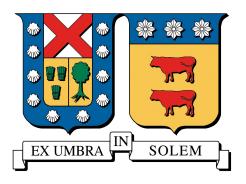
Repositorio Digital USM

https://repositorio.usm.cl

Tesis USM

TESIS de Pregrado de acceso ABIERTO

2021-08


CARACTERIZACIÓN EXPERIMENTAL DEL POTENCIAL ENERGÉTICO DE LAS ESPECIES ARBÓREAS EXÓTICAS DE LA REGIÓN DE VALPARAÍSO

MAYNE BRAVO, GUILLERMO ADRIÁN

https://hdl.handle.net/11673/52837

Repositorio Digital USM, UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA VALPARAÍSO - CHILE

"CARACTERIZACIÓN EXPERIMENTAL DEL POTENCIAL ENERGÉTICO DE LAS ESPECIES ARBÓREAS EXÓTICAS DE LA REGIÓN DE VALPARAÍSO"

GUILLERMO ADRIÁN MAYNE BRAVO

MEMORIA DE TITULACIÓN PARA OPTAR AL TÍTULO DE: INGENIERO CIVIL MECÁNICO

PROFESOR GUÍA : DR. ING. MARIO TOLEDO T. PROFESOR CORREFERENTE : DR. FABIÁN GUERRERO C.

AGRADECIMIENTOS

A quienes mayor agradecimientos debo dar es a mis padres. Sin ellos, esta misión

no podría haber tenido forma alguna. Agradezco su apoyo e incondicionalidad en todo

este largo proceso educativo, ya que me dieron consejos y fuerzas cuando más los

necesité.

Quiero agradecerle a mi hermano, por ser un gran compañero y amigo, por ser

un ejemplo en mi vida y por creer siempre en mis habilidades y talentos.

A mi hermana, que por ella trato de ser y mostrar siempre la mejor versión de

mi.

Agradezco a mis amigos, por el cariño entregado durante todo este camino, a

los antiguos y a los nuevos que se sumaron. Por las risas y los buenos momentos

vividos.

Finalmente y no menos importante, quiero agradecer al profesor Mario Toledo

por su gran labor como educador. Por permitirme recobrar la confianza que había per-

dido en los últimos años y permitirme volver a creer en mis conocimientos. Quiero

agradecerle por siempre estar dispuesto a ayudar y a enseñar con una humildad poco

vista demostrando el inmenso conocimiento ingenieril que posee.

A todos simplemente . . .

Gracias

"If you do not believe you can do it, then you have no chance at all." **Arsène Wenger**.

RESUMEN

El presente informe enmarcado en el estudio de la valorización de residuos forestales, evalúa la disposición de 2 reactores de medios porosos en serie para estudiar su influencia en la producción de H₂ y gas de síntesis.

El proceso se divide en dos etapas principales. Una primera etapa que considera un reactor con una matriz híbrida, compuesta en partes iguales (en volumen) por esferas de alúmina y pellets de biomasa (o Pino Radiata o Eucalyptus Nitens). Los datos documentados en la investigación realizada por Torres Villablanca, Daniel Alejandro (2014) fueron utilizados, donde empíricamente se desarrolló la combustión filtrada de las biomasas antes mencionadas con una razón de equivalencia, ϕ , igual a 1,1 y un caudal de 7 [L/min] (6,295 [L/min] de aire y 0,705 [L/min] de gas natural).

La segunda etapa se simula numéricamente, donde el gas de síntesis generado en la etapa 1 es mezclado con CH₄ variando el contenido de uno y otro entre 0 % y 100 % en intervalos de 25 %, en un rango de combustión que abarca $0, 4 \le \phi \le 2, 6$. Dicha mezcla ingresa a un segundo reactor con una matriz 100 % inerte.

El presente trabajo de investigación expone resultados de simulaciones numéricas del comportamiento de la configuración en serie de reactores de medios porosos buscando servir como un método de valorización de residuos forestales favoreciendo la producción de H₂ y CO. Se adjuntan los valores de temperatura, velocidad del frente de combustión y composición de los gases productos dentro de la región en estudio. Se observa que el añadimiento de CH₄ no siempre favorece la producción de H₂ y CO, obteniéndose, en ciertos casos, valores de eficiencia de conversión mayores a la línea base en mezclas cuyo contenido de CH₄ es menor. Para mezclas ultra-ricas, la conversión de H₂ cuando se reprocesa el 100 % del gas de síntesis de eucalyptus, supera en un 8 % a la línea base. En contraste la conversión de H₂ en mezclas ultra-ricas cuando se utiliza el gas de síntesis de pino no supera a la línea base, pero se alcanzan valores muy similares con una variación porcentual máxima de 2,3 % respecto a la línea ba-

se. La conversión de CO por su parte, al retirar completamente el aporte de CH_4 , en zonas de mezclas ultra-ricas, igualmente logra sobrepasar los valores de la línea base, tanto para el gas de síntesis de pino como para el de eucalyptus, en un 8% y un 5% respectivamente.

Palabras clave: Medios porosos inertes, hidrógeno, gas de síntesis.

IV

ABSTRACT

This report framed in the study of the recovery of forest residues, evaluates the disposition of 2 porous media reactors in series to study their influence on the production of H₂ and synthesis gas.

The process is divided into two main stages. A first stage that considers a reactor with a hybrid matrix, composed in equal parts (by volume) of alumina spheres and biomass pellets (either Radiata Pine or Shining Gum). The data documented in the research carried out by Torres Villablanca, Daniel Alejandro (2014) were used, where the filtered combustion of the aforementioned biomass was empirically developed with an equivalence ratio, ϕ , equal to 1,1 and a flow rate of 7 [L/min] (6.295 [L/min] of air and 0.705 [L/min] of natural gas).

The second stage is simulated numerically, where the synthesis gas generated in stage 1 is mixed with CH₄ varying the content of one and the other between 0% and 100% in 25% intervals, in a combustion range covering $0, 4 \le \phi \le 2, 6$. Said mixture enters a second reactor with a 100% inert matrix.

This research work presents results of numerical simulations of the behavior of the series configuration of porous media reactors seeking to serve as a method of valorization of forest residues favoring the production of H₂ and CO. The values of temperature, combustion wave speed and composition of the product gases within the region under study are attached. It is observed that the addition of CH₄ does not always favor the production of H₂ and CO, obtaining, in certain cases, conversion efficiency values higher than the baseline in mixtures whose content of CH₄ is less. For ultrarich blends, the H₂ conversion when reprocessing 100% of the shining gum syngas is 8% higher than the baseline. In contrast, the conversion of H₂ into ultrarich mixtures when using pine synthesis gas does not exceed the baseline, but very similar values are reached with a maximum percentage variation of 2,3% according to the baseline. The CO conversion, on the other hand, by completely withdrawing the contribution of

 CH_4 , in ultra-rich mixing zones, also manages to surpass the baseline values, both for pine syngas and for shining gum, by 8 % and 5 % respectively.

Key words: Inert porous media, hydrogen, synthesis gas.

GLOSARIO

Abreviaturas

- **ERNC:** Energías renovables no convencionales.
- **GEI:** Gases de efecto invernadero.
- HHV: Poder calorífico superior de un combustible Higher heating value.
- **LHV:** Poder calorífico inferior de un combustible *Lower heating value*.
- **MP:** Material particulado.
- Mtoe: Millones de toneladas de petróleo equivalente.
- **Syngas:** Gas de síntesis.

Nomenclatura

- c: Calor específico.
- lacksquare D_k : Coeficiente de difusión promedio de la mezcla.
- D_{ax} : Coeficiente de dispersión axial.
- $\mathcal{D}_k j$: Coeficiente de difusión binario.
- E_A : Energía de activación.
- h_k : Entalpía específica de la especie k.
- *k* : Conductividad térmica.
- k_f : Constante de velocidad de Arrhenius.
- k_{T_k} : Proporción de difusión térmica.

- \dot{M} : flujo másico.
- \blacksquare *R* : Constante universal de los gases ideales.
- \blacksquare T: Temperatura.
- *v* : Velocidad de filtración.
- *u* : Velocidad del frente de combustión.
- V_k : Velocidad de difusión de la especie k.
- \mathcal{V}_k : Velocidad de difusión ordinaria.
- W_k : Peso molecular de la especie k.
- W_k : Velocidad de difusión térmica.
- \bar{W} : Peso molecular promedio de la mezcla.
- Y_k : Fracción másica de la especie k.
- \blacksquare x : Coordenada axial.
- X_k : Fracción molar de la especie k.

Letras griegas:

- ϕ : Razón de equivalencia.
- β : coeficiente de intercambio efectivo de calor con el exterior.
- ε : Porosidad.
- λ : conductividad térmica efectiva del medio poroso.
- ρ : Densidad.
- $\dot{\omega}$: velocidad específica de reacción de la especie k.

Subíndices:

- e: Efectivo.
- *g* : Gas.
- *s* : Sólido.
- *k* : Índice de especie.
- \blacksquare R: Radiante.
- 0 : Inicial.

Índice de Contenidos

	AGR	ADECIMIENTOS	1
	RES	UMEN	III
	ABS	TRACT	V
	GLC	SARIO	VII
1.	Intro	oducción	1
_•		Problema de Investigación	1
	1.2.	Objetivos	4
		1.2.1. General	4
		1.2.2. Específicos	4
2.	Mor	co teórico	5
۷.			5
	2.1.	Realidad energética mundial	6
	2.2.	Realidad energética nacional	7
	2.3.	El hidrógeno como el combustible del futuro	9
		2.3.1. Formas de obtención	11
			11
		2.3.1.1.1. Reformado con vapor (SR)	12
		2.3.1.1.2. Oxidación parcial (FOX)	13
		2.3.1.2. Gasificación	13
		2.3.1.2.1 Gasificación de biomasa	15
			19
		2.3.1.2.2. Esquema de la gasificación de biomasa 2.3.1.2.3. Tipos de gasificadores	20
	2.4.	Principio de exceso de entalpía	24
	∠ .4.	2.4.1. Combustión en Medios porosos inertes	27
		2.4.1.1. Comparación con llama libre	29
	2.5.	Chile y el potencial uso de la biomasa de tipo arbórea	30
	2.3.	2.5.1. ¿Qué es la biomasa?	30
			31
		2.5.2. Distribución de bosques2.5.3. La industria forestal	32
			33
		2.5.4. Residuos forestales	33
_		•	
3.	Mod	elamiento de la combustión filtrada	36

	3.1.	Model	o Matemático	36
	3.2.	Métod	o numérico	40
		3.2.1.	Introducción al software PREMIX	40
		3.2.2.	Discretización	41
		3.2.3.	Uso del software	43
				44
				45
				47
			21210101 Microadologia de Macajo	• '
4.	Valid	dación d	de resultados	49
5.	Dise	ño expe	erimental	53
	5.1.	Situaci	ión Física	53
		5.1.1.		55
				55
				56
				57
			\mathbf{J}	58
				60
		5.1.2.	\mathcal{E}	62
		5.1.2.	1	62
				64
			\mathcal{E}	64
		5.1.3.		64
		5.1.5.		65
			5.1.3.1. Eficiencia energética del proceso	U.J
6.	Resi	ıltados	y análisis de la investigación	66
	6.1.		•	67
	0.1.	_		68
		6.1.2.		69
	6.2.			70
	0.2.	6.2.1	Pino Radiata	70
		6.2.2.	Eucalyptus Nitens	71
	6.3.		5 F	72
	0.5.	6.3.1.		73
		6.3.2.		73 73
	6.4.			73
	0.4.	-	osición de gases producto	74 74
		6.4.1.	Hidrógeno - H_2	
				75 75
		(12	J 1	75 76
		6.4.2.		76
			6.4.2.1. Pino Radiata	76
		- , -	6.4.2.2. Eucalyptus Nitens	77
		6.4.3.	7	77
				78
			6.4.3.2. Eucalyptus Nitens	79

		6.4.4.	Dióxido de carbono - CO_2	79
				80
				81
	6.5.	Razón	H_2/CO	82
		6.5.1.	Pino Radiata	83
		6.5.2.	Eucalyptus Nitens	83
	6.6.	Conver	sión de H_2	84
		6.6.1.	Pino Radiata	85
		6.6.2.	Eucalyptus Nitens	85
	6.7.	Conver	sión de CO	86
		6.7.1.	Pino Radiata	87
		6.7.2.	Eucalyptus Nitens	87
	6.8.	Eficien	cia energética	88
		6.8.1.	Pino Radiata	90
		6.8.2.	Eucalyptus Nitens	90
			os Futuros	91 94 95
A.	Anex A.1.	_		98 98
В.	Anex B.1.	Cálculo B.1.1.	de fracciones molares para simulación en software PREMIX . 10 Linea Base - 100 % metano	03 03 04 05
		B.1.3.	Eucalyptus Nitens	09
C.	Anex	ko III		13
	C.1.	Resulta	dos de simulaciones	13
		C.1.1.	Línea base	13
		C.1.2.	Pino Radiata	14
		C.1.3.	Eucalyptus Nitens	16

ÍNDICE DE TABLAS ÍNDICE DE TABLAS

Índice de Tablas

2.1.	Consumo mundial de energía primaria por tipo de fuente en el año 2019. Fuente: The British Petroleum Company plc (2020)	6
2.2.	Comparación del efecto del tamaño del poro del residuo carbonoso (char) en velocidades de reacción de combustión y gasificación. Fuente: Shekhawat et al. (2011)	17
2.3.	Propiedades de algunas cerámicas. Fuente: Pickenacker et al. (1999)	29
2.4.	Distribución territorial del tipo de bosque por región en hectáreas - 2004. Fuente: Comisión Nacional de Energía (2005)	32
2.5.	Residuos industriales por especies. Fuente: Comisión Nacional de Energía (2005)	34
5.1. 5.2.	Composición volumétrica del gas natural	55
	base a datos experimentales documentados en la investigación de Daniel Torres.	57
5.3.	Flujos másicos de entrada etapa 1. Fuente: elaboración propia en base a datos experimentales documentados en la investigación de Daniel	
5.4.	Torres	58
<i>-</i> -	propia	59
5.5.	Flujos másicos de salida etapa 1. Fuente: elaboración propia	59
5.6. 5.7.	Flujos volumétricos de salida etapa 1. Fuente: elaboración propia Poder calorífico inferior de todas las sustancias involucradas en el pro-	60
5.8.	ceso global. Fuente: Elaboración propia	61
~ 0	etapa 2. Fuente: Elaboración propia.	63
5.9.	Flujo de syngas que ingresa a la segunda etapa. Fuente: Elaboración propia en base a cálculos	63
6.1.	Poder calorífico de la mezcla al variar el porcentaje en volumen de gas de síntesis proveniente de la etapa 1 y el aporte de CH ₄	67
6.2.	Flujos energéticos de ejemplo para cada caso simulado	89
B.1.	Fracciones molares de cada sustancia considerando el ingreso de 100% metano como combustible. Fuente: elaboración propia	104

B.2.	Fracciones molares de cada sustancia considerando una mezcla combustible de 75 % Metano y 25 % gas de síntesis de pino radiata. Fuente:	
	elaboración propia.	105
B.3.	Fracciones molares de cada sustancia considerando una mezcla combustible de 50 % Metano y 50 % gas de síntesis de pino radiata. Fuente: elaboración propia	106
B.4.	Fracciones molares de cada sustancia considerando una mezcla combustible de 25 % Metano y 75 % gas de síntesis de pino radiata. Fuente:	107
B.5.	elaboración propia	
B.6.	elaboración propia	108
B.7.	Fuente: elaboración propia	109
B.8.	Fuente: elaboración propia	110
B.9.	bustible de 25 % Metano y 75 % gas de síntesis de eucalyptus nitens. Fuente: elaboración propia	111
2,,,	bustible de 0 % Metano y 100 % gas de síntesis de eucalyptus nitens. Fuente: elaboración propia	112
C.1.	Resultados obtenidos para una mezcla 100 % metano. Fuente: Elaboración propia	113
C.2.	Resultados obtenidos para una mezcla 25 % syngas de pino y 75 % metano. Fuente: Elaboración propia	114
C.3.	Resultados obtenidos para una mezcla 50% syngas de pino y 50% metano. Fuente: Elaboración propia	114
C.4.	Resultados obtenidos para una mezcla 75 % syngas de pino y 25 % metano. Fuente: Elaboración propia	115
C.5.	Resultados obtenidos para una mezcla 100 % syngas de pino. Fuente: Elaboración propia	115
C.6.	Resultados obtenidos para una mezcla 25 % syngas de eucalyptus y	116
C.7.	75 % metano. Fuente: Elaboración propia	116
C.8.	Resultados obtenidos para una mezcla 75 % syngas de eucalyptus y	117
C.9.	25 % metano. Fuente: Elaboración propia	117

Índice de Figuras

2.1.	Desglose oferta de energía primaria (año 2008, 2017 y 2018 respecti-	
	vamente) por fuente energética en Mtoe. Fuente: Comisión Nacional	
	de Energía (2019)	7
2.2.	Densidad energética v/s energía específica de algunos combustibles.	
	Fuente: Sinigaglia et al. (2017)	8
2.3.	Esquema del proceso de gasificación de biomasa incluyendo las reac-	
	ciones involucradas más importantes. Fuente: Elaboración propia en	
	base a Basu (2010)	19
2.4.	Tipos de Gasificadores - 1. Fuente: NNFCC (2009)	23
2.5.	Tipos de Gasificadores - 2. Fuente: NNFCC (2009)	23
2.6.	Esquema del funcionamiento del principio de exceso de entalpía	25
2.7.	Temperatura adiabática de diferentes combustibles en función de su	
	razón de equivalencia ϕ . Fuente: Jadidi et al. (2015)	26
2.8.	Esquemas de intercambiadores gas-gas. A la izquierda de contraco-	
	rriente y a la derecha de doble espiral	26
2.9.	Montaje de un reactor de medios porosos inerte con una matriz sólida	
	compuesta por esferas de alúmina	27
2.10.	Quemador poroso formado por espuma cerámica	27
2.11.	Representación esquemática de la recirculación de calor dentro de un	
	medio poroso idealizado como un tubo refractario. Fuente: Wood y	
	Harris (2008)	28
2.12.	Consumo de madera en troza industrial durante la última década en	
	miles de m ³ sólidos sin corteza. Fuente: INFOR	33
2.1		
3.1.	Esquema del funcionamiento del software y la estimación inicial. Fuen-	
	te: Kee, R.J. and Grear, J.F. and Smooke, M.D. and Miller, J.A. and	1.1
	Meeks, E. (1998)	44
4.1.	Resultados de Kennedy et al. (2000) (4.1a) y resultados obtenidos de	
	la simulación en PREMIX (4.1b)	50
4.2.	Resultados de Kennedy et al. (2000) (4.2a) y resultados obtenidos de	
	la simulación en PREMIX (4.2b)	51

4.3.	Mecanismo de reacción dominante en la combustión filtrada de mez- clas aire-metano. Fuente: Kennedy et al. (2000)	52
5.1. 5.2.	Esquema de la situación física en estudio. Fuente: elaboración propia. Volumen de control del proceso global, incluyendo etapa 1, separación de gases y etapa 2. Fuente: elaboración propia	54 65
6.1.	Comparación de la temperatura adiabática de la mezcla combustible con la temperatura del sólido variando composición syngas pino-CH ₄	(0
6.2.	v/s Razón de equivalencia. Fuente: elaboración propia	68
6.3.	CH ₄ v/s Razón de equivalencia. Fuente: elaboración propia Temperatura del gas variando composición syngas pino-CH ₄ v/s Razón de equivalencia. Fuente: elaboración propia	69 70
6.4.	Temperatura del gas variando composición syngas eucalyptus-CH ₄ v/s	
6.5.	Razón de equivalencia. Fuente: elaboración propia	71
6.6.	CH ₄ v/s Razón de equivalencia. Fuente: elaboración propia Velocidad del frente de combustión variando composición syngas eucalyp	73 -tus-
0.0.	CH ₄ v/s Razón de equivalencia. Fuente: elaboración propia	73
6.7.	Fracción molar de H ₂ producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de pino radiata en todo el rango de	, 0
6.8.	combustión. Fuente: elaboración propia	75
	producido por la gasificación de eucalyptus nitens en todo el rango de combustión. Fuente: elaboración propia	75
6.9.	Fracción molar de CO producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de pino radiata en todo el rango de	13
6 10	combustión. Fuente: elaboración propia	76
0.10.	sis producido por la gasificación de eucalyptus nitens en todo el rango	
	de combustión. Fuente: elaboración propia	77
6.11.	Fracción molar de CH ₄ producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de pino radiata en todo el rango	
	de combustión. Fuente: elaboración propia.	78
6.12.	Fracción molar de CH ₄ producido en la etapa 2 a partir del gas de	
	síntesis producido por la gasificación de eucalyptus nitens en todo el	
	rango de combustión. Fuente: elaboración propia	79
6.13.	Fracción molar de CO ₂ producido en la etapa 2 a partir del gas de	
	síntesis producido por la gasificación de pino radiata en todo el rango	-
	de combustión. Fuente: elaboración propia	80

ÍNDICE DE FIGURAS ÍNDICE DE FIGURAS

6.14. Fracción molar de CO ₂ producido en la etapa 2 a partir del gas de	
síntesis producido por la gasificación de eucalyptus nitens en todo el	
rango de combustión. Fuente: elaboración propia	81
6.15. Razón H ₂ /CO variando composición syngas pino-CH ₄ v/s Razón de	
equivalencia. Fuente: elaboración propia.	83
6.16. Razón H ₂ /CO variando composición syngas eucalyptus-CH ₄ v/s Ra-	
zón de equivalencia. Fuente: elaboración propia	83
6.17. Eficiencia de conversión de H ₂ variando composición syngas pino-	
CH ₄ v/s Razón de equivalencia. Fuente: elaboración propia	85
6.18. Eficiencia de conversión de H ₂ variando composición syngas eucalyptus-	
CH ₄ v/s Razón de equivalencia. Fuente: elaboración propia	85
6.19. Selectividad a CO variando composición syngas pino-CH ₄ v/s Razón	
de equivalencia. Fuente: elaboración propia	87
6.20. Selectividad a CO variando composición syngas eucalyptus-CH ₄ v/s	
Razón de equivalencia. Fuente: elaboración propia	87
6.21. Contraste de eficiencia energética de etapa 1 y etapa 2 al variar com-	
posición syngas pino-CH ₄ v/s Razón de equivalencia. Fuente: elabora-	
ción propia	90
6.22. Contraste de eficiencia energética de etapa 1 y etapa 2 al variar com-	
posición syngas eucalyptus-CH ₄ v/s Razón de equivalencia. Fuente:	
elaboración propia	90

1 | Introducción

1.1. Problema de Investigación

La incesante búsqueda del ser humano por perfeccionar sus habilidades y por descubrir otras, le ha permitido a lo largo de su historia, convertirse en la especie pensante dominadora del planeta. Así, la generación de energía se ha posicionado como una de las actividades preponderantes en el desarrollo de este, principalmente por los avances tecnológicos que le ha permitido desde su descubrimiento. El "boom" del consumo energético ocurrió con la llegada de la Revolución Industrial y desde entonces, tanto la ingeniería como la ciencia han trabajado exhaustivamente para descubrir nuevos y mejores métodos para la generación más eficiente de esta. El problema ha sido la completa indolencia con la que se ha tratado al medio ambiente, sobre explotando sus recursos por la necesidad imperante de suplir la demanda energética de una población mundial que año tras año aumenta y sin pensar en las consecuencias nefastas que esto traería en los años venideros abusando del uso de combustibles fósiles cuya combustión libera sustancias nocivas para el ecosistema.

Con el pasar de los años, el consumo de energía primaria a nivel mundial ha tenido un alza sostenida y su producción sigue siendo encabezada por la utilización de combustibles fósiles, los cuales aportan un 84 % (11.715 Mtoe) del consumo total de energía primaria (13.946 Mtoe) según The British Petroleum Company plc (2020). En Chile, algo similar ocurre. Según la Comisión Nacional de Energía (2019) en su

Anuario Estadístico de Energía 2019, indicó que el consumo de combustibles fósiles como energía primaria alcanza el 67 % del total de la matriz primaria del país, aunque un 2 % menos que el año anterior (2018), aún existe una dependencia importante, lo que ha traído dos consecuencias importantes para el país. Primero en términos político-económicos, ya que Chile al no contar con grandes reservas de combustibles fósiles, ha de recurrir a la importación de ellos, obligándose a someterse a todas las variables económicas y políticas que puedan afectar su precio y disponibilidad; Y segundo, la emisión de sustancias contaminantes nocivas asociadas a la combustión de ellos como el Material particulado (MP₁₀ y MP_{2,5}), Dióxido de Azufre (SO₂), Óxidos Nitrosos (NO_x), Dióxido de Carbono (CO₂) y Monóxido de Carbono (CO), además de trazas de otras especies.

En respuesta a aquello, trabajar en la mitigación de estos padecimientos se ha transformado en un desafío que urge a las ciencias ingenieriles actuales y en conjunto con organizaciones medioambientales se han dedicado a trabajar en el potenciamiento de las energías renovables y las energías renovables no convencionales (ERNC), ya que permiten la generación de energía limpia y poco invasiva. En el año 2019, se declaró que el 11,4 % (1.591 Mtoe) del total de energía primaria consumida era abastecido por energías renovables, lo que supone un 5,5 % de aumento respecto al año anterior (The British Petroleum Company plc (2020)). A pesar de no ser un aumento sustancial, este pequeño avance demuestra los esfuerzos que se han realizado por encontrar métodos de generación sustitutos, llenando de optimismo y haciendo un llamado a no decaer ni bajar los brazos, ya que aún el grueso de la energía primaria consumida proviene de la utilización de combustibles fósiles.

Bajo la misma idea de diversificar las fuentes energéticas y optar por mecanismos de generación menos contaminantes y de bajo impacto ambiental, aparece la gasificación. Un mecanismo que a través de procesos termoquímicos convierte materiales carbonosos sólidos o líquidos, en materia prima gaseosa con un grado energético altamente aprovechable. Este proceso se caracteriza por la flexibilidad con la que se puede llevar a cabo, considerándose una de las formas de producción de energía limpia del

futuro, ya que existe una variada lista de materias primas utilizables en el proceso, desde hidrocarburos, hasta residuos de distintos tipos, como lo son residuos agrícolas, forestales, e incluso la fracción orgánica de los residuos sólidos urbanos (RSU).

1.2. Objetivos

El presente trabajo de investigación se estableció para llevarse a cabo de forma práctica en el laboratorio de termodinámica de la Universidad Técnica Federico Santa María. Definido en un contexto de pre-pandemia mundial y previo a la llegada del virus COVID-19 a Chile. En este contexto y una vez notada la imposibilidad de llevarse a cabo la investigación experimental en las inmediaciones de la universidad, es que se decide realizar la investigación de manera numérica utilizando el software comercial PREMIX, adaptado para la simulación de combustión filtrada en reactores de medios porosos. Con ello, los nuevos objetivos se detallan a continuación en las secciones 1.2.1 y 1.2.2.

1.2.1. General

Caracterizar numéricamente el potencial energético de las especies arbóreas exóticas predominantes en la Región de Valparaíso.

1.2.2. Específicos

- Analizar y seleccionar para estudio especies arbóreas exóticas que presentan una penetración elevada en la Región de Valparaíso.
- Proponer el diseño de reactores de medios porosos en serie que permitan generar un gas de síntesis rico en H₂ y CO.
- Simular numérica y computacionalmente el proceso de generación de gas de síntesis a partir de biomasa arbórea utilizando el software comercial premix para una mezcla metano-aire.
- Evaluar el potencial energético en base a resultados de la investigación realizada.

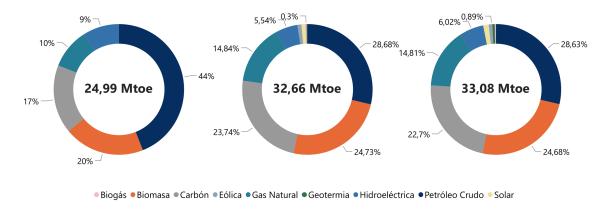
2 | Marco teórico

2.1. Realidad energética mundial

Entre los años 1974 y 2019 el consumo anual de energía primaria se ha disparado considerablemente de 6.278 Mtoe a 13.945 Mtoe, lo que se traduce en un incremento promedio anual de 1,8 puntos porcentuales (The British Petroleum Company plc (2020)). El incremento anual del año 2019 registró una pequeña baja respecto a la tendencia de años anteriores, donde el crecimiento fue de tan solo 1,3 %, cifra menor a la mitad del crecimiento anual registrado el año 2018 de 2,8 %. Esto se debió a la disminución en el crecimiento de todos los tipos de combustibles, cuyo ritmo de crecimiento fue menor que el promedio anual de los últimos 10 años. El incremento del año 2019 fue conducido principalmente por las energías renovables y el gas natural, sumando el 75 % del incremento neto como se puede apreciar en la tabla 2.1.

Lo anterior permitió que se redujera el crecimiento de las emisiones de gases efecto invernadero (GEI) a la atmósfera, las cuales venían en un ascenso vertiginoso en los últimos años. Esta disminución se debe al rol importante que tomaron las energías renovables en el año 2019, permitiendo que el crecimiento de los GEI fuera de tan solo 0,5 %, lo que significa menos de la mitad del ritmo que se venía promediando los últimos 10 años y compensando, en parte, el fuerte incremento anual vivido el año 2018 (2,1 %).

Tabla 2.1: Consumo mundial de energía primaria por tipo de fuente en el año 2019. Fuente: The British Petroleum Company plc (2020)


Fuente Energética	Consumo [Mtoe]	Variación Anual [Mtoe]	Aporte Porcentual del Total
Petróleo	4609,0	38,21	33,1 %
Carbón Mineral	3771,0	-21,59	27,0 %
Gas Natural	3379,0	66,86	24,2 %
Hidroeléctrica	898,0	7,16	6,4 %
Renovables	693,0	76,42	5,0 %
Nuclear	595,0	19,10	4,3 %
Total	13945,0	186,16	100,0 %

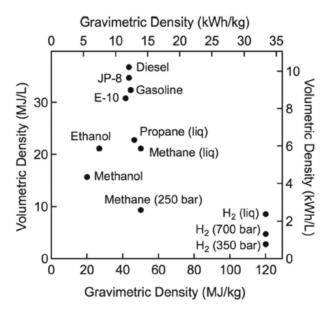
2.2. Realidad energética nacional

Según el balance energético realizado por la Comisión Nacional de Energía (2019), la oferta nacional de energía primaria para el año 2018 fue de 33,08 Mtoe, un 1,3 % de incremento respecto al año 2017 y un 32 % de aumento comparado al año 2008. Si bien este crecimiento va de la mano con el desarrollo del país y el aumento poblacional, es importante identificar que la matriz nacional debe diversificarse, ya que aún la fuente principal son combustibles de tipo fósil (petróleo crudo, gas natural y carbón mineral) con un 66 % del total, mientras que en menores proporciones, pero sin dejarlas de lado, aparece la biomasa con un aporte del 25 %, seguida por la hidroelectricidad, solar y eólica con el 9 %.

Durante el año 2019, el sector energético chileno cerró con una serie de proyectos en construcción, capacitados para entregar una potencia neta de 5.476 MW de los cuales el 72 % corresponden a Energías renovables no convencionales. Esto demuestra el compromiso que las autoridades nacionales tienen con el medio ambiente, como lo han expresado públicamente en el informe "Energía 2050 - Política Energética de Chile" publicado por el Ministerio de Energía (2018) donde se ha identificado que debe existir compatibilidad entre el desarrollo del sector energético y el cuidado del medio ambiente, siguiendo los lineamientos del tipo de fuente energética y los efectos

medioambientales que estas puedan producir. Así se ha propuesto la meta de una matriz renovable que a largo plazo hará un cambio paulatino a la matriz actual, optando por métodos de generación verde como ha quedado de manifiesto en los últimos años, donde la expansión de las ERNC ha crecido de 286 MW de capacidad instalada (2005) a 2.269 MW (2018), constituyendo el 11,43 % de la capacidad eléctrica total actual del país.

Figura 2.1: Desglose oferta de energía primaria (año 2008, 2017 y 2018 respectivamente) por fuente energética en Mtoe. Fuente: Comisión Nacional de Energía (2019)


Según el análisis de robustez presentado por el Centro de Energía de la Universidad de Chile, el cual analizó los escenarios plausibles de la expansión de la matriz eléctrica nacional y obteniendo como resultado que prácticamente en todos los escenarios planteados, además de incluírsele a cada uno medidas de eficiencia energética, la penetración de las energías renovables cumplirá un rol importantísimo, estableciendo que para el año 2050 será posible tener una matriz eléctrica compuesta en un 70 % por energías renovables (Comité Consultivo de Energía 2050 (2016)).

2.3. El hidrógeno como el combustible del futuro

Hoy en día, la importancia de desarrollar mecanismos de generación de energía de bajo impacto ambiental ha ido en alza debido a los estrictos estándares medioambientales que están afectando el uso de hidrocarburos comunes, ya que su uso favore-

ce al cambio climático y la contaminación que generan amenaza la vida en la tierra. En este contexto, el hidrógeno ha aparecido como el combustible sustituto del futuro. Impulsado principalmente por su alto contenido energético por unidad de masa y su combustión limpia (al reaccionar con aire solo produce vapor de agua y óxidos nitrosos (Caro et al. (2015)).

Por otra parte, se ve potenciado por su abundancia en el ecosistema, siendo el elemento más abundante del planeta y el universo, pero sólo un 1 % de él se puede encontrar en estado molecular y el 99 % restante combinado con otros compuestos como hidrocarburos, agua, alcoholes, entre otros. Esto significa que para su obtención, estas sustancias deben ser sometidas a diferentes procesos.

