matrix E allows us to include all the information available about u(t). The aug-
mented state vector is then defined as x̄k = [x; ξ]Tk and the state-space representation
is given by

x̄k+1 = Aqx̄k +Bquk (5.12a)
yk = Cqx̄k. (5.12b)

where Cq is defined in (5.9b), the matrices

Aq =
[

A1
q B1

qM1
0`×n E`×`

]
, Bq =



B1
qM0
1
0
...
0

 (5.13)
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and M0 = M1:`+1,1 (i.e., the first column of M), and M1 = M1:`+1,2:`+1. Moreover,
due to the matrix M structure, we have that

B1
qM0 = hn

(n+ `)! . (5.14)

�

As mentioned in Chapter 3, the discrete-time transfer function associated with
(5.8) is given by

Gq(z) = hn

(n+ `)!
Bn+`(z)
z`(z − 1)n . (5.15)

We are interested in characterizing the asymptotic sampling zeros that appear
in the sampled-data model. Moreover, this result will be a useful tool for analyzing
the zero dynamics of the nonlinear case. Thus, the following theorem provides the
discrete-time normal form representation of (5.15).

Theorem 5.5 The discrete-time model for an n-th order integrator defined in (5.8)
(and, therefore in (5.15)) can be written in normal form as:

w1,k+1 = q11w1,k +Q12χk + hn

(n+ `)!uk (5.16a)

χk+1 = Q21w1,k +Q22χk, (5.16b)

where χk represents the (w2:n+`)k states, and where the eigenvalues of matrix Q22 are
the sampling zeros of (5.15), i.e.,

Bn+`(z) = det(zI −Q22). (5.17)

Proof: Consider the similarity transformation wk = T x̄k, where

T =
[

1 0
T21 In+`−1

]
(5.18)

and

T21 = −(Bq)2:n+`,1

(B1
qM0)1,1

= −(n+ `)!
hn

(Bq)2:n+`,1. (5.19)

Applying T to (5.12), the following state-space representation is obtained:

Ãq = TAqT
−1 = Q =

[
q11 Q12
Q21 Q22

]
(5.20)

=
[

−A12T21 A12
−(T21A12 + A22)T21 T21A12 + A22

]
. (5.21)
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Using matrix Aq in (5.13), we have that

A12 =
[
h h2

2 · · · hn−1

(n−1)! (B1
qM1)1,1:`

]
(5.22)

A22 =
[

(A1
q)2:n,2:n (B1

qM1)2:n,1:`
01:`,2:n E`×`

]
. (5.23)

Then, B̃q and C̃q are given by

B̃q = TBq =
[

hn

(n+`)! 0 · · · 0
]T

(5.24)

C̃q = CqT
−1 =

[
1 0 · · · 0

]
. (5.25)

Thus, the discrete-time model for an n-th order integrator is given by the
following state-space representation:

wk+1 = Ãqwk + B̃quk (5.26a)
yk = C̃qwk, (5.26b)

To obtain the (sampling) zeros polynomial of (5.26), and therefore of (5.15),
we compute the numerator polynomial as follows [2]:

N(z) = det
[
zI − Ãq −B̃q

C̃q 0

]
(5.27)

=


z − q11 −Q12 − hn

(n+`)!
0

−Q21 zI −Q22
...

1 0 · · · 0

 . (5.28)

The result follows computing the determinant along the last column �

In what follows, we develop an approximate sampled-data model for the
continuous-time system (5.2) when considering that a B-spline hold generates the
system input and that the integration strategy is a truncated Taylor series expansion.
Firstly, we need the following assumptions in order to obtain a (discrete-time) model
that preserves the input affine property of the continuous-time system.

Assumption 5.6 Let us assume that the nonlinear system in (5.2) satisfies:

∂b(ζk, ηk)
∂ζr,k

= 0 (5.29a)

∂ia(ζk, ηk)
(∂ζr,k)i

= 0; ∀ i > 1. (5.29b)
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Theorem 5.7 Consider the n-th order nonlinear system (5.1), where the input is
generated by an `-th order B-spline hold. An approximate sampled-data model can
be obtained applying a truncated Taylor series expansion having the following state
space form:

wk+1 =
(
Ãq + hr+`

(r + `)!Ã2(wk)
)
wk + hr+`

(r + `)!Ã3(wk) + B̃q(wk)uk (5.30a)

yk = C̃q wk, (5.30b)

where matrices Ãq and C̃q are defined in (5.21) and (5.25), respectively, and where
Ã2(wk), Ã3(wk), B̃q(wk) are given later in (5.43), (5.44), (5.45).

