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Resumen

La identificación y cuantificación automática de componentes y fuentes extendidas, es un desafío

clave para el análisis de datos astronómicos. El aumento de volumen, resolución y sensibilidad de

las observaciones, requiere de nuevos algoritmos para la identificación de fuentes. Adicionalmente,

la naturaleza jerárquica y acoplada de estructuras complejas, como las nubes moleculares, requieren

que estos algoritmos sean capaces de recuperar las relaciones jerárquicas entre las fuentes. En

este trabajo se propone un nuevo enfoque para la identificación de fuentes en datos astronómicos.

En este, primero se representan los datos como una mezcla de Gaussianas, y luego se realiza

un análisis automático basado en la reducción de componentes de la mezcla. Se identifican las

fuentes y sus relaciones jerárquicas directamente sobre tal representación. Esto es diferente de

otros algoritmos de identificación de fuentes por dos razones: 1) Aquí se realiza la identificación

sobre una representación continua, en vez de ocupar la representación discreta de pixeles, tomando

ventaja de las propiedades de la continuidad. 2) Se construye un árbol jerárquico para obtener

las relaciones entre los componentes. Esto nos permite seleccionar representaciones con diferente

número de componentes identificados, a un bajo costo computacional. Se evalúa la propuesta

cuantitativamente y cualitativamente usando datos desde el archivo de ALMA Science verification, y

además sobre datos generados sintéticamente. También se comparan los resultados con algoritmos de

identificación de fuentes del estado del arte. Los experimentos y comparaciones realizados muestran

que la propuesta es un modo efectivo de inspeccionar y representar la estructura jerárquica de las

fuentes. El método fue capaz de identificar y representar correctamente las emisiones acopladas de

fuentes sobrepuestas.

Palabras clave: Identificación de fuentes, Representación Gaussiana, Reducción de mezclas de

Gaussianas, Análisis Estructural.
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Abstract

The automatic identification and quantification of components in extended sources is a key

challenge for astronomical data analysis. The increasing volume, resolution and sensitivity of

observations, requires novel algorithms to identify sources. Additionally, the intrinsically hierarchical

and blended nature of complex structures, as molecular clouds, requires these algorithms to be able

to retrieve the hierarchical relationships between sources. We propose a novel approach for the

identification of sources in astronomical data. It first represents the data as a mixture of Gaussians

and then performs automatic analysis based on reduction of the mixture components. We identify

the sources and its hierarchical relations directly over the mixture representation. This is different

from other source identification algorithms for two reasons. 1) We perform the identification

over a continuous representation instead of using discrete pixel representation, taking advantage

of the continuity properties. 2) We build a hierarchical tree to obtain the relationships among

the components. This allows us selecting representations with a different numbers of identified

components with no extra significant computational cost. We asses our proposal quantitatively

and qualitatively using data from ALMA Science verification archive, and also with synthetic

generated data. We also compare the results with state-of-the-art source-identification algorithms.

The experiments and comparisons show that our approach is an effective way to inspect and represent

the hierarchical structure of sources. Our method was able to accurately identify and represent the

blended emission of overlapped sources.

Key words: Source Identification, Gaussian Representation, Gaussian Mixture Reduction,

Structural Analysis
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Glossary

• GMR: Gaussian Mixture Reduction.

• PDF: Probability Density Function.

• IMF: Initial Mass Function.

• FITS: Flexible Image Transport System.

• CAA: Clump Assignment Array.

• LM: Levenberg-Marquardt algorithm.

• KLd: Kullback-Liebler divergence.

• RMS: Root Mean Square value.

• f (x): Function representation of the original image.

• f0(x): Function representation of the observed image.

• ε: Background additive noise.

• u(x): Function in the space of possible solutions.

• u0: Base level

• Ω: Domain of the input data; x ∈ Ω.

• ∂Ω: Boundary of the domain Ω.

• D: Dimensionality of the input data (2 for images, 3 for cubes).

• µi: Center of the i-th Gaussian.

• µ̃i: Reference center of the i-th Gaussian.

• δi: Neighborhood ratio of the i-th Gaussian.

• Σi: Covariance matrix of the i-th Gaussian.

• σmin: Minimal Gaussian width (standard deviation).

• σmax: Maximum Gaussian width (standard deviation).

• BSize: Beam Size.

• ARes: Angular resolution.

• η: Parameters vector, it parameterizes the space of solutions.
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• Ψ: Penalty function for the domain restrictions.

• α: Parameter that controls the maximum amount of penalization in domain restrictions.

• λ: Parameter that controls the speed of penalty in domain restrictions.

• P: Set of center points.

• P̂: Set of reference center points.

• Q: Set of collocation points.

• B: Set of boundary points.

• dKL(i, j): KL-divergence upper bound between components i-th and i-th of a mixture.

• I: Set with indexes of the usable pixels.

• R: Set of real numbers.

Universidad Técnica Federico Santa María, Departamento de Informática v



CONTENTS

Contents

1 Introduction 1

2 Problem Description 4
2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Related Work 8
3.1 Discrete Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Continuous Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Hierarchical Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 First Step: Continuous Gaussian Mixture Representation 14
4.1 Data Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Variational Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Solution Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Parameterization of the space of solutions . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Domain Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Points Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6.1 Center Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6.2 Collocation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6.3 Boundary Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.7 Initial Guess Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.8.1 Dimensionality and Computational Complexity . . . . . . . . . . . . . . . 25

5 Second Step: Gaussian Mixture Reduction 27
5.1 Gaussian Agglomeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Gaussian Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Experiments 33
6.1 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.1 Number of Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.2 Flux Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2.3 Noise Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.4 Structural Analysis on Images . . . . . . . . . . . . . . . . . . . . . . . . 43

Universidad Técnica Federico Santa María, Departamento de Informática vi



Índex of Contents

6.2.5 Structural Analysis on Spectroscopic Cubes . . . . . . . . . . . . . . . . . 47

7 Conclusions 49
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 52

Universidad Técnica Federico Santa María, Departamento de Informática vii



LIST OF FIGURES

List of Figures

2.1 Schematic diagram of an spectroscopic data cube. . . . . . . . . . . . . . . . . . . 5
2.2 Extinction map of the Perseus star-formation region. . . . . . . . . . . . . . . . . 6

3.1 Example output that the clumpfind algorithm produces. . . . . . . . . . . . . . . . 9
3.2 Two ascent path computed by the fellwalker algorithm in a 2D image. . . . . . . . 10
3.3 Schematic of Dendrograms mechanism. Thresholding at level I1 produces a single

identified object, while that thresholding at I2 allows to decompose it, identifying
two different objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 5th order spline penalizing function and its behavior as we move λ in the range
[1., 9.]. To achieve a faster penalization in the [0., 1.] domain, higher λ values
should be used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Points generation example over Orion KL image from ALMA Science Verification
archive. (a) 50 reference and real center points generated as generalized Halton se-
quences, (b) 200 collocation points generated also as a generalized Halton sequence,
and (c) 50 boundary points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 (a) Original Orion KL image from ALMA Science Verification data set, and (b) its
initial guess representation through the method described in the present section. . . 23

5.1 Example tree describing the hierarchical agglomeration process. Here Gi represent
a single Gaussian, and M() is the merging function which in this case computes the
moment preserving merge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 First two step of the decomposition process. . . . . . . . . . . . . . . . . . . . . . 32

6.1 Original and thresholded NGC3256 images, showing the region of usable pixels. . 34
6.2 Center, collocation and boundary points generated over the NGC3256 image. . . . 34
6.3 Original image, initial guess instantiation, and residual image. . . . . . . . . . . . 35
6.4 Graphical distribution for the initial ci and σ2

i parameters. . . . . . . . . . . . . . . 35
6.5 Original image, approximated solution, and residual image. . . . . . . . . . . . . . 36
6.6 Graphical distribution for the final ci and σ2

i parameters. . . . . . . . . . . . . . . 37
6.7 Illustration of the hierarchical decomposition of sources over NGC3256. The

decomposition was done with the manual method, selecting at each step which
source to decompose. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Universidad Técnica Federico Santa María, Departamento de Informática viii



Índex of Figures

6.8 Residual RMS, Flux addition, Flux lost and Sharpness results. In the left col-
umn are the results for the number of centers experiment (with α = 0 fixed).
In the right column are the results for the alpha variation experiments (with
Number of centers = 300 fixed). . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.9 Computing times v/s the number of centers used. The red line in the right figure is a
quadratic function on the number of centers, plotted to help us visualize the time
complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.10 Synthetic generated data of 150 × 150 pixels; The red dots and ellipses indicate the
positions of each Gaussian source. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.11 (a) Sharpness reduction of the obtained solution u with increasing α values. (b)
Comparison between the histograms of the original added noise, and the residual
noise ( f0 − u). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.12 Gaussian decomposition process with reverse order method over Orion KL. Solu-
tion with 2, 4 and 6 components are shown from left to right. . . . . . . . . . . . . 44

6.13 Gaussian decomposition process with manual method over Orion KL. Solution
with 2, 4, and 6 components are shown from left to right. . . . . . . . . . . . . . . 44

6.14 Segmentation results of classic clumping algorithms over Orion KL . . . . . . . . 45
6.15 Gaussian decomposition process with reverse order method over synthetic data.