Figura 2.2: Densidad energética v/s energía específica de algunos combustibles. Fuente: Sinigaglia et al. (2017)

Tal como muestra la figura 2.2, el hidrógeno es el combustible que molecularmente posee la mayor energía específica del planeta; el triple de la densidad energética de la gasolina. A pesar de todas estas ventajas que posee el hidrógeno, aún existen apremios y limitaciones para su consumo masivo. Según Johnston et al. (2005), estas son:

- **Producción:** Principalmente para uso comercial y es mayoritariamente producido in situ en refinerías o por compañías químicas que apuntan al mismo sector.
- Almacenamiento: debido a su baja densidad, genera dificultades de almacenamiento por el gran espacio que utiliza, obligando a utilizar receptáculos de alta tecnología y costos elevados.
- **Distribución y Seguridad:** transportar hidrógeno en vehículos de manera segura es un desafío mayor, ya que el espacio limitado sumado a la logística de cómo almacenarlo eligiendo el tipo correcto de contenedor, ha complicado durante años a las empresas productoras, ya que posee un rango de inflamabilidad mayor a distintas concentraciones que otros combustibles.

2.3.1. Formas de obtención

Existen varios métodos que permiten la síntesis de hidrógeno, los cuales varían dependiendo de la materia prima de la cual se desea obtener. Estas transformaciones pueden ser termoquímicas, electrolíticas o biológicas. En la siguiente lista, aparecen los métodos más comunes estudiados que se utilizan para la producción de hidrógeno.

Procesos termoquímicos

- Reformado
- Gasificación
- Descomposición térmica del agua

Proceso electrolítico - electrólisis del agua

- Electrolizadores alcalinos
- Membrana de intercambio de protones (PEM)
- Membrana de estado sólido (SOE)

Procesos biológicos

• Descomposición biológica del agua

La producción de hidrógeno en los procesos de **Gasificación** y **Reformado** se obtiene de manera indirecta como subproducto de un gas denominado "gas de síntesis" o en inglés "Syngas". Su denominación se debe a que es utilizado como materia prima para la producción de gas natural sintético (GNS), amoniaco o metanol y la producción de petróleo sintético. El Gas de Síntesis es una mezcla de gases combustible compuesto principalmente por hidrógeno (H₂), monóxido de carbono (CO), dióxido de carbono (CO₂) y metano (CH₄). Las concentraciones finales de cada compuesto presente en el gas de síntesis varía dependiendo de las condiciones del ensayo, el método utilizado para su obtención y la materia prima utilizada, lo que da como resultado gases de síntesis con propiedades termoquímicas diferentes.

2.3.1.1. Reformado

El reformado de combustibles líquidos como hidrocarburos, petróleo y alcoholes es el método más utilizado para la producción de hidrógeno, ya que cerca del 98 % de la producción anual de hidrógeno (utilizado principalmente en refinerías, síntesis de amoniaco y producción de metanol) proviene del reformado de combustibles fósiles (Mujeebu (2016)). El reformado ocurre cuando alguno de los combustibles líquidos anteriormente mencionados se hace reaccionar con vapor de agua, oxígeno o ambos agentes gasificantes por un lecho catalítico bajo condiciones operacionales específicas. Dependiendo del tipo de agente gasificante que se utilice en el proceso de reformado, será el nombre que este llevará.

2.3.1.1.1. Reformado con vapor (SR)

Utilizando vapor de agua como agente gasificante, permite la transformación de hidrocarburos y alcoholes en reactores debidamente acondicionados, bajo condiciones operacionales óptimas.

A pesar de existir una amplia gama de fuentes utilizables para llevar a cabo el proceso de reformado, el metano es la que más se utiliza. Se estima que el 48 % del hidrógeno generado anualmente a nivel mundial es producido mediante la tecnología de Reformado de Metano con vapor (SMR en inglés). Esto se debe a que actualmente es el proceso más económico para producir cantidades de esta molécula a gran escala, siendo catalogada como una tecnología madura (Stiegel y Ramezan (2006)).

El proceso de reformado de metano con vapor es altamente endotérmico y gracias a la presencia de hidrógeno en la molécula de agua se puede lograr la obtención de un gas de síntesis con una proporción H₂/CO igual a 3. El proceso global puede representarse por la siguiente reacción:

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2$$
 $\Delta H_R = 205, 9[kJ/mol]$ (2.1)

Los pasos del proceso SMR para la producción de hidrógeno pueden dividirse en 4 etapas principales (a) pretratamiento de materia prima, (b) reformado con vapor, (c) Desplazamiento de gas (WGS) (d) purificación del hidrógeno. Para el reformado con gas natural (CH₄), el único pretratamiento necesario es el desulfurado. Una vez pasada la etapa de desulfurado y eliminadas las partículas de ácido sulfhídrico (H₂S), el reformador es alimentado con el gas natural en donde reaccionará con vapor de agua para la efectiva producción de CO, CO₂ y H₂.

2.3.1.1.2. Oxidación parcial (POX)

La Oxidación Parcial (en inglés Partial Oxidation - POX) es el proceso en el cual se hace reaccionar cualquier materia prima cuya base sea hidrógeno, carbono e incluso oxígeno en un reactor con oxígeno, aire o aire enriquecido a alta temperatura y/o presión para la producción de gas de síntesis. Este método se rige principalmente por las reacciones exotérmicas 2.2 (ecuación simplificada de la combustión de un hidrocarburo genérico con oxígeno) y 2.3 (ecuación general incluyendo disociación):

$$C_x H_y + \frac{x}{2} O_2 \to x CO + \frac{y}{2} H_2$$
 (2.2)

$$C_x H_y O_z + a(O_2 + 3,76N_2) \rightarrow bCO_2 + dH_2O + eH_2 + cCO + 3,76aN_2$$
 (2.3)

Como se dijo anteriormente, la naturaleza de la reacción es exotérmica y gracias a las altas temperaturas alcanzadas en el área de la llama de difusión del reactor, no es requerido el uso de un catalizador, sin embargo, para que la producción de gas de síntesis sea adecuada durante el proceso, se trabaja en condiciones de exceso de aire o exceso de combustible, denominadas mezclas pobres y mezclas ricas respectivamente. La obtención de un tipo de combustión u otro es determinado por un parámetro adimensional denominado razón de equivalencia (ϕ) .

Es importante destacar que mientras ocurre la oxidación parcial de una sustancia, ocurren muchas otras reacciones paralelas en el proceso, donde destacan las reacciones denominadas "desplazamiento de gas" (Water Gas Shift (WGS)), "reformado con

vapor" (Steam Reforming (SR)) y "reformado con CO₂" (Shekhawat et al. (2011)), las cuales ayudarán a determinar la composición final del gas de síntesis obtenido. A continuación se muestran las reacciones que ocurren durante la oxidación parcial de metano.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 Combustión (2.4)

$$CH_4 + O_2 \to CO_2 + 2H_2$$
 (2.5)

$$CO + H_2O \rightleftharpoons CO_2 + H_2$$
 WGS (2.6)

$$CH_4 + H_2O \rightleftharpoons CO + 3H_2$$
 Reformado con vapor (2.7)

$$CH_4 + CO_2 \rightleftharpoons 2CO + 2H_2$$
 Reformado con CO_2 (2.8)

$$CO + H_2 \rightleftarrows C + H_2O \tag{2.9}$$

$$CH_4 \rightarrow C + 2H_2$$
 Descomposición de CH₄ (2.10)

$$2CO \rightleftharpoons CO_2 + C$$
 Boudouard (2.11)

$$CO + 1/2O_2 \to CO_2$$
 (2.12)

$$H_2 + 1/2O_2 \to H_2O$$
 (2.13)

2.3.1.1.3. Auto-Reformado

En secciones anteriores (2.3.1.1.1 y 2.3.1.1.2), se introdujeron los temas relativos al reformado con vapor y oxidación parcial. Otra opción viable para el reformado de materias primas es la utilización de oxígeno y vapor como oxidantes en el mismo proceso. A esta tecnología se le llama Reformado Autotérmico, llamado en inglés como Autothermal Reforming u Oxidative Steam Reforming, se rige por la siguiente reacción:

$$C_x H_y O_z + aO_2 + gH_2 O \rightarrow bCO_2 + eH_2 + cCO + fCH_4$$
 (2.14)

Al alimentar el reactor con aire y vapor de agua, el calor generado por las reacciones exotérmicas oxidativas es utilizado para suplir la demanda energética requerida para que se lleven a cabo las reacciones endotérmicas de reformado dando como resultado un proceso termoquímicamente neutro o un balance neto de calor igual a cero.

De esta forma, el reformado autotérmico podría considerarse la mejor forma de reformar una materia prima, ya que en teoría, el reformado autotérmico no necesita un suministro externo de energía para llevarse a cabo, pero en la práctica es difícil debido a las pérdidas de calor de los sistemas.

2.3.1.2. Gasificación

La gasificación por otro lado, es una tecnología capaz de convertir un combustible sólido como carbón o biomasa de manera completa o parcial a altas temperaturas en gas de síntesis. El proceso de gasificación tiene un amplio campo de aplicaciones, ya que es una tecnología aplicable para prácticamente cualquier hidrocarburo, biomasa o residuos pesados provenientes de la refinería del petróleo (coque), pero se debe considerar el tratamiento posterior y purificación del gas producto para poder ser usado en alguno de los procesos listados a continuación:

- Producción de vapor para generación de electricidad en una turbina de vapor.
- Síntesis química de amoniaco, para la obtención de combustibles líquidos de alto valor agregado, mediante el proceso Fischer-Tropsch.
- Metanización para la producción de Gas Natural sintético.

La gasificación y combustión son dos procesos termoquímicos que están relacionados entre sí y que muchas veces podría incluso confundírseles el uno con el otro, pero existe una diferencia sustancial entre ambos. La gasificación almacena energía dentro de los enlaces químicos del gas producto, mientras que la combustión rompe esos enlaces para liberar energía; la gasificación añade hidrógeno y separa el carbono de la materia prima para producir gases con mayor proporción hidrógeno carbono (H/C). Por el otro lado, la combustión oxida el hidrógeno y el carbono produciendo agua y dióxido de carbono respectivamente. Un proceso típico de gasificación incluye 4 etapas fundamentales (Basu (2010)):

- Secado
- Descomposición térmica o pirólisis
- Combustión parcial de algunos gases y residuos carbonosos
- Gasificación o descomposición de productos

2.3.1.2.1. Gasificación de biomasa

La gasificación de biomasa es un proceso de oxidación parcial que convierte biomasa en gas de síntesis con presencia de un agente gasificante como aire, vapor, oxígeno, dióxido de carbono o una mezcla de ellos. La biomasa utilizada para este proceso puede ser terrestre o marina (fundamentalmente algas en el último caso). Como ya se dijo, en un proceso típico de gasificación de biomasa, la materia prima primeramente debe someterse a una etapa de secado, seguida por el proceso de pirólisis o degradación térmica. Los productos de pirólisis (gases, sólidos y líquidos) reaccionan entre ellos, además de reaccionar con el agente gasificante para formar los productos finales de gasificación. Para abastecer de energía a los procesos térmicos de secado, pirólisis y reacciones endotérmicas de gasificación, las reacciones exotérmicas de combustión son estrictamente necesarias y cumplen un rol importantísimo dentro del proceso.

Secado: En promedio la humedad que posee la biomasa leñosa recién cortada puede estar en el rango de 30 a 60 % e incluso para otros tipos de biomasa podría incluso superar el 90 % de humedad. Para niveles elevados de humedad, las pérdidas de energía relativas al secado son una preocupación a la hora de realizar una gasificación eficiente (se sabe que para evaporar un kilogramo de H₂O se necesitan 2257 kJ). Como no se puede hacer mucho sobre la humedad inherente que posee la estructura celular de

la biomasa, es importante enfocarse en retirar la humedad externa que se deposita en la superficie de esta, ya que para producir un gas combustible con un poder calorífico aceptable, la biomasa no debe contener más de 20 % de humedad.

El proceso final de secado ocurre una vez que la materia prima entra al gasificador y recibe el calor proveniente de la zona de reacción aguas abajo, removiendo el agua que resta de manera irreversible cuando se alcanzan temperaturas mayores a 100 °C. Luego, y a medida que la temperatura aumenta, los extractos de bajo peso molecular comienzan a volatilizarse hasta llegar a una temperatura de 200° C.

Pirólisis: Ocurre al calentar la biomasa en ausencia de aire u oxígeno en el comburente, a un rango de temperatura conocido como "temperatura de pirólisis" (generalmente entre 300 °C y 500 °C) y manteniéndose por un tiempo suficiente para descomponer la biomasa. Durante este proceso las moléculas de hidrocarburos mas pesados presentes en la biomasa son descompuestas térmicamente para dar origen a moléculas de gas más pequeñas (condensables y no condensable).

Un producto de la pirólisis que trae bastantes problemas en la industria es la formación de alquitrán luego de condensarse el vapor producido durante el proceso, ya que al ser un líquido pegajoso genera grandes dificultades a la hora de usar el gas producido, ya que antes debe ser purificado o tratado.

Combustión: La combustión del carbono desprendido de la materia prima cumple un rol muy importante en el proceso global de gasificación de cualquier materia prima porque es la etapa encargada de suministrar la energía requerida para llevarse a cabo las reacciones endotérmicas en las etapas de secado, pirólisis y gasificación. Las reacciones de mayor aporte energético a los demás procesos son:

$$C + O_2 \rightarrow CO_2$$
 $\Delta H_R = -394[kJ/mol]$ (2.15)

$$C + 0.5 \cdot O_2 \rightarrow CO$$
 $\Delta H_R = -111[kJ/mol]$ (2.16)

Cuando el carbono reacciona con el oxígeno, ambas reacciones 2.15 y 2.16 tie-

nen lugar, pero dependen de la temperatura del residuo carbonoso. Un coeficiente de partición β se puede definir para determinar cómo el oxígeno se dividirá. Ambas reacciones se pueden reescribir combinándose en una sola ecuación de la siguiente manera:

$$\beta C + O_2 \rightarrow 2(\beta - 1)CO + (2 - \beta)CO_2$$
 (2.17)

El valor del coeficiente de partición β puede tomar valores en el intervalo entre 1 y 2 y como ya se dijo, depende de la temperatura del residuo carbonoso. Ambos se relacionan según la siguiente ecuación (Arthur (1951)):

$$\beta = \frac{[CO]}{[CO_2]} = 2400 \cdot e^{-\left(\frac{6236}{T}\right)}$$
 (2.18)

Por lo general, las reacciones de combustión ocurren a un ritmo mayor que las de gasificación en condiciones iguales de operación. En la tabla 2.2 se puede apreciar la comparación de las velocidades de reacción de combustión en contraste a las de gasificación para el residuo carbonoso de biomasa a una temperatura típica de operación de 900°C. Las velocidades de reacción de las reacciones de combustión son a lo menos un orden de magnitud mayor que las de gasificación debido a que mientras más finas son las partículas del residuo carbonoso, mayores son las velocidades de reacción que se pueden lograr.

Tabla 2.2: Comparación del efecto del tamaño del poro del residuo carbonoso (char) en velocidades de reacción de combustión y gasificación. Fuente: Shekhawat et al. (2011)

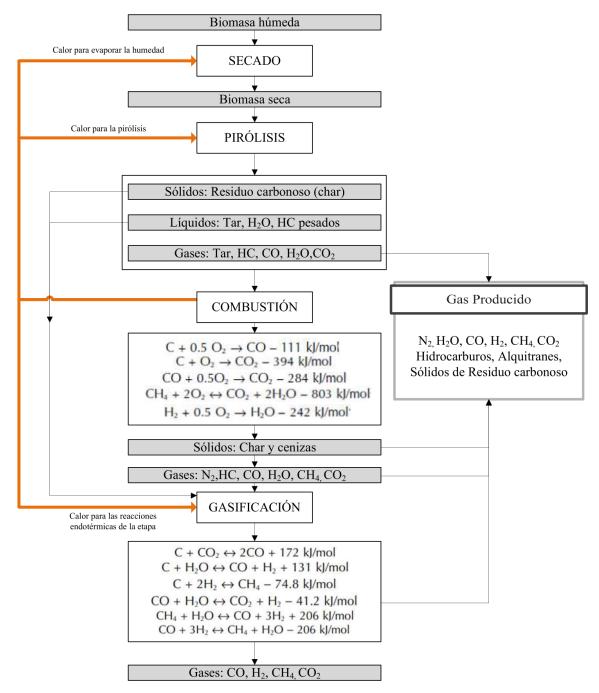
Tamaño partí- cula [μm]	Velocidad Combustión [min ⁻¹]	Velocidad Gasificación [min ⁻¹]	Razon ve- locidad [-]
6350	0,648	0,042	15,4
841	5,04	0,317	15,9
74	55,9	0,975	57,3

Gasificación: La gasificación, al igual que la combustión, ocurre luego de la pirólisis en simultaneo con las reacciones de combustión, a pesar de que el calor y los

productos de la combustión sean requeridos en la gasificación. Esta etapa es la más compleja del proceso global, ya que en ella ocurren interacciones entre hidrocarburos, H_2O , CO_2 , O_2 y H_2 , además de los productos obtenidos en las etapas previas. De esto, la gasificación del residuo carbonoso (char) obtenido de la pirólisis de la biomasa es la etapa más importante. Es importante señalar que el residuo carbonoso producto de la biomasa no está completamente formado por carbono, ya que puede además contener una pequeña porción de hidrocarburos y oxígeno.

El char de biomasa producido en la pirólisis involucra una serie de reacciones entre el char y el agente gasificante. Las reacciones detalladas a continuación muestran cómo los agentes gasificantes reaccionan con el char para convertirlo en gases de bajo peso molecular como monóxido de carbono e hidrógeno (Basu (2010)).

$$Char + O_2 \longrightarrow CO_2 + CO \tag{2.19}$$


$$Char + CO_2 \longrightarrow CO$$
 (2.20)

$$Char + H_2O \longrightarrow CH_4 + CO$$
 (2.21)

$$Char + H_2 \longrightarrow CH_4$$
 (2.22)

2.3.1.2.2. Esquema de la gasificación de biomasa

El presente esquema muestra un resumen de lo explicado en la sección anterior.

Figura 2.3: Esquema del proceso de gasificación de biomasa incluyendo las reacciones involucradas más importantes. Fuente: Elaboración propia en base a Basu (2010).

2.3.1.2.3. Tipos de gasificadores

El diseño y operación de un gasificador requiere del entendimiento del proceso global de gasificación ya que su diseño, materia prima a gasificar y parámetros operacionales influyen directamente en el rendimiento de una planta. Por eso es que a lo largo de los años se ha diversificado el uso y tipos de gasificadores. Las principales diferencias de funcionamiento de un tipo de gasificador y otro se puede resumir según lo siguiente (NNFCC (2009)):

- Cómo la biomasa es alimentada dentro del reactor y cómo se mueve y comporta dentro de este. En ciertos gasificadores, la biomasa puede ser suministrada por la parte superior o por los costados del gasificador y su movimiento al interior de este puede ser motivo de la gravedad o por flujos de aire.
- El tipo de agente oxidante utilizado. Puede utilizarse vapor de agua, oxígeno o aire, lo que afectará directamente la composición final del gas obtenido.
- Rango de temperatura de operación del gasificador.
- Si el calor suministrado para la gasificación es proveído por la combustión parcial de la materia prima, o por alguna fuente externa.
- Si el gasificador operara bajo un régimen presurizado o no, ya que una gasificación presurizada asegura mayores rendimientos, favorece la producción de hidrógeno, generando que se necesiten equipos más pequeños para el tratamiento posterior del gas obtenido.

A continuación, se presenta un listado de las diferentes tecnologías de gasificación en las cuales se utiliza biomasa como materia prima.

Gasificador de lecho fijo con corriente ascendente (figura 2.4a):

La materia prima es alimentada dentro del gasificador por la parte superior y la entrada del agente gasificante está ubicada en la parte inferior de este. Parte del residuo carbonoso producido que es combustionado, suministrando calor a los procesos endotérmicos de gasificación.

El gas producido se extrae por la parte superior y las cenizas se almacenan para la posterior recolección en la parte inferior del gasificador.

Gasificador de lecho fijo con corriente descendente (figura 2.4b):

La materia prima es suministrada por la parte superior del gasificador y el agente gasificante puede ser suministrado tanto por la parte superior, como por los costados del gasificador provocando que el gas producido salga por la parte inferior del gasificador.

Parte de la materia prima es combustionada en la garganta del gasificador formando un lecho incandescente que actúa como zona de reacción, permitiendo obtener un gas de bastante buena calidad.

Gasificador de flujo arrastrado (figura 2.4c):

La materia prima es introducida dentro del gasificador en forma granulada y es hecha reaccionar con oxígeno y/o vapor presurizado. En la parte superior una llama turbulenta quema parte de la materia prima suministrando grandes cantidades de calor a altas temperaturas (1200 – 1500 °C si se tratase de biomasa) para la conversión de un gas de síntesis de alta calidad. Las cenizas se derriten en las paredes del gasificador para luego ser descargadas como escoria fundida.

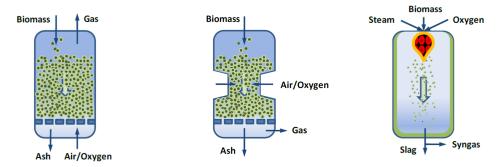
Gasificador de lecho fluidizado burbujeante (figura 2.5a):

Un lecho de material inerte se asienta en la parte inferior del gasificador, por el cual se hace fluir una corriente de aire, oxígeno o vapor a una velocidad lo suficientemente potente (1 - 3 m/s) para que el material inerte se agite.

La materia prima es introducida por la parte lateral del gasificador donde se mezcla con el material inerte y es combustionada (a 900 °C en caso de tratarse de biomasa) formando gas de síntesis que evacúa al gasificador por la parte superior.

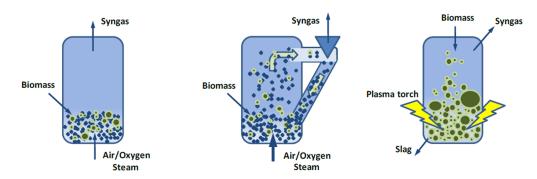
Gasificador con lecho fluidizado circulante (figura 2.5b):

Un lecho de material inerte es hecho circular mediante el soplado a gran velocidad (5-10 m/s) del agente gasificante haciendo que este se suspenda junto a la materia prima que es alimentada por la parte lateral del gasificador.


Una vez combustionada la materia prima, la mezcla del gas natural con las partículas de material inerte, la materia prima que aún no ha reaccionado y los residuos de la combustión son separados por un ciclón, para obtener un gas libre de impurezas sólidas.

Por lo general operan a temperaturas inferiores a 900 °C para evitar la fundición y aglomeración de las cenizas.

Gasificador con plasma (figura 2.5c):


En este tipo de gasificadores, no es necesario el pretratamiento de la biomasa, la cual debe estar depositada en el fondo del gasificador para que entre contacto con plasma generado eléctricamente a temperaturas en el rango de 1.500 – 5.000 °C y generalmente a presión constate.

La materia orgánica se transforma en un gas de síntesis de alta calidad y la materia inorgánica restante es encapsulada y convertida en escoria inerte.

- lecho fijo con corriente ascendente.
- lecho fijo con corriente descendente.
- (a) Esquema de gasificador de (b) Esquema de gasificador de (c) Esquema de gasificador de flujo arrastrado.

Figura 2.4: Tipos de Gasificadores - 1. Fuente: NNFCC (2009).

- lecho fluidizado burbujeante.
- lecho fluidizado circulante.
- (a) Esquema de gasificador de (b) Esquema de gasificador de (c) Esquema de gasificador de plasma.

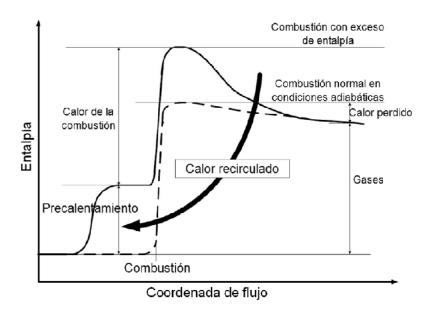
Figura 2.5: Tipos de Gasificadores - 2. Fuente: NNFCC (2009).

2.4. Principio de exceso de entalpía

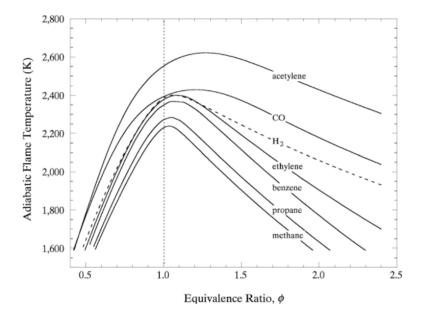
El término "exceso de entalpía" es usado para describir los procesos que recuperan la energía liberada por los productos de la combustión y es aprovechada por los reactivos, permitiendo el incremento de la temperatura y favoreciendo la velocidad de la combustión, los límites de inflamabilidad y la temperatura de llama. Esto se traduce en un mejoramiento de la eficiencia de combustión, una disminución en las emisiones contaminantes y facilita la combustión de combustibles con bajo poder calorífico (Weinberg (1996)).

La figura 2.6 ilustra lo anteriormente descrito, donde la línea punteada muestra el cambio de entalpía en un reactor para una reacción normal sin precalentamiento de los reactantes. Debido a las pérdidas finitas de calor durante el proceso, llegar a alcanzar valores de llama teórica (adiabática) es imposible. En contraste, la línea continua ilustra un proceso que incluye el añadimiento de calor, lo que genera un precalentamiento de los reactivos y permite obtener temperaturas por sobre la de llama teórica.

Respecto a la temperatura de llama teórica, es importante definirla como la temperatura que se alcanza cuando no existe un flujo de calor en las fronteras de un volumen de control, en otras palabras, no existe interacción entre un sistema y el exterior, impidiendo que existan pérdidas de calor al entorno y por lo tanto, se puede alcanzar un valor de temperatura ideal donde su valor dependerá del tipo de combustible y de la proporción de oxidante con el cual se haga reaccionar, es decir, depende directamente del poder calorífico del combustible y de la razón de equivalencia (Wood y Harris (2008)). La razón de equivalencia es un factor adimensional que se define de la siguiente manera:


$$\phi = \frac{(m_{aire}/m_{comb})_{est}}{(m_{aire}/m_{comb})_{real}} = \frac{1}{\lambda}$$
 (2.23)

• Cuando se habla de $\phi = 1$, se dice que se está trabajando en condiciones estequio-


métricas.

- Cuando se tiene un ϕ < 1, se dice que la mezcla es pobre (exceso de aire).
- Cuando se tiene un $\phi > 1$, se dice que la mezcla es rica (exceso de combustible).

En el anexo A se detalla cómo se calcula la temperatura de llama teórica para el metano y diferentes mezclas de gas de síntesis, que servirán para cálculos posteriores y análisis de los resultados.

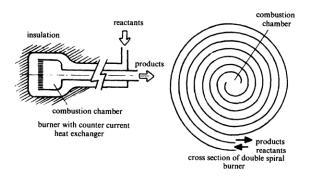


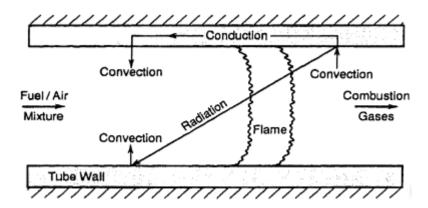
Figura 2.6: Esquema del funcionamiento del principio de exceso de entalpía.

Figura 2.7: Temperatura adiabática de diferentes combustibles en función de su razón de equivalencia ϕ . Fuente: Jadidi et al. (2015)

Según la revisión realizada por Weinberg (1996), existen varias opciones y configuraciones que permiten la ejecución correcta del principio de exceso de entalpía o la recirculación de calor. Durante los últimos años, se ha venido utilizando principalmente 3 tecnologías: los intercambiadores de calor gas-gas (figura 2.8), los intercambiadores de calor de una matriz sólida (figura 2.9) y los quemadores porosos (figura 2.10).

Figura 2.8: Esquemas de intercambiadores gas-gas. A la izquierda de contracorriente y a la derecha de doble espiral.

Figura 2.9: Montaje de un reactor de medios porosos inerte con una matriz sólida compuesta por esferas de alúmina.


Figura 2.10: Quemador poroso formado por espuma cerámica.

2.4.1. Combustión en Medios porosos inertes

La combustión en medios porosos o también llamada combustión filtrada aparece como una alternativa para realizar la combustión de un combustible con exceso de entalpía, ya que al existir un sólido poroso con excelentes propiedades de transferencia de calor dentro de la cámara de combustión se facilita el intercambio de calor interno, a diferencia de los otros métodos, que poseen el intercambiador de calor que rodea a la cámara de combustión. En otras palabras, en un medio poroso, la combustión ocurre dentro del intercambiador de calor (Wood y Harris (2008)).

La transferencia de calor que ocurre dentro de un medio poroso se puede resumir

de la siguiente manera. Aguas abajo de la zona de reacción (productos), el gas se encuentra más caliente que el sólido, y por lo tanto, el calor es transferido por convección desde los gases producto de la combustión hacia la matriz porosa. El sólido caliente conduce e irradia el calor aguas arriba de la zona de reacción (reactantes) generando que la temperatura del sólido ahora sea mayor que la del gas reactante, provocando que ocurra transferencia de calor por convección desde el sólido al gas. De esta forma, los gases provenientes de la cámara de mezclado son precalentados hasta que alcanzan la temperatura de ignición, para que el ciclo descrito se vuelva a repetir. (Ver figura 2.11)

Figura 2.11: Representación esquemática de la recirculación de calor dentro de un medio poroso idealizado como un tubo refractario. Fuente: Wood y Harris (2008)

Las cerámicas son el material que más se adecua para la confección de un medio poroso debido a su gran resistencia a altas temperaturas, estabilidad química y resistencia a la erosión y desgaste. Las cerámicas más utilizadas que resisten altas temperaturas son Alúmina (Al_2O_3) , Carburo de Silicio (SiC) y Zirconia (ZrO_2) . Sus propiedades aparecen resumidas en la tabla 2.3

Property Al_2O_3 SiC ZrO_2 Maximun usage temperature in air 1900 1600 2300 $(^{\circ}C)$ 5-6 Thermal conductivity at 1000 °C 20-50 2-4 $(Wm^{-1}K^{-1})$ Total emissivity at 2000 K 0,28 0,9 0,31 Coefficient of linear thermal 8 4-5 10-13 expansion from 20-1000 °C $(10^{-6}K^{-1})$

Resistence to mild thermal shock

Tabla 2.3: Propiedades de algunas cerámicas. Fuente: Pickenacker et al. (1999)

La más utilizada es la Alúmina (Al_2O_3) debido a que soporta altas temperaturas y posee una alta resistencia al desgaste y la corrosión, además de ser más económica. El Carburo de Silicio (SiC) en cambio posee mejor conductividad térmica y emisividad y el Dióxido de Zirconio (ZrO_2) posee baja conductividad, pero una alta resistencia al golpe térmico.(Wood y Harris (2008)), como se indica en la Tabla 2.3.

3

23

1

2.4.1.1. Comparación con llama libre

 $(10^{-3}W^{-1})$

La combustión en medios porosos posee varias ventajas por sobre la combustión convencional de llama libre, ya que mejora la eficiencia de la combustión y reduce las emisiones NO_x. Como la conductividad térmica de los gases es muy pequeña, la convección es el mecanismo predominante en la combustión de llama libre. Incorporando una matriz porosa al sistema, la cual posee una gran conductividad térmica, mejora la transferencia de calor del sistema, predominando la radiación y la conducción, como se dijo en la sección 2.4.1.

Además de las ventajas mencionadas, existen otras como:

- Control de la temperatura del frente de combustión, permitiendo una disminución en la formación de NO_x y CO.
- Alta capacidad térmica gracias a la recirculación del calor y el exceso de entalpía, generando una gran estabilidad térmica. Esto permite la combustión de mezclas en un rango extenso. En el caso de metano y aire, el rango de combustión abarca $0, 4 < \phi < 2, 6$.
- Posee un amplio rango de modulación gracias a la estabilidad térmica (1:30).
- Alta densidad energética.

2.5. Chile y el potencial uso de la biomasa de tipo arbórea

2.5.1. ¿Qué es la biomasa?

Para hablar de biomasa, es importante definir el concepto. Según la Real Academia Española, la biomasa es toda materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía.

En base a lo anterior, la biomasa como recurso energético, puede clasificarse en 3 grandes categorías:

- Biomasa natural: aquella que se produce en los ecosistemas naturales sin la intervención humana (ejemplo: caída de ramas de los árboles en los bosques).
- Biomasa residual: aquella producida de forma antropogénica como residuo o subproducto de las actividades agrícolas, silvícolas, ganaderas, industria agroalimentaria, industria transformadora de la madera, industria depuradora y reciclado de aceites.

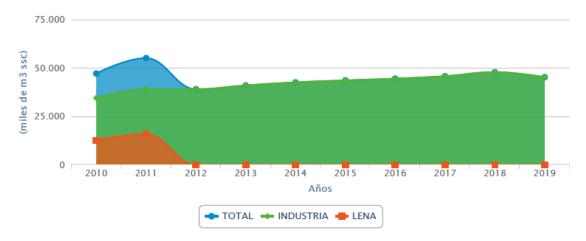
Cultivos energéticos: son aquellos que están destinados a la producción de biocombustibles. Además de los cultivos existentes para la industria alimentaria (cereales y remolacha para producción de bioetanol y oleaginosas para producción de biodiésel), existen otros cultivos como los lignocelulósicos forestales y herbáceos y cosechas.

2.5.2. Distribución de bosques

Según la Corporación Nacional forestal (CONAF) y el Ministerio de Agricultura (2013), Chile posee una superficie total de 75,6 millones de hectáreas, de las cuales el 55 % (41,3 millones de hectáreas) corresponde a terrenos forestales, que considera la superficie cubierta con bosques, humedales, praderas naturales y matorrales. La superficie cubierta por bosques es de 16,7 millones de hectáreas, representando un 22 % del territorio total, donde el 81,4 % lo componen bosques nativos y el 18,6 % restante, plantaciones forestales (2,9 millones de hectáreas), predominando el pino radiata y el eucalipto (67 % y 23,5 % respectivamente).

Tal como muestra la tabla 2.4, la distribución regional de bosques en el año 2004 muestra que los territorios forestales de bosques nativos y plantaciones aumentan considerablemente desde la región del Maule hasta la región de Los Lagos. Esto es intuible por las condiciones climáticas de dichas zonas, las cuales favorecen el crecimiento y desarrollo de bosques. Las regiones más australes (Aysén y Magallanes) no poseen una gran cantidad de plantaciones por el difícil acceso para llegar a ellas. La Región del Biobío en cambio, es la región que presenta mayor actividad forestal debido al desarrollo de la zona en temas de conectividad, además de verse favorecida por sus condiciones climáticas.