Proof: Consider the nonlinear system (5.1) and that the input to the system in
generated by an `-th order hold. Also, consider that the (`+ 1)-th and higher order
derivatives of the input are all equal to zero (see Lemma 3.1). Thus, applying the
integration strategy shown in (2.154) up to order r + `, we obtain the following
sampled-data model

ζ̂1(kh+ h) = ζ̂1(kh) + hζ̂2(kh) + · · ·+ hr

r! ζ̂
(1)
r (kh) + · · ·+ hr+`

(r + `)! ζ̂
(`+1)
r (α1)

(5.31a)

ζ̂2(kh+ h) = ζ̂2(kh) + · · ·+ hr−1

(r − 1) ζ̂
(1)
r (kh) + · · ·+ hr+`−1

(r + `− 1)! ζ̂
(`+1)
r (α2) (5.31b)

... (5.31c)

ζ̂r(kh+ h) = ζ̂r(kh) + hζ(1)
r (kh) + h2

2 ζ̂
(2)
r (kh) + · · ·+ h`+1

(`+ 1)! ζ̂
(`+1)
r (αr) (5.31d)

η̂(kh+ h) = η̂(kh) + h q(ζ̂ , η̂)
∣∣∣
t=αr+1

. (5.31e)

This model is exact for some unknown time instants kh ≤ αi < kh + h;
i = 1, . . . , r + 1. Replacing the time instants αi by kh, we obtain an approximate
discrete-time model given by

ζ1(kh+ h) = ζ1(kh) + hζ2(kh) + · · ·+ hr

r! ζ
(1)
r (kh) + · · ·+ hr+`

(r + `)!ζ
(`+1)
r (kh)

(5.32a)

ζ2(kh+ h) = ζ2(kh) + · · ·+ hr−1

(r − 1)ζ
(1)
r (kh) + · · ·+ hr+`−1

(r + `− 1)!ζ
(`+1)
r (kh) (5.32b)

... (5.32c)

ζr(kh+ h) = ζr(kh) + hζ(1)
r (kh) + h2

2 ζ
(2)
r (kh) + · · ·+ h`+1

(`+ 1)!ζ
(`+1)
r (kh) (5.32d)

η(kh+ h) = η(kh) + h q(ζ, η)|t=kh (5.32e)
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Based on Assumption 5.6, we have neglected the derivatives of b(ζk, ηk) and
higher-order derivatives of a(ζk, ηk). In addition, considering that ζ(t) is close to
the origin, we assume a(ζk, ηk) ≈ 0 (see Remark 5.3). This yields the following
discrete-time state-space form that is affine in the input:

ζk+1 = Aqζk + A3(ζk, ηk) +B2(ζk, ηk)ūk (5.33a)
ηk+1 = ηk(ζk, ηk) + hq(ζk, ηk), (5.33b)

where ūk is given by (5.10) and

A3(ζk, ηk) =


hr

r! + hr+1

(r+1)!
∂a
∂ζr

+ · · ·+ hr+`

(r+`)!

(
∂a
∂ζr

)`
...

h+ h2

2
∂a
∂ζr

+ · · ·+ h`+1

(`+1)!

(
∂a
∂ζr

)`
 a(ζk, ηk). (5.34)

B2(ζk, ηk) = b(ζk, ηk) ×

hr

r! + hr+1

(r+1)!
∂a
∂ζr

+ · · ·+ hr+`

(r+`)!

(
∂a
∂ζr

)`
hr+1

(r+1)! + · · ·+ hr+`

(r+`)!

(
∂a
∂ζr

)`−1
· · · hr+`

(r+`)!
hr−1

(r−1)! + hr

r!
∂a
∂ζr

+ · · ·+ hr+`−1

(r+`−1)!

(
∂a
∂ζr

)`
hr

r! + · · ·+ hr+`−1

(r+`−1)!

(
∂a
∂ζr

)`−1
· · · hr+`−1

(r+`−1)!
...

...
...

h+ h2

2
∂a
∂ζr

+ · · ·+ h`+1

(`+1)!