Solution with 2, 4, 6 and 8 are shown from left to right . . . . . . . . . . . . . . . 46
6.16 Gaussian decomposition process with manual method over synthetic data. Solution

with 2, 4, 6 and 8 are shown from left to right . . . . . . . . . . . . . . . . . . . . 46
6.17 Segmentation results of classic clumping algorithms over synthetic data. . . . . . . 46
6.18 Structural Analysis over Orion_KL-CH3OH, 5 sources representation with manual

decomposition. (Left) Visualization of the three 2D projections of the detected
clumps. (Right) Frequency spectrum of the detected clumps, standardized by the
total sum of the intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.19 Structural Analysis over HD163296-CO3_2, 4 sources representation with manual
decomposition. (Left) Visualization of the three 2D projections of the detected
clumps. (Right) Frequency spectrum of the detected clumps, standardized by the
total sum of the intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Universidad Técnica Federico Santa María, Departamento de Informática ix



CHAPTER 1. INTRODUCTION

1 | Introduction

In this work we address the problem of identifying and representing extended emission sources in

astronomical observations. In particular, we focus on images and spectroscopic cubes with relatively

diffuse and overlapped structures within the interstellar medium (ISM), such as molecular clouds,

HII regions or other nebulae. The study of these sources, also known as clumps, is very important to

understand star and galaxy formation. Compact components within the ISM (or clumps), are the

precursors of core structures that will become more classical astronomical sources such as disks,

stars, or planets. This allows us to study their very early stages of formation (Kennicutt Jr and Evans,

2012). Unfortunately, the detection of these components becomes a challenging problem when the

volume, resolution and sensitivity of observations increases. Moreover, the analyzed regions can be

highly non-homogeneous in their density, and may contain a large number of components in very

overlapped and hierarchical configurations (Alves et al., 2007).

Several procedures have been proposed in the last years for tackling the problem of automatically

detecting clumps (Berry et al., 2007). In a first approach, we divide them into those that work using

discrete representations and those that uses a continuous representation. Since images and cubes

are available in discrete pixel-based formats (e.g., FITS), the most common approach is to separate

clumps directly on the pixels domain. Most of these algorithms associate each pixel to a single

clump, segmenting the image into disjoint sets of pixels (Williams et al., 1994; Bertin and Arnouts,

1996; Berry, 2015). This neglects the blended nature of the components of a cloud, which might be

a combination of the flux contribution of multiple components. An alternative to this, is to represent

the data as a combination of functions in a continuous domain, as proposed by the gaussclumps

algorithm (Stutzki and Guesten, 1990). This allows representing overlapping clumps using only a

few parameters per each of these clumps. However, this early approach has many limitations and

strong assumptions, such as strict Gaussianity of clumps.
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Structural Analysis of Astronomical Images

An important problem with automatic identification assessment is the lack of ground truth

knowledge about the distribution of sources present in the emission. This unavoidable uncertainty

makes difficult the proper assessment of source identification algorithms. An alternative approach

to address this difficulty, is to handle the identified sources in a hierarchical way, without a fixed

number of components. This requires delivering a tree-like data structure as output. The gradual

decomposition of components and sources casn be done then by the user, depending on the science

case the user is studying. Dendrograms (Rosolowsky et al., 2008) is the most known approach of

hierarchical representations, but it has the limitation of working only with discrete representations.

Our proposal consist on mapping the data from the discrete pixels representation to a continuous

one before identification. Specifically, we use a Gaussian mixture to represent the data without

assuming any particular shape of the clumps: there is no one-to-one correspondence between clumps

and Gaussian components of the mixture. Then, we perform the source identification directly over

the continuous representation, through the use of the mathematical properties of the mixtures of

Gaussian. In order to provide an accurate representation, we minimize a functional, following a

variational approach (Logan, 2013), similar to what is done for image denoising or image restoration

(Wang et al., 2014). To make the solution computationally feasible, we make some assumptions

over the model, which allows us to get a successful continuous representation. The process of

identification of clumps over the Gaussian mixture representation is done with Gaussian Mixture

Reduction (GMR) algorithms (Crouse et al., 2011). We generate a hierarchical binary tree similar

in purpose to Dendrograms (Rosolowsky et al., 2008), but with a different structure. Instead, we

decompose hierarchically each of the sources, generating representations with a variable number of

sources identified. This can be done automatic or in a user supervised fashion. Unlike Dendrograms,

this structural analysis remains in the continuous space, i.e., the source are decomposed such that

the constituents components, are still represented as Gaussian mixtures.

Our two main contributions to the source identification problem are: 1) the construction of a

continuous representation of the data with a mixture of Gaussians, which reduces the noise and avoid

adding extra flux, and 2) propose a novel mechanism to perform the structural analysis, describing

the hierarchical relations of the sources with continuous representations, allowing to capture the

blended nature of the emissions.

This document is organized as follows, in Chapter 2 we introduce and explain the problem
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to be addressed, in Chapter 3 we describe and discuss the state-of-the-art methods used for the

astronomical community for source representation and description. Chapter 4 introduces the

continuous representation model corresponding to the first step of our proposal, while Chapter 5

presents the identification over the continuous representation, corresponding to the second step.

Chapter 6 presents experiments to assess quantitatively and qualitatively the capabilities of our

method. Finally Chapter 7 presents the conclusions and future work, respectively.
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CHAPTER 2. PROBLEM DESCRIPTION

2 | Problem Description

To properly understand the problem addressed in this work, we need to introduce the kind of

astronomical data we work with and its format. We are interested in observations of interstellar

molecular clouds, which are composed by cold dust and gas. They are important because they are

the only regions of the space where the formation of some more compact astronomical objects take

place. Examples of these objects are stars, disks, planets, galaxies, among others.

These observations come in two formats: As 2-dimensional images in the continuum, or as

3-dimensional spectroscopic cubes. The first has two celestial coordinates, corresponding to the

Right Ascension (RA) and the Declination (DEC). The second adds a third coordinate corresponding

the the observed frequency. The images captures a region of the space over a wide range of the

electromagnetic spectrum (in the continuum), where all these frequencies are collapsed in a single

bi-dimensional array. The cubes captures a region over a specific frequency band, producing a

frequency spectrum for each pixel. An schematic of an spectroscopic cube is shown in Figure 2.1.

Our goal is to identify and characterize the sources in the molecular clouds, also known as

clumps. A clump can be generally understood as a region of high density within a larger area of

lower density, where this density is measured over some physical scalar property (the most common

are flux and intensity). These molecular clouds are usually non homogeneous in their density, and

are composed of cores of high density gas matter contained and separated by low density areas

(Kennicutt Jr and Evans, 2012). Each observation of such clouds, may contain multiple source cores

and clumps in complex configurations both in spatial and spectral domains.

Manual identification of clumps becomes impractical for observations with high resolution

axes, and as the number of observations increases with each new instrument, the automation of this

process becomes critical. Moreover, as the image becomes more crowded with clumps, problems

like blended emissions arise, where multiple dense cores converge in a nearby area. In these cases,
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Structural Analysis of Astronomical Images

Figure 2.1: Schematic diagram of an spectroscopic data cube.
(Image obtained from http://astro.dur.ac.uk/~cpnc25/research.html)

subjective biases become more evident as each astronomer might perceive the data differently.

However, identifying clumps is not enough: each dense clump is often contained on lower

density cores, constituting a hierarchical structure (see the sources contained within other sources in

Figure 2.2). Consequently, the challenge also includes determining the hierarchical relationships

between clumps, a task also called structural analysis. This information is crucial to understand

processes such as star formation (Alves et al., 2007).

One of the main difficulties of this problem is the lack of ground-truth knowledge about the real

distribution of sources in the observations. This means that it is not possible to know a priori the

number of sources and its flux distribution. This makes the validation and assessment of the clump

identification algorithms a challenging task.

2.1 Goals

The main goal of this work is to propose, develop and assess a novel method for the identifi-

cation and hierarchical characterization of astronomical sources. All this based on a continuous

representation of the data, through Gaussian mixture representations. This method is intended to be

a tool to help astronomers in the analysis of astronomical data. In particular, we want to contribute

in the task of structural and hierarchical analysis of sources.

Universidad Técnica Federico Santa María, Departamento de Informática 5
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Structural Analysis of Astronomical Images

Figure 2.2: Extinction map of the Perseus star-formation region.
(Image obtained from https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:10904/10080)

Below we present a list with the specific goals of this work:

1. Create a theoretical model for the continuous representation of astronomical data, based on

mixture of Gaussians, calculus of variations and least squares minimization.

2. Propose a source identification mechanism over the mixture representation, taking advantage

of its theoretical properties.

3. Create a hierarchical tree data structure that allows us to study the structure of the sources, in

a convenient way.

4. Develop a Python software package that implements our proposal, and integrate it into the

ACALIB library. †.

5. Quantitatively evaluate the accuracy of the obtained continuous representation, and its robust-

ness against different parameters configuration.

6. Assess the robustness of our proposal compared to some of the state-of-the-art source identifi-

cation algorithms.

†Advanced Computing for Astronomy Library
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Structural Analysis of Astronomical Images

7. Show qualitatively and illustratively how our method works and the benefits it provides for

the structural analysis.
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CHAPTER 3. RELATED WORK

3 | Related Work

Several procedures have been proposed in the last years for tackling the problem of automatically

detecting sources and clumps in astronomical data. In this chapter we provide a non-extensive but

significant review of them, to put our method into context.

3.1 Discrete Representations

Since images and cubes are available in discrete pixel-based formats (e.g., FITS), the most

common approach is to separate clumps directly on the pixels domain.

A successful algorithm of the class that uses discrete representations is clumpfind (Williams

et al., 1994). It was motivated by how the human eye identify structures on images. how the eye

decomposes the maps into clumps by looking at the contour levels in a gradually decreasing way.