Es importante señalar que si bien existen plantaciones de distintas especies a lo largo del país, las plantaciones productivas de mayor penetración son las constituidas por: pino radiata, eucalipto, pino oregón y álamo; distribuidas desde la Región de Valparaíso a la Región de Aysén.


Tabla 2.4: Distribución territorial del tipo de bosque por región en hectáreas - 2004. Fuente: Comisión Nacional de Energía (2005)

Distribución	Bosque nativo	Plantaciones	Total bosques	%
I	7.682	24.825	32.507	0,21
II		1.040	1.040	0,01
III		2.595	2.595	0,02
IV	1.377	74.179	75.556	0,49
V	94.008	52.962	146.970	0,95
RM	93.345	14.404	107.749	0,69
VI	117.798	90.216	208.014	1,34
VII	369.708	388.123	757.831	4,88
VIII	785.766	791.831	1.577.597	10,16
IX	907.521	389.946	1.297.467	8,36
Х	3.610.314	208.825	3.819.139	24,60
XI	4.830.743	39.544	4.870.287	31,38
XII	2.625.054	158	2.625.212	16,91
Total	13.443.316	2.078.648	15.521.964	100,00

2.5.3. La industria forestal

Gracias a las condiciones climáticas y geográficas que Chile posee, existen largas extensiones de bosques nativos y plantaciones forestales. La industria forestal utiliza como materia prima la madera en trozas obtenida de los bosques productivos habilitados para su explotación cumpliendo un rol importante en la economía chilena donde su aporte llegó a un 3,1 % del PIB Nacional en el año 2010.

El desarrollo de la industria primaria forestal chilena se desarrolla y crece cada año, procesando las trozas provenientes de plantaciones y bosques nativos habilitados. La industria forestal está dedicada a la producción de madera aserrada, pulpa mecánica y química (celulosa), tableros a base de madera (OSB, MDF), chapas y contrachapados, además de una diversa lista de otros productos primarios. La gráfica de la figura 2.12 muestra consumo nacional de madera en troza durante la última década.

Figura 2.12: Consumo de madera en troza industrial durante la última década en miles de m³ sólidos sin corteza. Fuente: INFOR

2.5.4. Residuos forestales

Los residuos forestales se clasifican en dos ramas principales. Existen los residuos forestales provenientes del manejo forestal y los residuos forestales producto de la industrialización de las trozas y la madera intermedia (ver tabla 2.5).

Se puede observar que los residuos del manejo forestal son básicamente los desechos de podas, los desechos de raleo y de corta final en el caso de las especies plantadas, y sólo los desechos de corta final en el caso del bosque nativo ya que en el estado actual de desarrollo de esos bosques, las prácticas silviculturales intermedias no están extendidas.

Por su parte, los desechos industriales son, en el caso de la madera verde, corteza, aserrín verde y tapas y cantoneras, tanto para las especies plantadas como para el procesamiento de especies nativas. Para las remanufacturas son aserrín seco, virutas del proceso de cepillado, despuntes originados en el dimensionado y polvo de lija.

Hoy en día se estima que sólo la industria del aserrío genera 5.242.168 m³ de residuos forestales al año (Janina Gysling C. (2020)).

Tabla 2.5: Residuos industriales por especies. Fuente: Comisión Nacional de Energía (2005)

Tipo bosque	Manejo forestal	Industria para cada tipo de bosque	Desecho
Pino radiata	Desecho de podas	Aserrío	Corteza
	Desecho de raleos		Aserrín verde
	Desecho corta final		Tapas y cantonera
		Remanufacturas	Aserrín seco
			Virutas
			Despuntes
			Polvo de lija
		Celulosa	Corteza
Eucalipto	Desecho de podas	Aserrío	Corteza
	Desecho de raleos		Aserrín verde
	Desecho corta final		Tapas y cantonera
		Celulosa	Corteza
Bosque nativo	Desecho corta final	Aserrío	Corteza
			Aserrín verde
			Tapas y cantonera
		Confección de leña	

2.5.5. Motivación por el uso de residuos forestales

Se sabe que los residuos forestales producto de podas y raleos sirven como una fuente de biomasa aprovechable para la obtención de aceites esenciales, ceras, extractos vegetales y forrajes, sirve como fuente recicladora de nutrientes y protección del suelo contra la erosión. Eso si, su acumulación excesiva puede traer consecuencias nefastas al medio ambiente, ya que favorece la propagación de plagas y enfermedades, desarrollo de hongos y se presentan como un potencial foco de incendios.

Bajo este contexto, se potencia la idea de utilizar los residuos forestales para la obtención de gas de síntesis permitiendo que una materia prima de escaso valor, a través de un proceso de gasificación aumente su valor y sea utilizado, por ejemplo en la generación de energía. Gracias al desarrollo que ha suscitado la industria forestal, el aumento de residuos forestales, tanto de manejo forestal como producido por la industria, crece cada año, llegándose a creer que para el año 2025 existirá un potencial bruto de generación entre 3.073 MW y 6.173 MW utilizando residuos provenientes de

la actividad forestal (Carlos Pontt (2008)).

Otras motivaciones para la valorización de residuos forestales son:

- Su carácter renovable: a diferencia de los combustibles fósiles, una plantación forestal crecerá dentro de una década y junto a su cosecha, aparecerán nuevos residuos forestales, tanto por la actividad forestal como por su manejo.
- Beneficios medioambientales: al utilizar los residuos forestales en procesos de gasificación para la producción de energía, no se contribuye al aumento de las emisiones de CO₂ a la atmósfera, considerándose una contribución neta igual a cero.
- Beneficios sociopolíticos: se estima que para que una planta generadora de energía en base a biomasa sea económicamente viable, la biomasa debe venir de zonas cercanas a las planta, lo que significa que para su abastecimiento se necesitan procesos de cultivo, recolección y transporte, creando más oportunidades de trabajo. Según un estudio realizado por Van Loo y Koppejan (2008), una planta de biomasa puede generar hasta 20 veces más empleos que una termoeléctrica. Además se reduce la dependencia de los precios de importación de los combustibles fósiles.

3 | Modelamiento de la combustión filtrada

3.1. Modelo Matemático

El modelo matemático utilizado para la simulación de la situación física, será el mismo desarrolado por Toledo et al. (2009) que describe un frente de combustión completamente desarrollado dentro de un reactor de medios porosos con un sistema de coordenadas que viaja con la zona de reacción. Existe una serie de consideraciones que deben incluírsele al modelo para simplificarlo. A continuación se listan dichas consideraciones:

- La simulación del frente de combustión se considera unidimensional, ya que experimentalmente se ha determinado que los gradientes de temperatura radial son despreciables (Kennedy et al. (2000)).
- El modelo "volume-avaraged" ha sido utilizado para describir matemáticamente la combustión filtrada.
- El sistema se considera isobárico, estacionario y cuasi-unidimensional.
- La velocidad del frente de combustión, *u*, se asume que es al menos tres órdenes de magnitud menor a la velocidad intersticial (o de filtración) de la mezcla

gaseosa, v.

- Una aproximación de dos temperaturas se utiliza para describir un frente de combustión estable completamente desarrollado en un sistema de coordenadas que se viaja junto con el frente de combustión.
- El modelo numérico considera al gas y al sólido como dos fases que interactúan a través de la dinámica de fluidos y transferencia de calor.
- Se debe tener presente que este modelo está limitado para simular regímenes de combustión a baja velocidad (low velocity regime LVR).

Las ecuaciones que gobiernates que describen el comportamiento de un frente de combustión estable completamente desarrollado dentro de un reactor cilíndrico de medios porosos considerando un sistema de coordenadas que se mueve junto con la zona de reacción son:

Ecuación de Continuidad

$$\frac{\partial \dot{M}}{\partial x} = \frac{\partial (\varepsilon \rho v)}{\partial x} = 0 \tag{3.1}$$

Ecuación de Energía en fase gaseosa

$$\varepsilon c_p \rho_g v \frac{\partial T_g}{\partial x} = \varepsilon \frac{\partial}{\partial x} \left(\left[k_g + \left(c_p \rho_g \right) D_{ax} \right] \frac{\partial T_g}{\partial x} \right) - \varepsilon \sum_k \dot{\omega}_k h_k W_k - \varepsilon \sum_k \rho_g Y_k V_k C_{p,k} \frac{\partial T_g}{\partial x} - h_v (T_g - T_s)$$
(3.2)

Ecuación de Energía en fase sólida

$$-(1-\varepsilon)c_s\rho_s u \frac{\partial T_s}{\partial x} = \frac{\partial}{\partial x} \left[\left[k_e + k_R \right] \frac{\partial T_s}{\partial x} \right] - \beta (T_s - T_0) - h_v (T_g - T_s)$$
 (3.3)

Ecuación de conservación de especies

$$\rho_g v \frac{dY_k}{dx} + \frac{d}{dx} \left(\rho_g Y_k V_k \right) = \dot{\omega}_k W_k \tag{3.4}$$

El coeficiente convectivo en base volumétrica, h_v , se define como:

$$h_{v} = \left(\frac{6\varepsilon}{d^{2}}\right) Nu \cdot k_{g} \tag{3.5}$$

donde el número de Nusselt se define como $Nu = 2 + 1,1Pr^{1/3}Re^{0.6}$.

Por otra parte, la radiación se incluye dentro de un coeficiente denominado k_R definido como:

$$k_R = 4F\sigma T_s^3 \tag{3.6}$$

donde F es el factor de intercambio radiativo, el cual es dependiente del valor de la conductividad del medio sólido (esferas de alúmina). Su valor siempre pertenece al rango entre 0,3 y 0,6.

La contribución del efecto de la difusión másica se describe con el coeficiente de dispersión axial $D_{ax} = 0.5 dv$. Análogamente la difusividad térmica es igual que la difusividad másica, en consecuencia, los coeficientes de dispersión son iguales.

La velocidad específica de reacción de la especie k ($\dot{\omega}_k$) resulta del aporte de todas las reacciones químicas involucradas en la producción y consumo de esa especie, obedeciendo la ecuación de Arrhenius modificada cuya forma es:

$$k_f = AT^{\alpha} \exp\left(\frac{-E_A}{RT}\right) \tag{3.7}$$

Los valores para cada variable presentes en la ecuación 3.7 y los detalles de las reacciones químicas, además de las propiedades termoquímicas, están almacenados en el paquete de datos CHEMKIN-III (Kee et al. (1996)). En adición a las velocidades con las que reaccionan los componentes químicos de la combustión, también se debe tener en cuenta las propiedades de transporte de las especies, i.e., conductividad térmica y coeficientes de difusión.

Propiedades de transporte de la mezcla

La velocidad de difusión V_k se compone de 2 partes:

$$V_k = \mathcal{V}_k + \mathcal{W}_k \tag{3.8}$$

donde \mathcal{V}_k se define como la velocidad de difusión ordinaria y cuya expresión se puede aproximar según Curtiss y Hirschfelder (1949) como:

$$\mathcal{V}_k = -D_k \frac{1}{X_k} \frac{\partial X_k}{\partial x} \tag{3.9}$$

 X_k es la fracción molar y el coeficiente de difusión promedio de la mezcla D_k se puede expresar explicitamente en términos del coeficiente de difusión binaria \mathcal{D}_{kj} como:

$$D_k = \frac{1 - Y_k}{\sum_{j \neq k}^k X_j / \mathcal{D}_{kj}}$$
(3.10)

 W_k se define como la velocidad de difusión térmica, que será considerada para las especies de bajo peso molecular como lo son el H, H_2 y He. su expresión algebraica se escribe como:

$$W_k = \frac{D_k k_{T_k}}{X_k} \frac{1}{T} \frac{\partial T}{\partial x}$$
 (3.11)

 k_{T_k} se define como la proporción de difusión térmica y cuyo signo hace que especies de bajo peso molecular difundan de zonas de bajas temperaturas a zonas de alta temperatura.

Condiciones de borde

Asumiendo que existe equilibrio térmico entre el gas y el sólido en los límites del dominio computacional, se establecen las siguientes condiciones de borde:

A la entrada (x = 0):

$$T_g = T_s = T_0$$
 ; $Y = Y_{k,0}$ (3.12)

A la salida (x = L):

$$\frac{\partial Y_k}{\partial x} = 0 \quad ; \quad T_g = T_s = T \quad ; \quad \frac{\partial T}{\partial x} = \frac{\beta (T - T_0)}{\varepsilon c_p \rho_g v - (1 - \varepsilon) c_s \rho_s u} \tag{3.13}$$

3.2. Método numérico

3.2.1. Introducción al software PREMIX

El software PREMIX es un software comercial utilizado para la simulación de la combustión de pre-mezclas con llamas libres laminares. Si bien el código no está adaptado para su uso directo en la simulación de combustión filtrada en reactores de medios porosos, en el estudio realizado por Toledo et al. (2009) fue modificado para la correcta ejecución en este tipo de reactores. Esta modificación permite el uso de una cinética química de paso múltiple y la precisa determinación de cambios termoquímicos y de transporte del gas usando el paquete de datos CHEMKIN. Se usa además GRI3.0 como un mecanismo de cinéticas químicas ampliamente validado, optimizado y diseñado para el modelamiento de la combustión completa de gas natural, incluyendo la formación de óxidos nitrosos. Es importante destacar que si bien el mecanismo GRI3.0 no está diseñado para aplicaciones directas de combustión ultra-pobres y ultraricas, permite realizar simulaciones que entregarán una buena primera aproximación para simular este tipo de combustión. Los cálculos se realizan para un valor fijo de velocidad de filtración y el algoritmo numérico implementado en el programa PRE-MIX modificado es usado para encontrar la velocidad de propagación del frente de combustión.

3.2.2. Discretización

El procedimiento numérico para la resolución del problema de valores de frontera comienza con aproximaciones de diferencias finitas para reducirlo a un sistema de ecuaciones algebraicas.

Las aproximaciones iniciales son usualmente en una malla bastante gruesa con muy pocos puntos, a veces pudiendo llegar a tener tan sólo 6 puntos a lo largo de la zona de estudio. Después de obtener una solución en esa malla gruesa, se agregan nuevos puntos a la malla en regiones donde la solución o lo gradientes sufren saltos bruscos. De esta forma, se obtiene una estimación inicial para la malla más fina mediante la interpolación de la malla gruesa anterior. Este proceso se repite hasta que no sea necesario afinar más la malla y la solución se componga de gradientes que cumplan con las condiciones de tolerancias especificadas por el usuario.

Para comenzar el proceso de aproximación, se debe realizar la discretización de las ecuaciones diferenciales de conservación que gobiernan el problema. Utilizando diferencias finitas en una malla no uniforme con puntos enumerados de 0 a L, representando los extremos de entrada y salida respectivamente.

Para los términos convectivos el usuario tiene la opción de elegir si utilizar diferencias avanzadas o diferencias centradas. A continuación se muestra la discretización del término convectivo de las ecuaciones de energía mediante diferencias centradas:

$$\left(\frac{\partial T}{\partial x}\right)_{j} \approx \left(\frac{h_{j-1}}{h_{j}(h_{j} + h_{j-1})}T_{j+1} + \frac{h_{j} - h_{j-1}}{h_{j} \cdot h_{j-1}}T_{j} - \frac{h_{j}}{h_{j-1}(h_{j} + h_{j-1})}T_{j-1}\right)$$
(3.14)

donde $h_j = x_{j+1} - x_j$. Las diferencias centradas son preferidas ante las diferencias avanzadas no solo porque poseen un error de truncamiento mayor, sino porque también disminuyen los efectos de la difusión numérica, permitiendo un menor esparcimiento de la solución, haciendo que la convergencia del método de Newton sea más sensitiva a la estimación inicial.

El término de la segunda derivada en la ecuación de energía se aproxima siguiendo la fórmula de diferencias avanzadas de la siguiente manera:

$$\frac{\partial}{\partial x} \left(\gamma \frac{\partial T}{\partial x} \right)_{j} \approx \left(\frac{2}{x_{j+1} - x_{j-1}} \right) \cdot \left[\gamma_{j+1/2} \left(\frac{T_{j+1} - T_{j}}{x_{j+1} - x_{j}} \right) - \gamma_{j-1/2} \left(\frac{T_{j} - T_{j-1}}{x_{j} - x_{j-1}} \right) \right] \tag{3.15}$$

donde $\gamma = \left[k_g + (c_p \rho_g) D_{ax}\right]_{j+1/2}$. Los coeficientes $j \pm 1/2$ son evaluados usando los promedios de las variables dependientes entre los puntos de la malla.

Como $V_k = \mathcal{V}_k + \mathcal{W}_k$, los términos difusivos en la ecuación de conservación de especies se pueden dividir para facilitar su discretización. Las velocidades de difusión ordinaria (ecuación 3.9) y térmica (ecuación 3.11) son aproximadas en la posición $j \pm 1/2$ de la siguiente manera:

$$(Y_k \mathcal{V}_k)_{j+1/2} \approx -\left(\frac{W_k D_k}{\bar{W}}\right)_{j+1/2} \left(\frac{X_{k,j+1} - X_{kj}}{x_{j+1} - x_j}\right)$$
 (3.16)

$$(Y_k \mathcal{W}_k)_{j+1/2} \approx -\left(\frac{W_k D_k k_{T_k}}{\bar{W}T}\right)_{j+1/2} \left(\frac{T_{j+1} - T_j}{x_{j+1} - x_j}\right)$$
 (3.17)

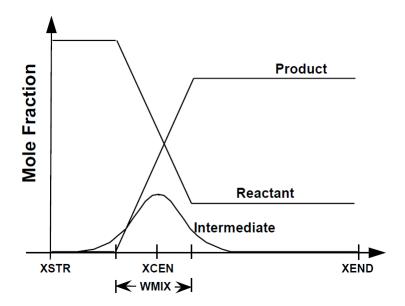
Así, al formar la velocidad de difusión total V_k , el término de difusión en la ecuación de conservación de especies, se evalua de la siguiente manera:

$$\frac{\partial}{\partial x} \left(\rho_g Y_k V_k \right)_j \approx \frac{\left(\rho_g Y_k V_k \right)_{j+1/2} - \left(\rho_g Y_k V_k \right)_{j-1/2}}{x_{j+1/2} - x_{j-1/2}} \tag{3.18}$$

Condiciones de Borde:

La discretización de las condiciones de contorno queda de la siguiente manera:

A la entrada (x = 0):


$$T_g = T_s = T_0$$
 ; $Y = Y_{k,0}$ (3.19)

A la salida (x = L):

$$\frac{Y_{k,L} - Y_{k,L-1}}{x_L - x_{L-1}} = 0 \quad ; \quad T_g = T_s = T_L \quad ; \quad \frac{T_L - T_{L-1}}{x_L - x_{L-1}} = \frac{\beta (T_L - T_0)}{\varepsilon c_p \rho_g v - (1 - \varepsilon) c_s \rho_s u}$$
(3.20)

3.2.3. Uso del software

Para comenzar el software necesitará una estimación inicial de la solución suministrada por el usuario, la cual utilizará para comenzar las iteraciones. Se presume que existe una zona definida como zona de reacción, donde los reactantes reaccionan y proceden a la formación de los productos. Para que ocurra esto, el usuario debe proveer al software información estimativa del lugar de la zona de reacción y el grosor de esta, además de alimentar al programa con una estimación de la composición molar de las especies en los productos. Como se muestra en la figura 3.1, dentro de la zona de reacción el programa utiliza una aproximación lineal para el consumo de reactantes y formación de productos, además para los intermediarios del proceso de combustión global se asume que poseen un perfil gaussiano que tiene como "peak" el centro de la zona de reacción.

Figura 3.1: Esquema del funcionamiento del software y la estimación inicial. Fuente: Kee, R.J. and Grcar, J.F. and Smooke, M.D. and Miller, J.A. and Meeks, E. (1998)

3.2.3.1. Entrada y salida de información

Como es de esperar, el software PREMIX utiliza un formato específico para su funcionamiento, utilizando una nomenclatura específica para cada situación que quiera ser computada editado directamente desde un editor de texto compatible con formatos ".txt". A continuación se hace un breve resumen que puede servir como guía para poner en marcha el software. Es importante definir que cada espacio en una fila se define como columna.

- 1. En cada fila nueva que el usuario utilice para su código, se reservan las primeras 4 columnas donde debe insertar un comando (3.2.3.2). Es importante señalar que toda nueva fila de escritura debe comenzar en la columna 1.
- 2. Cualquier información posterior a la palabra clave puede aparecer entre las columnas 5 y 80.
- 3. Cuando se requiera el ingreso múltiple de información, estas se jerarquizarán por orden de entrada.

- 4. Cuando se ingresen valores numéricos, estos deben ser ingresados como enteros, punto flotante o notación científica.
- 5. Cuando se escriba el nombre de una especie, se debe ingresar tal cual aparece especificada en el archivo CHEMKIN.
- 6. Para ingresar más de un tipo de información en una misma fila, se debe separar una de otra con al menos un espacio en blanco.
- 7. Si se ingresa dos veces el mismo comando, el último será leído y utilizado por el programa.
- 8. Para hacer un comentario dentro de una fila, este debe ser precedido en la primera columna por un "." o por un "/".
- 9. El comando END debe finalizar todo programa para su correcta ejecución.

3.2.3.2. Comandos

Existen alrededor de 60 comandos que se pueden utilizar en el software premix y dependiendo de la situación que se quiera modelar son los comandos que deben ser seleccionados. En esta sección sólo se abordarán los comandos utilizados en el problema de investigación que se modela en el presente informe. Para entender en mayor profundidad todos los comandos utilizables, se puede revisar el manual del software (Kee, R.J. and Grcar, J.F. and Smooke, M.D. and Miller, J.A. and Meeks, E. (1998)).

Tipo de problema

- FREE: Este comando es utilizado para resolver una llama adiabática que se propaga libremente.
- 2. **ENRG:** Indica que se obtendrá la solución utilizando las ecuaciones de energía y conservación de especies. El usuario debe suministrar un perfil de tem-

peratura, el cual servirá como primera iteración para la solución del problema global.

3. **MOLE:** El uso de este comando señala que tanto la entrada y salida de datos estará en términos de la fracción molar.

■ Método de solución

1. **ATOL:** Tolerancia absoluta utilizada para finalizar las iteraciones del método de Newton. El método de Newton se considera que ha convergido cuando la norma del vector correción de la solución cumple el siguiente criterio: $|\Delta \phi| \le \max(ATOL, RTOL \times |\phi|)$. Su valor debe ser menor que el valor máximo de la fracción molar/másica de cualquiera de las especies de interés.

Parámetros de malla

- GRAD: Este comando controla el número de puntos en la malla que se insertan en regiones de gradientes altos. Un valor pequeño de este comando hace que hayan más puntos en la malla.
- 2. **CURV:** Este comando controla el número de puntos en la malla que se insertan en regiones de gran curvatura. Un valor pequeño de este comando hace que hayan más puntos en la malla.
- 3. **XSTR:** Indica el inicio del intervalo computacional en centímetros.
- 4. **XCEN:** Valor estimado del centro de la llama en centímetros.
- 5. **XEND:** Indica el final del intervalo computacional en centímetros.
- 6. **WMIX:** Valor estimado del espesor de la FLAME ZONE.
- 7. **WDIF:** Significa que la discretización de los términos convectivos será mediante diferencias avanzadas.

■ Definición de la llama

1. **PRES:** Presión de la llama.

- 2. FLRT: Flujo másico que pasa por el reactor.
- 3. REAC: Fracción másica o molar de una especie reactante. Se debe escribir una vez para cada especie presente. La suma de todas las fracciones debe ser igual a 1.
- 4. **INTM:** Valor estimado de la fracción molar o másica de las especies intermediarias que permiten que ocurra el proceso global. Se debe escribir una vez para cada especie intermediaria.
- 5. **PROD:** Valor estimado de la fracción molar o másica de los productos de la combustión. La suma de todas las fracciones debe ser igual a 1.
- 6. **TEMP:** Este comando permite la especificación del perfil de temperaturas inicial. Para ingresar datos, se debe ingresar en forma de par (x,T) indicando la posición y su respectiva temperatura.
- 7. **UVEL:** Velocidad del frente de combustión.
- 8. **BETA:** Factor que representa la cantidad de calor perdida por el reactor durante su operación.
- 9. **DIAM:** Diámetro de las esferas.

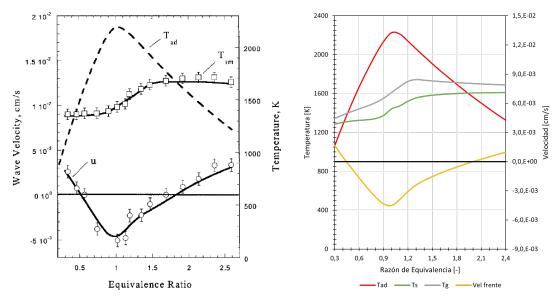
3.2.3.3. Metodología de trabajo

Para la simulación de casos y extracción de datos para el posterior análisis de estos, se siguió la siguiente metodología.

- 1. Entrar en la carpeta "C:\\Alexei\Premix_Self_Solid_2T\Files". En ella se encontrarán los archivos que deben ser modificados para la modelación de la situación física, los cuales incluyen la modificación hecha al software PREMIX para la modelación de combustión en medios porosos inertes.
- 2. El software necesita de un archivo que le permita tener una primera aproximación a la solución. Por eso se comienza con el archivo "save.bin", que es la solu-

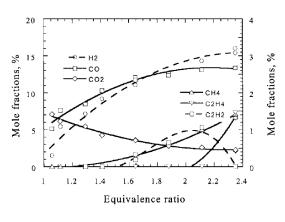
ción binaria obtenida en alguna simulación anterior, y debe ser renombrado como "rest.bin".

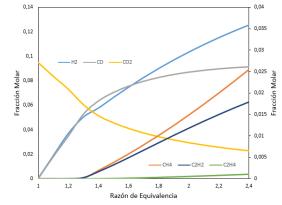
- 3. Una vez renombrado, se procede a modificar el archivo "premix.inp" el cual incluirá los comandos que modelarán la situación física. Se modifican las fracciones molares de los reactantes para simular la combustión de un combustible específico con diferentes cantidades de aire y ver cómo afecta este en la composición de los gases producto.
- 4. Se inicia el programa "Premix_Self_Solid_2T.mdp" y se presiona la tecla F5 para empezar a iterar.
- 5. Durante el proceso iterativo, emergerá una pantalla negra tipo consola la cual muestra el proceso iterativo y el sistema de arreglos que utiliza el programa para realizar las iteraciones. Una vez que el programa haya dejado de computar, esta se cerrará automáticamente.
- 6. Se debe volver a ingresar a la carpeta "C:\\Alexei\Premix_Self_Solid_2T\Files", pero ahora para ver la solución, se debe abrir el archivo "premix.out".
- 7. Cuando una iteración converge, se espera leer el mensaje "NEWTON: SUCCESS." y "TWOPNT: SUCCESS. BOUNDARY VALUE PROBLEM SOLVED."
- 8. En caso de converger, la solución aparece como el último arreglo de datos en el archivo "premix.out", se procede a almacenar los datos en una planilla excel.
- 9. Se almacena el máximo valor de T_s, T_g y USOL. Para obtener la composición de los gases producto de la combustión, se almacenan las fracciones molares obtenidas en el último nodo de cada simulación.
- 10. Se procede a graficar y analizar los datos.
- 11. Para una nueva simulación se repite el paso inicial, renombrando el archivo "save.bin" como "rest.bin".


4 | Validación de resultados

El presente capítulo tiene como finalidad determinar el correcto uso del software PREMIX y corroborar que el mecanismo de reacción esté funcionando como corresponde y así generar una base de datos certera al momento de realizar la simulación que respecta a la presente investigación. Para ello se utilizó como linea base el estudio relativo a la combustión filtrada de metano y aire desarrollado por Kennedy et al. (2000), donde se estudió la estructura química del frente de combustión de mezclas pobres y ricas de metano-aire dentro de un reactor de medios porosos inerte.

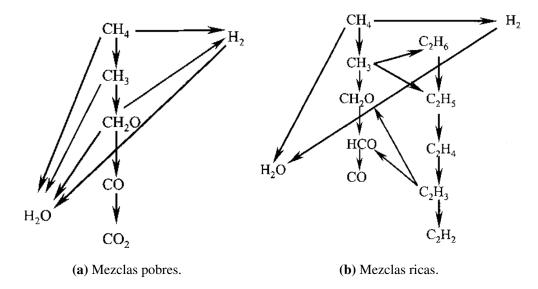
Temperatura del sólido: Como se puede observar tanto en la figura 4.1a como en la figura 4.1b, la temperatura del sólido mantiene el mismo comportamiento. En zonas ultra-ricas, y desde un $\phi = 1,5$ en adelante se observa un comportamiento constante de la temperatura del sólido que ronda los 1600 K. Además se puede notar que el proceso es super-adiabático cuando se opera en rangos de razones de equivalencia (ϕ) 0,3 - 0,45 y 1,9 - 2,6. Es importante destacar también que al pasar de zona de mezclas pobres a ricas se obtiene un ΔT de aproximadamente 250 K el cual es atribuido al cambio en la cinética química del proceso de combustión y predominio de reacciones químicas exotérmicas.


Velocidad del frente de combustión: En ambos casos, la velocidad del frente de combustión tiene el mismo comportamiento. En zonas donde el proceso es super-adiabático la velocidad del frente de combustión es positiva (aguas abajo), en caso contrario, se observa una velocidad del frente negativa (aguas arriba). Según Kennedy et al. (2000)


esto ocurre debido al comportamiento de ΔH_g ya que, al hacer un balance de energía en el frente de combustión, cuando $\Delta H_g < 0$, se obtiene un flujo aguas arriba y en casos donde $\Delta H_g > 0$, la velocidad del frente de combustión es positiva (aguas abajo). Hablando en términos absolutos, la velocidad del frente de combustión encuentra su máximo en la estequiometría ($\phi = 1$).

- (a) Resultados experimentales y numéricos para la (b) Resultados numéricos para la temperatura temperatura del sólido y velocidad del frente de combustión variando la composición de metano y variando la composición de metano y aire entre aire entre 0,3 y 2,6. Fuente: Kennedy et al. (2000). 0,3 y 2,4 utilizando software PREMIX. Fuente:
 - del sólido y velocidad del frente de combustión elaboración propia.

Figura 4.1: Resultados de Kennedy et al. (2000) (4.1a) y resultados obtenidos de la simulación en PREMIX (4.1b)



- (a) Medición de la composición de productos químicos como función de la razón de equivalencia gases producto para la combustión de metano y en mezclas ricas y ultra-ricas. Fuente: Kennedy et al. (2000).
- (b) Resultados numéricos de la composición de aire en mezclas ricas y ultra-ricas utilizando software PREMIX. Fuente: elaboración propia.

Figura 4.2: Resultados de Kennedy et al. (2000) (4.2a) y resultados obtenidos de la simulación en PREMIX (4.2b)

Composición de gases producto: En la simulación numérica realizada se obtuvo un comportamiento muy similar al registrado por Kennedy et al. (2000). Esto se puede observar comparando ambos gráficos de la figura 4.2. Cuando se supera la estequiometría hasta razones de equivalencia de 2,6 se espera que la combustión completa no se logre, por lo tanto el contenido de CO₂ y H₂O decrece, y sustancias como el H₂, CO y C₂H_m aparecen en los gases productos. Se observan trazas de CH₄ sin reaccionar a partir de $\phi > 1,2$. Para mezclas ultra pobres y ultra ricas, la ruta de formación de compuestos queda representada en la figura 4.3.

Existen diferencias en el comportamiento y formación de CH₄, C₂H₄ y C₂H₂ en los productos, esto puede deberse a que en ambas simulaciones se utilizaron mecanismos de reacción distintos. En la investigación de Kennedy et al. (2000) se utilizó el GRI2.11 mientras que en la presente investigación se utilizó el GRI3.0, el cual es más actual y completo que el mecanismo de reacción GRI2.11. Otro factor que podría influir es la utilización de distintos β en ambas investigaciones. A pesar de esto, las líneas de tendencia generales se mantienen y el correcto uso del software PREMIX queda demostrado para proceder con el estudio numérico del potencial energético de la biomasa de tipo arbórea.

Figura 4.3: Mecanismo de reacción dominante en la combustión filtrada de mezclas aire-metano. Fuente: Kennedy et al. (2000)

Nota: Los coeficientes utilizados en la simulación de cada caso se determinaron en base a los cálculos del Anexo B.

5 | Diseño experimental

5.1. Situación Física

La presente investigación busca evaluar el potencial energético del gas de síntesis producido por la gasificación de biomasa de tipo arbórea en reactores de medios porosos y cómo afecta a su potencial energético el añadimiento de una etapa de gasificación en serie. Para ello, se utilizarán datos de la investigación realizada por Daniel Torres el año 2014 quien evaluó la producción de gas de síntesis utilizando diferentes biomasas como materia prima (Torres Villablanca, Daniel Alejandro (2014)).

El esquema de la situación física se muestra en la figura 5.1 el cual evidencia dos etapas principales en serie para realizar combustión filtrada en reactores de medios porosos. La primera etapa representa el proceso investigado por Daniel Torres, en donde se realizó la combustión filtrada de pre-mezclas gas natural-aire en un reactor híbrido, compuesto por esferas de alúmina y pellets de biomasa. La segunda etapa recibe el gas de síntesis purificado por el separador de gas, se le añade metano y aire para luego entrar a un reactor 100 % inerte. Esta segunda etapa, fue simulada en el software comercial PREMIX.

Con esta configuración se busca estudiar si la segunda etapa favorece la producción de H₂, el comportamiento de la razón H₂/CO del gas proveniente de la etapa 1, las eficiencias de conversión de H₂ y CO, el comportamiento de la tasa de retorno energético (TRE o EROI), la eficiencia energética, entre otros parámetros.

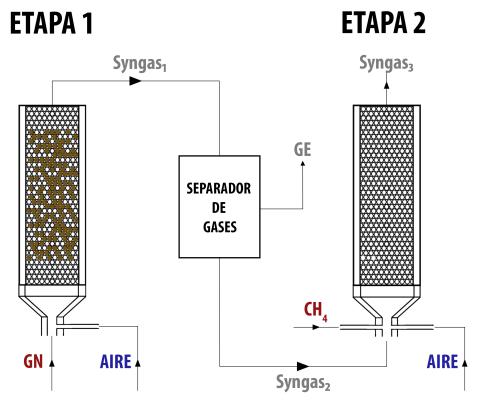


Figura 5.1: Esquema de la situación física en estudio. Fuente: elaboración propia.