(
∂a
∂ζr

)`
h2

2 + h3

3
∂a
∂ζr

+ · · ·+ h`+1

(`+1)!

(
∂a
∂ζr

)`−1
· · · h`+1

(`+1)!

 .

(5.35)

Remark 5.8 Notice that, according to the integration strategy applied to each state
component ζi(kh+ h), the neglected terms appear in the (r + i)-th and higher-order
derivatives. Moreover, the derivatives of a(ζ, η) that are not considered in the expan-
sion are of order `.

Note that matrix (5.35) can be split into a linear part, given by B1
q in (5.9a),

and a matrix with the nonlinearities factorized by h(r+`)/(r + `)!, i.e.,

B2(ζk, ηk) = B1
q b0︸  ︷︷  ︸
B1
q

+ hr+`

(r + `)!B
2
q (ζk, ηk). (5.36)

Following the ideas presented in Theorem 5.4, u(t) and its derivatives at the
sampling instants can be included in the model as additional states (see (5.11)). Thus,
we define ζ̄k = [ζk; ξk]T as the augmented state vector and then (5.33) can be written
as follows:

ζ̄k+1 = Āq(ζk, ηk)ζ̄k + hr+`

(r + `)!Ā3(ζk, ηk) + B̄quk (5.37a)

ηk+1 = ηk + hq(ζk, ηk), (5.37b)
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where

Āq(ζk, ηk) = Aq + hr+`

(r + `)!A2(ζk, ηk), (5.38)

where Aq is given by (3.27) and

A2(ζk, ηk) =
[

0r×r B2
q (ζk, ηk)M1

0`×r 0`×`

]
, (5.39)

Ā3(ζk, ηk) =
[
A3(ζk, ηk)

0`×1

]
, (5.40)

B̄q(ζk, ηk) =



B2(ζk, ηk)M0
1
0
...
0

 . (5.41)

We apply now the similarity transformation wk = Tξk, where T is defined in
(5.18), and T21 is given by

T21 = −(Bq)2:r+`

B1
qM0

= −(r + `)!
b0hr

(Bq)2:r+`. (5.42)

We are interested in obtaining a sampled-data model that can be defined
in the neighborhood of the origin. Thus, using the results presented in (5.4), the
new approximate sampled-data model is given by the sub-matrices of Ãq shown in
(5.22)-(5.23) and

Ã2(wk) = TA2(T−1wk)

= Q̃(wk) =
[
q̃11(wk) Q̃12(wk)
Q̃21(wk) Q̃22(wk)

]
(5.43)

Ã3(wk) = TĀ3(T−1wk) (5.44)
B̃q(wk) = TB̄q(T−1wk)

=
[

hr

(r+`)!b(wk) 0 · · · 0
]T

(5.45)

�

5.2 Local Vector Truncation Error
The integration strategy applied is a truncated Taylor series expansion, up to

the order r + `. Thus, following the same arguments as in [42], this section analyzes
the local truncation error between the exact and the approximate sampled-data model
defined in (5.31) and (5.32), respectively.
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Theorem 5.9 Consider the continuous-time nonlinear system in (5.1) having an
input generated by a B-spline generalized hold. Then, the approximate sampled-data
model in (5.32) has a Local Vector Truncation Error of the order of (hr+2, hr+1, · · · , h2).

Proof: From the definition of Local Vector Truncation Error in [42], we have that
the difference between the exact and the approximate discrete-time model is given by

ê1 = ζ̂1(kh+ h)− ζ1(kh+ h) = 0 (5.46a)
...

êr = ζ̂r(kh+ h)− ζr(kh+ h) = 0 (5.46b)
êr+1 = η̂(kh+ h)− η(kh+ h) = 0. (5.46c)

Then, considering Remark 5.8, the differences are given by

ê1 = hr+1

(r + 1)!
d2

dt2

(
ζ̂r(kh)− ζr(kh)

)
+ · · ·+ hr+`

(r + `)!
dr+`

dtr+`

(
ζ̂r(α1)− ζr(kh)

)
(5.47a)

ê2 = hr

r!
d2

dt2

(
ζ̂r(kh)− ζr(kh)

)
+ · · ·+ hr+`−1

(r + `− 1)!
dr+`

dtr+`

(
ζ̂r(α2)− ζr(kh)