This algorithm works by contouring the data at level sets, multiples of the RMS of noise. It starts

from the highest level, where isolated cores are identified and each of these are considered as a

new clump. Then this step is repeated by gradually decreasing the level set, identifying isolated

structures and connecting them with clumps identified at higher levels, or defining them as new

clumps otherwise. When a clump identified at a given level is connected to more than one clump

identified at a previous level, then this structure correspond to a blended emission, and is divided

(see Figure 3.1). To do that a friends-of-friends strategy is used, assigning each pixel of the identified

structure to one of the adjoining clumps (the one with more friend pixels). It produces as output a

discrete pixel representation called Clump Assignment Array (CAA), where each pixel is assigned

exclusively to one clump identifier. A key characteristic of clumpfind is that no a priori clump profile

is assumed, and then the identified clumps can have any shape.

The SExtractor (Souce Extractor) (Bertin and Arnouts, 1996) is probably the best-known and
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Structural Analysis of Astronomical Images

Figure 3.1: Example output that the clumpfind algorithm produces.
(Image obtained from Williams et al. (1994)’s paper)

mature algorithm that identify sources within a discrete representation. The main steps of this

algorithm are: measure the background and RMS noise, subtract the background from the image,

convolve the image with specific profiles, find isolated objects with thresholding, deblend emissions

of overlapped objects, measure the positions and sizes of the objects using intensity moments, and

finally catalog them. Thanks to the deblending of merged objects stage, this algorithm handles

the problem of blended emissions. For each pixel which has flux contributions from more than

one source, a probability of belonging to each of these sources is estimated, and then the pixel is

assigned to the source with greatest probability. Anyway, the observed pixel flux value cannot be

shared between two or more sources. This method is designed to work with optical and near-IR

images in extra-galactic astronomy.

A more recent algorithm is fellwalker (Berry, 2015). This is a gradient-tracing scheme. The

gradient is used in order to reach a local emission peak, which defines a new clump. The fellwalker

algorithm, like clumpfind, divide the data in disjoint regions, each associated with a single significant

peak, producing a CAA. This algorithm works by computing ascent paths (with the highest gradient)

for each single pixel, as shown in Figure 3.2. These paths have two alternatives: 1) reach a local peak

and therefore finding a new clump. In that case a new search it is performed on a wider neighborhood,

verifying that it is not a noise spike. 2) reach another ascent path computed previously, and assign

the pixels on that path to the corresponding clump identifier. At the end of the algorithm, detected

clumps with low dip between them, are merged as a single clump.

Universidad Técnica Federico Santa María, Departamento de Informática 9



Structural Analysis of Astronomical Images

Figure 3.2: Two ascent path computed by the fellwalker algorithm in a 2D image.
(Image obtained from Berry (2015)’s paper)

A compelling analysis and assessment of the clumping algorithms implemented in the CUPID

software package Berry et al. (2007) (gaussclumps, clumpfind, reinhold, fellwalker) can be found

in (Watson, 2010). In particular they tested the robustness of the results of the algorithms, and its

sensitivity to different configuration of parameters.

3.2 Continuous Representations

The algorithms presented in the previous section associate each pixel to a single clump, dividing

the image into disjoint sets of pixels (Williams et al., 1994; Bertin and Arnouts, 1996; Berry, 2015).

This neglects the blended nature of the components of a cloud, which might be a combination of the

flux contribution of multiple sources.

An alternative to pixel level analysis, is to represent the data as a combination of functions

in a continuous domain, as proposed by the gaussclumps algorithm (Stutzki and Guesten, 1990).

This algorithm is the only well-known clump identification algorithm which works with continuous

representations. The main idea of this, is to adjust Gaussian profiles that best fits each of the emission

peaks. This algorithm iteratively searches for the current emission peak, and fits a Gaussian function

(searching for the parameters of that Gaussian) constrained to keep the position and amplitude of the
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fitted shape close to the image maximum. This is done through a least squares minimization. Then

the fitted Gaussian is subtracted from the signal, and the same step is repeated over the residual

cube. The iteration continues until the flux of all subtracted clumps is equal to the integrated flux of

the original image, or there are no significant peaks left. As result we get a set a Gaussians with

different weights, locations and orientations. The sum of all these Gaussian components plus the

background noise, allow to reconstruct the signal. In this algorithm each Gaussian is considered as

a single clump, and because Gaussians could overlap between them, then it is possible that pixels

“are assigned" to more than one clump. This allows representing overlapping components using only

a few parameters per component. However, this early approach has many limitations such as several

free parameters to set the stopping criteria, and strong assumptions, such as strict Gaussianity of

clumps.

Recently, (Araya et al., 2017) also proposed a continuous representation of the data by using

Gaussian Homogeneous Representations (GHR) of the spectroscopic cubes. GHR represents the

data as a mixture of homogeneous and compactly supported Gaussians, which they called bubbles,

because of the bounded flux of each of them. This representation is reached through an iterative

subtraction method, that they proved to be computationally bounded. They also proved statistical

independence between the bubbles, so the data analysis techniques which require independent and

identically distributed sampling are exploited over this representation.

3.3 Hierarchical Representations

Astronomical images are frequently crowded of sources at very different spatial scales and

wavelengths. In this cases, extract the sources with a plain source identification algorithm might not

be enough. A better approach is the structural analysis of them through hierarchical representations,

which produce a characterization of the sources hierarchical structure.

Alves et al. (2007) studied the origin of stellar Initial Mass Function (IMF) of interstellar

molecular clouds, through the use of multi-resolution analysis with Stationary Wavelet Transforms

(SWT). The clump identification procedure first maps the corresponding image to the wavelet space

at different scales, then it identifies isolated structures at each scale, and finally connect them to

neighboring structures in the successive scales. With this information they build a 3D distribution of
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significant peaks, and find the independent trees corresponding to one core and its corresponding

hierarchical details.

A different discrete description of clumps is done with dendrograms (Rosolowsky et al., 2008).

This method is conceptually different from local segmentation algorithms like clumpfind, since it

aims to track the hierarchical structure over a range of scales. The dendrogram of a data cube is an

abstraction of the changing topology of the isosurfaces (surfaces with the same intensity value) as a

function of contour level (see Figure 3.3). Points in the dendrogram structure correspond to specific

volumes in data cubes, defined by their bounding isosurfaces. The authors present this technique as

a statistical and hierarchical representation of the molecular ISM.

Figure 3.3: Schematic of Dendrograms mechanism. Thresholding at level I1 produces a single identified
object, while that thresholding at I2 allows to decompose it, identifying two different objects.

(Image obtained from Rosolowsky et al. (2008)’s paper)

Men’Shchikov et al. (2012)’s getsources algorithm is a multi-scale and multi-wavelength source

extraction method. It analyzes fine spatial decompositions of original images across a wide range

of scales and across all wavebands. It cleans those single-scale images of noise and background,

and constructs wavelength-independent single-scale detection images that preserve information in

both spatial and wavelength dimensions. Sources are detected in the combined detection images by

following the evolution of their segmentation masks across all spatial scales. Measurements of the

source properties are done in the original background-subtracted images at each wavelength. The

background is estimated by interpolation under the source footprints and overlapping sources are

deblended in an iterative procedure.

Gregorio et al. (2014)’s approach follows a very similar methodology as Alves et al. (2007).

They perform SWT over images to get a multi-resolution view of the data. However they were not

satisfied with the thresholding step. To solve this, they proposed to use the clump identification
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algorithms from CUPID (Berry et al., 2007), to segment the data at the different levels on the Wavelet

space. Then they built a hierarchical structure which captures the hierarchical relations between the

sources in neighbor levels. Villanueva and Araya (2017)’s work extended this idea to work with

spectroscopic cubes. They used 3D discrete wavelet transform for the multi-resolution analysis of

the cubes. For the identification and construction of the hierarchical tree, they used the fellwalker

algorithm.

It is important to mention that despite the hierarchical focus of the algorithms presented above,

they remain in the discrete representation level. In others words, no matter the output these algorithms

produce, they still associates each pixel to a single source.
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CHAPTER 4. FIRST STEP: CONTINUOUS GAUSSIAN MIXTURE REPRESENTATION

4 | First Step: Continuous Gaussian Mix-

ture Representation

We propose a two-step method composed of the following stages: 1) First we find a continuous

approximation of the data and then, 2) We perform a source identification over the continuous

representation. The idea is to compute an accurate continuous representation of the n-dimensional

astronomical image, and then use this representation to extract the clumpy structure of sources in

the data.

The continuous approximation step is closely related to Stutzki and Guesten (1990)’s gauss-

clumps, but we propose to fit a Gaussian mixture in a global and coupled way, as we describe in

this section. The source identification is performed through Gaussian Mixture Reduction (GMR)

algorithms, particularly the one proposed by Runnalls (2007), which is later explained in Chapter

5.1.

4.1 Data Pre-processing

We work with astronomical data in RD, with D = 2 in the case of images and D = 3 in the case

of spectroscopic cubes.

Astronomical images in general are huge, and the part of the emission which corresponds to

signal might be very diluted within the image. Because of that, we do not work with the entire

images as they come. From all the available pixels (or voxels), we only use those over a base level

intensity value, forming a subset that we call usable pixels set. This threshold is set as a multiple of

the RMS of the noise.

Since each input data has different scales in its coordinate system (pos-pos in 2D images and
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pos-pos-freq in 3D cubes), we standardize it by mapping each axis to the [0, 1] range. Additionally,

the intensity values are also mapped to the [0, 1] interval. In this way all the input data is in the same

dimensions scales.

