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Universidad Técnica Federico Santa Maŕıa
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Resumen

La oferta eficiente de múltiples productos eléctricos en condiciones de incertidumbre
permitiŕıa una participación de mercado más rentable para las centrales eléctricas
h́ıbridas con recursos energéticos variables y sistemas de almacenamiento, aśı ayu-
dando al proceso de descarbonización. Este estudio trata sobre la licitación eficiente
de una planta fotovoltaica con un sistema de almacenamiento de enerǵıa (PV-ESS)
que participa en mercados eléctricos de múltiples escalas temporales, proporcio-
nando productos de enerǵıa y servicios auxiliares (AS). El sistema de gestión de
enerǵıa (EMS) tiene como objetivo maximizar las ganancias de la planta mediante
una oferta eficiente en los mercados diarios y de tiempo real, considerando la entrega
adecuada de los productos adjudicados. Las decisiones de licitación del EMS gen-
eralmente se obtiene usando métodos de optimización tradicionales. Sin embargo,
dado que el problema abordado es un programa estocástico de múltiples etapas, a
menudo el problema es intratable y sufre curse of dimensionality. Este documento
presenta un método novedoso consistente en aprendizaje profundo reforzado mul-
tiagente (MADRL) para la licitación eficiente a múltiples escalas de tiempo. Dos
agentes basados en redes neuronales artificiales de vista múltiple con capas recur-
rentes (MVANN) se ajustan para mapear las observaciones del entorno en acciones.
Dichos mapeos utilizan como entradas la información disponible relacionada con los
productos del mercado eléctrico, las decisiones de licitación, la generación solar, la
enerǵıa almacenada y las representaciones de tiempo para ofertar en ambos mercados
eléctricos. Sostenido por una suposición de price taker, el entorno del EMS, el cual
se encuentra limitado f́ısica y financieramente, se simula empleando datos históricos.
Se utiliza una función de recompensa acumulativa compartida con un horizonte de
tiempo finito para ajustar los pesos de ambas MVANNs simultáneamente durante
la fase de aprendizaje. Se ha comparado el método MADRL propuesto con métodos
de optimización estocásticos y robustos de dos etapas basados en escenarios. Los
resultados se proporcionan para la participación de la planta h́ıbrida durante un año
usando una resolución de 1 minuto. El método propuesto logró mayores ganancias
estad́ısticamente significativas, menos variabailidad en ingresos en ambos mercados
eléctricos y una mejor provisión de los productos adjudicados al lograr desequilibrios
energéticos más pequeños y menos variables a lo largo del tiempo.
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Abstract

Effective bidding on multiple electricity products under uncertainty would allow a
more profitable market participation for hybrid power plants with variable energy
resources and storage systems, therefore aiding the decarbonization process. This
study deals with the effective bidding of a photovoltaic plant with an energy storage
system (PV-ESS) participating in multi-timescale electricity markets by providing
energy and ancillary services (AS) products. The energy management system (EMS)
aims to maximize the plant’s profits by efficiently bidding in the day-ahead and real-
time markets while considering the awarded products’ adequate delivery. EMS’s
bidding decisions are usually obtained from traditional mathematical optimization
frameworks. However, since the addressed problem is a multi-stage stochastic pro-
gram, it is often intractable and suffers the curse of dimensionality. This document
presents a novel multi-agent deep reinforcement learning (MADRL) framework for
efficient multi-timescale bidding. Two agents based on multi-view artificial neural
networks with recurrent layers (MVANNs) are adjusted to map environment obser-
vations to actions. Such mappings use as inputs available information related to
electricity market products, bidding decisions, solar generation, stored energy, and
time representations to bid in both electricity markets. Sustained by a price-taker
assumption, the physically and financially constrained EMS’s environment is sim-
ulated by employing historical data. A shared cumulative reward function with a
finite time horizon is used to adjust both MVANNs’ weights simultaneously during
the learning phase. We compare the proposed MADRL framework against scenario-
based two-stage robust and stochastic optimization methods. Results are provided
for one-year-round market participation of the hybrid plant at a 1-minute resolution.
The proposed method achieved statistically significant higher profits, less variable
incomes from both electricity markets, and better provision of awarded products by
achieving smaller and less variable energy imbalances through time.
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Nomenclature