)
(5.47b)

... (5.47c)

êr = h2

2
d2

dt2

(
ζ̂r(kh)− ζr(kh)

)
+ · · ·+ hr+`

(r + `)!
d`+1

dt`+1

(
ζ̂r(αr)− ζ(kh)

)
êr+1 = h

(
q(ζ̂ , η̂)

∣∣∣
t=αr+1

− q(ζ, η)|t=kh
)
. (5.47d)

Notice that êi includes terms of the order of hr+2−i, i = 1, . . . r + 1, and higher
order. Thus, the error is of the order of hr+2−i. According to the ideas presented
in [42], the approximate sampled-data model (5.32) has a local vector truncation
error of order (hr+2, hr+1, · · · , h3, h2). �

From the above result, we can see that the (local) error between the output of
model (5.32) and the output of the true system is of the order of hr+2 (see (2.152)).
Moreover, it can be noticed that the approximate model based on B-spline functions
is more accurate than the models considered in [42] and in [81], because the local
truncation error in each state component ζi(kh+h) is of a higher order in the sampling
period h. Thus, the assumption about the smoothness of the system input has been
exploited to improve the accuracy of the obtained model.

5.3 Asymptotic Zero Dynamics
In what follows we characterize the zero dynamics of the corresponding nonlinear

discrete-time model that appear due to the sampling process. In particular, Theorem
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5.10 shows that these sampling zero dynamics asymptotically converge to the sampling
zeros of an n-th order integrator (see (5.17)).

Theorem 5.10 Consider the approximate discrete-time model (5.30). The associated
sampling zero dynamics can be asymptotically characterized, as the sampling period
goes to zero, in terms of the eigenvalues of matrix Q22, i.e.,

χ̄k+1 = Q22χ̄k (5.48a)
ηk+1 = ηk, (5.48b)

where χ̄k = (w2:r+`)k.

Proof: We impose the zero dynamics condition to the model (5.30), i.e., yk = (w1)k = 0.
Thus,

0
w2
...

wr+`


k+1

=
(
Q+ hr+`

(r + `)!Q̃(wk)
)

0
w2
...

wr+`


k

+ hr+`

(r + `)!Ã3(wk) + B̃q(wk)(uzd)k.

(5.49)

where, Q and Q̃(wk) are given by (5.20)-(5.21) and (5.43), respectively. Then, solving
for the first row in (5.49), we have that

(uzd)k = − (r + `)!
hrb(wk)

[(
Q12 + hr+`

(r + `)!Q̃12(wk)
)
χ̄k + hr+`

(r + `)!(Ã3(wk))1,1

]
.

For the remaining equations and considering that ζ̄k(t) evolves close to the
origin, we have that

χ̄k+1 =
(
Q22 + hr+`

(r + `)!Q̃22(wk)
)
χ̄k + hr+`

(r + `)!Ã3(wk) (5.50)

ηk+1 = ηk + hq(ζk, ηk). (5.51)

Considering that h→ 0, then (5.48) is readily obtained. �

Notice that the nonlinear zero dynamics of the discrete-time model (5.30) are
partially linearized and can be split into two parts: a linear subsystem, which is
given by Q22 and represents the asymptotic zero dynamics that appear due to the
sampling process, and a nonlinear subsystem, which is the Euler’s discretization of the
continuous-time zero dynamics of (5.1). Moreover, we can notice that the eigenvalues
of Q22 are the sampling zeros of an n-th order integrator (see Theorem 5.5).

We conclude this section with an example to illustrate how the proposed
sampled-data model and the associated zero dynamics are obtained.
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Example 7 Consider an n-th order nonlinear continuous-time system (5.1) with
relative degree r = 2. The latter can be expressed in normal form as in (5.2). Moreover,
we assume that the input is generated by a B-spline first-order hold given by (2.10)
and we obtain the proposed approximate dynamics sampled-data model applying the
integration strategy (5.7) of order r + ` = 3, i.e.,

ζ1,k+1 = ζ1,k + hζ2,k + h2

2 ζ
(1)
2 (kh) + h3

3! ζ
(2)
2 (kh) (5.52a)

ζ2,k+1 = ζ2,k + hζ
(1)
2 (kh) + h2

2 ζ
(2)
2 (kh) (5.52b)

ηk+1 = ηk + hq(ζ, η) (5.52c)
y(t) = ζ1,k(t) (5.52d)