Even though the input data is a discrete array, we use the observed data as if it were a continuous

function f0 : [0, 1]D → [0, 1], where f0 is built as a linear interpolator in the regular grid *.

4.2 Variational Formulation

Let f : Ω ⊆ [0, 1]D → [0, 1] be the scalar function which represents the real image (unknown

and noise-free), and let f0 : Ω ⊆ [0, 1]D → [0, 1] be the observed image, then:

f0(x) = f (x) + ε,

where x ∈ Ω is an image coordinate, and ε is a random variable representing background noise.

Since background noise is additive and always positive in astronomy, ε is restricted to only positive

values. Then we can state the problem as a minimization of the following functional,

u∗ = arg min
u

J(u) = arg min
u

∫
Ω

L(u, ux, uy, · · · ) dΩ

= arg min
u

∫
Ω

( f0 − u)2︸    ︷︷    ︸
Similarity

+αΨ(u − f0)︸     ︷︷     ︸
Domain

dΩ,
(4.1)

where u∗ is the unknown minimizer function, α ∈ R+
0 is a weight parameter and Ψ a continuous

function that we describe in Section 4.5. The Lagrangian L in this case is defined from R→ R, and

its structure determines the properties of the solution we are looking for. The proposed Lagrangian

has the two main terms described as follows:

• Similarity: this is the standard term that ensures the similarity between the observed data f0

and the continuous approximation u used in least squares.

• Domain: this represents the problem domain restrictions. This have two components: 1) flux

addition, which penalizes u when it adds extra (nonexistent) flux as part of the solution, i.e.,

*The linear interpolation is build with the RegularGridInterpolator routine from SciPy.
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u must be upper bounded by f0; and 2) noise reduction, which pushes u to be as similar as

possible to f (real image), so the additive noise ε must be reduced †.

Following the approach of the Calculus of Variations (Gupta, 1996), we can move from the

integral formulation to the differential formulation, through the Euler-Lagrange equation,

∂L
∂u
−

D∑
k=1

d
dxk

∂L
∂uxk

= 0, with BC u(∂Ω) = f (∂Ω), (4.2)

where D is the dimensionality of the input data, and Ω is the domain of f0 and u. We imposed

Dirichlet boundary conditions over ∂Ω. If we replace the Lagrangian in (4.1) into the Euler-Lagrange

equation (4.2), we get the equation:

2( f0 − u) + αΨ′(u − f0) = 0. (4.3)

Since partial derivatives of u are not present in the Lagrangian L, equation (4.3) is a nonlinear but

algebraic equation in u. It is important to point out that although u = f0 is in fact the exact solution

of (4.3), we are actually looking for f , the noise-free image.

To highlight this, we write the left hand side of the last equation as 2( f +ε−u)+αΨ′(u− f −ε) = 0

and point out that in the ideal case, u captures the real signal f without adding any noise, i.e. u = f .

This equation reduces to 2ε + αΨ′(−ε) = 2ε = O(ε). Thus, we actually want the obtained solution

not to solve equation (4.2) exactly, but approximately.

To achieve this we are restricting u to be in a particular space of functions, and then u is

determined as the function in this space that minimizes (4.3). In the following section this space is

described in detail.

4.3 Solution Structure

We restrict the space of possible solutions u to linear combinations of Gaussian functions. Each

Gaussian function is defined by its weight, center and covariance matrix: (ci,µi,Σi)N
i=1. Then the

†Usually in image processing through variational calculus, the noise removal task is done by adding the term
Ψ(|∇u|2) in the Lagrangian (smoothing the solution), but it did not show good empirical results in this approach. Instead
we use the fact that ε is additive and we propose to handle this in the domain restrictions. This is explained in detail in
Section 4.5
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solutions has the form:

u(x) =

N∑
i=1

ci φ(x; µi, θi,Σi) + u0

=

N∑
i=1

ci exp
(
−

1
2

(x − µi)
T Σ−1

i (x − µi)
)

+ u0, (4.4)

where the value u0 corresponds to the base level introduced in Section 4.1. This is important because:

1) It is the threshold value that defines the usable pixels, 2) It does the search for the minimizer

u∗ numerically more stable, by avoiding having sharp Gaussians as part of the approximation (the

mixture just have to approximate f0 − u0).

In order to get a simple and computationally tractable solution space, the following restrictions

are imposed over u:

1. The weights ci should be always in R+
0 . This is for two reasons: 1) Since the Gaussians

represent pieces of a source, they should be positive in order to ensure physical interpretation,

and 2) the Gaussian agglomeration step presented in Section 5.1 uses each Gaussians function

as if they were probability density functions, and then they should be strictly positive. This is

done by defining ci = ĉi
2 with ĉi ∈ R.

2. The centers µi of the Gaussian functions are restricted to be in the interior domain Ω − ∂Ω.

This is because we only want to approximate well f (x) in the regions with values over the

base level µ0. To satisfy that, we introduce the reference centers µ̂i, the neighborhood ratio

δi ∈ R
D and a control parameter θi ∈ R

D. Then the real centers of each Gaussian are computed

as µi = µ̂i + δi � sin(θi) †. The solution has the final form:

u(x) =

N∑
i=1

ĉi
2 exp

(
−

1
2

(x − [µ̂i + δi � sin(θi)])T Σ−1
i (x − [µ̂i + δi � sin(θi)]

)
+ u0. (4.5)

3. The Gaussians are radially symmetric, i.e., Σi is a diagonal matrix with the same value in

the diagonal. Additionally we introduce the minimal and maximal width (σmin and σmax

respectively) parameters, which are the minimal and maximal standard deviation allowed for

†Here sin() is applied element-wise and � denote element-wise multiplication.
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a Gaussian. The structure of the covariance matrix is:

Σi =


σ2

i 0 0

0 σ2
i 0

0 0 σ2
i

 , with σ2
i = (σ2

max − σ
2
min)tanh(σ̂2

i ) + σ2
min. (4.6)

This is a standard way for bounding the parameters in an unrestricted nonlinear optimization

problems (James and Roos, 1975). The reasons for bounding the standard deviation of the

Gaussians are basically the followings: 1) Empirically, it makes the optimization process more

numerically stable, and 2) It contributes to get a more homogeneous mixture of Gaussians,

which is a good property for the agglomeration step described later in Section 5.1.

Restriction (i) is needed to ensure physical and astronomical interpretation. Restrictions (ii)

and (iii) are for simplicity in the optimization step. It is also possible to extend Σi to have elliptical

symmetry and different spatial orientation. The trade-off between model complexity and optimization

cost is discussed later in Section 4.8.

4.4 Parameterization of the space of solutions

Replacing equation (4.4) into (4.2) gives us a nonlinear system of equations in the parameters of

(4.5). In order to reduce the size of the solution space, we set some of these parameters heuristically:

1. Minimal and maximal width. These two (σmin, σmax) are estimated as:

σmin = κ
1

6D

D∑
d=1

pld, (4.7)

σmax = Kσmin with K =
Nusable pixels

Ngaussians
,

where D is the dimensionality of the input data, pld is the pixel length in each dimension, and

κ a constant value. The reason we set σmin this way is that the smallest Gaussian fits in κ

pixels. For a single pixel (κ = 1) the coverage of a Gaussian (we consider 3σ) is set to be half

the size of a pixel, where the pixel size is estimated as the mean of the pixel lengths in each

dimension pld. This give us the equation (4.7). The value κ is estimated as BSize/ARes, the
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quotient between the Beam Size and Angular Resolution of the input data. The value of σmax

is just K times σmin, where K is an estimation of the amount of pixels each Gaussian must

cover. It considers Gaussian centers uniformly distributed across the usable pixels.

2. Reference centers. The vectors µ̂i are determined with the method presented next in Section

4.6.1.

3. Neighborhood of reference centers. The length of the radius around the actual centers can

move from the reference centers, namely δi, is set equal for all Gaussians. We set this

parameter as δi = [σmin σmin]T or δi = [σmin σmin σmin]T (depending if D = 2 or D = 3), i.e.,

centers can move a distance equal to the minimal width.

In this way, we reduce the parameters to be found for each Gaussian to (ĉi, σ̂i, θi)N
i=1. For

simplicity we define the parameters vector: η = [ĉ1, . . . , ĉN , σ̂1, . . . , σ̂N , θ
T
1 , . . . , θ

T
N], that includes

all the parameters we are looking for, and that completely parameterize our possible solutions.

4.5 Domain Restrictions

As stated previously, we have two domain restrictions: do not add extra (nonexistent) flux, and

reduce the background noise from f0, which are handled with a single term in (4.2). They are

correlated under our approach, in the sense that if a single Gaussian from (4.4) fits a noisy peak

caused by the positive background noise, it will add flux in the neighborhood of such peak (if σmin

is set greater than the noise resolution). Therefore, the no-flux addition restriction also helps to

reduce the background noise from the solution. With this in mind, the expected response of Ψ(x)

is to not penalize negative inputs (x < 0), since in that case there is no extra flux addition from u.

And for positive inputs (x ≥ 0), it is expected a high and rapidly increasing penalization. Then the

proposal is to use Ψ(x) = ψ̂(λ x), with ψ is defined as:

ψ̂(x) =


0 , x < 0

10x3 − 15x4 + 6x5 , x ∈ [0, 1]

1 , x > 1,

(4.8)
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Figure 4.1: 5th order spline penalizing function and its behavior as we move λ in the range [1., 9.]. To
achieve a faster penalization in the [0., 1.] domain, higher λ values should be used.

where the definition of ψ in the [0, 1] range is a 5th-order spline, built to produce continuity and

smoothness in the entire domain of ψ. Because of its polynomial structure, evaluating the function

and its derivatives is computational fast, since they are lower order polynomials.