- GN: Gas Natural inyectado al reactor 1.
- Syngas₁: Gas de síntesis obtenido de la combustión filtrada de la biomasa en la etapa 1.
- GE: Gases retirados de la mezcla Syngas₁ por el separador de gases.
- Syngas₂: Gas de síntesis purificado, compuesto puramente por H₂, CO, CH₄ y CO₂.
- Syngas₃: Syngas obtenido por la combustión filtrada de Syngas₂ en el reactor 2 (inerte).

5.1.1. Etapa 1

5.1.1.1. Suministro de Gas Natural

El gas natural suministrado en la etapa 1 posee una composición en volumen detallada por su proveedor Gas Valpo como indica la tabla 5.1. Además el proveedor informa que su poder calorífico superior (HHV) es 39,02 $\left[\frac{MJ}{Nm^3}\right]$ y su composición volumétrica es la siguiente:

n	Compuesto	x_i
1	CH_4	0,92211
2	C_2H_6	0,03551
3	C_3H_8	0,01021
4	C_4H_{10}	0,00451
5	C_5H_{12}	0,00131
6	C_6H_{14}	0,00051
7	N_2	0,00971
8	O ₂ (Trazas)	0
9	CO_2	0,01613

Tabla 5.1: Composición volumétrica del gas natural.

La reacción química de la combustión completa del gas natural se expresa de la siguiente manera:

$$x_{1}CH_{4} + x_{2}C_{2}H_{6} + x_{3}C_{3}H_{8} + x_{4}C_{4}H_{10} + x_{5}C_{5}H12 + x_{6}C_{6}H_{14} + x_{7}N_{2} + x_{8}CO_{2} + \frac{a}{\phi}(O_{2} + 3,76N_{2}) \rightarrow \alpha H_{2}O + \beta CO_{2} + \gamma N_{2}$$

$$(5.1)$$

Donde:

$$a = \frac{2\beta + \alpha - 2x_9}{2} \tag{5.2}$$

$$\alpha = 2x_1 + 3x_2 + 4x_3 + 5x_4 + 6x_5 + 7x_6 \tag{5.3}$$

$$\beta = x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 + 6x_6 + x_9 \tag{5.4}$$

$$\gamma = x_7 + 3,76a \tag{5.5}$$

La investigación de Daniel Torres fue trabajada con una razón de equivalencia (ϕ) igual a 1,1 para todos los tipos de biomasa y con un flujo volumétrico de inyección constante en el primer reactor de 7 [L/min]. En base a ello, el flujo volumétrico de aire a la entrada de la etapa 1 debe ser de 6,295 [L/min] y un flujo volumétrico de gas natural igual a 0,705 [L/min].

5.1.1.2. Biomasa

Como la presente investigación hace alusión a la biomasa de tipo arbórea, es que sólo se utilizarán los resultados experimentales obtenidos por Daniel Torres para el Eucalyptus Nitens y el Pino Radiata.

Considerando que en la etapa 1 la zona híbrida tiene un largo de 16 [cm], que el peso de la biomasa introducida en la zona híbrida es de 25 [g] para ambos tipos de biomasa y que la velocidad del frente de combustión es en promedio 0,0036 [cm/s], el flujo másico de biomasa en la etapa 1 es igual a $5,625 \cdot 10^{-6}$ [kg/s].

Sabiendo que las densidades del pino radiata y el eucalyptus nitens son, en promedio, 500 [kg/m³] y 800 [kg/m³] respectivamente (Asociación Española del Comercio e Industria de la Madera (2016)), los flujos volumétricos de entrada para cada una de estas especies es:

$$\dot{v}_{pino} = 6,75 \cdot 10^{-4} [L/min] \tag{5.6}$$

$$\dot{v}_{euca} = 4,22 \cdot 10^{-4} [L/min] \tag{5.7}$$

5.1.1.3. Flujos de entrada

En la tabla 5.2 se muestra en detalle los flujos de entrada de cada sustancia inyectada al reactor 1 considerando una razón de equivalencia igual a 1,1 para ambos tipos de biomasa.

Tabla 5.2: Flujos volumétricos de entrada etapa 1. Fuente: elaboración propia en base a datos experimentales documentados en la investigación de Daniel Torres.

		Eucal	yptus	Pino		
Ø =1,1	Especie	\dot{v} [L/min] x_i		ν [L/min]	x_i	
	Gas Natural	0,70477	0,10068	0,70477	0,10067	
Entrada	Aire	6,29523	0,89926	6,29523	0,89923	
Littada	Biomasa	0,00042	0,00006	0,00068	0,00010	
Total entrada 7		7,00042	1	7,00068	1	

Como la masa de biomasa utilizada en cada ensayo es igual a 25 [g] en ambos casos, los flujos másicos son iguales tanto para el pino, como para el eucalyptus y se detallan en la tabla 5.3. Para convertir los flujos volumétricos de aire y gas natural a flujos másicos, los primeros deben ser multiplicados por sus respectivas densidades. Asumiendo como estado inicial una presión de 101,325 [kPa] y 298 [K] se procede a calcular la densidad del aire y la del gas natural según la ecuación de estado:

$$\rho = \frac{P \cdot PM}{R_u \cdot T} \tag{5.8}$$

Se sabe además que el peso molecular de una mezcla se calcula como:

$$PM_m = \sum_i x_i \cdot PM_i \tag{5.9}$$

Eucalyptus y Pino $\emptyset = 1,1$ Especie $\dot{m} \, [\text{kg/s}]$ y_i Gas Natural $8,499 \cdot 10^{-6}$ 0,0616Entrada $1,237 \cdot 10^{-4}$ 0,8976

Biomasa

Total entrada

 $5,625 \cdot 10^{-6}$

 $1,379 \cdot 10^{-4}$

0,0408

1

Tabla 5.3: Flujos másicos de entrada etapa 1. Fuente: elaboración propia en base a datos experimentales documentados en la investigación de Daniel Torres.

5.1.1.4. Flujos de salida

Para calcular los flujos de salida de la etapa 1, debemos considerar que por continuidad la masa que ingresa deber ser igual a la masa que sale. De esta manera, utilizando las fracciones molares (x_i) obtenidas en la cromatografía gaseosa de los gases producto, se calculan las fracciones másicas (y_i) de salida para ambos ensayos (pino y eucalyptus) según la ecuación 5.10. Se toma como consideración adicional que la fracción molar restante para completar el 100 % es puramente N_2 .

$$y_i = x_i \frac{PM_i}{PM_m} \tag{5.10}$$

Así, el peso molecular de la mezcla de salida es igual a 26,98 [kg/kmol] para el pino y 27,01 [kg/kmol] para el eucalyptus. En la tabla 5.4 se muestran los valores calculados de las fracciones másicas a partir de las fracciones molares para cada especie estudiada. Una vez calculadas las fracciones másicas de los productos de la combustión se pueden calcular los flujos másicos de salida en la etapa 1 multiplicando por estas el flujo másico total de entrada al reactor 1 tal como muestra la tabla 5.5.

Tabla 5.4: Fracciones molares y másicas de salida etapa 1. Fuente: elaboración propia.

		Euca	lyptus	Pino		
Ø =1,1	Especie	x_i	y_i	x_i	y _i	
	H ₂	0,0453	0,00338	0,0274	0,00205	
Salida	СО	0,0233	0,02417	0,0250	0,02596	
Sanda	CH ₄	0,0395	0,02346	0,0748	0,04448	
	CO ₂	0,0410	0,06681	0,0364	0,05938	

Tabla 5.5: Flujos másicos de salida etapa 1. Fuente: elaboración propia.

		Eucalyptus	Pino	
Ø =1,1	Especie	ṁ [kg/s]	ṁ [kg/s]	
	H_2	$4,662 \cdot 10^{-7}$	$2,823 \cdot 10^{-7}$	
Salida	CO	$3,332 \cdot 10^{-6}$	$3,579 \cdot 10^{-6}$	
	CH ₄	$3,235\cdot 10^{-6}$	$6,132\cdot 10^{-6}$	
	CO_2	$9,211 \cdot 10^{-6}$	$8,187 \cdot 10^{-6}$	
	N_2	$1,216\cdot 10^{-4}$	$1,197\cdot 10^{-4}$	

Ahora para obtener los flujos volumétricos de salida en la etapa 1, se debe dividir los flujos másicos de salida de cada compuesto por su respectiva densidad. Se asume que la temperatura a la cual se realizó el análisis cromatográfico fue 298 [K] y a una presión de 101,325 [kPa] por lo que la densidad de cada especie se calculará bajo esas condiciones, resultando los flujos volumétricos de la tabla 5.6.

		Eucalyptus	Pino	
Ø =1,1	Especie	ν [L/min]	ν [L/min]	
	H ₂	0,339	0,205	
Salida	CO	0,175	0,187	
	CH ₄	0,295	0,561	
	CO_2	0,307	0,273	
	N_2	6,373	6,272	

Tabla 5.6: Flujos volumétricos de salida etapa 1. Fuente: elaboración propia.

5.1.1.5. Eficiencia energética y TRE - Etapa 1

Al hacer un volumen de control en el reactor de la etapa 1, se concluye que para cada caso existe un flujo de energía que ingresa proveniente de la biomasa y otro flujo de energía que ingresa proveniente del gas natural. A la salida, los flujos energéticos considerados en la eficiencia energética son el de CH₄, H₂ y CO. De esta manera, la eficiencia energética de la etapa 1 queda representada por la siguiente ecuación:

$$\eta_{etapa1} = \frac{(\dot{m}_{H_2} \cdot LHV_{H_2} + \dot{m}_{CH_4} \cdot LHV_{CH_4} + \dot{m}_{CO} \cdot LHV_{CO})_{salida}}{(\dot{m}_{GN} \cdot LHV_{GN} + \dot{m}_{biomasa} \cdot LHV_{biomasa})_{entrada}}$$
(5.11)

Por otro lado, la tasa de retorno energético (TRE; EROI en inglés) se define como el cociente entre la energía neta obtenida respecto a la energía total utilizada para obtenerla. Como el foco de este estudio pretende demostrar la viabilidad técnica de producir gas de síntesis a partir de la combustión filtrada de biomasa de tipo arbórea, una forma sencilla de calcular la TRE es utilizando las fracciones molares de las especies involucradas y sus respectivos poderes caloríficos inferior en base volumétrica (Ripoll Kameid et al. (2016)).

$$TRE_{etapa1} = \frac{(x_{H_2} \cdot LHV_{H_2} + x_{CH_4} \cdot LHV_{CH_4} + x_{CO} \cdot LHV_{CO})_{salida}}{(x_{GN} \cdot LHV_{GN} + x_{biomasa} \cdot LHV_{biomasa})_{entrada}}$$
(5.12)

Para obtener el poder calorífico inferior del gas natural se calcula utilizando la siguiente expresión, que relaciona al poder calorífico superior del combustible (dato entregado por proveedor) con su respectiva fracción másica de hidrógeno:

$$LHV = HHV - 21830, 36 \cdot y_H[kJ/kg]$$
 (5.13)

Finalmente los poderes caloríficos de todas las sustancias involucradas en el proceso se muestran en la siguiente tabla:

Tabla 5.7: Poder calorífico inferior de todas las sustancias involucradas en el proceso global. Fuente: Elaboración propia.

	MJ/kg	MJ/m ³	
LHV_{H_2}	120	10,79	
LHV_{CH_4}	50	35,79	
LHV_{CO}	10,10	12,62	
LHV_{euca}	18,04	14429	
LHV_{pino}	16,79	8395	
LHV_{gn}	44,39	35,04	

En base a las ecuaciones 5.11 y 5.12, los valores de las tablas 5.2 a 5.5 y entendiendo que la primera etapa del proceso siempre se trabaja con un ϕ =1,1, la eficiencia energética de la etapa 1 para el eucalyptus y pino es 52,5 % y 79,84 % respectivamente, mientras que la tasa de retorno energético de la etapa 1 para la gasificación de eucalyptus y pino es 49,95 % y 75,81 % respectivamente. La diferencia entre las cifras de eucalyptus y pino radica principalmente por el alto contenido de CH₄ que posee el gas de síntesis de pino respecto al que posee el de eucalyptus, además de la diferencia que hay entre el poder calorífico de uno y otro.

5.1.2. Etapa 2

Como muestra la figura 5.1, a la etapa 2 ingresa el gas de síntesis producido en la etapa 1 luego de haber pasado por una etapa de separación de gases. Al entrar a la segunda etapa, se le añade CH₄ y aire a la entrada del segundo reactor. Las concentraciones de la mezcla syngas-metano se varían de 0 % a 100 % en intervalos de 25 %, simulando 5 casos diferentes, cada uno en un rango de combustión que abarca $0.4 \le \phi \le 2.6$ para ambos tipos de biomasa en estudio (Eucalyptus Nitens y Pino Radiata), resultando un total de 207 simulaciones:

- 100 % CH₄ 0 % Syngas *línea base*
- 75 % CH₄ 25 % Syngas
- 50 % CH₄ 50 % Syngas
- 25 % CH₄ 75 % Syngas
- 0% CH₄ 100% Syngas

Las fracciones molares utilizadas para la simulación de cada caso con sus respectivos cálculos se adjuntan en el Anexo B donde además se detallan las ecuaciones utilizadas para calcularlas.

5.1.2.1. Flujos de entrada y salida

Una vez retiradas las sustancias no deseadas de la etapa 1 en el separador de gases, la composición en volumen del gas de síntesis que ingresa a la etapa 2 es:

 Especie
 Eucalyptus
 Pino Radiata

 H₂
 30,38 %
 16,75 %

 CO
 15,63 %
 15,28 %

45,72 %

22,25 %

26,49 %

27,50%

 CH_4

 CO_2

Tabla 5.8: Composición en volumen del gas de síntesis purificado que entra a la etapa 2. Fuente: Elaboración propia.

Gas de síntesis: Según el análisis cromatográfico realizado por Daniel Torres y luego de que los gases productos de la etapa 1 pasan por el purificador de gases, el gas de síntesis que ingresa a la etapa 2 se compone puramente de H₂, CH₄, CO y CO₂ según las proporciones detalladas en la tabla 5.8.

Para calcular los flujos de entrada en la etapa 2, se considera que la totalidad del flujo de syngas es utilizado, en donde se variarán los parámetros de metano auxiliar y aire para abordar el rango de combustión definido anteriormente. De esta manera se entiende que el flujo de syngas es constante a la entrada de la etapa 2 y cuyas condiciones de entrada son 298 [K] y 101,325 [kPa] para cada ensayo. En la tabla 5.9 se resumen dichos flujos.

Tabla 5.9: Flujo de syngas que ingresa a la segunda etapa. Fuente: Elaboración propia en base a cálculos.

	ν [L/min]	ṁ [kg/s]
Syngas _{Pino}	1,227	$1,818 \cdot 10^{-5}$
Syngas _{Eucalyptus}	1,117	$1,624 \cdot 10^{-5}$

En base a los flujos que se muestran en la tabla 5.9 se calcularon los flujos de aire y CH₄ para simular todos los casos en el rango de combustión deseado $(0,4 \le \phi \le 2,6)$.

5.1.2.2. Eficiencia energética y TRE - Etapa 2

Según el esquema de la figura 5.1 y haciendo un volumen de control en el segundo reactor compuesto puramente por una matriz híbrida, el cálculo de la eficiencia y la tasa de retorno energético para la etapa 2 se calculan según las siguientes ecuaciones:

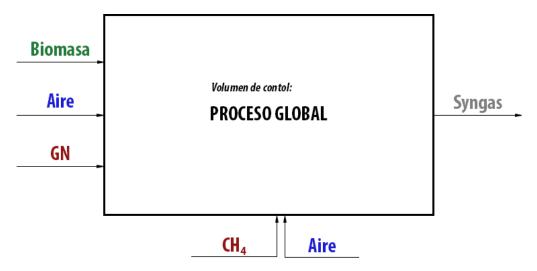
$$\eta_{etapa2} = \frac{(\dot{m}_{H_2} \cdot LHV_{H_2} + \dot{m}_{CH_4} \cdot LHV_{CH_4} + \dot{m}_{CO} \cdot LHV_{CO})_{salida}}{(\dot{m}_{H_2} \cdot LHV_{H_2} + \dot{m}_{CH_4} \cdot LHV_{CH_4} + \dot{m}_{CO} \cdot LHV_{CO})_{entrada}}$$
(5.14)

$$TRE_{etapa2} = \frac{(x_{H_2} \cdot LHV_{H_2} + x_{CH_4} \cdot LHV_{CH_4} + x_{CO} \cdot LHV_{CO})_{salida}}{(x_{H_2} \cdot LHV_{H_2} + x_{CH_4} \cdot LHV_{CH_4} + x_{CO} \cdot LHV_{CO})_{entrada}}$$
(5.15)

Se debe tener en cuenta que en la etapa 2, tanto para la eficiencia como para la TRE, el CH₄ considerado incluye la fracción de CH₄ proveniente del gas de síntesis de la etapa 1, más el CH₄ auxiliar dependiendo del caso a simular.

5.1.2.3. Eficiencia de conversión

Para realizar el cálculo de la conversión de hidrógeno y monóxido de carbono en la segunda etapa, las ecuaciones utilizadas son:


$$(\%Conv_{H_2})_{etapa2} = \frac{[H_2]_{salida}}{(2[CH_4] + [H_2])_{entrada}}$$
 (5.16)

$$(\%Conv_{CO})_{etapa2} = \frac{[CO]_{salida}}{([CH_4] + [CO_2] + [CO])_{entrada}}$$
 (5.17)

5.1.3. Proceso Global

El volumen de control utilizado para el cálculo de la eficiencia del proceso se detalla en la figura 5.2, donde se muestra un flujo relativo a la cantidad de biomasa que entra en la etapa 1, un flujo de entrada de gas natural en la etapa 1, un flujo de entrada

de aire de la etapa 1, un flujo de entrada de CH₄ en la etapa 2, un flujo de entrada de aire en la etapa 2 y por último el flujo del gas de síntesis resultante a la salida de la etapa 2.

Figura 5.2: Volumen de control del proceso global, incluyendo etapa 1, separación de gases y etapa 2. Fuente: elaboración propia.

5.1.3.1. Eficiencia energética del proceso

Según el esquema de la figura 5.2 el cálculo de la eficiencia energética del proceso global (η_{global}) se calcula según la siguiente ecuación:

$$\eta_{global} = \frac{(\dot{m}_{H_2} \cdot LHV_{H_2} + \dot{m}_{CH_4} \cdot LHV_{CH_4} + \dot{m}_{CO} \cdot LHV_{CO})_{salida}}{(\dot{m}_{GN} \cdot LHV_{GN} + \dot{m}_{biomasa} \cdot LHV_{biomasa} + \dot{m}_{CH_4} \cdot LHV_{CH_4})_{entrada}}$$
(5.18)

6 | Resultados y análisis de la investigación

El presente capítulo muestra los resultados numéricos obtenidos de las más de 200 simulaciones realizadas en el software comercial PREMIX. Los datos más importantes que se busca analizar y comparar son las temperaturas máximas de combustión, la conversión de H₂ y CO, velocidad de propagación del frente de combustión, la razón H₂/CO, la tasa de retorno energético, la eficiencia térmica global del sistema, además de otros resultados importantes como las concentraciones de los gases productos de la combustión.

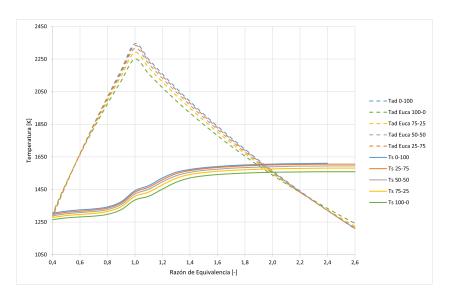
En el apéndice C se encuentran adjuntas en detalle las concentraciones molares de salida que predominan en la etapa 2, además de los indicadores calculados previamente detallados.

La nomenclatura utilizada para identificar cada caso simulado se representa por dos números separados por un guión. El primero indica el porcentaje en volumen de combustible inyectado que corresponde al gas de síntesis proveniente de la etapa 1 y el segundo, la cantidad de CH₄ que se añade en la segunda etapa. (Ejemplo: 25-75 indica que el combustible inyectado en la segunda etapa está compuesto en volumen por un 25 % de gas de síntesis y un 75 % de CH₄.)

6.1. Temperatura del sólido

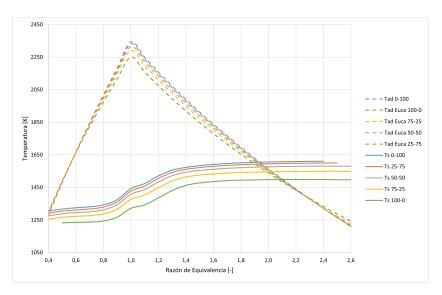
La temperatura del sólido que se presenta en las gráficas de las figuras 6.1 y 6.2, es la máxima obtenida en cada simulación a lo largo de todo el rango de combustión $(0.4 \le \phi \le 2.6)$.

Al observar las gráficas, se observa un comportamiento de las tendencias similar al de la línea base (0-100), con un salto aproximado de 250 K al pasar de mezclas pobres a ricas. Además, conforme disminuye el aporte de CH₄ a la entrada del segundo reactor, disminuye la temperatura máxima del sólido. Esto se debe al poder calorífico inferior de la mezcla combustible que reacciona con el aire, ya que al disminuir el aporte de CH₄, el poder calorífico de la mezcla combustible disminuye, tal como muestra la tabla 6.1.


Tabla 6.1: Poder calorífico de la mezcla al variar el porcentaje en volumen de gas de síntesis proveniente de la etapa 1 y el aporte de CH₄.

	Eucalyptus	Pino
Mezcla	LHV [MJ/m ³]	LHV [MJ/m ³]
0-100	35,79	35,79
25-75	30,52	31,86
50-50	25,26	27,94
75-25	20,00	24,02
100-0	14,73	20,10

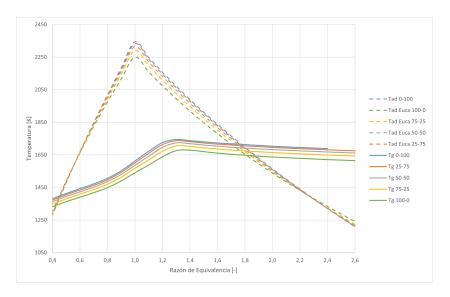
En base a lo anterior, al disminuir el aporte de CH₄ en la segunda etapa, el gas de síntesis de eucalyptus sufre un mayor impacto, decreciendo más rápidamente el valor de su poder calorífico inferior de la mezcla. Esto produce que las temperaturas máximas obtenidas decaigan más rápidamente respecto a la línea base (se dispersen más de la línea base). Los principales factores de este fenómeno son el contenido de CH₄ (elemento con mayor poder calorífico inferior en base volumétrica), que es menor


en el gas de síntesis de eucalyptus que en el gas de síntesis de pino y el contenido de H₂ (elemento con menor poder calorífico inferior en base volumétrica), que es mayor en el gas de síntesis de eucalyptus que en el gas de síntesis de pino (ver tabla 5.7). Estas dos condiciones generan un impacto en el poder calorífico inferior de la mezcla combustible y por ende en la temperatura del sólido.

6.1.1. Pino Radiata

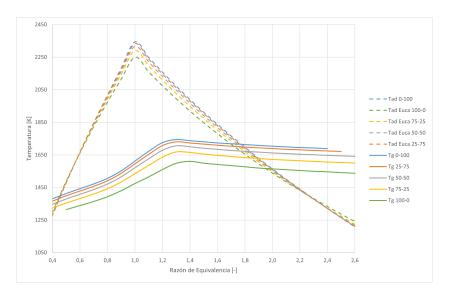
Figura 6.1: Comparación de la temperatura adiabática de la mezcla combustible con la temperatura del sólido variando composición syngas pino-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

6.1.2. Eucalyptus Nitens


Figura 6.2: Comparación de la temperatura adiabática de la mezcla combustible con la temperatura del sólido variando composición syngas eucalyptus-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

6.2. Temperatura del gas

A pesar de que la temperatura del gas, por lo general, no es incluida en gráficas de investigaciones experimentales y estudios relativos al tema debido a que experimentalmente es mas sencillo medir la temperatura del sólido, se ha incluido en el análisis para verificar que los resultados sigan la misma línea de coherencia y asegurar que el mecanismo de reacción funciona de manera correcta.

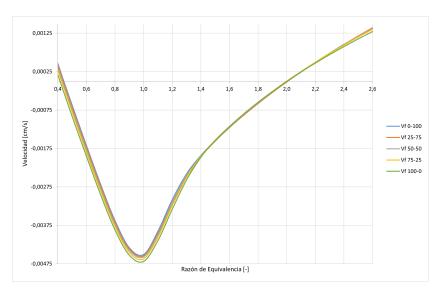

Al igual como ocurre con la temperatura del sólido, las temperaturas del gas registradas son las temperaturas máximas obtenidas durante cada simulación. En ambos casos se observa que la temperatura del gas sigue la misma tendencia que la línea base, tanto para el pino como para el eucalyptus (figura 6.3 y figura 6.4) donde en el caso del eucalyptus, la dispersión de las curvas es mayor que en el caso del pino por el mismo motivo explicado en la sección 6.1 relativo al poder calorífico inferior de la mezcla combustible que ingresa al reactor en la etapa 2.

6.2.1. Pino Radiata

Figura 6.3: Temperatura del gas variando composición syngas pino-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

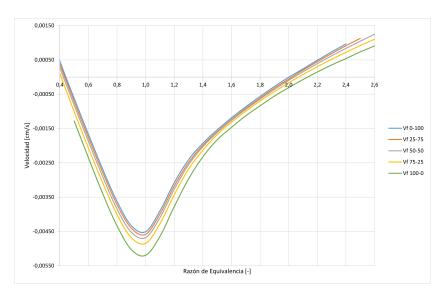
6.2.2. Eucalyptus Nitens

Figura 6.4: Temperatura del gas variando composición syngas eucalyptus-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.


6.3. Velocidad frente de combustión

Al analizar la velocidad del frente de combustión dentro del reactor, se observa un comportamiento consistente respecto a la línea base para todas las simulaciones, tanto para el caso del gas de síntesis de pino, como en el caso del eucalyptus. Al comparar los resultados de las simulaciones con los del estudio de Kennedy et al. (2000) en la publicación "Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions", las tendencias son similares.

En zonas donde la velocidad de propagación del frente de combustión es positiva, o sea un flujo aguas abajo, se obtienen temperaturas del sólido por sobre la adiabática (ver figura 6.1 y figura 6.2) y en zonas donde la temperatura del sólido no supera la adiabática, se obtiene una velocidad del frente de combustión negativa, o sea aguas arriba. Es importante destacar que el máximo absoluto se obtiene en la zona que circunda la estequiometría.


Si se comparan las gráficas de velocidad del frente de combustión, en ambos casos ocurre que al disminuir el aporte de CH₄, las curvas de velocidad se desplazan hacia abajo de la línea base. Se estima que esto ocurre porque la velocidad de reacción del CH₄ es menor a la del H₂ y CO, ya que estos últimos al encontrarse con oxígeno se convierten más rápidamente en H₂O y CO₂ respectivamente. Es importante señalar que la velocidad del frente de combustión del gas de síntesis de pino se dispersa menos (crecimiento absoluto menor) que la velocidad del frente de combustión del gas de síntesis de eucalyptus. Bajo la lógica anterior, esto podría ocurrir debido a que el gas de síntesis de pino posee mayor cantidad de CH₄ y menor cantidad de CO y H₂ que el gas de síntesis de eucalyptus.

6.3.1. Pino Radiata

Figura 6.5: Velocidad del frente de combustión variando composición syngas pino-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

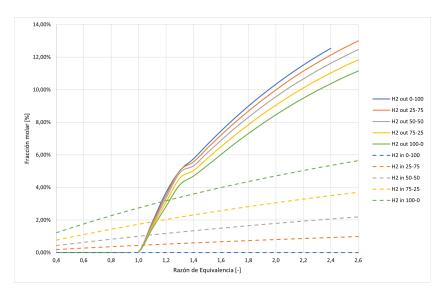
6.3.2. Eucalyptus Nitens

Figura 6.6: Velocidad del frente de combustión variando composición syngas eucalyptus-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

6.4. Composición de gases producto

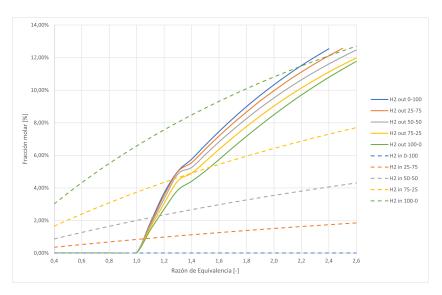
La composición de los gases productos se presenta en fracciones molares a lo largo de todo el rango de combustión representando la fracción molar a la salida del reactor 2 de la especie en cuestión presente en el último nodo de cada simulación.

Se sabe que para razones de equivalencia mayores a 1, la combustión es incompleta debido a la exigüidad de oxígeno en la mezcla combustible-aire. Por otra parte, cuando existen razones de equivalencia menores a 1, la combustión es completa, favoreciéndose la formación de CO₂ y H₂O en casos donde el combustible esté compuesto a base de carbono e hidrógeno.


6.4.1. Hidrógeno - H₂

Tal como se explico en el párrafo anterior, las primeras trazas de H_2 no se detectan en los gases de escape hasta que se supera la estequiometría (ϕ >1). De esto se desprende que en zonas de mezclas pobres, el H_2 presente en la mezcla combustible es completamente oxidado para formar H_2O .

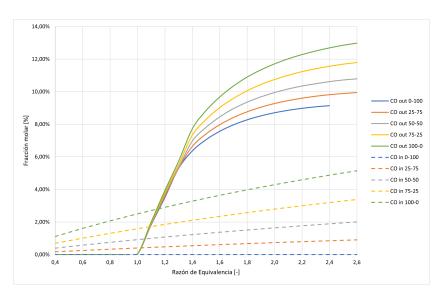
Al transitar hacía zonas de mezclas ricas y ultraricas, la aparición de H_2 en los gases de escape va en constante aumento. Esto concuerda con lo que se sabe, ya que al haber menos oxígeno disponible para la oxidación completa del combustible, se favorece la producción de H_2 .


Además, es importante notar que al disminuir el aporte de CH₄ en la mezcla combustible que entra a la etapa 2, el contenido de H₂ en los gases de escape disminuye. Esto es lógico, ya que se está quitando una fuente importante de H₂ como es el CH₄. Con esto se demuestra que el mecanismo de reacción utilizado está funcionando de correctamente.

6.4.1.1. Pino Radiata

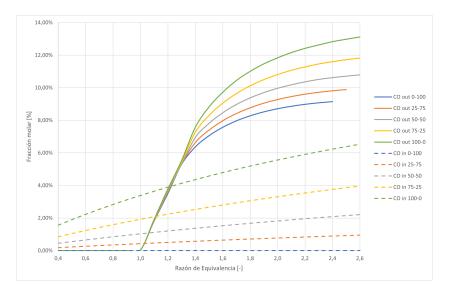
Figura 6.7: Fracción molar de H₂ producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de pino radiata en todo el rango de combustión. Fuente: elaboración propia.

6.4.1.2. Eucalyptus Nitens


Figura 6.8: Fracción molar de H₂ producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de eucalyptus nitens en todo el rango de combustión. Fuente: elaboración propia.

6.4.2. Monóxido de carbono - CO

Al igual como ocurre con el H_2 , las primeras concentraciones de CO a la salida de la etapa 2 se registran cuando se supera la estequiometría, por la misma razón de que la exigua cantidad de oxígeno no permite la oxidación total de la mezcla combustible en CO_2 . Por lo mismo, hasta un valor de $\phi = 1$, tanto para el pino como para el eucalyptus, todo el CO que entra al reactor es transformado en CO_2 .


Es importante notar que tanto para el caso del eucalyptus como para el caso del pino, al disminuir el aporte de CH₄ en la mezcla combustible se aprecia un alza en la concentración de CO en los gases de escape. Esto podría explicarse por el comportamiento de la reacción de desplazamiento de gas (Water gas shift reaction en inglés), ya que actúa como una reacción de equilibrio y a las temperaturas de salida registradas en la simulación, se favorece la producción de CO.

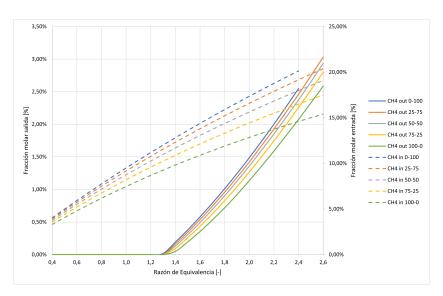
6.4.2.1. Pino Radiata

Figura 6.9: Fracción molar de CO producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de pino radiata en todo el rango de combustión. Fuente: elaboración propia.

6.4.2.2. Eucalyptus Nitens

Figura 6.10: Fracción molar de CO producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de eucalyptus nitens en todo el rango de combustión. Fuente: elaboración propia.

6.4.3. Metano - CH₄


A diferencia de las gráficas de las demás especies, las gráficas de entrada y salida de concentraciones de CH₄ poseen 2 ejes verticales diferenciados. Esto porque las concentraciones a la entrada superan en a lo menos un orden de magnitud a la salida, lo que generaría un gráfico poco representativo en caso de no hacer distinción entre entrada y salida. La concentración de CH₄ registrada a la entrada de la etapa 2 incluye la fracción molar de CH₄ intrínseca en el gas de síntesis de una u otra biomasa, además del aporte que se incorpore a la mezcla combustible.