Considering Assumption (5.6), the first two equations in (5.52) can be expressed
as follows,

ζ1,k+1 = ζ1,k + hζ2,k +
(
h2

2 + h3

6
∂a

∂ζ2
u(kh)

)
a(ζ, η)+[ (

h2

2 + h3

6
∂a
∂ζ2

)
b(ζ, η) h3

6 b(ζ, η)
]
ū(kh) (5.53a)

ζ2,k+1 = ζ2,k +
(
h+ h2

2
∂a

∂ζ2

)
a(ζ, η) +

[ (
h+ h2

2
∂a
∂ζ2

)
b(ζ, η) h2

2 b(ζ, η)
]
ū(kh), (5.53b)

where ū(kh)

ū(kh) =
[
u(kh)
u̇(kh)

]
=
[

0 1
1
h
− 1
h

] [
uk
uk−1

]
. (5.54)

Notice that there is only one extra state given by (ζ1)k = uk−1. Then, the
augmented state-space model is given by

ζ̄k+1 =


1 h h2

6 b(ζ, η)
(
h∂a(ζ,η)

∂ζ2
+ 2

)
0 1 h

2 b(ζ, η)
(
h∂a(ζ,η)

∂ζ2
+ 1

)
0 0 0

 ζ̄k+

(
h2

2 + h3

6
∂a(ζ,η)
∂ζ2

)(
h+ h2

2
∂a(ζ,η)
∂ζ2

)
0

 a(ζ, η) +


h2

6 b(ζ, η)
h
2 b(ζ, η)

1

uk (5.55a)

ηk+1 = ηk + hq(ζ, η). (5.55b)

The result in (5.4) allows us to split model (5.55) into a linear and a non-
linear part. Then, applying the similarity transformation T in (5.18) and T21 =
−[3/h, −6/(h2b0)]T , based on Remark 5.3, and considering that ζ̄k(t) evolves close
to the origin, the following state-space representation is obtained:

wk+1 = Ã1wk + Ã2(w)wk + Ã3(w) + B̃(w)uk (5.56a)
ηk+1 = ηk + hc(ζ, η), (5.56b)
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Ã1 =

 6 h h2

3 b0
−12

h
−2 −h

2 b0
− 36
h2b0

− 6
hb0

−2

 , Ã2(w) =


0 0 h3

6 b(w)∂a(w)
∂w2

+ h2

3 b̄(w)
0 0 −h

2 b̄(w)
0 0 −h∂a(w)

∂w2

 ,
(5.57)

Ã3(w) =


h2

6

(
h∂a(w)

∂w2
+ 3

)
−h

2
0

 a(w), B̃(w) =


h2

6 b(w)
0
0

 . (5.58)

Applying the condition for the zero dynamics, we obtain

χ̄k+1 =
[
−2 −h

2 b0
− 6
hb0

−2

]
χ̄k +

[
0 −h

2 b̄(w)
0 −h∂a(w)

∂w2

]
χ̄k −

[
h
2
0

]
a(w)

ηk+1 = ηk + hq (0, χk, ηk) (5.59a)

Note that the eigenvalues of the first matrix in (5.59a) correspond to the roots
of the Euler-Frobenius polynomial B3(z) = z2 + 4z + 1. Thus, following (5.17), the
system (5.59a) can be expressed as:

χ̄k+1 = Q22χ̄k +
[

0 −h
2 b̄(w)

0 −h∂a(w)
∂w2

]
χ̄k −

[
h
2
0

]
a(w). (5.60)

Considering h→ 0, we notice that the zero dynamics converge to the asymptotic
sampling zeros of the linear case.

Notice that the asymptotic assumption, i.e. h→ 0, is applied once the matrix
Q22 have been defined.

5.4 Summary
In this chapter, we have presented an approximate sampled-data model for a

class of nonlinear systems affine in the input based on normal forms. The resulting
model includes extra zero dynamics that depend on the applied numerical strategy,
namely, the truncated Taylor series expansion, the continuous-time relative degree,
and the order of the B-spline hold.