In this way the parameter α controls the maximum amount of penalization, whereas λ controls

the speed of penalty. To set λ, we notice that the maximum amount of penalization is reached at

x = 1/λ. Since typically |u− f | � 1 during the optimization process, then λ ≥ 1, with typical values

in the range [1, 10], as shown in Figure 4.1.

4.6 Points Generation

It is necessary to introduce three sets of points that we use, the center points P corresponding

to the center of Gaussians, the collocation points Q which are the points where the equation (4.3) is

evaluated, and the boundary points B which are the points at the boundary of the structures to be

represented. In what follows we present the methods used to generate each one of these points.
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Rêl centers 

(a) Center points.
0 20 40 60 80

0

20

40

60

80

Collocation points 

(b) Collocation points.
0 20 40 60 80

0

20

40

60

80

Boundary points 

(c) Boundary Points.

Figure 4.2: Points generation example over Orion KL image from ALMA Science Verification archive. (a)
50 reference and real center points generated as generalized Halton sequences, (b) 200 collocation points
generated also as a generalized Halton sequence, and (c) 50 boundary points.

4.6.1 Center Points

As introduced in section 4.3, there are two kind of center points (Gaussian centers): The reference

center points P̂ which are the fixed points around which the real center points P can move. An

important property of these points is that center points should be well distributed at the interior

domain of the usable pixels set. A good distribution of such points give us the capacity to get an

accurate representation of the sources present in these regions.

The proposed method consist in the use of the Generalized Halton Sequences (Faure and Lemieux,

2009), which is a method for low-discrepancy sequence of N-dimensional points generation. It is a

quasi random sequence generator that maximizes the distance between the generated points.

Then the reference center points P̂ are generated as a sequence of Halton Points over the regions

of usable pixels. Since the regions of usable pixels are very irregular (can have any shape), and

Halton sequences fills square domains ([0, 1]D), then we generate Halton points until our irregular

domain is filled with the desired number of points.

It is important to mention that the real center points P are the same as the fixed center points P̂

in the initial conditions of the optimization, i.e., with values θi = 0 for i ∈ [1,N]. An example of

how these point are generated is shown in Figure 4.2a.
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4.6.2 Collocation Points

These correspond to the points in the interior domain Ω−∂Ω where the equation (4.3) is evaluated.

Because of the need to get a determined (or overdetermined) nonlinear system of equations, there is a

greater amount of these points than the center points, more precisely they satisfy |Q| ≥ (D+2)|P|−|B|.

In the same way as center points, collocation points must be well distributed across the entire interior

domain of usable pixels set: With a set of points with a good coverage of the interior domain, we

force the equation (4.3) to be minimized across the regions of usable pixels.

These are also generated as Halton Sequences points in the interior domain. Moreover, colloca-

tion point include the reference center points previously generated: P̂ ⊂ Q, and add the remaining

points to get a consistent system. An example of how these point are generated is shown in Figure

4.2b.

The idea of P̂ ⊂ Q is that each Gaussian has a collocation point near its center. Having a

collocation point close to each Gaussian center it is necessary to have a good solution, otherwise, it

has been observed empirically that a single Gaussian could grow too much deteriorating the solution.

4.6.3 Boundary Points

In order to evaluate the boundary condition u(∂Ω) = f (∂Ω), a finite set of points in the boundary

are selected. These points are generated as a random sample in the set of boundary pixels. The

random sampling is performed assuming a uniform probability on the boundary pixels. We iteratively

sample the boundary pixels, and every time a pixel is selected, this and its neighbors pixels are set

with probability 0. This is done with the aim to get a spatially distributed sample. An example of

how these points are generated is show in Figure 4.2c

4.7 Initial Guess Estimation

Once the reference centers and initial real centers are set, the next step is to estimate an initial

guess for the weight and width parameters of the Gaussians: (ci, σi) for i ∈ [1,N]. The main goal is

to generate an initial guess η(0) that do not induce an strong bias towards a particular solution in the

space of parameters Γ. This is achieved with an homogeneous configuration of such parameters. For
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Figure 4.3: (a) Original Orion KL image from ALMA Science Verification data set, and (b) its initial guess
representation through the method described in the present section.

this purpose the method described below is used:

1. For each center µi in P we compute the distance to its nearest neighbor center. We consider

this distance as the initial σi estimation.

2. For each center µi we compute a neighborhoodNi of centers which are at a radius of 3σi. The

Gaussians in this neighborhood are considered as making a flux contribution in the region

covered by the i−th Gaussian.

3. Then the estimated initial weight is ci = f (µi)/(|Ni| + 1), i.e., the intensity observed at µi

it is distributed between all the Gaussians in the neighborhood Ni (including the Gaussian

centered at such point).

4. In case that a center µi has no neighbors, then the initial values are is as: ci = f (µi) and

σi = σmin, i.e., this solitary Gaussian covers its region by its own.

The proposed method produces an homogeneous initial guesses in both c and σ as shown in

Figure 4.3. Note that it captures the morphology of the structure of the data.

4.8 Numerical Optimization

To complete the first step of the method of obtaining a continuous approximation of f (x),

we need to find the parameters vector η = [ĉ1, . . . , ĉN , σ̂1, . . . , σ̂N , θ
T
1 , . . . , θ

T
N] for the minimizer
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function u∗(x). For doing this we define E(x, η) as the expression obtained when we evaluate the

proposed solution (4.5) in the left side of the Euler-Lagrange equation (4.2) at x and for a given η:

E(x, η) =2( f0(x) − u(x; η)) + αΨ′(u(x; η) − f0(x)), with

u(x; η) =

N∑
i=1

ĉi
2 exp

(
−

1
2

(x − [µ̂i + δ � sin(θi)])T Σ−1
i (x − [µ̂i + δ � sin(θi)]

)
+ u0,

(4.9)

and also we define BC(x, η) = u(x; η) − f0(x). Then the problem can be as solving

E(x, η) = 0 with boundary condition BC(x, η) = 0.

The nonlinear system of equations arises by evaluating E(x, η) at the collocation points, and

evaluating BC(x, η) at the boundary points. Since for each Gaussian function in u(x; η) there are

D + 2 parameters, then we need at least (D + 2) · N of such evaluations. If x(i)
col ∈ Q are the selected

collocation points (|Q| = Q) and x(i)
bound ∈ B are the selected boundary points (|B| = B), such that

|Q
⋃
B| ≥ (D + 2) · N, then the following nonlinear system of equations is obtained:

r(η) =



E
(
x(1)

col, η
)

...

E
(
x(Q)

col , η
)

BC
(
x(1)

bound, η
)

...

BC
(
x(B)

bound, η
)


= 0, (4.10)

which is determined or overdetermined by construction. There are two possible ways to solve this

problem:

1. Directly solve r(η) = 0 for η with the Newton method or one of its variants. However it has

the drawback that only works when the system (4.10) is determined (not overdetermined).

2. Instead we can define a residual function R(η) = 1
2r(η)T r(η) and try to minimize it, which is

the least squares approach. This works well for both, determined and overdetermined systems.

In many cases we need a fine-grained evaluation of E(x; η) in the domain Ω to get an accurate
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approximation, producing overdetermined systems. Additionally we observed a good empirical

behavior in the nonlinear least squares solvers for this problem. Because of these reasons we choose

the least squares minimization approach. For the minimization we use the Levenberg-Marquardt

algorithm (LM) (Moré, 1978). We choose LM because of its stability properties (local convergence

ensured) and its computational efficiency. Because of the complex structure of the space of solutions

of η, we think that minimizing the residual is much more tractable than trying to find a root.

LM works by iteratively solving the following least squares problem:

(
JT
η Jη + λ diag

(
JT
η Jη

))
δ = JT

η r(ηs),

η(s+1) = η(s) + δ,
(4.11)

where s is the current iteration step, Jη is the Jacobian matrix of r(η) and λ is the damping parameter.

The parameter λ controls the convergence behavior between Newton-Gauss Method (slow residual

reduction but stable) and Steepest Gradient Descent (fast residual reduction but prone to fall in local

minimum).

The LM algorithm implementation used corresponds to the SciPy’s version which in turn

calls a wrapper over least-squares algorithms implemented in MINPACK (lmder, lmdif). The

implementation is based on paper (Moré, 1978), and it is very robust and efficient with a lot of smart

tricks.

4.8.1 Dimensionality and Computational Complexity

A reasonable way to measure the computational complexity of the method, is by the number of

Gaussian function evaluation required to compute the residual vector, define in Equation (4.10). Let

N be the number of Gaussians in the mixture representation, and γ the number of free parameters

of each Gaussian (D + 2 in our model). Every time we evaluate E
(
x(i)

col, η
)
, N Gaussian function

evaluations are performed. Additionally the number of collocation points plus the number of

boundary points (which is equal to |r(η)|) is ≥ γN. Then the computational complexity is O(γN2). It

means that it is linear (O(γ)) in the number of free parameters, and quadratic (O(N2)) in the number

of Gaussians.

Considering that r(η) is evaluated a several times in the numerical minimization of LM, in order
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to have reasonable computing times, it is necessary to keep the computation of it fast. Adding some

other free parameters, like a sparse covariance matrix Σi for each Gaussian will make it slower, but

it will be worst be to have a representation with too many Gaussians.
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5 | Second Step: Gaussian Mixture Reduc-

tion

5.1 Gaussian Agglomeration

Now that we have a continuous representation u of the astronomical image as a mixture of

Gaussians, the next step is to use this representation to extract information about the sources that are

present and its hierarchical relationships. For this purpose we use the key fact that u(x) is a linear

combination of Gaussian functions, and perform GMR algorithms over it. This was the main reason

of why we use it instead of any other particular function.