Como se puede observar, en ambos casos las primeras trazas de CH₄ que se detectan en los gases de escape de la etapa 2 aparecen en $\phi \approx 1,3$, prolongándose hasta ϕ cercanos a 1,4 cuando hay cero aporte de CH₄ (100 % syngas). De esto se infiere que desde un $\phi = 0,4$ hasta un $\phi = 1$, todo el CH₄ que entra en la etapa 2 es combustionado completamente, transformándose en CO₂ y H₂O. Luego, desde un ϕ = 1 hasta un $\phi \approx 1,4$, el CH₄ se transforma en CO₂ y H₂O igualmente, pero además

comienza su reformado en CO y H_2 , incluyendo la formación de otras especies en menores concentraciones. Al superar $\phi \approx 1,4$ (mezclas ultraricas), las concentraciones de CH_4 en la mezcla combustible que ingresa son tan altas que la escasa porción de oxidante presente no da a basto y parte del CH_4 que ingresa al reactor simplemente no puede ser reformado.

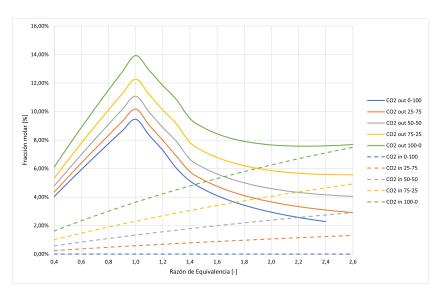
Se aprecia también que al disminuir el aporte de CH₄ en la etapa 2, se disminuye la aparición de este en los gases de escape, lo que resulta lógico porque es menor el CH₄ que está entrando en la etapa.

6.4.3.1. Pino Radiata

Figura 6.11: Fracción molar de CH₄ producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de pino radiata en todo el rango de combustión. Fuente: elaboración propia.

3,50% 3,00% 25,00% 20,00%

Figura 6.12: Fracción molar de CH₄ producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de eucalyptus nitens en todo el rango de combustión. Fuente: elaboración propia.


6.4.4. Dióxido de carbono - CO₂

La fracción molar de CO_2 en los productos es un indicador de cuan completa ha sido la combustión. Por lo mismo, no es sorpresa ver que su máximo se encuentra en $\phi = 1$, donde teóricamente ocurre la combustión completa de la mezcla combustible.

Como se puede observar en las gráficas de las figuras 6.13 y 6.14 desde un $\phi = 0$, 4 a un $\phi = 1$, el crecimiento en la formación de CO_2 es lineal hasta llegar al máximo en $\phi = 1$, indicando que el CH_4 que ingresa es completamente transformado en CO_2 y H_2O . Luego se observa un decaimiento lineal hasta una razón de equivalencia igual $\phi \approx 1$, 4 donde luego se aprecia un aplanamiento de las curvas. Esto ocurre conjuntamente aumenta la concentración de CO en los gases de escape, lo que supondría que por la exigua cantidad de oxígeno en el oxidante, no puede llevarse a cabo la combustión completa de la mezcla combustible.

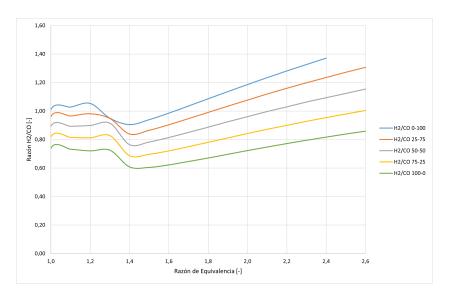
Al disminuir el aporte de CH₄, se aprecia un aumento en las concentración de CO₂. Se infiere que esto ocurre porque las concentraciones de CO₂ en la mezcla combustible aumentan al retirar el aporte de CH₄.

6.4.4.1. Pino Radiata

Figura 6.13: Fracción molar de CO₂ producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de pino radiata en todo el rango de combustión. Fuente: elaboración propia.

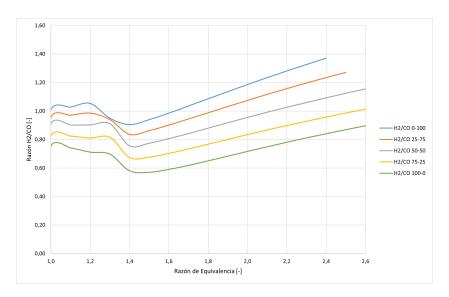
6.4.4.2. Eucalyptus Nitens

Figura 6.14: Fracción molar de CO₂ producido en la etapa 2 a partir del gas de síntesis producido por la gasificación de eucalyptus nitens en todo el rango de combustión. Fuente: elaboración propia.


6.5. Razón H_2/CO

Un indicador que valoriza la calidad del gas de síntesis es la proporción de las concentraciones de H₂ y CO que conviven en una mezcla de gases producto de la gasificación ya que, dependiendo de su magnitud, puede ser utilizado para el pos procesamiento y producción de líquidos combustibles sintéticos, a través del proceso Fischer-Tropsch.

Para la conversión del syngas en hidrocarburos con cadenas de diferente longitud, diésel, kerosene o gasolina usualmente se espera tener una razón H₂/CO igual a 2. En caso de no obtener la razón deseada el proceso puede ser apoyado por la reacción de desplazamiento de gas (water gas shift). La ventaja al comparar los combustibles comunes con los combustibles producidos a través del proceso Fischer-Tropsch es que estos últimos no contienen o contienen muy baja concentración de contaminantes como azufre y aromáticos (Puigjaner (2011)).

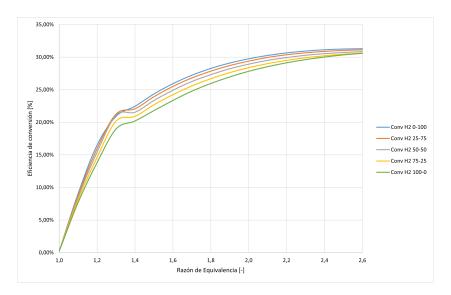

Al observar las gráficas de las figuras 6.15 y 6.16, se aprecia que al disminuir el aporte de CH₄ en la mezcla combustible, la razón H₂/CO disminuye, alejándose de la línea base. Esto indicaría que el CH₄ se convierte más fácilmente en CO que en H₂. Además, en ambas gráficas, para todas las curvas se aprecia una especie de meseta entre $1 \le \phi \le 1,4$ y luego un decaimiento para luego seguir una tendencia al alza de forma lineal en mezclas ultra ricas. Se intuye que este comportamiento podría estar relacionado con la temperatura del gas. La inestabilidad y tendencia poco clara entre $1 \le \phi \le 1,4$ se podría atribuir al aumento de la temperatura observado en esa zona, donde podría estar ocasionando cambios en el mecanismo de reacción.

6.5.1. Pino Radiata

Figura 6.15: Razón H₂/CO variando composición syngas pino-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

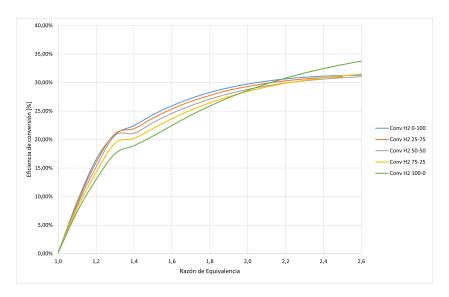
6.5.2. Eucalyptus Nitens

Figura 6.16: Razón H₂/CO variando composición syngas eucalyptus-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.


6.6. Conversión de H₂

La conversión de H₂ representa la fracción de H₂ producida en la etapa 2, respecto al máximo que podría haberse generado a partir del total de reactivos que contienen hidrógeno e ingresan a la etapa. Es por ello que se utiliza como un indicador de cuán eficiente es la conversión del combustible inyectado a H₂ en el rango de combustión estudiado. Se calculó en basé a la ecuación 5.16.

Como se observa en la figura 6.17, en el caso del pino al disminuir el aporte de CH_4 en la mezcla combustible, disminuye la conversión de H_2 producido en todo el rango de combustión estudiado. A pesar de ello, al entrar en la zona de mezclas ultra ricas la brecha entre curvas se estrecha convergiendo casi al valor de la línea base ($\approx 30\%$).

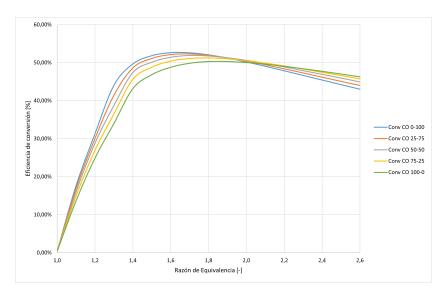

Algo muy particular ocurre para el eucalyptus (figura 6.18). Al disminuir el aporte de CH_4 en la mezcla combustible, también se genera una disminución en la conversión de H_2 en prácticamente todo el rango de combustión estudiado, hasta llegar a mezclas por sobre $\phi \approx 2,1$. Cercano a dicho punto ocurre un traslapamiento entre la curva "Conv H2 100-0" y la línea base ("Conv H2 0-100"), como también ocurre para la curva de eucalyptus "Conv H2 75-25" que de igual manera presenta una tendencia a superar la línea base en un ϕ cercano a 2,5. Esto supone en términos prácticos, que para producir más H_2 conviene simplemente agregar aire al gás de síntesis, en vez de aportarle CH_4 a la mezcla.

6.6.1. Pino Radiata

Figura 6.17: Eficiencia de conversión de H₂ variando composición syngas pino-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

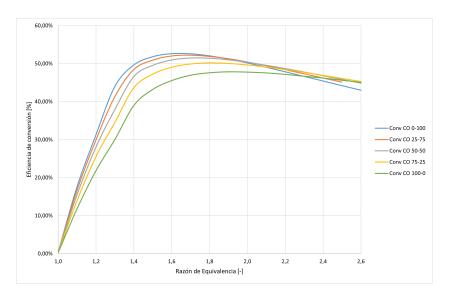
6.6.2. Eucalyptus Nitens

Figura 6.18: Eficiencia de conversión de H₂ variando composición syngas eucalyptus-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.


6.7. Conversión de CO

Al igual que la conversión de H₂, la conversión de CO representa la fracción de CO producida en la etapa 2, respecto al potencial máximo de generación. Al observar ambas gráficas de conversión de CO (figura 6.19 y figura 6.20), se puede apreciar un crecimiento cuasi lineal hasta llegar a un "peak" que fluctúa entre 45 % y 55 % aproximadamente dependiendo del contenido de CH₄ presente en la mezcla combustible. Además se puede notar que dicho "peak" se traslada hacía la derecha al disminuir el aporte de CH₄. A razones de equivalencia mayor, se aprecia un descenso sostenido en las curvas de conversión. Esta disminución se debe principalmente a la escasa cantidad de oxígeno disponible para la formación de CO.

Observando la gráfica de la figura 6.19 relativa al pino radiata, se puede observar que desde un $\phi = 1.0$ hasta un $\phi \approx 2.0$, al disminuir el contenido de CH₄ en la mezcla combustible disminuye la conversión de esta en CO, pero al superar una razón de equivalencia de $\phi = 2,0$ ocurre un traslapamiento con la línea base para todas las curvas, lo que indica un favorecimiento en la producción de CO en la zona de mezclas ultraricas $(\phi \geq 2,0)$.


Por otro lado tenemos la conversión de CO relativa a la inyección de gas de síntesis de eucalyptus (figura 6.20) en donde ocurre algo similar a lo ocurrido con el gas de síntesis de pino radiata, pero acá el traslapamiento de curvas con la línea base ocurre en ϕ mayores. Las curvas "Conv CO 25-75" y "Conv CO 50-50" superan a la línea base en razones de equivalencia superiores a ϕ = 2,0, mientras que las curvas "Conv CO 75-25" y "Conv CO 100-0" en razones de equivalencia superiores a ϕ = 2,1 y ϕ = 2,3 respectivamente.

6.7.1. Pino Radiata

Figura 6.19: Selectividad a CO variando composición syngas pino-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

6.7.2. Eucalyptus Nitens

Figura 6.20: Selectividad a CO variando composición syngas eucalyptus-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

6.8. Eficiencia energética

Las gráficas de las figuras 6.21 a ?? fueron obtenidas en base a los cálculos realizados según las ecuaciones 5.11, 5.12, 5.14, 5.15 y 5.18. En las gráficas 6.21 y 6.22 se aprecia una línea roja constante que representa la eficiencia energética de la etapa 1 y es contrastada con la eficiencia energética de la etapa 2 para los 5 casos simulados en todo el rango de combustión estudiado. Como se puede apreciar, tanto para el pino como para el eucalyptus, la eficiencia energética de la etapa 2 va en constante alza al superar la estequiometría. Al llegar a zonas de mezclas ultra ricas, su ritmo de crecimiento decae y las curvas tienden a aplanarse alcanzando valores entre 50 % y 65 % dependiendo del caso en cuestión.

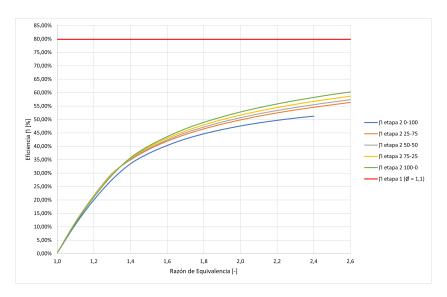
Al observar las gráficas 6.21 y 6.22 tanto para la eficiencia de la etapa 2 del gas de síntesis de pino como para la del eucalyptus, si se retira el aporte de CH₄ de manera total o parcial, la eficiencia energética aumenta y supera la línea base en todo el rango de combustión estudiado. Esto ocurre porque el flujo energético que aporta el CH₄ auxiliar a la entrada de la etapa 2 es mayor que el flujo energético a la salida, producto de las variaciones de las especies formadas (H₂, CO y CH₄).

Además, un análisis interesante que se puede realizar para evaluar la eficiencia energética del proceso y encontrar puntos óptimos de operación, es analizar los flujos energéticos a la salida de cada etapa (1 y 2), respecto al total que ingresó al proceso, de esta manera se puede establecer una línea comparativa para saber cuándo el flujo energético a la salida de la etapa 2 es mayor que a la salida de la etapa 1. Según los datos de la etapa 1, se sabe que la proporción de los flujos energéticos que ingresan a la etapa 1 por parte de la biomasa y el gas natural son 20 % - 80 % para el pino y 21 % - 79 % para el eucalyptus. A modo de facilitar la explicación, se hace el supuesto de que el flujo total de energía que ingresa al proceso por parte del gas natural y el CH₄ es 100 [W].

		Etapa 1					Etapa 2			
Caso		Entrada	Gas	Entrada	Bio-	Flujo	Salida	Entrada	CH4	
		Natural [W]	masa [W]		[W]		auxiliar [W]		
	100-0	100		27		6	66		0	
	75-25	65		17		43		35		
Euca	50-50	38		10		25		62		
	25-75	17		5		1	11	83		
	100-0	100		25	25 100		00	0		
	75-25 63 16 no 50-50 36 9			63		37				
Pino				36		64				
	25-75	16		4		1	16	84		

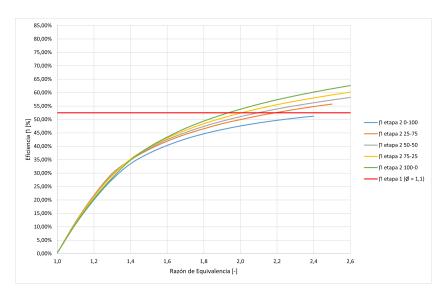
Tabla 6.2: Flujos energéticos de ejemplo para cada caso simulado.

Según lo anterior, para que la etapa 2 se considere más eficiente que la primera, el flujo energético a la salida de la etapa 2 debe ser mayor que el flujo energético a la salida de la etapa 1, tal como indica la tabla 6.2. En base a lo anterior, esto se logra en múltiples casos:


Pino

- $50-50 \operatorname{con} \phi \ge 1,5$
- $25-75 \operatorname{con} \phi \ge 1,1$

Eucalyptus


- $75-25 \text{ con } \phi \ge 2,2$
- $50-50 \operatorname{con} \phi \ge 1,3$
- $25-75 \operatorname{con} \phi \ge 1,1$

6.8.1. Pino Radiata

Figura 6.21: Contraste de eficiencia energética de etapa 1 y etapa 2 al variar composición syngas pino-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

6.8.2. Eucalyptus Nitens

Figura 6.22: Contraste de eficiencia energética de etapa 1 y etapa 2 al variar composición syngas eucalyptus-CH₄ v/s Razón de equivalencia. Fuente: elaboración propia.

7 | Conclusiones

Con el deseo de diversificar la matriz energética nacional, la valorización de residuos forestales se ha convertido en una alternativa viable para satisfacer parte de la demanda energética, principalmente por su carácter renovable, además de la gran penetración de la industria forestal en nuestro país, lo que potencia la idea de explotar este recurso por la cantidad de residuos que se generan anualmente. Por lo mismo, se estudió numéricamente la combustión parcial de biomasa arbórea en un proceso global en serie con 2 reactores de medios porosos, el cual se llevó a cabo utilizando datos experimentales obtenidos en la investigación de Torres Villablanca, Daniel Alejandro (2014) para la etapa 1 y con el uso del software comercial Premix para la simulación de la segunda etapa que contempla la combustión filtrada del gas de síntesis producto de la primera etapa en un rango de combustión $0, 4 \le \phi \le 2, 6$. Con esta configuración, se analizó la influencia del aporte de CH_4 en la producción de H_2 y CO a partir de la gasificación de residuos forestales.

En cuanto a los resultados obtenidos por el método numérico del software Premix, adjuntos en el capítulo 6 y en el anexo C, se concluye en líneas generales, que son bastante favorables. Es importante recordar, como se mencionó en la sección 3.1, que este modelo incorpora una serie de simplificaciones respecto a la situación física real, siendo una de las más importantes la utilización del mecanismo de reacción utilizado (GRI 3.0), el cual es un mecanismo optimizado y diseñado para modelar la combustión completa de CH₄. A pesar de ello, y como el foco de esta investigación es estudiar y comprender el comportamiento de una configuración en serie de reactores de medios

porosos, como primera aproximación el modelo es adecuado.

Al analizar la razón H₂/CO obtenida al retirar el aporte de CH₄ en la mezcla combustible que ingresa a la etapa 2, se aprecia que no se alcanza, en ningún caso dentro del rango en estudio una razón igual o mayor 2. Se sabe que este valor es el propicio para la utilización del gas de síntesis resultante en la producción de combustibles líquidos sintéticos mediante el proceso Fischer Tropsch. De todas formas, podría ser forzado a un proceso de Water Gas Shift (WGS) posterior para lograr el valor deseado de H₂/CO.

Por otro lado, la eficiencia de conversión de H_2 presenta valores muy interesantes. Para el caso del pino radiata, al quitar completamente el aporte de CH_4 , a pesar de disminuir la conversión de H_2 en todo el rango de combustión estudiado, en zonas de mezclas ultra ricas, precisamente en $\phi = 2, 4$, la eficiencia de conversión de H_2 disminuye tan solo un 1,1 % lo que equivale a un 3 % de disminución respecto a la línea base. En contraste, en el caso de las simulaciones relativas al eucalyptus, al quitar completamente el aporte de CH_4 , disminuye la conversión de H_2 hasta un $\phi = 2,0$. De ahí en adelante, ocurre un traslapamiento de las curvas y la conversión de H_2 supera a la línea base. A partir de esto se concluye que para mejorar la conversión de H_2 simplemente conviene reprocesar el gas de síntesis proveniente de la etapa 1 añadiéndole aire, ya que agregando CH_4 , simplemente aumentaría el costo de producción.

La eficiencia de conversión de CO por su parte, también muestra resultados favorables para zonas de mezclas ultra ricas. Para el caso del pino, al retirar completamente el aporte de CH₄ a la mezcla combustible, se supera a la línea base desde un $\phi > 2,0$. Mientras, para el caso del eucalyptus, también se logra superar a la línea base, pero en $\phi \geq 2,3$. Así, al igual como ocurre con la conversión de H₂, para obtener una mayor cantidad de CO, simplemente conviene agregar aire al gas de síntesis y someterlo a la combustión parcial en el medio poroso de la etapa 2.

Respecto al análisis energético, se calculó la eficiencia energética de ambas etapas por separado. De ello se concluyó que añadir una segunda etapa con aporte de CH₄, dependiendo del tipo de biomasa, podría ser energéticamente favorable bajo ciertas condiciones, llegando a cuadruplicar y quintuplicar el flujo energético de salida en la etapa 1, a la salida de la etapa 2 para el pino y el eucalyptus respectivamente. Además, al quitar el aporte de CH₄, la eficiencia de la etapa 2 alcanza un crecimiento máximo de un 13,5 % y un 17,5 % respecto a la línea base para el pino y el eucalyptus respectivamente.

Finalmente, se concluye que la disposición en serie de dos reactores de medios porosos, el primero con una matriz híbrida y el segundo con una matriz inerte, se puede utilizar para reformar combustibles sólidos (etapa 1) y gaseosos (etapa 2), aumentando la producción de H₂ y gas de síntesis, además de ser un proceso energéticamente favorable bajo ciertas condiciones operacionales.

7.1. Trabajos Futuros

Es importante recalcar que el análisis realizado en este trabajo de investigación se basó en una simulación numérica, por lo que existen una serie de supuestos y simplificaciones al problema que eventualmente podrían generar una discrepancia con datos reales, pero que como primera aproximación son viables en su análisis. Por lo mismo, como trabajo futuro sería razonable estudiar de manera empírica en el laboratorio el comportamiento de un sistema en serie de reactores de medios porosos, donde se pueda comparar los resultados empíricos con los teóricos de la presente investigación.

Además, como fue planteado en una primera instancia, sería interesante identificar qué tipo de biomasa arbórea (hojas, ramas, corteza, aserrín, etc.) posee un mayor grado de conversión en H₂ y gas de síntesis, lo que permitiría clasificarlas y agruparlas.

BIBLIOGRAFÍA BIBLIOGRAFÍA

Bibliografía

- Arthur, J. R. (1951). Reactions between carbon and oxygen. *Trans. Faraday Soc.* 2.3.1.2.1
- Asociación Española del Comercio e Industria de la Madera (2016). Tabla de densidad de maderas. https://www.forestalmaderero.com/articulos/item/tabla-de-densidad-de-maderas.html. 5.1.1.2
- Basu, Prabir (2010). *Biomass Gasification and Pyrolysis*. El Sevier. (document), 2.3.1.2, 2.3.1.2.1, 2.3
- Carlos Pontt (2008). *Estudio de contribución de las ERNC al SIC al 2025*. Informe, Universidad Técnica Federico Santa María, Valparaíso, Chile. 2.5.5
- Caro, S; Torres, D; y Toledo, M. (2015). Syngas production from residual biomass of forestry and cereal plantations using hybrid filtration combustion. *International Journal of Hydrogen Energy*. 2.3
- Comisión Nacional de Energía (2005). Potencial de generación de energía por residuos del manejo forestal en Chile. Reporte, CNE, Santiago, Chile. (document), 2.4, 2.5
- Comisión Nacional de Energía (2019). *Anuario Estadístico de Energía 2019*. CNE. (document), 1.1, 2.2, 2.1
- Comité Consultivo de Energía 2050 (2016). Hoja de ruta 2050 hacia una energía sustentable e inclusiva para chile. http://www.energia2050.cl/wp-content/uploads/2016/07/Hoja-de-Ruta-2050.pdf. 2.2
- Curtiss, C.F. y Hirschfelder, J.O. (1949). Transport properties of multicomponent gas mixtures. 3.1
- Jadidi, Mehdi; Moghtadernejad, Sara; y Dolatabadi, Ali (2015). A comprehensive review on fluid dynamics and transport of suspension/liquid droplets and particles in high-velocity oxygen-fuel thermal spray. *MDPI*. (document), 2.7
- Janina Gysling C. (2020). Subproductos madereros de la industria del aserrío 2020. Boletín estadístico, Instituto Forestal, Santiago, Chile. 2.5.4

BIBLIOGRAFÍA BIBLIOGRAFÍA

Johnston, B; Mayo, M.C; y Khare, A (2005). Hydrogen: the energy source for the 21st century. *Technovation*, 25(6), 569–585. 2.3

- Kee, R J; Rupley, F M; Meeks, E; y Miller, J A (1996). Chemkin-iii: A fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. 3.1
- Kee, R.J. and Grcar, J.F. and Smooke, M.D. and Miller, J.A. and Meeks, E. (1998). *Premix: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames*. Yale University. (document), 3.1, 3.2.3.2
- Kennedy, Lawrence A.; Bingue, Jacques P.; Saveliev, Alexei V.; Fridman, A.A.; y Fout-Ko, Serguei I. (2000). Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions. *Proceedings of the Combustion Institute*. (document), 3.1, 4, 4.1a, 4.1, 4.2a, 4.2, 4, 4.3, 6.3
- Ministerio de Agricultura (2013). *Conaf, por un Chile Forestal Sustentable*. Gobierno de Chile. 2.5.2
- Ministerio de Energía (2018). *Energía 2050 Política Energética de Chile*. Gobierno de Chile. 2.2
- Mujeebu, Abdul (2016). Hydrogen and syngas production by superadiabatic combustion a review. *Applied Energy*. 2.3.1.1
- NNFCC (2009). Review of Technologies for Gasification of Biommas ans Wastes. Technical Report 09/008, E4Tech, London, UK. (document), 2.3.1.2.3, 2.4, 2.5
- Pickenacker, O; Pickenacker, K; Wawrzinek, K; Trimis, D; y Pritzkow, W (1999). Innovative ceramic materials for porous-medium burners. *Interceram.*, 48(5), 326–329. (document), 2.3
- Puigjaner, L (2011). Syngas from Waste: Emerging Technologies. 6.5
- Ripoll Kameid, Nicolás; Silvestre, Claudio; Paredes, Emilio; y Toledo Torres, Mario (2016). Hydrogen production from algae biomass in rich natural gas-air filtration combustion. *International Journal of Hydrogen Energy*. 5.1.1.5
- Shekhawat, D; Spivey, J.J.; y Berry, D.A. (2011). Fuel cells: Technologies for fuel processing. *El Sevier*. (document), 2.3.1.1.2, 2.2
- Sinigaglia, Tiago; Lewiski, Felipe; Martins, Mario Eduardo Santos; y Siluk, Julio Cezar Mairesse (2017). Production, storage, fuel stations of hydrogen and its utilization in automotive applications a review. *El sevier*. (document), 2.2
- Stiegel, G y Ramezan, M (2006). Hydrogen from coal gasificaciton: An economical pathway to a sustainable future. *International Journal of Coal Geology*. 2.3.1.1.1
- The British Petroleum Company plc (2020). *Statistical Review of World Energy 2020 69th Edition*. BP plc. (document), 1.1, 2.1, 2.1

BIBLIOGRAFÍA BIBLIOGRAFÍA

Toledo, M; Bubnovich, V; Saveliev, A; y Kennedy, L (2009). Hydrogen production in ultrarich combustion of hydrocarbon fuels in porous media. *International Journal Of Hydrogen Energy*, 34, 1818–1827. 3.1, 3.2.1

- Torres Villablanca, Daniel Alejandro (2014). *Investigación experimental de la generación de gas de síntesis a partir de biomasa*. Tesis, UTFSM, Valparaíso, Chile. (document), 5.1, 7
- Turns, Stephen R. (2012). *An Introduction to Combustion Conceptas and Applications*. Mc Graw Hill. A.1
- Van Loo, S y Koppejan, J (2008). *The Handbook of Biomass Combustion and Co-firing*. 2.5.5
- Weinberg, Felix (1996). Heat-recirculating burners: Principles and some recent developments. *Combustion Science and Technology*. 2.4, 2.4
- Wood, Susie y Harris, Andrew T (2008). Porous burners for lean-burn applications. *Progress in energy and combustion science*, 34(5), 667–684. (document), 2.4, 2.4.1, 2.11, 2.4.1

A | Anexo I

A.1. Cálculo temperatura adiabática mezcla genérica de gas de síntesis

Considerando una mezcla de gas de síntesis con concentraciones variables y aporte de metano (coeficiente "m" representa los moles de metano que se agregan en la etapa 2), la reacción general de oxidación parcial, asumiendo que no hay disociación, se divide en dos casos principales:

Caso 1: $\phi \le 1$ (mezclas pobres y estequiométrica)

La reacción química general de la combustión parcial de un gas de síntesis genérico con aporte de metano en la zona de estequiometría y mezclas pobres es la siguiente:

$$xH_2 + yCO + zCH_4 + wCO_2 + a(O_2 + 3,76N_2) + mCH_4 \rightarrow bCO_2 + dH_2O + fO_2 + \gamma N_2$$
(A.1)

Si
$$\phi = 1$$
; $f = 0$ $b = y + z + w + m$ (A.2)

$$d = x + 2z + 2m \tag{A.3}$$

$$a = \frac{x+y}{2} + 2z + 2m \tag{A.4}$$

Ahora si
$$\phi < 1$$

$$a = \frac{1}{\phi} \left(\frac{x+y}{2} + 2z + 2m \right) \tag{A.5}$$

$$f = (1 - \phi)a \tag{A.6}$$

Caso 2: $\phi > 1$ (mezclas ricas)

La reacción química general para la combustión parcial de un gas de síntesis genérico con aporte de metano en la zona de mezclas ricas queda representada por:

$$xH_2 + yCO + zCH_4 + wCO_2 + a(O_2 + 3,76N_2) + mCH_4 \rightarrow bCO_2 + +cCO$$

 $+ dH_2O + eH_2 + +3,76aN_2$ (A.7)

Donde:
$$a = \frac{1}{\phi} \left(\frac{x+y}{2} + 2z + 2m \right) \tag{A.8}$$

$$c = y + z + w + m - b \tag{A.9}$$

$$d = 2a + w - m - b - z \tag{A.10}$$

$$e = x - 2a + b + 3m + 3z - w (A.11)$$

Utilizando la reacción química de equilibrio de desplazamiento de gas (WGS), aparece una cuarta ecuación para completar el sistema de ecuaciones anterior y así poder calcular los moles de todas las especies, tanto en productos como en reactantes:

$$K_p = \frac{b \cdot e}{c \cdot d} \tag{A.12}$$

Para resolver el sistema de ecuaciones no lineal, se utilizó el software Mathematica, y el valor de K_p utilizado fue 0,3887 según Turns (2012) (página 51). Una vez obtenido el valor del coeficiente "b", se procede a calular la temperatura adiabática de la mezcla combustible según el código adjunto a continuación.

Nota: el código adjunto muestra como ejemplo la temperatura adiabática para una mezcla 25-75 de eucalyptus.

Calores específicos de las sustancias

```
CPnitrogeno[T_] := 28.9 - 0.1571 * 10^-2 * T + 0.8081 * 10^-5 * T^2 - 2.873 * 10^-9 * T^3
CPoxigeno [T_{-}] := 25.48 + 1.520 * 10^{-2} * T - 0.7155 * 10^{-5} * T^{2} + 1.312 * 10^{-9} * T^{3}
CPdioxido[T_{\_}] := 22.26 + 5.981 * 10^{-2} * T - 3.501 * 10^{-5} * T^{2} + 7.469 * 10^{-9} * T^{3}
CPhidrogeno[T_] := 29.11 - 0.1916 * 10^-2 * T + 0.4003 * 10^-5 * T^2 - 0.8704 * 10^-9 * T^3
CPmetano[T_{\_}] := 19.89 + 5.024 * 10^{-2} * T + 1.269 * 10^{-5} * T^{2} - 11.01 * 10^{-9} * T^{3}
CPagua[T_{\_}] := 32.24 + 0.1923 * 10^{-2} * T + 1.055 * 10^{-5} * T^{2} - 3.595 * 10^{-9} * T^{3}
dHnitrogeno[U_] := \int_{298.15}^{U} CPnitrogeno[T] dT
dHdioxido[U_{\_}] := \int_{298.15}^{U} CPdioxido[T] dT
dHmonoxido[U_{\_}] := \int_{298.15}^{U} CPmonoxido[T] \, dT
dHoxigeno[U_{-}] := \int_{298.15}^{U} CPoxigeno[T] dT
dHmetano[U_{\_}] := \int_{298.15}^{U} CPmetano[T] dT
dHagua[U_{\_}] := \int_{200.15}^{U} CPagua[T] dT
dHHidrogeno[U_{\_}] := \int_{298.15}^{U} CPhidrogeno[T] dT
hfco := -110530
hfch4 := -74850
hfh2og := -241820
hfco2 := -393520
```

2 | Temperatura Adibatica Syngas.nb

Temperatura adiabática Syngas genérico en mezcla pobre y estequimétrica Φ =< I

Temperatura Adibatica Syngas.nb | 3

Temperatura adiabática Syngas genérico en mezcla pobre y estequimétrica $\Phi > 1$

```
x := 0.0453 (*Fracción molar de hidrógeno*)
y := 0.0233 (*Fracción molar de monóxido de carbono*)
 z := 0.0395 (*Fracción molar de metano contenido en gas de síntesis*)
w := 0.0410 (*Fracción molar de dióxido de carbono*)
m := (x + y + z + w) * 3(*Fracción molar de metano auxiliar*)
 \phi := 2.6
 Kp := 0.3887
a := \left(\frac{x + y}{2} + 2z + 2m\right) * (1/\phi)
 c := y + z + w + m - b
 d := 2a + w - m - b - z
  e := x - 2a + b + 3m + 3z - w
  b = (1 / (-1. \phi + Kp \phi)) 0.5
                   (-4. m + 4. Kpm - 1. x + Kpx - 1. y + Kpy - 4. z + 4. Kpz + 3. m\phi - 1. w\phi + 2. Kpw\phi + x\phi + Kpy\phi + 2. Kpw\phi + x\phi + Kpy\phi + 3. Kpw\phi + 3. K
                                  3. z \phi - \sqrt{(4.m - 4. Kpm + x - 1. Kpx + y - 1. Kpy + 4. z - 4. Kpz - 3. m \phi + w \phi - 2. Kpw \phi - 4. Kpx - 3. m \phi + w \phi - 2. Kpw \phi - 4. Kpx - 3. m \phi + w \phi - 4. Kpx - 3. Kpx - 4. Kpx - 4. Kpx - 3. m \phi + w \phi - 4. Kpx - 4. 
                                                                                  1. x \phi - 1. Kp y \phi - 3. z \phi)^2 - 4. (-1. \phi + Kp \phi) (4. Kp m^2 + 4. Kp m w + Kp m x + Kp w 
                                                                                 5. Kp m y + Kp w y + Kp x y + Kp y^2 + 8. Kp m z + 4. Kp w z + Kp x z + 5. Kp y z + 4. Kp z^2 -
                                                                                 1. Kp m^2 \phi + Kp w^2 \phi - 1. Kp m y \phi + Kp w y \phi - 2. Kp m z \phi - 1. Kp y z \phi - 1. Kp z^2 \phi
  Solve [y * hfco + (z + m) * hfch4 + w * hfco2 == b * (hfco2 + dHdioxido [Tad]) +
                         d * (hfh2og + dHagua[Tad]) + e * (dHHidrogeno[Tad]) +
                          c * (hfco + dHmonoxido[Tad]) + 3.76 * a (dHnitrogeno[Tad]), Tad]
 0.0658478
  \{ \{ \text{Tad} \rightarrow -1387.91 - 3042.4 i \} \}
          {Tad \rightarrow -1387.91 + 3042.4 i}, {Tad \rightarrow 1211.05}, {Tad \rightarrow 5302.91}
```

B | Anexo II

B.1. Cálculo de fracciones molares para simulación en software PREMIX

Considerando que la reacción química para la combustión completa de un gas de síntesis genérico formado por H₂, CO, CH₄ y CO₂ con aporte de metano es la siguiente:

$$xH_2 + yCO + zCH_4 + wCO_2 + a(O_2 + 3,76N_2) + mCH_4 \rightarrow dH_2O + bCO_2 + \gamma N_2$$
 (B.1)

Al realizar el respectivo balance estequiométrico se obtienen las siguientes relaciones molares, donde x, y, z, w y m son variables conocidas.

$$b = y + z + w + m \tag{B.2}$$

$$d = x + 2z + 2m \tag{B.3}$$

$$a = \frac{1}{\phi} \left(\frac{x+y}{2} + 2z + 2m \right)$$
 (B.4)

Para el cálculo de coeficientes en el caso de la linea base (Tabla B.1) se debe considerar x, y, z, w = 0. Considerando que en todos los casos se quema 1 [kmol] de syngas, sólo se varía la razón de equivalencia, en otras palabras, el valor del coeficiente "a" que indica el volumen de aire presente en la reacción.