Moreover, it has been shown that these zero dynamics can be asymptotically
characterized, as the sampling period goes to zero, in terms of the asymptotic zeros of
the linear case. Besides, to analyze the accuracy of the approximate model, we have
characterized the local error truncation of each element of the state vector.
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6 | CONCLUSIONS

In this thesis, discrete-time representations for deterministic continuous-time
systems for both linear and nonlinear cases have been developed. The resulting
sampled-data models can be explained as a consequence of the continuous-time
system’s characteristics and the sampling process itself: how the applied integration
strategy directly impacts the obtained sampled-data model and how the continuous-
time input is generated. Therefore, we believe that the current thesis present novel
contributions and provides further insights into the discretization process.

Thus, in this final chapter, we summarize the obtained contributions, and
present future work directions.

6.1 Input Smoothness
We considered the case when the smoothness of the continuous-time system

input is, in principle, unknown. However, there are different options to interpolate
the input from the available discrete-time sequence to represent knowledge about
this signal. Hence, in Chapter 3, a B-spline generalized hold has been expressed as
a hybrid system composed by the interconnection of a digital filter followed by a
zero-order hold and an `-th order continuous-time integrator. Thus, such equivalence
is useful since the hold device’s smoothness can be chosen to be, for example, like a
zero, first, or second-order hold only varying the parameter `.

Besides, this hold is shown to be related to the well-known Euler-Frobenius
polynomials, which characterizes the asymptotic sampling zeros of the linear case
and, also, the asymptotic zero dynamics for nonlinear systems. Thus, Chapter 3
asymptotically characterizes the (sampling) zeros, showing that the sampling zero
polynomial corresponding to a system having relative degree r is increased exactly by
the order of the hold, `. Therefore, for fast sampling rates, assuming different input
smoothness only modifies the corresponding sampled-data model by changing the
Euler-Frobenius polynomial.

6.2 Numerical Integration Strategies
For linear systems, the exact discrete-time model can be obtained. However,
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approximate descriptions may be preferred since they are related more directly to
the continuous-time system’s parameters. Moreover, approximate models may also
be easier to obtain than the exact model, and the methods can also be applied
to nonlinear systems. In this sense, the interest was to analyze the effect of such
numerical methods in the resulting discrete-time model.

Thus, we explored the connections between the sampling zero polynomial and
a Runge-Kutta method of order κ, exploiting also the smoothness of the system
input. When the expansion order is greater than or equal to r + `, then the exact
sampled-data model is obtained, and therefore, the sampling zeros are given by
the Euler-Frobenius polynomial. On the other hand, when the expansion order is
lower than the continuous-time system relative degree and the B-spline function,
an approximate sampled-data model is developed. Hence, we characterized the
corresponding sampling zeros with novel polynomials which are related to the Euler-
Frobenius polynomials.

Since the simplest Runge-Kutta method is the Euler approximation, the pro-
posed models are more accurate than the Euler method. Moreover, such representa-
tions are readily obtained. Besides, results regarding the convergence of sampling
zeros have been extended: we have shown that the order of the applied numerical
integration strategy directly impacts the location of the asymptotic sampling zeros,
and we have obtained a direct characterization of poles and zeros for different types
of holds.

On the other hand, we study a class of nonlinear systems affine in the input
based on normal forms. In this case, the applied integration strategy is a truncated
Taylor series expansion, which also takes into account the smoothness of the system
input. Thus, Chapter 5 proposed a nonlinear sampled-data model considering that
the input is generated by a B-spline generalized hold.

Therefore, the developed model was shown to depend on the continuous-time
relative degree of the continuous-time system and the order of the hold device. The
resulting model includes extra zero dynamics that are exactly equal to the asymptotic
sampling zeros found in the linear case when the sampling period goes to zero. It
is important to recall that even when the (asymptotic) connection with the linear
case has been previously established, we have extended the results to a more general
case since this characterization is valid for different types of holds. Besides, the
approximate model’s accuracy has been measured using the local truncation error of
each element of the state vector showing that the model developed in this Thesis is
more accurate than the models considered in [42] and in [81].

6.3 Applications of Linear Sampled-Data Models
In Chapter 4, we explored the use of linear sampled-data models in control

applications. The core idea is that, at high frequencies, a continuous-time system of
relative degree r behaves similarly to an r-th order integrator. Then, one should be
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able to propose a discrete-time high-gain controller for stably invertible systems that
depend only on the relative degree and high-frequency gain. As a first attempt, a
preliminary theoretical analysis based on Ostrowski’s Theorem has been analyzed for
a second-order continuous-time system to set ideas. Then, the results were extended
to the discrete-time domain for fast sampling rates. In this case, the discrete-time
controller is designed based on two approximate models: the first model covers the
case where the closed-loop bandwidth is significantly less than the Nyquist frequency,
while the second covers the case when the closed-loop bandwidth is near the Nyquist
frequency, i.e., it includes the asymptotic sampling zero.