We first need to define the Gaussian Mixture as a linear combination of normal probability

density functions:

hN(x) =

N∑
i=1

wiN(x;µi,Σi) with

N(x;µi,Σi) =
1√

(2π)D |Σi|
exp

(
−

1
2

(x − µi)
T Σ−1

i (x − µi)
)
,

(5.1)

that we also denote like M̃ =
{
(w1,µ1,Σ1), (w2,µ2,Σ2), . . . , (wN ,µN ,ΣN)

}
, where wi are the weights,

µi are the mean vectors, and Σi the covariance matrices. Note that if
∑N

i=1 wi = 1, then this Gaussian

mixture is also a probability density function (PDF). The GMR algorithms consist of reducing an

N-components Gaussian Mixture hN(x) to an M-components Gaussian mixture hM(x) (with M < N),

such that hM and hN are the least possible dissimilar, in a sense to be defined next in this section.

Since all the results in the literature of GMR apply only on Gaussian mixtures as presented in
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(5.1), we need to do some manipulation over the u(x) function:

u(x) − u0 =

N∑
i=1

ciexp
(
−

1
2

(x − µi)
T Σ−1

i (x − µi)
)

=

N∑
i=1

ci

√
(2π)D |Σi|︸          ︷︷          ︸

wi

1√
(2π)D |Σi|

exp
(
−

1
2

(x − µi)
T Σ−1

i (x − µi)
)

=

N∑
i=1

wiN(x;µi,Σi). (5.2)

We need to point that (5.2) is the same u(x) but rewritten and interpreted in a convenient way

for GMR purposes. Each component in this mixture, represent exactly the same component in

the original linear combination of Gaussians. Moreover, the only thing that changes in (5.2) is the

weight coefficient: Gaussian functions with greater width, will have a relatively greater wi coefficient

in the Mixture representation (and vice versa).

There are many different algorithms to perform GMR, and a complete survey of them can be

found in Crouse et al. (2011). Between these algorithms we choose Runnalls (2007)’s approach

because of the following reasons:

1. It is computationally efficient.

2. It is the most robust among simple GMR algorithms: Advanced algorithms like GMRC

(Gaussian Mixture Reduction via Clustering) (Schieferdecker and Huber, 2009) and COWA

(Constraint Optimized Weight Adaptation) (Chen et al., 2010), use the result of Runalls

algorithm for initial guess estimation.

3. It allows us to build a hierarchical binary tree describing the relations between the Gaussian

components and the sources in formation.

In order to understand how this algorithm works, we need to introduce the following two

concepts:

1. The moment preserving merge of two Gaussian components {(wi,µi,Σi), (w j,µ j,Σ j)} corre-

sponds to a single Gaussian (wm,µm,Σm) which preserves the zeroth, first and second-order
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moments of the two-components mixture. Its parameters are obtained as follows:

wm = wi + w j

µm =
wi

wm
µi +

w j

wm
µ j

Σm =
wi

wm
Σi +

w j

wm
Σ j +

wiw j

w2
m

(µi − µ j)(µi − µ j)
T .

(5.3)

2. Runnalls (2007)’s approach compares each two components mixture {(wi,µi,Σi), (w j,µ j,Σ j)}

with its moment preserving merge {(wm,µm,Σm)} using a Kullback-Liebler divergence (KLd)

upper bound. In fact because KLd compares PDFs, it actually is applied over the normalized

version of both:

{(wi/(wi + w j),µi,Σi), (w j/(wi + w j),µ j,Σ j)} and {(1,µm,Σm)} respectively.

In Williams and Maybeck (2003), the KLd it is described as the “ideal cost function” for

Gaussian mixture reduction , but it has the disadvantage that has no closed-form in the cases

of Gaussian mixtures. However Runnalls (2007) obtained the following upper bound:

dKL(i, j) =
1
2

(
(wi + w j) log |Σm| − wi log |Σi| − w j log |Σ j|

)
, (5.4)

which exhibit very good empirical results.

Then the agglomeration and creation of the hierarchical tree T is as presented in Algorithm 1.

In simple words it works as follows:

While more than 1 components remain in the Gaussian mixture M̃, find the two com-

ponents that are less dissimilar in the sense of (5.4), and replace them in M̃ with its

moments preserving merge.

In this way we build a binary tree T describing the hierarchical relations between the components

that represents the sources. A visualization of the creation process of the tree is shown in Figure 5.1.

This tree is built from the bottom to top and each node represent a single Gaussian. Every time we

merge two components, it is represented with the merge of two branches into a single node. This

node contains the moment preserving merge of the Gaussians representing such branches.
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Algorithm 1 Generation of the hierarchical tree T through Runalls’ GMR
1: T ← empty tree
2: M̃ ← [(w1, µ1,Σ1), . . . , (wN , µM,ΣM)]
3: for i = 1 : length(M̃) do
4: T .addnode(M̃[i])
5: while length(M̃) , 1 do
6: min = +inf
7: for i = 1 : length(M̃) do
8: for j = i + 1 : length(M̃) do
9: if dKL(M̃[i], M̃[ j]) < min then

10: imin = i; jmin = j
11: (wm, µm,Σm)← merge(M̃[imin], M̃[ jmin])
12: M̃.add((wm, µm,Σm))
13: T .addnode((wm, µm,Σm))
14: T .node((wm, µm,Σm)) set as father of T .node(M̃[imin])
15: T .node((wm, µm,Σm)) set as father of T .node(M̃[ jmin])
16: M̃.remove(M̃[imin])
17: M̃.remove(M̃[ jmin])

Figure 5.1: Example tree describing the hierarchical agglomeration process. Here Gi represent a single
Gaussian, and M() is the merging function which in this case computes the moment preserving merge.
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5.2 Gaussian Decomposition

In this step we use the hierarchical tree T built by Algorithm 1. An instance of this tree is show in

Figure 5.1. It describes the sources in the image and its hierarchical relationships. The decomposition

consists of traversing T from top to bottom, decomposing it in a set of not overlapping subtrees,

each one representing a source (See Algorithm 2). In particular we are interested in a decomposition

function d that takes a set of K not overlapping subtrees of T : {T1,T2, . . . ,TK}, and indicates which

one to decompose next. Then, the function d defines a decomposition strategy. We show now two of

such strategies:

1. Reverse order. This corresponds to decompose the tree in the same exact order in which it

was built, but in reverse. This leaves the hierarchical structure completely in the hands of the

KLd bound metric.

2. Manual decomposition. The hierarchical tree can be decomposed by a domain expert

(astronomer), iteratively choosing the subtree to decompose at each step. In this way we can

analyze only the structures we are interested in.

Algorithm 2 Decomposition of T into S subtrees with decomposition function d.
1: tree_list← [T ]
2: while len(tree_list) , S do
3: imin ← d(tree_list)
4: Tleft,Tright ← split(tree_list[imin])
5: tree_list.remove(Timin)
6: tree_list.add(Tleft)
7: tree_list.add(Tright)

An example of the decomposition process is illustrated in Figure 5.2. Here are shown the first

two decomposition steps with the reverse order strategy. In Figure 5.2a two sources are represented

with the two subtrees (red and blue), while in figure 5.2b the “blue” subtree is decomposed into its

two subtrees (cyan and green). Each of these represent a source that are hierarchical components

of the source described by the blue tree. This process may continue until each subtree is a single

Gaussian, which we also refer as leaf Gaussian.

Universidad Técnica Federico Santa María, Departamento de Informática 31



Structural Analysis of Astronomical Images

(a) Two sources tree (b) Three sources tree

Figure 5.2: First two step of the decomposition process.

A key feature for describing the sources, is that when we reconstruct them, we do not use the

moment preserving merge Gaussian at the root of the subtree. Instead we use the leaf Gaussians of

such subtree. In this way we produce an accurate representation of each source.
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6 | Experiments

This chapter is divided in two sections. Section 6.1 shows a complete pipeline of our method.

This consists of a step-by-step explanation and graphical description of the execution flow of our

algorithm, with all its technicalities. Then in Section 6.2 we perform an assessment of our proposal,

verifying if the starting requirements and goals are being correctly satisfied.

6.1 Pipeline

To illustrate the flow of execution of our method, we use the NGC3256 observation from the

ALMA Science verification archive. The description of this observation is shown in Table 6.1 and

can be visualized in Figure 6.1a.

The first step consists in estimating the base level u0, and then apply the threshold over the

original image to obtain the region of usable pixels. The value used for u0 is the RMS of the data,

which is an approximation of the RMS of the noise (the signal is very diluted within the image).

The result of the thresholding is shown in Figure 6.1b.

In this experiment we decided to use a mixture of 250 Gaussian components to approximate the

signal. The 250 reference center points of the Gaussians are shown in Figure 6.2a. The number of

boundary points was set to 100 (See Figure 6.2b), and the number of collocation points was set to

900 (Recall from Section 4.6 that |Q| ≥ (D + 2)|P| − |B|). The collocation points generated can be

seen in Figure 6.2c.