B.1.1. Linea Base - 100 % metano

Tabla B.1: Fracciones molares de cada sustancia considerando el ingreso de 100 % metano como combustible. Fuente: elaboración propia.

		100	% vol Metano			
			A	ire	Metano	ı
Estado	Ø	Sxngas	O ₂	N ₂	CH4	
	~	eringue	Moles de rea	ctantes (ni)		Ntotal
Т		1	20,0000	75,2000	1,0000	96,2000
-	0,1	xi	0,2079	0,7817	0,0104	50,2000
		1	10,0000	37,6000	19,6320	67,2320
-	0,2	xi	0,1487	0,5593	0,2920	07,2020
		1	6,6667	25,0667	1,0000	32,7333
-	0,3	xi	0,2037	0,7658	0,0305	02,7000
		1	5,0000	18,8000	1,0000	24,8000
Converge	0,4	xi	0,2016	0,7581	0,0403	
		1	4,0000	15,0400	1,0000	20,0400
Converge	0,5	xi	0,1996	0,7505	0,0499	20,0400
		1	3,3333	12,5333	1,0000	16,8667
Converge	0,6	xi	0,1976	0,7431	0,0593	10,8007
-		1	2,8571	10,7429	1,0000	14,6000
Converge	0,7	xi	0,1957	0,7358	0,0685	14,0000
		1	2,5000	9,4000	1,0000	12,9000
Converge	0,8	xi	0,1938	0,7287	0,0775	12,3000
-		1	2,2222	8,3556	1,0000	11,5778
Converge	0,9	xi	0,1919	0,7217	0,0864	11,5776
		1	2,0000	7,5200	1,0000	10,5200
Converge	1,0	xi	0,1901	0,7148	0.0951	10,5200
		1	1,8182	6,8364	1,0000	9,6545
Converge	1,1	xi	0,1883	0,7081		9,6545
			, , , , , , , , , , , , , , , , , , , ,		0,1036	0.0222
Converge	1,2	1	1,6667	6,2667	1,0000	8,9333
		xi	0,1866	0,7015	0,1119	0.0004
Converge	1,3	1	1,5385	5,7846	1,0000	8,3231
		xi	0,1848	0,6950	0,1201	
Converge	1,4	1	1,4286	5,3714	1,0000	7,8000
		xi	0,1832	0,6886	0,1282	
Converge	1,5	1	1,3333	5,0133	1,0000	7,3467
		xi	0,1815	0,6824	0,1361	
Converge	1,6	1	1,2500	4,7000	1,0000	6,9500
		xi	0,1799	0,6763	0,1439	
Converge	1,7	1	1,1765	4,4235	1,0000	6,6000
		xi	0,1783	0,6702	0,1515	
Converge	1,8	1	1,1111	4,1778	1,0000	6,2889
		xi	0,1767	0,6643	0,1590	
Converge	1,9	1	1,0526	3,9579	1,0000	6,0105
	-,-	xi	0,1751	0,6585	0,1664	
Converge	2,0	1	1,0000	3,7600	1,0000	5,7600
-0-		xi	0,1736	0,6528	0,1736	
Converge	2,1	1	0,9524	3,5810	1,0000	5,5333
	-,-	xi	0,1721	0,6472	0,1807	
Converge	2,2	1	0,9091	3,4182	1,0000	5,3273
	-/-	xi	0,1706	0,6416	0,1877	
Converge	2,3	1	0,8696	3,2696	1,0000	5,1391
- 3	-,-	xi	0,1692	0,6362	0,1946	
Converge	2,4	1	0,8333	3,1333	1,0000	4,9667
Somerige	~,~	xi	0,1678	0,6309	0,2013	
-	2,5	1	0,8000	3,0080	1,0000	4,8080
	2,3	xi	0,1664	0,6256	0,2080	
	2,6	1	0,7692	2,8923	1,0000	4,6615
-	2,0	xi	0,1650	0,6205	0,2145	

B.1.2. Pino Radiata

Tabla B.2: Fracciones molares de cada sustancia considerando una mezcla combustible de 75 % Metano y 25 % gas de síntesis de pino radiata. Fuente: elaboración propia.

			75	-25% vol Meta	no - Syngas P	ino Radiata				
ſ	H2	0,0274	CO	0,025	CH4	0,0748	CO ₂	0,0364		
•										
or do I	Ø		Gas pro H2		sificación en e CH4	tapa 1-2 CO ₂	O2	re N ₂	Metano CH4	
stado	Ø	Sxngas	П2	CO	Moles de rea		02	IVZ	CH4	Ntotal
П		1	1,0960	1,0000	2,9920	1,4560	462,9600	1740,7296	19,6320	2229,8656
-	0,1	xi	0,0005	0,0004	0,0013	0,0007	0,2076	0,7806	0,0088	
	0.3	1	1,0960	1,0000	2,9920	1,4560	231,4800	870,3648	19,6320	1128,0208
-	0,2	xi	0,0010	0,0009	0,0027	0,0013	0,2052	0,7716	0,0174	
_	0,3	1	1,0960	1,0000	2,9920	1,4560	154,3200	580,2432	19,6320	760,7392
		xi	0,0014	0,0013	0,0039	0,0019	0,2029	0,7627	0,0258	
nverge	0,4	1	1,0960	1,0000	2,9920	1,4560	115,7400	435,1824	19,6320	577,0984
	-	xi	0,0019	0,0017	0,0052	0,0025	0,2006	0,7541	0,0340	466.0430
nverge	0,5	1 xi	1,0960 0,0023	1,0000 0,0021	2,9920	1,4560 0,0031	92,5920 0,1983	348,1459 0,7456	19,6320 0,0420	466,9139
		1	1,0960	1,0000	0,0064 2,9920	1,4560	77,1600	290,1216	19,6320	393,4576
nverge	0,6	xi	0,0028	0,0025	0,0076	0,0037	0,1961	0,7374	0,0499	393,4370
		1	1,0960	1,0000	2,9920	1,4560	66,1371	248,6757	19,6320	340,9888
nverge	0,7	xi	0,0032	0,0029	0,0088	0,0043	0,1940	0,7293	0,0576	5.10,5000
	0.0	1	1,0960	1,0000	2,9920	1,4560	57,8700	217,5912	19,6320	301,6372
nverge	0,8	xi	0,0036	0,0033	0,0099	0,0048	0,1919	0,7214	0,0651	
nverge	0,9	1	1,0960	1,0000	2,9920	1,4560	51,4400	193,4144	19,6320	271,0304
veige	0,3	xi	0,0040	0,0037	0,0110	0,0054	0,1898	0,7136	0,0724	
nverge	1,0	1	1,0960	1,0000	2,9920	1,4560	46,2960	174,0730	19,6320	246,5450
		xi	0,0044	0,0041	0,0121	0,0059	0,1878	0,7060	0,0796	
nverge	1,1	1	1,0960	1,0000	2,9920	1,4560	42,0873	158,2481	19,6320	226,5114
		xi 1	0,0048	0,0044	0,0132	0,0064	0,1858	0,6986	0,0867	200.0160
nverge	1,2	1 xi	1,0960 0,0052	1,0000 0,0048	2,9920 0,0143	1,4560 0,0069	38,5800 0,1839	145,0608 0,6914	19,6320 0,0936	209,8168
-		1	1,0960	1,0000	2,9920	1,4560	35,6123	133,9023	19,6320	195,6906
nverge	1,3	xi	0,0056	0,0051	0,0153	0,0074	0,1820	0,6843	0,1003	155,0500
	1.4	1	1,0960	1,0000	2,9920	1,4560	33,0686	124,3378	19,6320	183,5824
nverge	1,4	xi	0,0060	0,0054	0,0163	0,0079	0,1801	0,6773	0,1069	
nverge	1,5	1	1,0960	1,0000	2,9920	1,4560	30,8640	116,0486	19,6320	173,0886
ilverge	1,5	xi	0,0063	0,0058	0,0173	0,0084	0,1783	0,6705	0,1134	
nverge	1,6	1	1,0960	1,0000	2,9920	1,4560	28,9350	108,7956	19,6320	163,9066
		xi	0,0067	0,0061	0,0183	0,0089	0,1765	0,6638	0,1198	
nverge	1,7	1	1,0960 0,0070	1,0000 0,0064	2,9920 0,0192	1,4560 0,0093	27,2329 0,1748	102,3959 0,6572	19,6320 0,1260	155,8048
		xi 1	1,0960	1,0000	2,9920	1,4560	25,7200	96,7072	19,6320	148,6032
nverge	1,8	xi	0,0074	0,0067	0,0201	0,0098	0,1731	0,6508	0,1321	140,0032
		1	1,0960	1,0000	2,9920	1,4560	24,3663	91,6173	19,6320	142,1597
nverge	1,9	xi	0,0077	0,0070	0,0210	0,0102	0,1714	0,6445	0,1381	,,
nverge	2,0	1	1,0960	1,0000	2,9920	1,4560	23,1480	87,0365	19,6320	136,3605
iiverge	2,0	xi	0,0080	0,0073	0,0219	0,0107	0,1698	0,6383	0,1440	
nverge	2,1	1	1,0960	1,0000	2,9920	1,4560	22,0457	82,8919	19,6320	131,1136
	-,-	xi	0,0084	0,0076	0,0228	0,0111	0,1681	0,6322	0,1497	
verge	2,2	1	1,0960	1,0000	2,9920	1,4560	21,0436	79,1241	19,6320	126,3437
-	•	xi 4	0,0087	0,0079	0,0237	0,0115	0,1666	0,6263	0,1554	121 0000
nverge	2,3	1 xi	1,0960 0,0090	1,0000 0,0082	2,9920 0,0245	1,4560 0,0119	20,1287 0,1650	75,6839 0,6204	19,6320 0,1609	121,9886
		1	1,0960	1,0000	2,9920	1,4560	19,2900	72,5304	19,6320	117,9964
nverge	2,4	xi	0,0093	0,0085	0,0254	0,0123	0,1635	0,6147	0,1664	117,3304
+		1	1,0960	1,0000	2,9920	1,4560	18,5184	69,6292	19,6320	114,3236
nverge	2,5	xi	0,0096	0,0087	0,0262	0,0127	0,1620	0,6091	0,1717	32.,2230
nuorgo	2.6	1	1,0960	1,0000	2,9920	1,4560	17,8062	66,9511	19,6320	110,9333
nverge	2,6	xi	0,0099	0,0090	0,0270	0,0131	0,1605	0,6035	0,1770	

Tabla B.3: Fracciones molares de cada sustancia considerando una mezcla combustible de 50 % Metano y 50 % gas de síntesis de pino radiata. Fuente: elaboración propia.

			50	-50% vol Meta	no - Syngas P	ino Radiata				
	H ₂	0,0274	СО	0,025	CH4	0,0748	CO ₂	0,0364	İ	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							ı	
			Gas pro	ducto de la ga	sificación en e	tapa 1-2	А	ire	Metano	
Estado	Ø	Sxngas	H ₂	СО	CH4	CO ₂	O ₂	N ₂	CH4	
					Moles de rea	actantes (ni)				Ntotal
	0,1	1	1,0960	1,0000	2,9920	1,4560	201,2000	756,5120	6,5440	970,8000
-	0,1	xi	0,0011	0,0010	0,0031	0,0015	0,2073	0,7793	0,0067	
	0,2	1	1,0960	1,0000	2,9920	1,4560	100,6000	378,2560	6,5440	491,9440
	0,2	xi	0,0022	0,0020	0,0061	0,0030	0,2045	0,7689	0,0133	
	0,3	1	1,0960	1,0000	2,9920	1,4560	67,0667	252,1707	6,5440	332,3253
-	0,3	xi	0,0033	0,0030	0,0090	0,0044	0,2018	0,7588	0,0197	
Can	0,4	1	1,0960	1,0000	2,9920	1,4560	50,3000	189,1280	6,5440	252,5160
Converge	0,4	xi	0,0043	0,0040	0,0118	0,0058	0,1992	0,7490	0,0259	
C	0.5	1	1,0960	1,0000	2,9920	1,4560	40,2400	151,3024	6,5440	204,6304
Converge	0,5	xi	0,0054	0,0049	0,0146	0,0071	0,1966	0,7394	0,0320	
Comio	0.0	1	1,0960	1,0000	2,9920	1,4560	33,5333	126,0853	6,5440	172,7067
Converge	0,6	xi	0,0063	0,0058	0,0173	0,0084	0,1942	0,7301	0,0379	-
	0.7	1	1,0960	1,0000	2,9920	1,4560	28,7429	108,0731	6,5440	149,9040
Converge	0,7	xi	0,0073	0,0067	0,0200	0,0097	0,1917	0,7209	0,0437	,
_		1	1,0960	1,0000	2,9920	1,4560	25,1500	94,5640	6,5440	132,8020
Converge	0,8	xi	0,0083	0,0075	0,0225	0,0110	0,1894	0,7121	0,0493	,
_		1	1,0960	1,0000	2,9920	1,4560	22,3556	84,0569	6,5440	119,5004
Converge	0,9	xi	0,0092	0,0084	0,0250	0,0122	0,1871	0,7034	0,0548	110,000.
		1	1,0960	1,0000	2,9920	1,4560	20,1200	75,6512	6,5440	108,8592
Converge	1,0	xi	0,0101	0,0092	0,0275	0,0134	0,1848	0,6949	0,0601	100,0001
		1	1,0960	1,0000	2,9920	1,4560	18,2909	68,7738	6,5440	100,1527
Converge	1,1	xi	0,0109	0.0100	0,0299	0.0145	0,1826	0,6867	0,0653	100/1027
		1	1,0960	1,0000	2,9920	1,4560	16,7667	63,0427	6,5440	92,8973
Converge	1,2	xi	0,0118	0,0108	0,0322	0,0157	0,1805	0,6786	0,0704	32,0370
		1	1,0960	1,0000	2,9920	1,4560	15,4769	58,1932	6,5440	86,7582
Converge	1,3	xi	0,0126	0,0115	0,0345	0,0168	0,1784	0,6708	0,0754	00,7502
		1	1,0960	1,0000	2,9920	1,4560	14,3714	54,0366	6,5440	81,4960
Converge	1,4	xi	0,0134	0,0123	0,0367	0,0179	0,1763	0,6631	0,0803	01,4300
		1	1,0960	1,0000	2,9920	1,4560	13,4133	50,4341	6,5440	76,9355
Converge	1,5	xi	0,0142	0,0130	0,0389	0,0189	0,1743	0,6555	0,0851	70,5555
		1	1,0960	1.0000	2.9920	1.4560	12,5750	47,2820	6,5440	72,9450
Converge	1,6	xi	0,0150	0,0137	0,0410	0,0200	0,1724	0,6482	0,0897	72,5450
_	<u> </u>	1	1,0960	1,0000	2,9920	1,4560	11,8353	44,5007	6,5440	69,4240
Converge	1,7	xi	0,0158	0,0144	0,0431	0,0210	0,1705	0,6410	0,0943	03,4240
	†	1	1,0960	1,0000	2,9920	1,4560	11,1778	42,0284	6,5440	66,2942
Converge	1,8	xi	0,0165	0,0151	0,0451	0,0220	0,1686	0,6340	0,0987	00,2342
	—	1	1,0960	1,0000	2,9920	1,4560	10.5895	39,8164	6,5440	63,4939
Converge	1,9	xi	0,0173	0,0157	0,0471	0,0229	0,1668	0,6271	0,1031	03,4333
	—	1	1,0960	1,0000	2,9920	1,4560	10,0600	37,8256	6,5440	60,9736
Converge	2,0	xi	0,0180	0,0164	0,0491	0,0239	0,1650	0,6204	0,1073	00,3730
	 	1	1,0960	1,0000	2,9920	1,4560	9,5810	36,0244	6,5440	58,6933
Converge	2,1	xi	0,0187	0,0170	0,0510	0,0248	0,1632	0,6138	0,1115	30,0333
		1	1,0960	1,0000	2,9920	1,4560	9,1455	34,3869	6,5440	56,6204
Converge	2,2	xi xi	0,0194	0,0177	0,0528	0,0257	0,1615	0,6073	0,1156	30,0204
	-						8,7478			E 4 7277
Converge	2,3	1	1,0960 0,0200	1,0000 0,0183	2,9920 0,0547	1,4560 0,0266	0,1598	32,8918 0,6010	6,5440 0.1196	54,7277
	_	xi		-					-,	52.0027
Converge	2,4	1	1,0960	1,0000	2,9920	1,4560	8,3833	31,5213	6,5440	52,9927
		xi	0,0207	0,0189	0,0565	0,0275	0,1582	0,5948	0,1235	F4 2065
Converge	2,5	1	1,0960	1,0000	2,9920	1,4560	8,0480	30,2605	6,5440	51,3965
		xi	0,0213	0,0195	0,0582	0,0283	0,1566	0,5888	0,1273	
Converge	2,6	1	1,0960	1,0000	2,9920	1,4560	7,7385	29,0966	6,5440	49,9231
-	I '	xi	0,0220	0,0200	0,0599	0,0292	0,1550	0,5828	0,1311	

Tabla B.4: Fracciones molares de cada sustancia considerando una mezcla combustible de 25 % Metano y 75 % gas de síntesis de pino radiata. Fuente: elaboración propia.

			25	-75% vol Meta	no - Syngas P	no Radiata				
	H2	0,0274	CO	0,025	CH4	0,0748	CO ₂	0,0364		
										1
	~				sificación en e			ire	Metano	
Estado	Ø	Sxngas	H ₂	CO	CH4	CO ₂	O ₂	N ₂	CH4	
			1.0060	1 0000	Moles de rea		112.0467	420 4205	2.4042	Ntotal 551 4445
-	0,1	1	1,0960	1,0000	2,9920	1,4560	113,9467	428,4395	2,1813	551,1115
		xi 1	0,0020	0,0018	0,0054 2,9920	0,0026 1,4560	0,2068 56,9733	0,7774 214,2197	0,0040	270.0104
-	0,2	xi	1,0960 0,0039	1,0000 0,0036	0,0107	0,0052	0,2035	0,7653	2,1813 0,0078	279,9184
		1	1,0960	1,0000	2,9920	1,4560	37,9822	142,8132	2,1813	189,5207
-	0,3	xi	0,0058	0,0053	0,0158	0,0077	0,2004	0,7535	0,0115	103,3207
		1	1,0960	1,0000	2,9920	1,4560	28,4867	107,1099	2,1813	144,3219
onverge	0,4	xi	0,0076	0,0069	0,0207	0,0101	0,1974	0,7422	0,0151	144,3213
		1	1,0960	1,0000	2,9920	1,4560	22,7893	85,6879	2,1813	117,2026
onverge	0,5	xi	0,0094	0,0085	0,0255	0,0124	0,1944	0,7311	0,0186	11,2020
		1	1,0960	1,0000	2,9920	1,4560	18,9911	71,4066	2,1813	99 1230
onverge	0,6	xi	0,0111	0,0101	0,0302	0,0147	0,1916	0,7204	0,0220	33,1230
		1	1.0960	1.0000	2.9920	1.4560	16.2781	61.2056	2.1813	86 2091
onverge	0,7	xi	0,0127	0,0116	0,0347	0,0169	0,1888	0,7100	0,0253	55,2031
		1	1,0960	1,0000	2,9920	1,4560	14,2433	53,5549	2,1813	76,5236
onverge	0,8	xi	0,0143	0,0131	0,0391	0,0190	0,1861	0,6998	0,0285	70,3230
		1	1,0960	1,0000	2,9920	1,4560	12,6607	47,6044	2,1813	68 9905
onverge	0,9	xi	0,0159	0,0145	0,0434	0,0211	0,1835	0,6900	0,0316	00,5505
		1	1,0960	1,0000	2,9920	1,4560	11,3947	42,8439	2,1813	62 9639
onverge	1,0	xi	0,0174	0,0159	0,0475	0,0231	0,1810	0,6805	0,0346	02,5033
		1	1,0960	1,0000	2,9920	1,4560	10,3588	38,9490	2,1813	58 0332
onverge	1,1	xi	0,0189	0,0172	0,0516	0,0251	0,1785	0,6712	0,0376	30,0332
		1	1,0960	1,0000	2,9920	1,4560	9,4956	35,7033	2,1813	53 9242
onverge	1,2	xi	0,0203	0,0185	0,0555	0,0270	0,1761	0,6621	0,0405	55,52.12
		1	1,0960	1,0000	2,9920	1,4560	8,7651	32,9569	2,1813	50.4473
onverge	1,3	xi	0,0217	0,0198	0,0593	0,0289	0,1737	0,6533	0,0432	
		1	1,0960	1,0000	2,9920	1,4560	8,1390	30,6028	2,1813	47,4672
onverge	1,4	xi	0,0231	0,0211	0,0630	0,0307	0,1715	0,6447	0,0460	
	4.5	1	1,0960	1,0000	2,9920	1,4560	7,5964	28,5626	2,1813	44,8844
onverge	1,5	xi	0,0244	0,0223	0,0667	0,0324	0,1692	0,6364	0,0486	
	1.6	1	1,0960	1,0000	2,9920	1,4560	7,1217	26,7775	2,1813	42,6245
onverge	1,6	xi	0,0257	0,0235	0,0702	0,0342	0,1671	0,6282	0,0512	
onvorce	17	1	1,0960	1,0000	2,9920	1,4560	6,7027	25,2023	2,1813	40,6304
onverge	1,7	xi	0,0270	0,0246	0,0736	0,0358	0,1650	0,6203	0,0537	
onverge	1,8	1	1,0960	1,0000	2,9920	1,4560	6,3304	23,8022	2,1813	38,8579
onverge	1,0	xi	0,0282	0,0257	0,0770	0,0375	0,1629	0,6125	0,0561	
onverge	1,9	1	1,0960	1,0000	2,9920	1,4560	5,9972	22,5494	2,1813	37,2720
Overge	1,5	xi	0,0294	0,0268	0,0803	0,0391	0,1609	0,6050	0,0585	
onverge	2,0	1	1,0960	1,0000	2,9920	1,4560	5,6973	21,4220	2,1813	35,8446
o.iverge	2,0	xi	0,0306	0,0279	0,0835	0,0406	0,1589	0,5976	0,0609	
onverge	2,1	1	1,0960	1,0000	2,9920	1,4560	5,4260	20,4019	2,1813	34,5532
erge	۷,1	xi	0,0317	0,0289	0,0866	0,0421	0,1570	0,5904	0,0631	
nverge	2,2	1	1,0960	1,0000	2,9920	1,4560	5,1794	19,4745	2,1813	33,3792
veige	۷,۷	xi	0,0328	0,0300	0,0896	0,0436	0,1552	0,5834	0,0653	
onverge	2,3	1	1,0960	1,0000	2,9920	1,4560	4,9542	18,6278	2,1813	32,3073
,verge	2,3	xi	0,0339	0,0310	0,0926	0,0451	0,1533	0,5766	0,0675	
onverge	2,4	1	1,0960	1,0000	2,9920	1,4560	4,7478	17,8516	2,1813	31,3248
onverge	2,7	xi	0,0350	0,0319	0,0955	0,0465	0,1516	0,5699	0,0696	
onverge	2,5	1	1,0960	1,0000	2,9920	1,4560	4,5579	17,1376	2,1813	30,4208
Jiiveige	2,3	xi	0,0360	0,0329	0,0984	0,0479	0,1498	0,5634	0,0717	
onverge	2,6	1	1,0960	1,0000	2,9920	1,4560	4,3826	16,4784	2,1813	29,5863
Suverge	2,0	xi	0,0370	0,0338	0,1011	0,0492	0,1481	0,5570	0,0737	99,1230 86,2091 76,5236 68,9905 62,9639 58,0332 53,9242 50,4473 47,4672 44,8844 42,6245 40,6304 38,8579 37,2720 35,8446 34,5532 31,3792 32,3073 31,3248

Tabla B.5: Fracciones molares de cada sustancia considerando una mezcla combustible de 0 % Metano y 100 % gas de síntesis de pino radiata. Fuente: elaboración propia.

			ino Radiata							
ı	H2	0,0274	СО	0,025	CH4	0,0748	CO2	0,0364	1	
					16. 17					
Estado	Ø	Sxngas	Gas pro	cO CO	sificación en e CH4	tapa 1-2 CO ₂	O ₂	ire N2	Metano CH4	
LStado	, D	JATIEGS	112	CO	Moles de rea		O.	142	CITY	Ntotal
	0.1	1	1,0960	1,0000	2,9920	1,4560	70,3200	264,4032	0,0000	341,2672
-	0,1	xi	0,0032	0,0029	0,0088	0,0043	0,2061	0,7748	0,0000	
	0,2	1	1,0960	1,0000	2,9920	1,4560	35,1600	132,2016	0,0000	173,9056
-	0,2	xi	0,0063	0,0058	0,0172	0,0084	0,2022	0,7602	0,0000	
_	0,3	1	1,0960	1,0000	2,9920	1,4560	23,4400	88,1344	0,0000	118,1184
	0,0	xi	0,0093	0,0085	0,0253	0,0123	0,1984	0,7462	0,0000	
onverge	0,4	1	1,0960	1,0000	2,9920	1,4560	17,5800	66,1008	0,0000	90,2248
		xi	0,0121	0,0111	0,0332	0,0161	0,1948	0,7326	0,0000	
onverge	0,5	1	1,0960	1,0000	2,9920	1,4560	14,0640	52,8806	0,0000	73,4886
		xi	0,0149	0,0136	0,0407	0,0198	0,1914	0,7196	0,0000	62.2242
onverge	0,6	1	1,0960	1,0000	2,9920	1,4560	11,7200	44,0672	0,0000	62,3312
		xi 1	0,0176	0,0160	0,0480	0,0234	0,1880	0,7070	0,0000	E4 2616
onverge	0,7	1 xi	1,0960 0,0202	1,0000 0,0184	2,9920 0,0550	1,4560 0,0268	10,0457 0,1848	37,7719 0,6948	0,0000	54,3616
		1	1,0960	1,0000	2,9920	1,4560	8,7900	33,0504	0,0000	48,3844
onverge	0,8	xi	0,0227	0,0207	0,0618	0,0301	0,1817	0,6831	0,0000	40,3544
		1	1,0960	1,0000	2,9920	1,4560	7,8133	29,3781	0,0000	43,7355
onverge	0,9	xi	0,0251	0,0229	0,0684	0,0333	0,1786	0,6717	0,0000	43,7333
		1	1,0960	1,0000	2,9920	1,4560	7,0320	26,4403	0,0000	40,0163
onverge	1,0	xi	0,0274	0,0250	0,0748	0,0364	0,1757	0,6607	0,0000	,
		1	1,0960	1,0000	2,9920	1,4560	6,3927	24,0367	0,0000	36,9734
onverge	1,1	xi	0,0296	0,0270	0,0809	0,0394	0,1729	0,6501	0,0000	
nverge	1,2	1	1,0960	1,0000	2,9920	1,4560	5,8600	22,0336	0,0000	34,4376
niverge	1,2	xi	0,0318	0,0290	0,0869	0,0423	0,1702	0,6398	0,0000	
onverge	1,3	1	1,0960	1,0000	2,9920	1,4560	5,4092	20,3387	0,0000	32,2919
Jiireige	2,5	xi	0,0339	0,0310	0,0927	0,0451	0,1675	0,6298	0,0000	
nverge	1,4	1	1,0960	1,0000	2,9920	1,4560	5,0229	18,8859	0,0000	30,4528
		xi	0,0360	0,0328	0,0983	0,0478	0,1649	0,6202	0,0000	
onverge	1,5	1	1,0960	1,0000	2,9920	1,4560	4,6880	17,6269	0,0000	28,8589
		xi	0,0380	0,0347	0,1037	0,0505	0,1624	0,6108	0,0000	27.4642
nverge	1,6	1 xi	1,0960 0,0399	1,0000 0,0364	2,9920 0.1089	1,4560 0,0530	4,3950 0,1600	16,5252 0,6017	0,0000	27,4642
		1	1,0960	1,0000	2,9920	1,4560	4,1365	15,5531	0,0000	26,2336
onverge	1,7	xi	0,0418	0,0381	0,1141	0,0555	0,1577	0,5929	0,0000	20,2330
		1	1,0960	1,0000	2,9920	1,4560	3,9067	14,6891	0,0000	25,1397
onverge	1,8	xi	0,0436	0,0398	0,1190	0,0579	0,1554	0,5843	0,0000	
	1.0	1	1,0960	1,0000	2,9920	1,4560	3,7011	13,9160	0,0000	24,1610
onverge	1,9	xi	0,0454	0,0414	0,1238	0,0603	0,1532	0,5760	0,0000	
onverge	2,0	1	1,0960	1,0000	2,9920	1,4560	3,5160	13,2202	0,0000	23,2802
Dilverge	2,0	xi	0,0471	0,0430	0,1285	0,0625	0,1510	0,5679	0,0000	
onverge	2,1	1	1,0960	1,0000	2,9920	1,4560	3,3486	12,5906	0,0000	22,4832
	-,-	xi	0,0487	0,0445	0,1331	0,0648	0,1489	0,5600	0,0000	
nverge	2,2	1	1,0960	1,0000	2,9920	1,4560	3,1964	12,0183	0,0000	21,7587
ŭ		xi	0,0504	0,0460	0,1375	0,0669	0,1469	0,5523	0,0000	24
nverge	2,3	1	1,0960	1,0000	2,9920	1,4560	3,0574	11,4958	0,0000	21,0972
		xi 1	0,0520	0,0474	0,1418	0,0690	0,1449 2.9300	0,5449	0,0000	20,4908
onverge	2,4	xi	1,0960 0,0535	1,0000 0,0488	2,9920 0,1460	1,4560 0,0711	0,1430	11,0168 0,5376	0,0000	20,4908
		1	1,0960	1,0000	2,9920	1,4560	2,8128	10,5761	0,0000	19,9329
nverge	2,5	xi	0,0550	0,0502	0,1501	0,0730	0,1411	0,5306	0,0000	15,5323
		1	1,0960	1,0000	2,9920	1,4560	2,7046	10,1694	0,0000	19,4180
onverge	2,6	xi	0,0564	0,0515	0,1541	0,0750	0,1393	0,5237	0,0000	15,-1200

B.1.3. Eucalyptus Nitens

Tabla B.6: Fracciones molares de cada sustancia considerando una mezcla combustible de 75 % Metano y 25 % gas de síntesis de eucalyptus nitens. Fuente: elaboración propia.