est ESS’s stored energy at minute t,
MWh

ês ESS’s maximum storage capac-
ity, MWh

ěs ESS’s minimum storage capac-
ity, MWh

ηd ESS’s discharge efficiency, -
ηc ESS’s charge efficiency, -
pdt ESS’s off-terminal discharge

power flow at minute t, MW
pct ESS’s off-terminal charge power

flow at minute t, MW
p̂s ESS’s off-terminal rated power,

MW

ppvt PV’s power flow at minute t, MW
pgt PV-ESS’s power flow to the grid

at minute t, MW
prt PV-ESS’s control reference sig-

nal at minute t, MW
δ+t PV-ESS’s under-generation at

minute t, MW
δ−t PV-ESS’s over-generation at

minute t, MW
pDA
h EMS’s DA energy bid at hour in-

terval h, MW
pRTq EMS’s RT energy bid at 15-min

interval q, MW
pRu
h EMS’s DA capacity for up-

regulation bid at hour interval h,
MW

pRd
h EMS’s DA capacity for down-

regulation bid at hour interval h,
MW

α̂ EMS’s upper bounds for energy
products bids, MW

α̌ EMS’s lower bounds for energy
products bids, MW

β̂ EMS’s upper bounds for ca-
pacity for up-regulation product
bids, MW

γ̂ EMS’s upper bounds for capac-
ity for down-regulation product
bids, MW

λDA
h DA energy product price at hour

interval h, $/MWh
λRT
q RT energy product price at 15-

min interval q, $/MWh
λRu
h DA capacity for up-regulation

product price at hour interval h,
$/MWh

λRd
h DA capacity for down-regulation

product price at hour interval h,
$/MWh

b+t ISO’s signal for up-regulation
deployment at minute t (scaled),
-

b−t ISO’s signal for down-regulation
deployment at minute t (scaled),
-

λimb Imbalance penalization value,
$/MWh

∆k Conversion factors for k minute-
intervals, h

a1t DA-MVANN action at minute t

a2t RT-MVANN action at minute t

rt DA-MVANN and RT-MVANN
shared reward signal at minute
t

o1t DA-MVANN observed state at
minute t

o2t RT-MVANN observed state at
minute t

st Environment state at minute t
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1 Introduction

The variability and uncertainty of photovoltaic (PV) generation pose many chal-
lenges for integrating variable renewable energy sources onto existing electrical grids.
Potential adverse effects on reliability and stability of electrical networks could limit
their integration, as a higher penetration would increase frequency control require-
ments [1]. A potential solution to counteract a PV plant’s naturally oscillating power
output is to incorporate an energy storage system (ESS), resulting in a hybrid PV-
ESS plant with the ability to shift energy injections and consumption through time
and even provide frequency control capacity. An adequately controlled PV-ESS
plant can provide electricity products traditionally provided by fossil fuel-based
power plants, therefore aiding to decarbonize the electricity sector.

Different electricity products (e.g., energy and capacity for regulation) are valued
through time in different markets, such as the day-ahead (DA) and real-time (RT)
markets. Price signals indirectly report to market stakeholders the shortage or
abundance in the supply of specific electricity products. Proper management of
a PV-ESS plant would allow a more profitable participation in electricity markets
by efficiently deciding on which time and market to allocate the plant’s resources.
Furthermore, different studies [2, 3] have shown that profits solely from energy
arbitrage may be insufficient to recover the totality of the ESS’s capital expenditures.
However, these studies show that offering both energy and ancillary service products
in different markets can boost their competitiveness.

The present document is an extended version of the article Multi-agent Deep
Reinforcement Learning for Efficient Multi-Timescale Bidding of a Hybrid Power
Plant in Day-Ahead and Real-Time Markets to be published on Applied Energy
(Elsevier), currently in press. Appendix A lists articles generated in recent years as
a master’s student, related and not to the current research.