The next step correspond to the initial guess estimation for the parameters vector η. As explained

in Section 4.6.1 we set θi = 0 ∀i ∈ [1,N], and then the initial real center points match the reference

center points. The estimation for ci and σi is done with the method presented in Section 4.7. Figure

6.3b shows how the approximation looks like with the initial guess estimation, i.e., u(x; η0) evaluated
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(b) Thresholded image

Figure 6.1: Original and thresholded NGC3256 images, showing the region of usable pixels.
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Figure 6.2: Center, collocation and boundary points generated over the NGC3256 image.
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in the pixels grid. In general the initial guess values are far below the observed data f0. This fact is

shown in Figure 6.3c (which is computed as f0(x) − u(x; η0)), were the residual remains very similar

to the original image.
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Figure 6.3: Original image, initial guess instantiation, and residual image.

For a better visualization of the initial values for the ci and σi parameters, in Figure 6.4 we

present a graphical distribution of them. Here we show the corresponding Gaussian centers, with its

associated ci (See Figure 6.4a) and σ2
i values (See Figure 6.4b). We observe that these parameters are

approximately uniformly distributed, which was the goal of the initial guess estimation procedure.
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(a) Initial distribution of ci values
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(b) Initial distribution of σ2
i values

Figure 6.4: Graphical distribution for the initial ci and σ2
i parameters.

We want to point out that the only parameters that have to be set by the user, are the number of

centers N, α and λ. All the remaining parameters are heuristically estimated from the input data.

The user is able to modify these other parameters (σmin, σmax, κ, among others) but we recommend
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leaving them as they are. In this experiment we have set α = 1 and λ = 5, which correspond to the

default parameter values.

Once the initial guess η0 is estimated we are ready to run the numerical optimization, which is

least squares minimization through the LM algorithm. An important LM parameter for termination

criterion, is the maximum number of function evaluations. We set this parameter as 100(|η| + 1),

according the SciPy’s indications †. The numerical optimization successfully converged to a solution,

which is shown in Figure 6.5b. The termination criterion was the no reduction of the relative error

between two consecutive iterations. The elapsed time of the optimization was 70.43[s] and required

22037 function evaluations of r(η).

For comparison, we show in Figure 6.5c the residual between to original image and the obtained

approximation. We observe that it is almost uniformly zero in the regions of the usable pixels. Figures

6.6a and 6.6b show the graphical distribution of the ci and σ2
i parameters after the optimization. We

remark that these parameters remain uniform across the Gaussians, with two exceptions: 1) in the

pixels where there is more concentration of flux, the values ci tend to increase, and 2) in the isolated

Gaussians (no neighbors near), the values σ2
i tend to increase too.
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Figure 6.5: Original image, approximated solution, and residual image.

Once we have the mixture representation computed, we are able to run the GMR procedure

(see Algorithm 1) to build the hierarchical tree T . The way the hierarchical decomposition process

works is illustrated in Figure 6.7. In this Figure we plot a single contour line at the level of uO

(base level) for each source component identified, each with a different color. We applied the
†scipy.optimize.least_squares documentation.
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Figure 6.6: Graphical distribution for the final ci and σ2
i parameters.

manual decomposition strategy, starting with a 2-components decomposition in Figure 6.7a to the

10-components decomposition in Figure 6.7i. At each step, we arbitrarily choose the structure to

decompose. We observe that the results are consistent; Even when there are disconnected sources

represented as if they were one, they are spatially contiguous, and can be decomposed in successive

steps.

In the next section we perform a conscientious assessment for the parameters configuration and

results we have presented in this pipeline.
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Figure 6.7: Illustration of the hierarchical decomposition of sources over NGC3256. The decomposition was
done with the manual method, selecting at each step which source to decompose.
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6.2 Experiments

In this section we study quantitatively and qualitatively the behavior of the main stages of the

computational implementation of our method *, and its dependency on the number of Gaussians

N and the weight parameter α from equation (4.1). We perform experiments over a set of relevant

astronomical images and spectroscopic cubes from the ALMA science verification archive (Hills,

2011). In particular we are interested in observations that have a clumpy/hierarchical structure. We

have chosen this dataset because it is highly validated and studied by the astronomical community.

Table 6.1 shows a summary of the images an cubes used in the experiments.

First, it is necessary to introduce the metrics we use to quantify the experiments performed next.

We evaluate four measurements over the residual ( f0 − u) and over the approximated solution u.

Lets define I as the set with the indexes of the usable pixels, and f0i , ui the values of f0(x) and u(x)

evaluated at the location of the i-th pixel. Then these measurements are:

1. RMS of residual: RMS value of residual over the regions of usable pixels:
√

1
|I|

∑
i∈I( f0i − ui)2.

2. Flux addition: Added flux by the approximation:
∑

i∈I(ui − f0i)
+. †

3. Flux lost: Amount of flux not represented by the approximation:
∑

i∈I( f0i − ui)+.

4. Sharpness: Measurement of how sharp (not smooth) and noisy is the solution:
∑

i∈I |∇ui|
2.

The gradient at each pixel is computed with finite forward differences.

Notice that RMS of residual evaluates how similar is u to f0, i.e., evaluate the first term of the

functional (4.1). The remaining measures, quantify both: if flux is being added or not represented,

and the smoothness of the solution. These evaluate the second term in the functional (4.1).

6.2.1 Number of Gaussians

The first set of experiments consists in the study of the quality of the obtained solution u, and

the number of Gaussians required for it.

*This implementation is based on Python and supported by standard libraries: NumPy, SciPy, Numba, Matplotlib,
AstroPy, among others. All this code is publicly available in the repository for reproducibility of the experiments.

†Here ()+ denotes the positive part function defined as: (x)+ := max(0, x).
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Name RA
[ pix ]

DEC
[ pix ]

FREQ
[ pix ]

Total
[ pix ]

ARes
[ ′′ ]

BSize
[ ′′ ]

SRes
[ MHz ]

Orion_KL-CH3OH 100 100 1 10000 0.40 1.37 -
NGC3256-CO1_0 100 100 1 10000 1.00 4.61 -
NGC4038-CO2_1 500 500 1 250000 0.13 0.66 -
Orion_KL-CH3OH 100 100 41 41000 0.40 1.38 0.49
HD163296-CO3_2 512 512 140 36700160 0.05 0.42 0.13

Table 6.1: FITS data used from ALMA Science Verification archive. The first three entries correspond to 2D
images, and the remaining two are 3D spectroscopic cubes.

In Figure 6.8 (left column) we observe the results for the images in Table 6.1. Note that there is

a decreasing tendency for all the measures but sharpness. Then with a higher number of Gaussian in

the mixture, we achieve a more accurate representation u. It also produces a reduction in the flux

addition and flux lost. The increase in the sharpness is an expected result; while more components

we add to the Gaussian mixture u, there is more capacity to represent the details in the data, and

then increases the sharpness.

We also present in Figure 6.9 a computational time analysis of our method. Here we observe

that the elapsed time required to complete the first step of our proposal, i.e., to obtain the continuous

representation. Here we validate the theoretical analysis about computational complexity done in

Section 4.8.1. The computational complexity is indeed quadratic with the number of centers O(N2).

6.2.2 Flux Addition

The second set of experiments consist in the study of the importance of the free parameter α,

for the properties of the obtained solution. As explained in Section 4.5, α controls the relative

importance between the terms in the functional (4.1). It means that higher values, gives a greater

relevance to the domain restrictions, and vice versa. In these experiments we fixed the value of λ to

3. In general values of λ are in the range [1, 10] show good empirical results.

In Figure 6.8 (right column) we show the results for the images in Table 6.1. We observe there

is a clear decreasing tendency for the flux addition, which is what we expected by increasing the

value of α. As direct consequence, there is an increase in the flux lost and the RMS of residual.

This happens because the relative importance of the similarity term of (4.1) decreases. Also note

the decreasing tendency of the sharpness, which is the response to the increasing relevance of the
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Figure 6.8: Residual RMS, Flux addition, Flux lost and Sharpness results. In the left column are the results
for the number of centers experiment (with α = 0 fixed). In the right column are the results for the alpha
variation experiments (with Number of centers = 300 fixed).

Universidad Técnica Federico Santa María, Departamento de Informática 41



Structural Analysis of Astronomical Images

100 200 300 400 500
Number of Centers

0

500

1000

1500
Ti

m
e 

[s
]

Orion KL
NGC3265
NGC4038

102

Number of Centers

101

102

103

Ti
m

e 
[s

]

Figure 6.9: Computing times v/s the number of centers used. The red line in the right figure is a quadratic
function on the number of centers, plotted to help us visualize the time complexity.
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Figure 6.10: Synthetic generated data of 150 × 150 pixels; The red dots and ellipses indicate the positions of
each Gaussian source.

domain restrictions. What happens here is that less noise peaks are being adjusted, and then the

solution becomes smoother. This supports the noise reduction capacity of our proposal.

6.2.3 Noise Reduction

Here we test the noise reduction capabilities of our method over the observed data f0. We decided

to use a synthetic generated image, as shown in Figure 6.10. In this way we know exactly which part

of the emission corresponds to signal and which corresponds to noise. We also know the ground

truth about the clumps structure.

The image in Figure 6.10 was generated as the sum of eight blended Gaussian emissions, which

represent the sources. The background additive noise was modeled with the half-normal distribution:

ε ∼ |N(0, 0.012)|.
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Figure 6.11: (a) Sharpness reduction of the obtained solution u with increasing α values. (b) Comparison
between the histograms of the original added noise, and the residual noise ( f0 − u).

To quantitatively evaluate the noise reduction feature, we report the sharpness variation with

α in Figure 6.11a. There is a clear decrease tendency in the sharpness with increasing values of α.