			75-25	% vol Metano	o - Syngas Euco	alyptus Nitens				
	H ₂	0,0453	СО	0,0233	CH4	0,0395	CO ₂	0,041	I	
'										
				ducto de la ga	isificación en e	tapa 1-2		ire	Metano	
Estado	Ø	Sxngas	H2	CO	CH4	CO ₂	O ₂	N ₂	CH4	
					Moles de rea					Ntotal
	0,1	1	1,9442	1,0000	1,6953	1,7597	432,5751	1626,4824	19,1974	2084,6541
		xi	0,0009	0,0005	0,0008	0,0008	0,2075	0,7802	0,0092	
-	0,2	1	1,9442	1,0000	1,6953	1,7597	216,2876	813,2412	19,1974	1055,1253
		xi	0,0018	0,0009	0,0016	0,0017	0,2050	0,7708	0,0182	711 0401
-	0,3	1 xi	1,9442 0,0027	1,0000 0,0014	1,6953 0,0024	1,7597 0,0025	144,1917 0,2025	542,1608 0,7615	19,1974 0,0270	711,9491
		1	1,9442	1,0000	1,6953	1,7597	108,1438	406,6206	19,1974	540,3609
Converge	0,4	xi	0,0036	0,0019	0,0031	0,0033	0,2001	0,7525	0,0355	540,3609
		1	1,9442	1,0000	1,6953	1,7597	86,5150	325,2965	19,1974	437,4081
Converge	0,5	xi	0,0044	0,0023	0,0039	0,0040	0,1978	0,7437	0.0439	437,4081
		1	1,9442	1,0000	1,6953	1,7597	72,0959	271,0804	19,1974	368,7728
Converge	0,6	xi	0,0053	0,0027	0,0046	0,0048	0,1955	0,7351	0,0521	300,7720
		1	1,9442	1,0000	1,6953	1,7597	61,7964	232,3546	19,1974	319,7476
Converge	0,7	xi	0,0061	0,0031	0,0053	0,0055	0,1933	0,7267	0,0600	313,7470
	_	1	1,9442	1,0000	1,6953	1,7597	54,0719	203,3103	19,1974	282,9788
Converge	0,8	xi	0,0069	0,0035	0,0060	0,0062	0,1911	0,7185	0,0678	202,5700
		1	1,9442	1,0000	1,6953	1,7597	48,0639	180,7203	19,1974	254,3807
Converge	0,9	xi	0,0076	0,0039	0,0067	0,0069	0,1889	0,7104	0,0755	25 1,0001
_		1	1,9442	1,0000	1,6953	1,7597	43,2575	162,6482	19,1974	231,5023
Converge	1,0	xi	0,0084	0,0043	0,0073	0,0076	0,1869	0,7026	0,0829	
_		1	1,9442	1,0000	1,6953	1,7597	39,3250	147,8620	19,1974	212,7836
Converge	1,1	xi	0,0091	0,0047	0,0080	0,0083	0,1848	0,6949	0,0902	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	4.2	1	1,9442	1,0000	1,6953	1,7597	36,0479	135,5402	19,1974	197,1847
Converge	1,2	xi	0,0099	0,0051	0,0086	0,0089	0,1828	0,6874	0,0974	, i
C	1.2	1	1,9442	1,0000	1,6953	1,7597	33,2750	125,1140	19,1974	183,9856
Converge	1,3	xi	0,0106	0,0054	0,0092	0,0096	0,1809	0,6800	0,1043	
Canuaraa	1,4	1	1,9442	1,0000	1,6953	1,7597	30,8982	116,1773	19,1974	172,6721
Converge	1,4	xi	0,0113	0,0058	0,0098	0,0102	0,1789	0,6728	0,1112	
Converge	1,5	1	1,9442	1,0000	1,6953	1,7597	28,8383	108,4322	19,1974	162,8671
Converge	1,5	xi	0,0119	0,0061	0,0104	0,0108	0,1771	0,6658	0,1179	
Converge	1,6	1	1,9442	1,0000	1,6953	1,7597	27,0359	101,6552	19,1974	154,2877
23	2,0	xi	0,0126	0,0065	0,0110	0,0114	0,1752	0,6589	0,1244	
Converge	1,7	1	1,9442	1,0000	1,6953	1,7597	25,4456	95,6754	19,1974	146,7176
	-,-	xi	0,0133	0,0068	0,0116	0,0120	0,1734	0,6521	0,1308	
Converge	1,8	1	1,9442	1,0000	1,6953	1,7597	24,0320	90,3601	19,1974	139,9887
	,	xi	0,0139	0,0071	0,0121	0,0126	0,1717	0,6455	0,1371	
Converge	1,9	1	1,9442	1,0000	1,6953	1,7597	22,7671	85,6043	19,1974	133,9680
		xi 4	0,0145	0,0075	0,0127	0,0131	0,1699	0,6390	0,1433	120 5101
Converge	2,0	1	1,9442	1,0000	1,6953	1,7597	21,6288	81,3241	19,1974	128,5494
		xi 1	0,0151	0,0078	0,0132	0,0137	0,1683	0,6326	0,1493	122 6462
Converge	2,1	1 xi	1,9442 0,0157	1,0000 0,0081	1,6953 0,0137	1,7597 0,0142	20,5988	77,4515 0,6264	19,1974 0,1553	123,6469
			1,9442				0,1666		19,1974	119,1901
Converge	2,2	1 xi	0,0163	1,0000 0,0084	1,6953 0,0142	1,7597 0,0148	19,6625 0,1650	73,9310 0,6203	0,1611	119,1901
		1	1,9442	1,0000	1,6953	1,7597	18,8076	70,7166		115,1208
Converge	2,3	xi	0,0169	0,0087	0,0147	0,0153	0,1634	0,6143	19,1974 0,1668	115,1208
		1	1,9442	-		1,7597		67,7701	19,1974	111 2006
Converge	2,4	xi	0,0175	1,0000 0,0090	1,6953 0,0152	0,0158	18,0240 0,1618	0,6084	0,1723	111,3906
		1	1.9442	1,0000	1,6953	1,7597	17,3030	65,0593	19,1974	107.9589
Converge	2,5	xi	0,0180	0,0093	0,0157	0,0163	0,1603	0,6026	0,1778	107,9589
		1	1,9442	1,0000	1,6953	1,7597	16,6375	62,5570	19,1974	104,7911
lo converge	2,6	xi	0,0186	0,0095	0,0162	0,0168	0,1588	0,5970	0,1832	104,/911

Tabla B.7: Fracciones molares de cada sustancia considerando una mezcla combustible de 50 % Metano y 50 % gas de síntesis de eucalyptus nitens. Fuente: elaboración propia.

			50-50	% vol Metano	o - Syngas Euco	alyptus Nitens				
	H ₂	0,0453	СО	0,0233	CH4	0,0395	CO ₂	0,041	İ	
				, , , , , , , , , , , , , , , , , , , ,				,		
			Gas pro	ducto de la ga	sificación en e	tapa 1-2	A	ire	Metano	ĺ
Estado	Ø	Sxngas	H ₂	СО	CH4	CO ₂	O ₂	N ₂	CH4	
					Moles de rea	ctantes (ni)				Ntotal
	0,1	1	1,9442	1,0000	1,6953	1,7597	176,6266	664,1161	6,4000	853,5418
-	0,1	xi	0,0023	0,0012	0,0020	0,0021	0,2069	0,7781	0,0075	
	0,2	1	1,9442	1,0000	1,6953	1,7597	88,3133	332,0580	6,4000	433,1705
-	0,2	xi	0,0045	0,0023	0,0039	0,0041	0,2039	0,7666	0,0148	1
_	0,3	1	1,9442	1,0000	1,6953	1,7597	58,8755	221,3720	6,4000	293,0467
-	0,5	xi	0,0066	0,0034	0,0058	0,0060	0,2009	0,7554	0,0218	
Converge	0,4	1	1,9442	1,0000	1,6953	1,7597	44,1567	166,0290	6,4000	222,9848
converge	0,4	xi	0,0087	0,0045	0,0076	0,0079	0,1980	0,7446	0,0287	<u> </u>
Converge	0,5	1	1,9442	1,0000	1,6953	1,7597	35,3253	132,8232	6,4000	180,9477
Joniverge	0,5	xi	0,0107	0,0055	0,0094	0,0097	0,1952	0,7340	0,0354	
Converge	0,6	1	1,9442	1,0000	1,6953	1,7597	29,4378	110,6860	6,4000	152,9229
Jonveige	0,0	xi	0,0127	0,0065	0,0111	0,0115	0,1925	0,7238	0,0419	
Converge	0.7	1	1,9442	1,0000	1,6953	1,7597	25,2324	94,8737	6,4000	132,9052
Converge	0,7	xi	0,0146	0,0075	0,0128	0,0132	0,1899	0,7138	0,0482	
Converge	0,8	1	1,9442	1,0000	1,6953	1,7597	22,0783	83,0145	6,4000	117,8920
Lonverge	0,8	xi	0,0165	0,0085	0,0144	0,0149	0,1873	0,7042	0,0543	
	0.0	1	1,9442	1,0000	1,6953	1,7597	19,6252	73,7907	6,4000	106,2150
Converge	0,9	xi	0,0183	0,0094	0,0160	0,0166	0,1848	0,6947	0,0603	
Converge	1,0	1	1,9442	1,0000	1,6953	1,7597	17,6627	66,4116	6,4000	96,8734
Lonverge	1,0	xi	0,0201	0,0103	0,0175	0,0182	0,1823	0,6856	0,0661	
Converge	1,1	1	1,9442	1,0000	1,6953	1,7597	16,0570	60,3742	6,4000	89,2303
Lonverge	1,1	xi	0,0218	0,0112	0,0190	0,0197	0,1799	0,6766	0,0717	
Converge	1,2	1	1,9442	1,0000	1,6953	1,7597	14,7189	55,3430	6,4000	82,8610
Lonverge	1,2	xi	0,0235	0,0121	0,0205	0,0212	0,1776	0,6679	0,0772	
Converge	1,3	1	1,9442	1,0000	1,6953	1,7597	13,5867	51,0859	6,4000	77,4717
converge	1,5	xi	0,0251	0,0129	0,0219	0,0227	0,1754	0,6594	0,0826	<u> </u>
Converge	1,4	1	1,9442	1,0000	1,6953	1,7597	12,6162	47,4369	6,4000	72,8522
Converge	1,4	xi	0,0267	0,0137	0,0233	0,0242	0,1732	0,6511	0,0878	l
Converge	1,5	1	1,9442	1,0000	1,6953	1,7597	11,7751	44,2744	6,4000	68,8487
converge	1,5	xi	0,0282	0,0145	0,0246	0,0256	0,1710	0,6431	0,0930	<u> </u>
Converge	1,6	1	1,9442	1,0000	1,6953	1,7597	11,0392	41,5073	6,4000	65,3456
-circige	1,0	xi	0,0298	0,0153	0,0259	0,0269	0,1689	0,6352	0,0979	
Converge	1,7	1	1,9442	1,0000	1,6953	1,7597	10,3898	39,0657	6,4000	62,2546
	±,·	xi	0,0312	0,0161	0,0272	0,0283	0,1669	0,6275	0,1028	
Converge	1,8	1	1,9442	1,0000	1,6953	1,7597	9,8126	36,8953	6,4000	59,5071
	1,0	xi	0,0327	0,0168	0,0285	0,0296	0,1649	0,6200	0,1076	
Converge	1,9	1	1,9442	1,0000	1,6953	1,7597	9,2961	34,9535	6,4000	57,0488
	-,-	xi	0,0341	0,0175	0,0297	0,0308	0,1630	0,6127	0,1122	
Converge	2,0	1	1,9442	1,0000	1,6953	1,7597	8,8313	33,2058	6,4000	54,8363
	-,-	xi	0,0355	0,0182	0,0309	0,0321	0,1610	0,6055	0,1167	
Converge	2,1	1	1,9442	1,0000	1,6953	1,7597	8,4108	31,6246	6,4000	52,8345
0-		xi	0,0368	0,0189	0,0321	0,0333	0,1592	0,5986	0,1211	——
Converge	2,2	1	1,9442	1,0000	1,6953	1,7597	8,0285	30,1871	6,4000	51,0147
	,	xi	0,0381	0,0196	0,0332	0,0345	0,1574	0,5917	0,1255	
Converge	2,3	1	1,9442	1,0000	1,6953	1,7597	7,6794	28,8746	6,4000	49,3532
	_,5	xi	0,0394	0,0203	0,0343	0,0357	0,1556	0,5851	0,1297	
Converge	2,4	1	1,9442	1,0000	1,6953	1,7597	7,3594	27,6715	6,4000	47,8301
	-,.	xi	0,0406	0,0209	0,0354	0,0368	0,1539	0,5785	0,1338	
Converge	2,5	1	1,9442	1,0000	1,6953	1,7597	7,0651	26,5646	6,4000	46,4288
	2,5	xi	0,0419	0,0215	0,0365	0,0379	0,1522	0,5722	0,1378	
Converge	2,6	1	1,9442	1,0000	1,6953	1,7597	6,7933	25,5429	6,4000	45,1354
gc	_,0	xi	0,0431	0,0222	0,0376	0,0390	0,1505	0,5659	0,1418	i

Tabla B.8: Fracciones molares de cada sustancia considerando una mezcla combustible de 25 % Metano y 75 % gas de síntesis de eucalyptus nitens. Fuente: elaboración propia.

			25-75	% vol Metano	- Syngas Euco	alyptus Nitens					
	H2	0,0453	CO	0,0233	CH4	0,0395	CO ₂	0,041]		
_			_								
Frends	a		Gas pro	ducto de la ga	sificación en e CH4	tapa 1-2 CO ₂	O ₂	ire N2	Metano CH4		
Estado	Ø	Sxngas	П2	СО	Moles de rea		O2	INZ	CH4	Ntotal	Т
		1	1,9442	1,0000	1,6953	1,7597	91,2876	343,2412	2,1330	443,0609	٠
-	0,1	xi	0,0044	0,0023	0,0038	0,0040	0,2060	0,7747	0,0048	443,0003	
		1	1,9442	1,0000	1,6953	1,7597	45,6438	171,6206	2,1330	225,7966	
-	0,2	xi	0,0086	0,0044	0,0075	0,0078	0,2021	0,7601	0,0094	223,7300	
		1	1,9442	1,0000	1,6953	1,7597	30,4292	114,4137	2,1330	153,3751	
-	0,3	xi	0,0127	0,0065	0,0111	0,0115	0,1984	0,7460	0,0139		
_		1	1,9442	1,0000	1,6953	1,7597	22,8219	85,8103	2,1330	117,1644	
Converge	0,4	xi	0,0166	0,0085	0,0145	0,0150	0,1948	0,7324	0,0182		
_		1	1,9442	1,0000	1,6953	1,7597	18,2575	68,6482	2,1330	95,4379	
Converge	0,5	xi	0,0204	0,0105	0,0178	0,0184	0,1913	0,7193	0,0224		
_		1	1,9442	1,0000	1,6953	1,7597	15,2146	57,2069	2,1330	80,9536	
Converge	0,6	xi	0,0240	0,0124	0,0209	0,0217	0,1879	0,7067	0,0263		
_		1	1.9442	1.0000	1.6953	1.7597	13.0411	49.0345	2.1330	70,6077	
Converge	0,7	xi	0,0275	0,0142	0,0240	0,0249	0,1847	0,6945	0,0302	,	
_		1	1,9442	1,0000	1,6953	1,7597	11,4109	42,9052	2,1330	62,8483	
Converge	0,8	xi	0,0309	0,0159	0,0270	0,0280	0,1816	0,6827	0,0339	,- :	
_		1	1,9442	1,0000	1,6953	1,7597	10,1431	38,1379	2,1330	56,8132	
Converge	0,9	xi	0,0342	0,0176	0,0298	0,0310	0,1785	0,6713	0,0375	,	
-		1	1,9442	1,0000	1,6953	1,7597	9,1288	34,3241	2,1330	51,9851	
Converge	1,0	xi	0,0374	0,0192	0,0326	0,0338	0,1756	0,6603	0,0410		
_		1	1,9442	1,0000	1,6953	1,7597	8,2989	31,2037	2,1330	48,0348	
Converge	1,1	xi	0,0405	0,0208	0,0353	0,0366	0,1728	0,6496	0,0444		
_	4.2	1	1,9442	1,0000	1,6953	1,7597	7,6073	28,6034	2,1330	44,7429	
Converge	1,2	xi	0,0435	0,0223	0,0379	0,0393	0,1700	0,6393	0,0477		
_	4.2	1	1,9442	1,0000	1,6953	1,7597	7,0221	26,4032	2,1330	41,9575	
Converge	1,3	xi	0,0463	0,0238	0,0404	0,0419	0,1674	0,6293	0,0508		
6		1	1,9442	1,0000	1,6953	1,7597	6,5205	24,5172	2,1330	39,5700	
Converge	1,4	xi	0,0491	0,0253	0,0428	0,0445	0,1648	0,6196	0,0539		
C	1.5	1	1,9442	1,0000	1,6953	1,7597	6,0858	22,8827	2,1330	37,5008	
Converge	1,5	xi	0,0518	0,0267	0,0452	0,0469	0,1623	0,6102	0,0569		
Camuazaa	1.6	1	1,9442	1,0000	1,6953	1,7597	5,7055	21,4526	2,1330	35,6902	
Converge	1,6	xi	0,0545	0,0280	0,0475	0,0493	0,1599	0,6011	0,0598		
Converge	1,7	1	1,9442	1,0000	1,6953	1,7597	5,3699	20,1907	2,1330	34,0927	
Converge	1,/	xi	0,0570	0,0293	0,0497	0,0516	0,1575	0,5922	0,0626		
Converge	1,8	1	1,9442	1,0000	1,6953	1,7597	5,0715	19,0690	2,1330	32,6727	
Converge	1,0	xi	0,0595	0,0306	0,0519	0,0539	0,1552	0,5836	0,0653		
Converge	1,9	1	1,9442	1,0000	1,6953	1,7597	4,8046	18,0653	2,1330	31,4021	
201110180	1,5	xi	0,0619	0,0318	0,0540	0,0560	0,1530	0,5753	0,0679		
Converge	2,0	1	1,9442	1,0000	1,6953	1,7597	4,5644	17,1621	2,1330	30,2586	
	-,-	xi	0,0643	0,0330	0,0560	0,0582	0,1508	0,5672	0,0705		
Converge	2,1	1	1,9442	1,0000	1,6953	1,7597	4,3470	16,3448	2,1330	29,2240	
	-,-	xi	0,0665	0,0342	0,0580	0,0602	0,1487	0,5593	0,0730	\Box	
Converge	2,2	1	1,9442	1,0000	1,6953	1,7597	4,1494	15,6019	2,1330	28,2835	
	-,-	xi	0,0687	0,0354	0,0599	0,0622	0,1467	0,5516	0,0754	igsquare	
Converge	2,3	1	1,9442	1,0000	1,6953	1,7597	3,9690	14,9235	2,1330	27,4247	
	-,-	xi	0,0709	0,0365	0,0618	0,0642	0,1447	0,5442	0,0778		
Converge	2,4	1	1,9442	1,0000	1,6953	1,7597	3,8036	14,3017	2,1330	26,6376	
	-,.	xi	0,0730	0,0375	0,0636	0,0661	0,1428	0,5369	0,0801	oxdot	
Converge	2,5	1	1,9442	1,0000	1,6953	1,7597	3,6515	13,7296	2,1330	25,9133	
5. 50	-,-	xi	0,0750	0,0386	0,0654	0,0679	0,1409	0,5298	0,0823	\Box	
Converge	2,6	1	1,9442	1,0000	1,6953	1,7597	3,5111	13,2016	2,1330	25,2448	
	_,0	xi	0,0770	0,0396	0,0672	0,0697	0,1391	0,5229	0,0845		

Tabla B.9: Fracciones molares de cada sustancia considerando una mezcla combustible de 0 % Metano y 100 % gas de síntesis de eucalyptus nitens. Fuente: elaboración propia.

			0-100	0% vol Metano	- Sxngas Euco	lyptus Nitens					
	H2	0,0453	CO	0,0233	CH4	0,0395	CO ₂	0,041]		
_			_							1	
F. 1	<u> </u>		Gas pro	ducto de la ga	sificación en e CH4	tapa 1-2 CO ₂	O ₂	ire N2	Metano CH4		
Estado	Ø	Sxngas	H2	СО			02	IN2	CH4	Ntotal	Т
		 	1,9442	1,0000	Moles de rea	1,7597	48,6266	182,8361	0.0000	237,8618	
-	0,1	1	-						0,0000	237,8618	
		xi	0,0082	0,0042	0,0071	0,0074	0,2044	0,7687	0,0000	422 4205	
-	0,2	1	1,9442 0,0159	1,0000 0,0082	1,6953 0,0139	1,7597 0,0144	24,3133 0,1991	91,4180 0,7485	0,0000	122,1305	
		xi 1	1,9442	1,0000	1,6953	1,7597	16,2089	60,9454	_	02 5524	
-	0,3		0,0233	0,0120	0,0203	0,0211	0,1940	0,7294	0,0000	83,5534	
		xi 1	1,9442	1,0000	1,6953	1,7597	12,1567	45,7090	0,0000	64,2648	
Converge	0,4	xi xi	0,0303	0,0156	0,0264	0,0274	0,1892	0,7113		64,2648	
		1	1,9442	1,0000	1,6953	1,7597	9,7253	36,5672	0,0000	52,6917	
Converge	0,5	xi	0,0369	0,0190	0,0322	0,0334	0,1846	0,6940	0,0000	32,0917	
		1	1,9442	1,0000	1,6953	1,7597	8,1044	30,4727	0,0000	44,9763	
Converge	0,6			_						44,9763	
		Xi	0,0432	0,0222	0,0377	0,0391	0,1802	0,6775	0,0000	20.4652	
Converge	0,7	1	1,9442	1,0000 0,0253	1,6953 0,0430	1,7597 0,0446	6,9467	26,1194	0,0000	39,4652	
		xi	0,0493				0,1760	0,6618		25 2220	
Converge	0,8	1 xi	1,9442 0,0550	1,0000 0,0283	1,6953 0,0480	1,7597 0,0498	6,0783 0,1720	22,8545 0,6469	0,0000	35,3320	
							-			22 1172	
Converge	0,9	1 xi	1,9442 0,0605	1,0000 0,0311	1,6953 0,0528	1,7597 0,0548	5,4030 0,1682	20,3151 0,6325	0,0000	32,1172	
		1	1,9442		1,6953	1,7597	4,8627	18,2836		20 5454	
Converge	1,0	xi	0,0658	1,0000 0,0338	0,0574	0,0596	0,1646	0,6188	0,0000	29,5454	
		1	1,9442			1,7597	4,4206	16,6215		27,4412	
Converge	1,1	xi	0,0708	1,0000 0,0364	1,6953 0,0618	0,0641	0,1611	0,6057	0,0000	27,4412	
+		1	1,9442	1,0000	1,6953	1,7597	4,0522	15,2363		25 6977	
Converge	1,2	xi	0,0757	0,0389	0,0660	0,0685	0,1577	0,5931	0,0000	25,6877	
		1	1,9442	1,0000	1,6953	1,7597	3,7405	14,0643	0,0000	24,2040	
Converge	1,3	xi	0,0803	0,0413	0,0700	0,0727	0,1545	0,5811	0,0000	24,2040	
		1	1,9442	1,0000	1,6953	1,7597	3,4733	13,0597	0,0000	22,9322	
Converge	1,4	xi xi	0,0848	0,0436	0,0739	0,0767	0,1515	0,5695	0,0000	22,9322	
		1	1,9442	1,0000	1,6953	1,7597	3,2418	12,1891	0,0000	21,8300	
Converge	1,5	xi	0,0891	0,0458	0,0777	0,0806	0,1485	0,5584	0,0000	21,6300	
		1	1,9442	1,0000	1,6953	1,7597	3,0392	11,4273	0,0000	20,8656	
Converge	1,6	xi	0,0932	0,0479	0,0812	0,0843	0,1457	0,5477	0,0000	20,8636	
		1	1,9442	1,0000	1,6953	1,7597	2,8604	10,7551	0,0000	20,0146	
Converge	1,7	xi	0,0971	0,0500	0,0847	0,0879	0,1429	0,5374	0,0000	20,0140	
		1	1,9442	1,0000	1,6953	1,7597	2,7015	10,1576	0,0000	19,2582	
Converge	1,8	xi	0,1010	0,0519	0,0880	0,0914	0,1403	0,5274	0,0000	19,2382	
		1	1,9442	1,0000	1,6953	1,7597	2,5593	9,6230	0,0000	18,5814	
Converge	1,9	xi	0,1046	0,0538	0,0912	0,0947	0,1377	0,5179	0,0000	10,3014	
		1	1,9442	1,0000	1,6953	1,7597	2,4313	9,1418	0,0000	17,9723	
Converge	2,0	xi	0,1082	0,0556	0,0943	0,0979	0,1353	0,5087	0,0000	17,5723	
		1	1,9442	1,0000	1,6953	1,7597	2,3156	8,7065	0,0000	17,4212	
Converge	2,1	xi	0,1116	0,0574	0,0973	0,1010	0,1329	0,4998	0,0000	17,4212	
		1	1,9442	1,0000	1,6953	1,7597	2,2103	8,3107	0,0000	16,9202	
Converge	2,2	xi	0,1149	0,0591	0,1002	0,1040	0,1306	0,4912	0,0000	10,5202	
		1	1,9442	1,0000	1,6953	1,7597	2,1142	7,9494	0,0000	16,4627	
Converge	2,3	xi	0,1181	0,0607	0,1030	0,1069	0,1284	0,4829	0,0000	10,4027	
		1	1,9442	1,0000	1,6953	1,7597	2,0261	7,6182	0,0000	16,0434	
Converge	2,4	xi	0,1212	0,0623	0,1057	0,1097	0,1263	0,4748	0,0000	10,0434	
		1	1,9442	1,0000	1,6953	1,7597	1,9451	7,3134	0,0000	15,6576	
Converge	2,5	xi	0,1242	0,0639	0,1083	0,1124	0,1242	0,4671	0,0000	13,0370	
-		1	1,9442	1,0000	1,6953	1,7597	1,8703	7,0322	0,0000	15,3016	
Converge	2,6	xi xi	0,1271	0,0654	0,1108	0,1150	0,1222	0,4596	0,0000	13,3010	

C | Anexo III

C.1. Resultados de simulaciones

C.1.1. Línea base

Tabla C.1: Resultados obtenidos para una mezcla 100 % metano. Fuente: Elaboración propia

ф	Ts	Tg	Vf	H2	02	H2O	CH4	СО	CO2	C2H2	C2H4	N2	Conv H2	H/C	Conv CO	EROI
0,3	1287	1344	1,7,E-03	4,9E-08	0,1426	0,0611	1,66E-16	1,03E-05	0,03054	2,78E-14	4,85E-20	0,7658				
0,4	1304	1381	4,6,E-04	2,68E-08	0,121	0,08064	3,27E-18	2,95E-06	0,04032	1,03E-14	1,27E-22	0,7581	0,0%	0,009068	0,0%	0%
0,5	1317	1413	-6,2,E-04	3,37E-08	0,0998	0,0998	2,49E-18	1,53E-06	0,0499	4,78E-15	6,4E-23	0,7505	0,0%	0,02206	0,0%	0%
0,6	1325	1443	-1,7,E-03	4,73E-08	0,07905	0,1186	1,89E-18	1,01E-06	0,05929	1,98E-15	4,05E-23	0,7431	0,0%	0,046785	0,0%	0%
0,7	1331	1472	-2,7,E-03	7,22E-08	0,05871	0,137	1,44E-18	7,8E-07	0,06849	5,42E-16	2,07E-23	0,7358	0,0%	0,092572	0,0%	0%
0,8	1343	1506	-3,6,E-03	1,3E-07	0,03876	0,155	1,01E-18	6,79E-07	0,07752	5,11E-17	4,31E-24	0,7287	0,0%	0,191696	0,0%	0%
0,9	1375	1552	-4,3,E-03	4,34E-07	0,01919	0,1727	1,42E-19	1,03E-06	0,08637	1,79E-19	7,8E-26	0,7217	0,0%	0,423197	0,0%	0%
1,0	1443	1612	-4,5,E-03	0,000385	0,000351	0,1896	7,01E-19	0,000381	0,09464	2,23E-26	2,43E-26	0,7145	0,2%	1,01077	0,4%	0%
1,1	1474	1672	-3,9,E-03	0,01876	2,03E-08	0,1846	1,45E-12	0,01825	0,08341	1,88E-13	5,51E-15	0,695	9,1%	1,027945	17,6%	12%
1,2	1521	1725	-3,1,E-03	0,03691	3,44E-09	0,1789	2,51E-09	0,03504	0,07287	5,46E-09	2,15E-10	0,6762	16,5%	1,053368	31,3%	21%
1,3	1556	1744	-2,4,E-03	0,05024	3,76E-07	0,177	0,000177	0,05289	0,06034	0,000251	7,81E-06	0,6591	20,9%	0,949896	44,0%	28%
1,4	1573	1737	-1,9,E-03	0,0576	1,28E-05	0,1774	0,001928	0,06365	0,05134	0,00165	5,04E-05	0,6463	22,5%	0,904949	49,6%	33%
1,5	1584	1730	-1,5,E-03	0,06629	1,87E-05	0,1758	0,0038	0,07054	0,04558	0,003214	0,000107	0,6346	24,4%	0,93975	51,8%	36%
1,6	1591	1723	-1,2,E-03	0,07461	2,23E-05	0,174	0,005797	0,0757	0,04105	0,004897	0,000179	0,6238	25,9%	0,985601	52,6%	38%
1,7	1597	1718	-8,6,E-04	0,0825	2,48E-05	0,172	0,007905	0,07967	0,03735	0,006629	0,000263	0,6137	27,2%	1,035522	52,6%	40%
1,8	1601	1713	-5,6,E-04	0,0899	2,7E-05	0,17	0,01012	0,08275	0,03428	0,008365	0,000358	0,6042	28,3%	1,086405	52,0%	42%
1,9	1604	1708	-2,7,E-04	0,09683	2,96E-05	0,168	0,01244	0,08518	0,03166	0,01008	0,000462	0,5953	29,1%	1,136769	51,2%	43%
2,0	1606	1703	-5,3,E-06	0,1033	3,25E-05	0,1661	0,01487	0,0871	0,02941	0,01175	0,000576	0,5868	29,8%	1,185993	50,2%	44%
2,1	1608	1699	2,4,E-04	0,1094	3,6E-05	0,1643	0,0174	0,08861	0,02745	0,01337	0,000696	0,5788	30,3%	1,234624	49,0%	45%
2,2	1609	1695	4,9,E-04	0,1151	3,99E-05	0,1624	0,02001	0,08981	0,02572	0,01493	0,000822	0,5711	30,7%	1,281594	47,8%	46%
2,3	1610	1692	7,3,E-04	0,1204	4,44E-05	0,1607	0,02271	0,09074	0,02419	0,01643	0,000955	0,5638	30,9%	1,326868	46,6%	47%
2,4	1611	1688	9,7,E-04	0,1254	4,97E-05	0,159	0,02549	0,09145	0,02283	0,01785	0,001091	0,5568	31,1%	1,371241	45,4%	47%

C.1.2. Pino Radiata

Tabla C.2: Resultados obtenidos para una mezcla 25 % syngas de pino y 75 % metano. Fuente: Elaboración propia

Ø	Ts	Tg	Vf	H2	02	H2O	CH4	CO	CO2	C2H2	C2H4	N2	Conv H2	H/C	Conv CO	EROI
0,4	1297	1372	0,000415	2,82E-08	0,1206	0,08044	2,86E-18	3,41E-06	0,04347	8,84E-15	1,3E-22	0,7555	0,0%	0,008269	0,0%	0%
0,5	1310	1405	-0,00067	3,47E-08	0,09933	0,09953	2,12E-18	1,77E-06	0,05382	4,13E-15	5,91E-23	0,7473	0,0%	0,019604	0,0%	0%
0,6	1317	1434	-0,00172	4,79E-08	0,07866	0,1181	1,62E-18	1,18E-06	0,06387	1,74E-15	3,73E-23	0,7394	0,0%	0,040593	0,0%	0%
0,7	1324	1463	-0,00273	7,21E-08	0,05853	0,1362	1,22E-18	9,11E-07	0,07372	4,92E-16	1,9E-23	0,7315	0,0%	0,079107	0,0%	0%
0,8	1336	1497	-0,00367	1,29E-07	0,03858	0,1541	8,06E-19	7,84E-07	0,08339	4,68E-17	4,04E-24	0,7239	0,0%	0,164329	0,0%	0%
0,9	1368	1543	-0,00436	3,92E-07	0,01902	0,1717	9,55E-20	1,04E-06	0,09296	1,41E-19	5,81E-26	0,7164	0,0%	0,376442	0,0%	0%
1,0	1434	1601	-0,00454	0,000386	0,000325	0,1883	9,1E-19	0,000402	0,1018	1,62E-23	2,1E-24	0,7087	0,2%	0,960687	0,4%	0%
1,1	1464	1660	-0,00396	0,01803	1,96E-08	0,1837	1,43E-12	0,01868	0,0905	1,27E-13	4,21E-15	0,689	8,8%	0,965203	16,9%	12%
1,2	1510	1713	-0,00315	0,03523	3,24E-09	0,1788	1,2E-09	0,03592	0,0799	2,67E-09	1,19E-10	0,6701	15,9%	0,980791	30,1%	21%
1,3	1547	1737	-0,00246	0,05033	1,72E-09	0,1752	3,83E-05	0,0531	0,06881	7,43E-05	3,17E-06	0,6523	21,3%	0,947834	41,4%	29%
1,4	1566	1731	-0,00196	0,05572	1,26E-05	0,1777	0,001639	0,06643	0,05788	0,001379	4,5E-05	0,6392	22,1%	0,838778	48,6%	33%
1,5	1577	1723	-0,00156	0,06406	2,03E-05	0,1763	0,003456	0,07407	0,05209	0,002835	0,000101	0,627	23,9%	0,864858	51,1%	36%
1,6	1585	1716	-0,00121	0,07211	2,48E-05	0,1746	0,005393	0,07978	0,04761	0,004406	0,000171	0,6159	25,5%	0,903861	52,1%	39%
1,7	1590	1711	-0,00088	0,07973	2,81E-05	0,1728	0,007441	0,0842	0,04401	0,006027	0,000253	0,6055	26,8%	0,946912	52,3%	41%
1,8	1595	1705	-0,00058	0,08686	3,11E-05	0,171	0,009596	0,0877	0,04111	0,007651	0,000346	0,5957	27,9%	0,990422	52,0%	43%
1,9	1598	1701	-0,00029	0,0936	3,42E-05	0,1691	0,01187	0,09049	0,03864	0,009267	0,00045	0,5866	28,7%	1,034368	51,3%	44%
2,0	1600	1696	-2,2E-05	0,09988	3,76E-05	0,1673	0,01423	0,09277	0,03663	0,01084	0,000561	0,5778	29,4%	1,076641	50,4%	45%
2,1	1602	1692	0,000244	0,1059	4,17E-05	0,1654	0,01674	0,09458	0,03482	0,01239	0,000682	0,5695	30,0%	1,119687	49,4%	46%
2,2	1603	1688	0,000488	0,1114	4,61E-05	0,1636	0,01927	0,09605	0,03336	0,01384	0,000805	0,5616	30,4%	1,159813	48,4%	47%
2,3	1604	1685	0,000729	0,1165	5,15E-05	0,1619	0,02192	0,09724	0,03206	0,01525	0,000936	0,5541	30,7%	1,198067	47,3%	48%
2,4	1605	1681	0,000955	0,1213	5,76E-05	0,1602	0,02462	0,09819	0,03098	0,01657	0,001068	0,547	30,9%	1,23536	46,2%	49%
2,5	1605	1678	0,001178	0,1258	6,48E-05	0,1585	0,02744	0,0989	0,03001	0,01784	0,001206	0,5402	31,0%	1,271992	45,1%	49%
2,6	1605	1675	0,001391	0,13	7,29E-05	0,1569	0,03032	0,0995	0,02919	0,01903	0,001344	0,5336	31,1%	1,306533	44,0%	50%