1.1 Hypothesis

A profit optimization scheme for a PV/ESS plant participating on DA, RT, and AS
electricity markets based on MADRL for effective bidding can achieve competitive
results against state-of-the-art control optimization methods such as stochastic and
robust scenario-based MPC.

1.2 Research objectives

1.2.1 Main objective

The main objective of this research is to introduce a novel MADRL method for the
efficient multi-timescale bidding of a hybrid PV/ESS power plant participating on
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DA and RT electricity markets by providing energy and AS products. 1.

1.2.2 Specific objectives

1. Design, develop, and implement a MADRL application for efficient bidding of
a hybrid PV/ESS plant participating on DA and RT electricity markets.

2. Design a two-stage scheme for the efficient bidding of a hybrid PV/ESS plant
using scenario-based stochastic and robust optimization frameworks.

3. Test and compare the performance of stochastic and robust optimization scenario-
based schemes against the proposed MADRL framework using out-of-sample
historical data.

1.3 Structure of the document

The remainder of this document is organized as follows:

• Chapter II presents discusses the state-of-the-art regarding bidding in electric-
ity markets and the use of machine learning techniques for sequential decision
making.

• Chapter III provides background for the market structure, the PV-ESS system,
and multi-time scale bidding in the DA and RT markets.

• Chapter IV presents the MADRL framework for solving the multi-stage prob-
lem in a staggered manner.

• Chapter V develops the proposed methodology for a case study and provides
numerical results.

• Chapter VI reports the conclusions regarding the current research.

1In the Thesis Proposal document, the approach was stated as ”rolling horizon two-stage ANN”
instead of ”MADRL” and ”joint optimization and operation” was used instead of ”efficient bidding”
for problem description. These terms are nearly equivalent; nevertheless, Applied Energy reviewers
recommended more clarity on how we were referring to these aspects, and therefore these have been
updated in this document.
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2 State of the art

In the last decade, bidding optimization for hybrid power plants with storage par-
ticipating in multiple electricity markets has received much attention. In [4], a
compressed air energy storage unit optimizes its bidding in the DA and RT mar-
kets, offering energy and reserves, but their deterministic optimization approach
ignores the market price uncertainties faced by the plant. Deterministic approaches
are often inadequate, as efficiently managing an ESS is a multi-stage stochastic op-
timization problem. However, multi-stage stochastic formulations are impractical
since they are, in general, intractable and suffer the curse of dimensionality using
conventional optimization frameworks [5]. Thus, the underlying problem is com-
monly approximated by two-stage stochastic or robust programming formulations
[6, 7, 8, 9, 10, 11].

Previous works, such as [6], have used two-stage stochastic programming for the
bidding of energy and spinning reserves in the DA market for a hybrid portfolio
consisting of thermal and wind generation and compressed air energy storage. The
problem maximizes the expected profits while simultaneously handling the risk by
adding a Conditional Value at Risk (CVaR) term to the objective function. However,
instead of explicitly modeling bidding in the RT market, a penalization is included
for DA commitment deviations. Other authors also manage risk by adding a CVaR
term into their formulations [7]. Work done in [8] proposes a two-stage scenario-
based stochastic model to enable a hybrid power plant (wind-ESS) to participate
in simultaneous day-ahead energy, spinning reserve, and frequency regulation mar-
kets under different operation strategies. Nevertheless, this work does not address
the problem of multi-timescale bidding, as all markets operate once a day. In [9],
the authors propose a two-stage robust optimization procedure (non-scenario-based)
for a virtual power plant, which establishes confidence bounds for the uncertainty
set. Reference [10] compares risk-neutral and risk-averse strategies employing two-
stage scenario-based stochastic-robust programming for market participation in DA
and RT markets of a hybrid charging station with a PV system. Usually, robust
approaches yield conservative solutions since they are intrinsically designed to be
sub-optimal, aiming to maximize the profits for extreme scenarios [12]. A drawback
of traditional stochastic optimization approaches is their dependence on the quality
of the uncertainty representation. Previous works, such as [11], have put much effort
into refining scenario generation processes, aiming to improve the performance of
stochastic bidding model approximations. Nevertheless, as the number of variables
subject to uncertainty increases, encompassing both temporal and cross-variable
dependencies in a two-stage optimization program becomes more complex. Further-
more, two-stage programming methods can hardly reflect the dynamic variations
of system conditions, especially for multi-stage problems with a sequential struc-
ture [13]. As computational complexity is much higher in multi-stage models, there
is a trade-off between two- and multi-stage methods for conventional optimization
frameworks. In this context, we propose a machine learning (ML) model capable of
handling the multi-stage decision-making problem by incorporating the sequential
decision process under uncertainty into its learning phase.