This is the expected response because noisy images are sharper, so with higher values of α we get

smoother and also less noisy solutions. We also report in Figure 6.11b the histogram of the residual

noise ( f0 − u) and the original noise histogram . Note that we are not retrieving exactly the noise

histogram, but an approximation with a tendency toward positive values.

Two things must be mention: 1) The pixels where u − f0 > 0 increment the flux addition

measurement and correspond to the left tail of histogram of the residual noise. This could be reduce

with greater values of α. 2) The pixels where f0 − u > 0 increment the flux lost measurement and

correspond to the right tail of the residual noise histogram. The tail becomes larger with greater

values of α. Thus, there is a trade-off between flux addition and flux lost controlled by the parameter

α.

6.2.4 Structural Analysis on Images

Finally, we show the source identification and description capabilities of our proposal. For this

we apply it to real and synthetic data, and we show how the structural analysis is performed.

In Figures 6.12 and 6.13 we show three steps of the Gaussian decomposition process over the

Orion-KL image, with the reverse order and manual methods respectively. We observe the reverse

order method has problems with the leftmost source. The problem is that the method is over-
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decomposing it. This happens because this source could be very well represented as the combination

of two or three Gaussians. Then splitting it produces a low value in the KL-bound metric. On the

other hand, the manual method in Figure 6.13 shows very good results. We can decompose each

identified source even further, but we think that the representation with 6 components it is good

enough.

For comparison, in Figure 6.14 we show the results obtained by clumpfind and fellwalker

algorithms. Here we display the border of the detected clumps. Similar structures are being detected

for all the algorithms. However with the manual method of our proposal, we were able to capture

and represent sources that the other algorithms couldn’t find.
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Figure 6.12: Gaussian decomposition process with reverse order method over Orion KL. Solution with 2, 4
and 6 components are shown from left to right.
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Figure 6.13: Gaussian decomposition process with manual method over Orion KL. Solution with 2, 4, and 6
components are shown from left to right.

Recall that our proposal does not determine the default number of clumps, as clumpfind or

fellwalker do. However we offer the possibility to produce a decomposition for an arbitrary number

of clumps, with no extra significant computational cost. This is possible since all the needed data
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Figure 6.14: Segmentation results of classic clumping algorithms over Orion KL

is stored in the hierarchical tree. This is not the case of the classical clump identification algorithms,

that have to be re-run with a different configuration of parameters to get a different number of clumps

identified.

Due to the difficulty of validating the results (no ground-truth knowledge), we repeat the

procedure in the synthetic generated image in Figure 6.10. Figures 6.15 and 6.16 show the results

for the reverse order and manual decomposition methods respectively. In Figure 6.15 we see that

the reverse order method presents the same problems as in Orion KL. It begins to decompose the

bottom-left structure into more than two components. On the other side, with the manual method

this problem is avoided (See Figure 6.16). At each step we split the clump we want to know its

structure, trying to match our ground-truth knowledge about the real structure. All but one clump

were correctly detected and represented. This happens because the particular clump has low intensity

and spread, making it difficult to identify.

For comparison, we show in Figure 6.17 the border of the clumps detected by clumpfind and

fellwalker algorithms in the synthetic image. Here we observe that clumpfind has serious problems

with the noise, producing as result a large number of clumps identified as output. On the other hand,

fellwalker does a very good job detecting the sources. However it is unable to capture the blended

emission of coupled sources, and thus the representation of each clump is not accurate.
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Figure 6.15: Gaussian decomposition process with reverse order method over synthetic data. Solution with
2, 4, 6 and 8 are shown from left to right
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Figure 6.16: Gaussian decomposition process with manual method over synthetic data. Solution with 2, 4, 6
and 8 are shown from left to right
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Figure 6.17: Segmentation results of classic clumping algorithms over synthetic data.
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6.2.5 Structural Analysis on Spectroscopic Cubes

Finally we show some results in spectroscopic data cubes. We did not do all the previous experi-

ments over these, because the current implementation is not computationally fast in 3-dimensional

data. Recall that the computational time in 3D cubes increases because two reasons: the number of

free parameters for each Gaussian increases (complexity O(γ)), and (most importantly) the number

of Gaussians needed to get accurate representations is also higher (complexity O(N2)).

In Figures 6.18 and 6.19 show final results using the manual decomposition method. These are

the three 2D projections (one for each axis) of the sources identified and represented by our method.

We observe in Figure 6.18 a decomposition of Orion_KL-CH3OH line cube with 5 sources. This

way of visualization is useful for the manual decomposition, because each time we see a clearly

disjoint structure in any of these projections, we can choose to decompose it. Figure 6.19 shows a

4-sources decomposition of HD163296-CO3_2 line cube. We observe that the decomposition is

able to successfully split the clumps: Every detected clump is well differentiated from the rest in at

least one projection. In this case the sources are not well distinguishable in the RA-DEC projection,

but they are in the remaining two projections.
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Figure 6.18: Structural Analysis over Orion_KL-CH3OH, 5 sources representation with manual
decomposition. (Left) Visualization of the three 2D projections of the detected clumps. (Right) Frequency
spectrum of the detected clumps, standardized by the total sum of the intensity.
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Figure 6.19: Structural Analysis over HD163296-CO3_2, 4 sources representation with manual
decomposition. (Left) Visualization of the three 2D projections of the detected clumps. (Right) Frequency
spectrum of the detected clumps, standardized by the total sum of the intensity.
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CHAPTER 7. CONCLUSIONS

7 | Conclusions

7.1 Conclusions

In this work we have presented a new and novel approach for structural analysis of 2- and 3-

dimensional astronomical data. This was achieved in two steps: The first step produces a continuous

representation of the data as a Gaussian mixture and the second step produces a hierarchical binary

tree through GMR algorithms. This tree allows us to hierarchically decompose the sources or clumps

identified, and perform structural/hierarchical analysis of such sources.

The contributions of this work can be separated for the two steps of the method. In the continuous

representation step, we present a model to represent astronomical images as Gaussian mixtures.

It was based on functional minimization and Levenberg-Marquardt optimization. This functional

was formulated to reduce the effect of adding nonexistent flux, and to reduce the background noise.

Even with the complexity of the solution space, and the bounds and simplification that we imposed,

we were able to assess empirically that it produces accurate Gaussian mixture representations. In

the source identification step, we presented a convenient alternative to the current algorithms that

perform structural analysis (Alves et al., 2007; Rosolowsky et al., 2008; Men’Shchikov et al., 2012;

Gregorio et al., 2014). We do not determine the number of clumps to be identified. Instead, our

method produce a hierarchical tree that allows us to produce representations with any number of

sources identified, with no extra significant computational cost. This is a convenient feature because

the tree lets us manually decompose the sources we are interested in. Finally, a very important

feature of our proposal is its capacity to capture the blended emission nature of the astronomical

sources.

A set of experiments were performed to show the capabilities and limits of our proposal. The

Universidad Técnica Federico Santa María, Departamento de Informática 49



Structural Analysis of Astronomical Images

Gaussian mixture representation showed to be a good alternative for the representation of sources.

We also showed that as we increase the parameter α, the noise can be reduced. From the experiments

over synthetic data, we observed that in most cases the residual noise is a good approximation of the

original noise distribution. We were not able to retrieve the original noise distribution because the

domain restrictions were imposed as soft-restrictions.

In the last set of experiments we presented qualitative results for the structural analysis approach

of our work. We demonstrated how automatic and manual decomposition over 2D images and

3D spectroscopic cubes work. The automatic strategy gave good preliminary results but there are

space for improvements. The automatic strategy wasn’t robust enough, and did some mistakes by

over-decomposing the sources. However it opens a challenge: Create a measure or metric to perform

a robust automatic decomposition of the sources. On the other hand, the manual decomposition

strategy proved to be convenient and a useful tool to perform structural analysis. This because

it allows the expert to know the hierarchical structure of the source of interest, depending of the

science case of study.

We think our work contributes to two unexplored areas of this problem: 1) Producing a continuous

representation of the data, and performing the identification of clumps over this representation.

This allows us to capture the blended nature of the emissions. 2) Creating a hierarchical tree data

structure allows the user (astronomer) to decompose the sources arbitrarily with no significant extra

computational cost.

We have successfully proposed, analyzed and compared a novel algorithm for hierarchical

decomposition, identification and quantification of sources over blended astronomical data. It has

shown to be a convenient alternative to state-of-art algorithms.

7.2 Future Work

There are many improvements and research directions that we would like to explore in the near

future. We present a list of them:

1. Right now the major computational bottleneck is the evaluation of the residual function

(4.10). In order to apply our method on cubes of large dimensions, we need faster evaluation

of this function. This could be achieved using domain decomposition methods and sparse
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representations, for example.

2. It would be interesting to see if there are significant improvements in the obtained representa-

tion, by allowing the Gaussians to be elliptically symmetrical.

3. Implement and test the more advanced GMR algorithms. This is to verify if we get a

more robust hierarchical tree. Also, it would be great to estimate the minimum number of

components for which the mixture does not degenerate.

4. Linked to the previous point, it would be interesting to study automatic strategies for the

decomposition of the hierarchical tree.

5. The two steps of the method are totally independent, i.e., we can use any representation of

the image as Gaussian mixture and perform GMR over this. We propose this method for

the Gaussian mixture, because allows us to handle the no flux addition and noise reduction

restrictions. It would be interesting to try different and simpler approaches, that do not require

nonlinear optimization.

6. Although the process of obtaining the Gaussian mixture through least squares minimization

works empirically well, we cannot ensure an optimal solution is being reached. It would be

interesting to search different Gaussian models, that ensure us that we are obtaining an optimal

solution.
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