The robustness properties of these two models differ due to the presence of
asymptotic sampling zeros. We note that for the closed-loop stability of the true
system, when the nominal closed-loop poles approach the inverse of the sampling
period, the control design must be based on an approximate model that includes the
sampling zeros. Moreover, it has been shown that the results are only suitable for
small sampling period.

Therefore, we designed a simple sampled-data control law for relative degree
two that stabilizes the true system for the continuous and sampled-data cases. This
chapter’s contribution has been the robust stability analysis, for fast sampling rates,
based on perturbation theory.

6.4 Future Work
Despite the results presented in this Thesis for the discretization process for

nonlinear systems, there are still open problems for future research work.

Regarding linear sampled-data models, for example, in the manuscript we
considered the Brunovsky form that gives the state-space description of the continuous-
time system. However, such representation of the system is not unique. Thus, it could
be of interest to analyze the effect of changing such description when applying the
numerical integration strategy. In particular, the impact of the new representation in
the nonlinear system, and therefore, in the asymptotic zero dynamics.

On the other hand, we have developed novel characterizations of the sampling
zeros when considering a low-order Runge-Kutta method. However, a closed-form
expression of such characterization is still needed for a more direct computation of
the sampling zeros. In fact, a point of departure may be the change of the state-space
representation.

In Chapter 3, we introduced the ideas of error quantification by numerical
examples. Nevertheless, it could be interesting to measure the resulting sampled-data
model’s accuracy through the relative error in the frequency domain.

With respect to the control applications for linear systems, it is important to
recall that the theoretical analysis was restricted to second-order systems with no
zeros. The stably invertible continuous-time case is supported by numerical studies
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considering a third-order system with one zero. However, the proof of this conjecture
is still needed.

An initial attempt is based on the Root Locus method, where it is assumed
that the poles αi and zeros βi belong to a bounded region in the complex plane, such
that the closed-loop poles are placed at |αi, βi| << α∗. Thus, considering a general
continuous-time system having m zeros and n poles, we hypothesize that n roots are
placed around α∗ and the remaining are located at the origin. Then, the bounds can
be obtained using the Ostrowski’s Theorem. However, the later idea continues to be
supported only by simulation studies.

Moreover, the obtained bounds for both, continuous and discrete-time cases
are conservative compared with the actual value. Therefore, planned future work
considers extending the theory to a more general higher-order systems and systems
with an unstable inverse. In addition, one may expect to extend these results to the
nonlinear case using, for example, Lyapunov ideas.

Continuing with the nonlinear case and following the ideas presented in Chapter
3, future work can consider extending the results of a Runge-Kutta method of order
κ to the nonlinear model. On the other hand, the obtained sampled-data model is
based on strong assumptions that guarantee the continuous-time system’s input affine
property. However, we have neglected terms containing nonlinear information that can
be included in the truncated Taylor series expansion, leading to a different approximate
model. In fact, Runge-Kutta methods can lead to a better discrete-time model, since
under this method, the derivatives are not computed but approximated.

On the other hand, there has been ongoing research on port-Hamiltonian systems
(PHS) because they allow the modeling, interconnection, and control of multi-physics
systems. Hence, we believe that discretization methods can be applied to obtain an
approximate model that preserves the Hamiltonian structure and properties [117].
In fact, PHS is also affine in the input. Therefore the corresponding discrete-time
model can be obtained using a truncated Taylor series expansion.

Then, following the ideas presented in Chapter 5, the order of each state
variable corresponds to the derivative that makes the input to explicitly appear.
Once the expansion is made, the approximate model is obtained when computing
the derivatives at time instants kh. Finally, the model’s accuracy can be measure
using the local error truncation of each element of the state vector. However, the
derivatives may be challenging to solve due to the nonlinear nature of the approach.
Moreover, assumptions such as those presented in Chapter 5 may lead to approximate
models that do not preserve the Hamiltonian properties.
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