In this document, we consider an energy management system (EMS) manag-
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ing a PV-ESS plant participating in two different electricity markets: (1) the DA
market, where bids encompass energy and capacity for up/down-regulation prod-
ucts for the following day, must be submitted daily and many hours before, and
have an hourly granularity; and (2) the RT market, where bids encompass energy
products for the following hour, must be submitted hourly and one hour before, and
have a 15-min granularity. Thus, bidding decisions for each market must be made
with different frequencies and lead times, resulting in a multiple timescale problem.
Evidence suggests that simultaneously addressing different timescales in dynamic
decision-making under uncertainty can avoid time-inconsistent solutions leading to
an improper assessment of risk [14, 15]. Moreover, the independent system opera-
tor (ISO) calls for the deployment of procured capacity for up/down-regulation at a
1-min resolution. Therefore the plant’s operation must be modeled with a finer gran-
ularity. An affine control law is obtained from an explicit model predictive control
(MPC) reference-tracking formulation to control the PV-ESS injections to the grid.
The reference signal to be tracked derives from the EMS’s bidding decisions, un-
certainty realizations in PV generation, and ISO’s requests for up/down-regulation
deployment.

Recently, ML techniques have been used for sequential decision making by com-
bining reinforcement learning (RL) and artificial neural networks (ANNs) [16]. Pre-
vious works using RL to make sequential bidding in electricity markets have focused
on single-agents either operating on a single market or simultaneously bidding to
all markets operating on the same timescales [17, 18, 19]. In theory, a single agent
could be trained to bid in multiple markets at different time-scales using multi-
task learning [20], saving computation at inference time. Unfortunately, using a
single agent could lead to inferior overall performance, as task objectives can com-
pete [21]. Intuitively, our tasks (bidding in the DA and RT markets) are different
enough to deteriorate the generalization performance, as each task handles different
input information, lead-times, granularity, bidding horizons, and action spaces. Our
multi-timescale context can be significantly more challenging than single timescale
problems, as the observations of the environment, the rewards, and the actions may
have different timescales, resolutions, and lead-times. Multi-agent reinforcement
learning (MARL) [22, 23, 24] can address problems with real-world complexity by
making agents learn through interactions with the environment based on received
reward signals. However, only a few MARL papers have focused on multi-timescale
decision problems [25, 26, 27], and none for this specific application, where we deal
with multi-dimensional continuous observation and action spaces and the feasibility
set of the RT actions depends on the DA actions, adding complexity not previously
tackled in the literature.

In this document, we propose the use of a multi-agent deep reinforcement learning
(MADRL) [28, 29, 30] approach capable of operating on multiple timescales. In the
proposed MADRL framework, two agents are trained to make DA and RT bidding
decisions sequentially. Figure 1 shows a simplified scheme of the formulation adopted
in our research, illustrating the interaction between two agents based on multi-view
ANNs with recurrent layers (MVANNs) and the environment. Two MVANN-based
agents make multi-timescale decisions on a daily and hourly basis (N1 and N2) with
different lead times (k1 and k2) based on observations of the environment’s state.
Both agents are encouraged to collaborate by a shared reward signal, as usual in a
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Figure 1: Simplified scheme: two agents interacting with their environment on
different timescales

fully cooperative setting [29].