Tabla C.3: Resultados obtenidos para una mezcla 50 % syngas de pino y 50 % metano. Fuente: Elaboración propia

ø	Ts	Tg	Vf	H2	02	H2O	CH4	co	CO2	C2H2	C2H4	N2	Conv H2	H2/CO	Conv CO	EROI
0,4	1289	1362	0,000351	3,03E-08	0,1199	0,08022	2,42E-18	4,04E-06	0,04779	7,12E-15	1,36E-22	0,752	0,0%	0,007487	0,0%	0%
0,5	1301	1394	-0,00073	3,62E-08	0,09876	0,09911	1,73E-18	2,14E-06	0,0589	3,41E-15	5,41E-23	0,7432	0,0%	0,016927	0,0%	0%
0,6	1309	1423	-0,00177	4,9E-08	0,07822	0,1174	1,33E-18	1,43E-06	0,06982	1,46E-15	3,35E-23	0,7345	0,0%	0,034252	0,0%	0%
0,7	1315	1452	-0,00279	7,32E-08	0,05791	0,1355	9,8E-19	1,11E-06	0,08057	4,2E-16	1,39E-23	0,7261	0,0%	0,066166	0,0%	0%
0,8	1327	1486	-0,00372	1,29E-07	0,03819	0,1531	6,18E-19	9,44E-07	0,09101	4,29E-17	3,94E-24	0,7177	0,0%	0,136489	0,0%	0%
0,9	1358	1530	-0,0044	3,85E-07	0,01886	0,1703	6,99E-20	1,19E-06	0,1013	1,51E-19	6,87E-27	0,7096	0,0%	0,322838	0,0%	0%
1,0	1423	1586	-0,00457	0,000374	0,0003284	0,1866	1,01E-18	0,000419	0,1108	1,79E-25	1,23E-26	0,7014	0,2%	0,892627	0,4%	0%
1,1	1452	1642	-0,00399	0,0171	2,186E-08	0,1827	1,41E-12	0,01914	0,09964	9,33E-14	3,37E-15	0,6814	8,5%	0,893417	16,0%	12%
1,2	1498	1696	-0,00317	0,03345	3,493E-09	0,1784	6,56E-10	0,03719	0,08885	1,52E-09	7,34E-11	0,662	15,4%	0,899435	28,8%	21%
1,3	1535	1724	-0,00248	0,04902	1,043E-09	0,1741	4,02E-06	0,05355	0,07913	8,28E-06	4,38E-07	0,6441	21,1%	0,915406	38,7%	29%
1,4	1556	1719	-0,00195	0,0533	0,00001286	0,1779	0,001331	0,06972	0,06652	0,001097	3,72E-05	0,63	21,5%	0,764487	47,4%	33%
1,5	1568	1711	-0,00155	0,06119	0,00002352	0,1769	0,003063	0,07812	0,0606	0,00241	8,84E-05	0,6176	23,3%	0,783282	50,1%	37%
1,6	1575	1704	-0,00119	0,06888	0,00003025	0,1755	0,004925	0,08454	0,05621	0,00384	0,000153	0,6059	24,9%	0,814762	51,4%	40%
1,7	1581	1697	-0,00086	0,07626	0,00003544	0,1738	0,006935	0,08962	0,0527	0,005339	0,000231	0,595	26,3%	0,850926	51,9%	42%
1,8	1585	1692	-0,00056	0,08307	0,00004	0,172	0,009026	0,09362	0,04999	0,006823	0,000318	0,5851	27,3%	0,88731	51,8%	44%
1,9	1588	1687	-0,00028	0,08961	0,00004462	0,1703	0,01126	0,09683	0,0477	0,008312	0,000415	0,5755	28,2%	0,925436	51,3%	45%
2,0	1590	1683	-6,3E-06	0,09564	0,00004957	0,1684	0,01358	0,09952	0,04595	0,009753	0,00052	0,5665	28,9%	0,961013	50,6%	46%
2,1	1592	1679	0,000253	0,1014	0,0000551	0,1666	0,01602	0,1017	0,04445	0,01116	0,000632	0,558	29,5%	0,99705	49,8%	47%
2,2	1594	1675	0,000495	0,1066	0,00006123	0,1649	0,01851	0,1035	0,04328	0,01249	0,000748	0,5499	29,9%	1,029952	48,9%	48%
2,3	1594	1672	0,000729	0,1116	0,00006817	0,1631	0,02109	0,1049	0,04233	0,01376	0,000868	0,5422	30,3%	1,06387	47,9%	49%
2,4	1595	1668	0,000951	0,1162	0,00007605	0,1614	0,02375	0,1062	0,04159	0,01497	0,000993	0,5348	30,5%	1,094162	46,9%	50%
2,5	1595	1665	0,001167	0,1205	0,00008488	0,1597	0,02649	0,1072	0,04094	0,01612	0,00112	0,5278	30,7%	1,124067	45,9%	51%
2,6	1595	1662	0,001376	0,1246	0,00009509	0,1581	0,02934	0,1079	0,04048	0,01721	0,001251	0,521	30,8%	1,154773	44,9%	51%

Tabla C.4: Resultados obtenidos para una mezcla 75 % syngas de pino y 25 % metano. Fuente: Elaboración propia

ø	Ts	Tg	Vf	H2	02	H2O	CH4	со	CO2	C2H2	C2H4	N2	Conv H2	H2/CO	Conv CO	EROI
0,4	1278	1348	0,000285	3,36E-08	0,1194	0,07978	2,23E-18	5,09E-06	0,05318	5,5E-15	4,77E-22	0,7476	0,0%	0,006601	0,0%	0%
0,5	1290	1380	-0,0008	3,86E-08	0,09814	0,09849	1,34E-18	2,71E-06	0,06559	2,65E-15	4,61E-23	0,7378	0,0%	0,014274	0,0%	0%
0,6	1297	1409	-0,00186	5,13E-08	0,07741	0,1167	1,02E-18	1,83E-06	0,07782	1,16E-15	2,03E-23	0,728	0,0%	0,028085	0,0%	0%
0,7	1303	1437	-0,00286	7,52E-08	0,05734	0,1343	7,51E-19	1,42E-06	0,08959	3,48E-16	1,26E-23	0,7187	0,0%	0,052911	0,0%	0%
0,8	1315	1470	-0,00378	1,31E-07	0,03772	0,1516	4,41E-19	1,2E-06	0,1011	3,75E-17	3,7E-24	0,7096	0,0%	0,108659	0,0%	0%
0,9	1345	1513	-0,00446	3,82E-07	0,01858	0,1685	4,65E-20	1,43E-06	0,1123	1,56E-19	3,62E-25	0,7006	0,0%	0,266597	0,0%	0%
1,0	1408	1567	-0,00462	0,000359	0,0003324	0,1844	1,16E-18	0,000439	0,1227	1,31E-25	2,71E-26	0,6917	0,2%	0,818223	0,4%	0%
1,1	1434	1619	-0,00406	0,01596	2,516E-08	0,1812	1,42E-12	0,01957	0,1119	6,73E-14	2,74E-15	0,6714	8,1%	0,815534	14,9%	12%
1,2	1479	1672	-0,00324	0,031	3,951E-09	0,1778	2,87E-10	0,03813	0,1011	6,9E-10	3,71E-11	0,6519	14,6%	0,813008	27,0%	21%
1,3	1519	1705	-0,0025	0,04572	1,507E-09	0,1741	5,31E-07	0,05521	0,09141	1,14E-06	6,72E-08	0,6335	20,2%	0,828111	36,5%	29%
1,4	1542	1702	-0,00196	0,05039	0,00001193	0,1781	0,00095	0,07333	0,07829	0,000772	2,79E-05	0,6182	20,9%	0,687168	45,6%	34%
1,5	1554	1693	-0,00153	0,05779	0,00002743	0,1774	0,002592	0,08294	0,0721	0,001929	7,49E-05	0,6051	22,7%	0,696769	48,8%	38%
1,6	1562	1686	-0,00118	0,06505	0,00003779	0,1762	0,004346	0,09023	0,06782	0,003182	0,000134	0,5929	24,2%	0,720935	50,4%	41%
1,7	1567	1679	-0,00085	0,07199	0,00004607	0,1748	0,006237	0,09593	0,06449	0,004488	0,000205	0,5818	25,6%	0,750443	51,1%	43%
1,8	1571	1674	-0,00055	0,07856	0,00005359	0,1731	0,008269	0,1006	0,06201	0,005818	0,000286	0,5713	26,7%	0,780915	51,2%	45%
1,9	1574	1669	-0,00026	0,08477	0,00006094	0,1713	0,01042	0,1044	0,06008	0,007135	0,000376	0,5614	27,6%	0,811973	51,0%	46%
2,0	1576	1664	1,88E-06	0,0906	0,00006862	0,1695	0,01268	0,1075	0,05859	0,008414	0,000473	0,5521	28,4%	0,842791	50,5%	48%
2,1	1578	1660	0,000253	0,09603	0,00007671	0,1678	0,01503	0,1101	0,0575	0,009646	0,000575	0,5433	29,0%	0,872207	49,9%	49%
2,2	1579	1656	0,00049	0,1011	0,0000855	0,166	0,01745	0,1123	0,05674	0,01082	0,000683	0,5348	29,5%	0,900267	49,1%	50%
2,3	1580	1653	0,000722	0,1059	0,00009549	0,1642	0,01998	0,1141	0,05621	0,01194	0,000795	0,5268	29,9%	0,928133	48,3%	51%
2,4	1581	1649	0,000937	0,1103	0,0001061	0,1625	0,02258	0,1156	0,05585	0,01301	0,000911	0,5191	30,2%	0,954152	47,5%	52%
2,5	1581	1646	0,001149	0,1145	0,0001182	0,1607	0,02525	0,1169	0,05568	0,01402	0,001029	0,5119	30,4%	0,97947	46,6%	52%
2,6	1581	1643	0,001349	0,1184	0,0001311	0,1589	0,02798	0,1179	0,0556	0,01496	0,001149	0,5049	30,6%	1,004241	45,7%	53%

Tabla C.5: Resultados obtenidos para una mezcla 100 % syngas de pino. Fuente: Elaboración propia

Ø	Ts	Tg	Vf	H2	02	H2O	CH4	со	CO2	C2H2	C2H4	N2	Conv H2	H2/CO	Conv CO	EROI
0,4	1265	1332	0,000169	3,93E-08	0,1182	0,07943	2,54E-18	6,72E-06	0,06111	3,57E-15	2,29E-22	0,7413	0,0%	0,00585	0,0%	0%
0,5	1276	1363	-0,00091	4,32E-08	0,09713	0,09769	9,45E-19	3,66E-06	0,07517	1,77E-15	3,22E-23	0,73	0,0%	0,011795	0,0%	0%
0,6	1282	1390	-0,00195	5,59E-08	0,07648	0,1155	7,15E-19	2,53E-06	0,08889	8,2E-16	2,56E-23	0,7191	0,0%	0,022056	0,0%	0%
0,7	1287	1418	-0,00296	8,05E-08	0,05649	0,1328	5,24E-19	0,000002	0,1022	2,61E-16	1,23E-23	0,7085	0,0%	0,04023	0,0%	0%
0,8	1298	1449	-0,00387	1,36E-07	0,0372	0,1495	2,92E-19	1,68E-06	0,1151	3,24E-17	2,21E-24	0,6982	0,0%	0,08057	0,0%	0%
0,9	1327	1490	-0,00453	3,83E-07	0,01823	0,1659	2,8E-20	1,86E-06	0,1277	1,73E-19	1,84E-25	0,6882	0,0%	0,206193	0,0%	0%
1,0	1386	1540	-0,00469	0,000363	0,000311	0,1813	1,91E-18	0,000491	0,1393	3,7E-24	1,56E-24	0,6782	0,2%	0,739866	0,4%	0%
1,1	1409	1588	-0,00415	0,01471	2,935E-08	0,1788	1,55E-12	0,02009	0,1289	5,39E-14	2,64E-15	0,6574	7,7%	0,732205	13,6%	12%
1,2	1453	1638	-0,00333	0,02838	4,501E-09	0,1765	1,38E-10	0,03938	0,1183	3,33E-10	2,14E-11	0,6375	13,8%	0,72067	24,9%	21%
1,3	1495	1676	-0,00257	0,04159	1,745E-09	0,1738	9,1E-08	0,05733	0,1085	2,09E-07	1,42E-08	0,6187	19,0%	0,725449	34,0%	29%
1,4	1521	1679	-0,00198	0,04698	7,785E-06	0,1775	0,000493	0,07723	0,09513	0,000418	1,69E-05	0,6023	20,2%	0,608313	43,2%	35%
1,5	1534	1670	-0,00154	0,05346	0,00003043	0,1776	0,001953	0,08841	0,08879	0,001348	5,76E-05	0,5884	21,8%	0,604683	46,8%	39%
1,6	1542	1661	-0,00118	0,06021	0,00004676	0,1767	0,00354	0,09677	0,08446	0,002378	0,00011	0,5758	23,4%	0,622197	48,8%	42%
1,7	1547	1654	-0,00085	0,06687	0,0000607	0,1754	0,005311	0,1035	0,08132	0,003487	0,000175	0,5638	24,8%	0,646087	49,8%	44%
1,8	1551	1648	-0,00055	0,0731	0,00007334	0,1738	0,007192	0,109	0,07915	0,004591	0,000248	0,5528	26,0%	0,670642	50,3%	46%
1,9	1554	1642	-0,00027	0,07901	0,00008577	0,1721	0,009203	0,1134	0,07768	0,005684	0,00033	0,5424	27,0%	0,696737	50,3%	48%
2,0	1556	1637	-6,4E-06	0,08464	0,00009846	0,1703	0,01135	0,1171	0,07661	0,006759	0,00042	0,5327	27,8%	0,722801	50,0%	50%
2,1	1557	1633	0,000242	0,08988	0,0001116	0,1684	0,01358	0,1202	0,07608	0,007789	0,000515	0,5234	28,5%	0,747754	49,6%	51%
2,2	1558	1629	0,000471	0,0948	0,0001254	0,1666	0,01589	0,1228	0,0758	0,008756	0,000614	0,5146	29,1%	0,771987	49,0%	52%
2,3	1559	1625	0,000692	0,09941	0,0001403	0,1647	0,01829	0,125	0,07579	0,009678	0,000718	0,5063	29,6%	0,79528	48,4%	53%
2,4	1559	1621	0,000901	0,1037	0,000156	0,1628	0,02074	0,1269	0,07605	0,01054	0,000824	0,4983	30,0%	0,817179	47,7%	54%
2,5	1559	1618	0,001102	0,1078	0,000173	0,1609	0,02328	0,1285	0,07637	0,01136	0,000933	0,4907	30,3%	0,838911	47,0%	55%
2,6	1559	1615	0,001293	0,1115	0,000191	0,1591	0,02585	0,1298	0,07694	0,01212	0,001043	0,4834	30,6%	0,859014	46,3%	56%

C.1.3. Eucalyptus Nitens

Tabla C.6: Resultados obtenidos para una mezcla 25 % syngas de eucalyptus y 75 % metano. Fuente: Elaboración propia

Ø	Ts	Tg	Vf	H2	02	H2O	CH4	CO	CO2	C2H2	C2H4	N2	Conv H2	H/C	Conv CO	EROI
0,4	1292	1366	0,000373	2,94E-08	0,1203	0,08121	3,05E-18	3,74E-06	0,04401	9,18E-15	1,58E-22	0,7545	0,0%	0,007867	0,0%	0%
0,5	1305	1399	-0,00071	3,55E-08	0,09918	0,1003	2,27E-18	1,95E-06	0,05428	4,44E-15	6,71E-23	0,7462	0,0%	0,01819	0,0%	0%
0,6	1312	1428	-0,00177	4,86E-08	0,0784	0,1192	1,75E-18	1,3E-06	0,06445	1,93E-15	4,32E-23	0,738	0,0%	0,03739	0,0%	0%
0,7	1318	1457	-0,00278	7,24E-08	0,05837	0,1373	1,29E-18	1E-06	0,07424	5,77E-16	2,09E-23	0,7301	0,0%	0,072412	0,0%	0%
0,8	1330	1491	-0,00372	1,28E-07	0,0385	0,1553	8,13E-19	8,45E-07	0,08394	5,97E-17	4,65E-24	0,7223	0,0%	0,151551	0,0%	0%
0,9	1362	1537	-0,00441	3,81E-07	0,01906	0,1728	1E-19	1,06E-06	0,09345	2,21E-19	9,26E-26	0,7146	0,0%	0,360019	0,0%	0%
1,0	1428	1595	-0,00458	0,000294	0,000432	0,1896	3,25E-19	0,000307	0,1024	2,09E-26	5,47E-27	0,7069	0,2%	0,957273	0,3%	0%
1,1	1459	1653	-0,00399	0,01803	1,96E-08	0,1851	1,5E-12	0,01857	0,09136	1,7E-13	5,94E-15	0,6869	8,8%	0,970921	16,7%	12%
1,2	1506	1707	-0,00317	0,0354	3,19E-09	0,1802	1,53E-09	0,03592	0,08066	3,43E-09	1,6E-10	0,6678	16,0%	0,985523	29,9%	21%
1,3	1542	1730	-0,00249	0,04998	3,64E-09	0,1771	4,54E-05	0,05317	0,06952	8,59E-05	3,69E-06	0,65	21,0%	0,940004	41,4%	29%
1,4	1561	1723	-0,00199	0,05551	1,42E-05	0,1794	0,00166	0,06638	0,05879	0,001361	4,58E-05	0,6368	21,9%	0,836246	48,5%	33%
1,5	1572	1716	-0,00159	0,06381	2,29E-05	0,1782	0,003466	0,07395	0,05305	0,002766	0,000101	0,6246	23,8%	0,86288	50,9%	36%
1,6	1580	1709	-0,00124	0,07189	2,83E-05	0,1765	0,005418	0,07974	0,04861	0,004293	0,000171	0,6134	25,4%	0,901555	52,0%	39%
1,7	1585	1703	-0,00091	0,07954	3,23E-05	0,1747	0,007496	0,08419	0,04508	0,005866	0,000254	0,6029	26,7%	0,944768	52,2%	41%
1,8	1589	1698	-0,00061	0,08664	3,59E-05	0,1728	0,009657	0,08768	0,04229	0,007422	0,000345	0,5931	27,7%	0,988139	51,9%	43%
1,9	1593	1693	-0,00032	0,09349	3,96E-05	0,1709	0,012	0,09055	0,03986	0,009003	0,000449	0,5837	28,6%	1,032468	51,3%	44%
2,0	1595	1689	-5,8E-05	0,0997	4,35E-05	0,1691	0,01435	0,09278	0,03799	0,01049	0,000558	0,575	29,3%	1,074585	50,4%	45%
2,1	1597	1684	0,000203	0,1057	4,81E-05	0,1672	0,01688	0,09458	0,03628	0,01197	0,000676	0,5667	29,9%	1,117572	49,4%	47%
2,2	1598	1681	0,000448	0,1112	5,33E-05	0,1654	0,01945	0,09605	0,03495	0,01336	0,000798	0,5587	30,3%	1,15773	48,4%	47%
2,3	1599	1677	0,000684	0,1164	5,94E-05	0,1637	0,02213	0,09721	0,03375	0,0147	0,000925	0,5512	30,6%	1,197408	47,3%	48%
2,4	1600	1674	0,000913	0,1212	6,64E-05	0,1619	0,02492	0,09813	0,03273	0,01598	0,001057	0,544	30,9%	1,235096	46,2%	49%
2,5	1600	1671	0,001127	0,1257	7,4E-05	0,1602	0,02771	0,09888	0,0319	0,01718	0,00119	0,5371	31,0%	1,271238	45,1%	50%
2,6																

Tabla C.7: Resultados obtenidos para una mezcla $50\,\%$ syngas de eucalyptus y $50\,\%$ metano. Fuente: Elaboración propia

Ø	Ts	Tg	Vf	H2	02	H2O	CH4	CO	CO2	C2H2	C2H4	N2	H2 Conv	H/C	CO conv	EROI
0,4	1276	1347	0,000272	3,41E-08	0,1196	0,08184	3,24E-18	5,12E-06	0,04902	7,9E-15	4,18E-22	0,7495	0,0%	0,006656	0,0%	0%
0,5	1289	1379	-0,00082	3,89E-08	0,09852	0,1009	2,03E-18	2,71E-06	0,0604	4,01E-15	7,77E-23	0,7401	0,0%	0,014333	0,0%	0%
0,6	1296	1408	-0,00187	5,14E-08	0,07785	0,1197	1,58E-18	1,82E-06	0,07159	1,87E-15	4,11E-23	0,7309	0,0%	0,02818	0,0%	0%
0,7	1301	1437	-0,0029	7,5E-08	0,05769	0,1379	1,13E-18	1,4E-06	0,08252	6,04E-16	2,7E-23	0,7218	0,0%	0,053485	0,0%	0%
0,8	1313	1471	-0,00384	1,29E-07	0,03787	0,1558	6,32E-19	1,16E-06	0,09325	7,17E-17	6,47E-24	0,713	0,0%	0,112035	0,0%	0%
0,9	1344	1515	-0,00452	3,68E-07	0,01881	0,1731	7,45E-20	1,29E-06	0,1036	3,93E-19	9,98E-26	0,7045	0,0%	0,284985	0,0%	0%
1,0	1409	1571	-0,00468	0,000395	0,000297	0,1897	1,54E-18	0,000434	0,1133	3,99E-25	1,89E-27	0,6958	0,2%	0,910537	0,4%	0%
1,1	1437	1626	-0,0041	0,01706	2,19E-08	0,1858	1,62E-12	0,0189	0,1025	1,92E-13	7,94E-15	0,6756	8,4%	0,902646	15,5%	12%
1,2	1484	1678	-0,00327	0,03321	3,51E-09	0,1818	8,94E-10	0,03676	0,09195	2,08E-09	1,13E-10	0,6562	15,2%	0,903428	28,1%	21%
1,3	1522	1706	-0,00255	0,0485	1,05E-09	0,178	4,54E-06	0,05319	0,08232	9,44E-06	5,55E-07	0,638	20,7%	0,911826	38,0%	29%
1,4	1543	1700	-0,00203	0,05254	1,64E-05	0,1821	0,00132	0,06945	0,06983	0,001016	3,75E-05	0,6236	21,1%	0,756515	46,6%	34%
1,5	1554	1691	-0,00162	0,06051	3,06E-05	0,1812	0,003053	0,07811	0,06397	0,002237	8,95E-05	0,6108	23,0%	0,774677	49,5%	37%
1,6	1561	1684	-0,00126	0,06831	4,03E-05	0,1797	0,004933	0,08463	0,05963	0,003555	0,000155	0,599	24,6%	0,807161	50,9%	40%
1,7	1567	1677	-0,00094	0,07558	4,79E-05	0,1781	0,006922	0,08974	0,0565	0,004891	0,00023	0,588	25,9%	0,842211	51,5%	42%
1,8	1571	1672	-0,00064	0,08256	5,49E-05	0,1763	0,009074	0,09377	0,05396	0,006246	0,000317	0,5777	27,1%	0,880452	51,4%	44%
1,9	1574	1667	-0,00036	0,08912	6,18E-05	0,1745	0,01134	0,09702	0,05196	0,007577	0,000411	0,568	28,0%	0,918573	51,0%	46%
2,0	1576	1662	-9,3E-05	0,09527	6,92E-05	0,1725	0,01374	0,09967	0,05044	0,008874	0,000514	0,5589	28,8%	0,955854	50,4%	47%
2,1	1578	1658	0,000154	0,101	7,69E-05	0,1707	0,0162	0,1018	0,04928	0,01011	0,000621	0,5502	29,4%	0,992141	49,5%	48%
2,2	1579	1654	0,000393	0,1064	8,53E-05	0,1688	0,01877	0,1036	0,04839	0,01129	0,000733	0,5419	29,9%	1,027027	48,7%	49%
2,3	1580	1651	0,000621	0,1114	9,48E-05	0,167	0,02142	0,1051	0,04775	0,01241	0,000849	0,534	30,3%	1,059943	47,8%	50%
2,4	1580	1647	0,000838	0,1161	0,000105	0,1652	0,02416	0,1062	0,04724	0,01349	0,000969	0,5265	30,6%	1,09322	46,8%	51%
2,5	1580	1644	0,001046	0,1205	0,000116	0,1634	0,02696	0,1071	0,04689	0,01449	0,001091	0,5193	30,9%	1,125117	45,8%	52%
2,6	1580	1641	0,001248	0,1247	0,000129	0,1616	0,02984	0,1079	0,04671	0,01543	0,001216	0,5124	31,0%	1,1557	44,9%	53%

Tabla C.8: Resultados obtenidos para una mezcla 75 % syngas de eucalyptus y 25 % metano. Fuente: Elaboración propia

Ø	Ts	Tg	USOL	H2	02	H2O	CH4	со	CO2	C2H2	C2H4	N2	Conv H2	H/C	Conv CO	FROI
0,4	1256	1323	0,000108	4,43E-08	0,1183	0,08304	6,81E-18	7,92E-06	0,05691	5,98E-15	7,88E-22	0,7417	0,0%	0,005593	0,0%	0%
0,5	1267	1354	-0,001	4,71E-08	0,09715	0,1022	1,83E-18	4,28E-06	0,07008	3,15E-15	1,21E-22	0,7306	0,0%	0,01099	0,0%	0%
0,6	1273	1382	-0,00207	5,98E-08	0,07649	0,1208	1,32E-18	2,96E-06	0,08291	1,59E-15	5,87E-23	0,7198	0,0%	0,02021	0,0%	0%
0,7	1277	1410	-0,00308	8,44E-08	0,05663	0,1388	9,46E-19	2,32E-06	0,09528	5,95E-16	3,6E-23	0,7093	0,0%	0,036357	0,0%	0%
0,8	1287	1442	-0,00401	1,38E-07	0,03727	0,1564	4,85E-19	1,88E-06	0,1073	9,29E-17	1,16E-23	0,6991	0,0%	0,073578	0,0%	0%
0,9	1317	1484	-0,00468	3,71E-07	0,01827	0,1735	4,96E-20	1,83E-06	0,1191	8,35E-19	1,09E-24	0,6891	0,0%	0,202734	0,0%	0%
1,0	1377	1535	-0,00485	0,000283	0,000402	0,1896	7,36E-19	0,000342	0,1299	1,15E-25	1,9E-27	0,6794	0,2%	0,825833	0,3%	0%
1,1	1404	1585	-0,00427	0,01581	2,54E-08	0,1868	1,95E-12	0,01917	0,1198	2,58E-13	1,41E-14	0,6584	7,9%	0,824726	14,0%	12%
1,2	1449	1636	-0,00343	0,03051	3,95E-09	0,1839	5,42E-10	0,03761	0,1094	1,28E-09	8,97E-11	0,6385	14,2%	0,81122	25,5%	21%
1,3	1490	1668	-0,00268	0,04432	1,54E-09	0,181	4,67E-07	0,05429	0,1003	9,96E-07	7,37E-08	0,62	19,4%	0,816357	34,6%	29%
1,4	1514	1665	-0,00213	0,04904	1,7E-05	0,1854	0,000885	0,07272	0,08607	0,000619	2,72E-05	0,6052	20,2%	0,674367	43,7%	34%
1,5	1526	1655	-0,00168	0,05619	4,04E-05	0,185	0,002423	0,08298	0,08133	0,001559	7,35E-05	0,5904	21,9%	0,677151	47,2%	38%
1,6	1533	1647	-0,00132	0,06368	5,81E-05	0,1838	0,004139	0,09053	0,07729	0,002593	0,000133	0,5777	23,7%	0,703413	49,0%	41%
1,7	1538	1640	-0,00099	0,07086	7,32E-05	0,1822	0,006014	0,09645	0,07447	0,003657	0,000203	0,5661	25,2%	0,734681	49,9%	44%
1,8	1542	1633	-0,0007	0,07772	8,74E-05	0,1804	0,008048	0,1012	0,07252	0,004721	0,000284	0,555	26,4%	0,767984	50,2%	46%
1,9	1544	1628	-0,00043	0,08416	0,000101	0,1785	0,01019	0,105	0,07117	0,005746	0,000371	0,5448	27,5%	0,801524	50,0%	48%
2,0	1546	1622	-0,00017	0,09028	0,000115	0,1764	0,01247	0,1081	0,07036	0,00674	0,000466	0,5351	28,5%	0,835153	49,7%	49%
2,1	1547	1618	7,48E-05	0,09602	0,00013	0,1743	0,01485	0,1107	0,06988	0,007686	0,000565	0,5259	29,2%	0,867389	49,1%	51%
2,2	1548	1614	0,000302	0,1014	0,000145	0,1722	0,01731	0,1128	0,06973	0,008578	0,000669	0,5171	29,9%	0,898936	48,4%	52%
2,3	1548	1610	0,000518	0,1064	0,000162	0,1702	0,01985	0,1146	0,06984	0,009408	0,000776	0,5088	30,4%	0,928447	47,7%	53%
2,4	1549	1606	0,000721	0,1112	0,000179	0,1682	0,02243	0,116	0,07012	0,01018	0,000884	0,5009	30,9%	0,958621	46,9%	54%
2,5	1549	1603	0,000917	0,1156	0,000197	0,1661	0,02509	0,1172	0,07052	0,01091	0,000995	0,4933	31,2%	0,986348	46,1%	55%
2,6	1548	1600	0,001102	0,1198	0,000216	0,1642	0,02779	0,1182	0,07107	0,01159	0,001108	0,486	31,5%	1,013536	45,3%	56%

Tabla C.9: Resultados obtenidos para una mezcla 100 % syngas de eucalyptus. Fuente: Elaboración propia

Ø	Ts	Tg	USOL	H2	02	H2O	CH4	CO	CO2	C2H2	C2H4	N2	Conv H2	H/C	Conv CO	EROI
0,5	1233	1314	-0,001279	7,64E-08	0,0949	0,1042	8,61E-18	9,5E-06	0,08701	2,05E-15	4,57E-22	0,7139	0,0%	0,008036	0,0%	0%
0,6	1236	1339	-0,002357	9,31E-08	0,07455	0,1226	2,62E-18	7,02E-06	0,1023	1,24E-15	2,34E-22	0,7005	0,0%	0,013261	0,0%	0%
0,7	1238	1364	-0,003404	1,3E-07	0,05474	0,1405	1,3E-18	5,88E-06	0,1173	6,03E-16	1,02E-22	0,6874	0,0%	0,022052	0,0%	0%
0,8	1244	1393	-0,004342	2,01E-07	0,03584	0,1576	5,21E-19	4,87E-06	0,1316	1,53E-16	3,77E-23	0,675	0,0%	0,041348	0,0%	0%
0,9	1268	1430	-0,005032	4,46E-07	0,01761	0,1741	4,97E-20	3,92E-06	0,1454	4,61E-18	4E-24	0,6629	0,0%	0,113736	0,0%	0%
1,0	1322	1474	-0,005193	0,000298	0,000337	0,1897	2,68E-18	0,000395	0,1583	2,17E-24	3,79E-26	0,651	0,2%	0,753928	0,3%	0%
1,1	1343	1515	-0,004639	0,01425	3,09E-08	0,1877	3,51E-12	0,01921	0,1494	6,21E-13	5,8E-14	0,6294	7,3%	0,741801	11,8%	12%
1,2	1386	1560	-0,00377	0,02698	4,6E-09	0,1862	4,8E-10	0,03789	0,1401	8,84E-10	1,03E-10	0,6088	13,0%	0,712061	21,8%	21%
1,3	1431	1598	-0,002965	0,03863	1,8E-09	0,1849	7,96E-08	0,05533	0,1314	1,52E-07	1,75E-08	0,5897	17,5%	0,698175	30,1%	29%
1,4	1463	1610	-0,002319	0,04404	6,2E-06	0,189	0,000232	0,07573	0,1188	0,000158	9,91E-06	0,5721	18,9%	0,58154	39,0%	35%
1,5	1478	1599	-0,001827	0,05035	4,59E-05	0,1898	0,001465	0,08821	0,1123	0,00074	4,9E-05	0,557	20,6%	0,570797	43,2%	40%
1,6	1486	1591	-0,001464	0,05744	7,48E-05	0,189	0,002778	0,09722	0,1087	0,001372	9,8E-05	0,5433	22,5%	0,590825	45,5%	43%
1,7	1492	1584	-0,001127	0,06469	0,000102	0,1873	0,004309	0,1045	0,1065	0,002059	0,00016	0,5304	24,3%	0,619043	46,9%	46%
1,8	1495	1577	-0,0008346	0,07168	0,000126	0,1855	0,005958	0,1101	0,1053	0,002729	0,000231	0,5184	25,9%	0,651045	47,6%	49%
1,9	1496	1569	-0,0005523	0,07845	0,000152	0,1831	0,007759	0,1147	0,1049	0,003381	0,000312	0,5072	27,3%	0,683958	47,8%	51%
2,0	1498	1564	-0,0003055	0,08493	0,000176	0,1807	0,009635	0,1184	0,1051	0,003994	0,000398	0,4966	28,6%	0,717314	47,8%	53%
2,1	1498	1559	-0,00007029	0,09114	0,0002	0,1782	0,01161	0,1216	0,1056	0,004573	0,00049	0,4866	29,8%	0,749507	47,6%	54%
2,2	1499	1554	0,0001493	0,09704	0,000225	0,1756	0,01366	0,1242	0,1065	0,005108	0,000587	0,4771	30,8%	0,78132	47,2%	56%
2,3	1498	1549	0,0003547	0,1026	0,00025	0,173	0,01576	0,1263	0,1076	0,005598	0,000686	0,4681	31,7%	0,812352	46,7%	57%
2,4	1499	1546	0,0005409	0,1079	0,000273	0,1705	0,01787	0,1283	0,1088	0,006055	0,000785	0,4595	32,4%	0,840998	46,2%	58%
2,5	1497	1541	0,0007339	0,1129	0,000302	0,1679	0,02008	0,1298	0,1103	0,00645	0,000893	0,4513	33,1%	0,8698	45,6%	59%
2,6	1497	1537	0,0009088	0,1177	0,000329	0,1654	0,02228	0,1312	0,1118	0,006815	0,000998	0,4435	33,8%	0,897104	45,1%	60%