Buffer-rolls are introduced as an experience replay mechanism, containing suffi-
cient information to simulate the PV-ESS controlled operation and the MVANNs’
sequential decision-making during a time window, and also capable of adapting to
MVANNs’ current policies over the learning phase by updating its content. To
achieve a cooperative behavior between both MVANN-based agents, we propose
a shared reward function that depends on the decisions made by the MVANNs
within a mini-batch of buffer-rolls, from which we derive weight updates for both
MVANNs. In order to avoid over-exploitation of PV-ESS’s resources at the time
windows’ end, gradient derivation is done with respect to MVANNs’ outputs only
on user-defined time-steps. To ensure the robustness and reliability of the proposed
MADRL framework, we keep track of the adopted bidding policies performance
during training using a separate validation set. To compare the performance of the
proposed method, we implemented robust and stochastic scenario-based two-stage
optimization methods.

Thus, this document aids to fill a gap in the field of ML applications for dynamic
decision-making under uncertainty in electric power systems. This research’s main
contribution is the introduction of a novel MADRL framework to derive efficient
energy and AS bids for a hybrid power plant participating on electricity markets
operating at different timescales. Furthermore, we propose a innovative approach to
solve a multi-timescale multi-agent sequential decision-making problem, where two
MVANN-based agents act cooperatively on multi-dimensional continuous observa-
tion and action spaces, and where the feasibility set of the second agent’s actions
depends on the actions of the first one.
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3 Background

3.1 Market structure

Power grids coordinate a diverse set of energy assets (e.g., generators, loads, and
storage devices) to match supply and demand at all times. Wholesale electricity
markets, including those operated by CAISO, PJM, MISO, ISO New England, and
New York ISO, follow a two-settlement system in which a DA market seeks to
commit transactions based on expected system performance. In contrast, the RT
market allows for corrections when the system deviates from expected behavior due
to forecast errors or contingencies [31]. Market settlements set prices for multiple
products and at different times. Locational marginal prices (LMPs) reflect the
marginal value of serving an additional unit of energy at a specified node in the
transmission system, typically in ($/MWh). Meanwhile, ancillary service marginal
prices (ASMPs) compensate AS awards.

We consider a pay-as-cleared and bid-based auction structure in the electricity
market. Market participation is limited to self-schedule bids for energy and AS
products, which implies quantity-only bids that the ISO will entirely accept [32].
By submitting self-schedule bids, the market participant expresses his willingness to
generate/consume at the pointed quantities regardless of the resulting market prices.
Due to the relatively small size of the plant, we adopt a price-taker assumption as
in [9, 17, 19, 33]. That is, the bidding behavior of the plant has no capability of
altering the market-clearing prices as in strategic bidding contexts [34].

We consider that the market participant can submit bids for energy and AS prod-
ucts with an hourly granularity in the DA market and bids for energy products with
a 15-min granularity in the RT market. Energy products are expected to be delivered
at constant power during the awarded period. We consider the AS products of capac-
ity for up-regulation and down-regulation. The requirement to deploy AS accepted
capacity through time is communicated to market participants by a signal sent by
the ISO with a 1-min resolution, ranging between zero and the respective awarded
capacity. Thus, the market participant must increase/decrease its power injection in
response to an up/down-regulation deployment signal. To avoid imbalances between
actual and programmed generation through time, the market participant must follow
a reference signal according to the time-correspondent awarded DA and RT energy
products and the ISO’s deployment signal for up/down-regulation. Consequently,
the reference signal prt used by the control scheme of the plant (see Section 3.2 and
3.3), is a result of the adopted bidding policies from both MVANN-based agents,
uncertainty realizations of PV generation and ISO’s regulation deployment request.

Figure 2: Time discretization representation
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A suitable time representation is required, as sequential decisions are made for
different time-intervals. For this end, a natural representation for time evolution is
employed at three time-interval levels, as illustrated in Fig. 2. Bottom to top, level
3 comprises hourly time-intervals h, level 2 comprises 15-min time-intervals q, and
level 1 comprises 1-min time-intervals t. As depicted in Fig. 2, we employ a time
reference to set zero values at each level. To transform power units to energy units
at different time-intervals, the conversion factors ∆1, ∆15 and ∆60 are employed,
relatives to the duration of each time-interval with respect to an hour:

∆1 =
1

60
h , ∆15 =

1

4
h , ∆60 = 1 h. (1)

To ease notation, elements at lower levels are considered contained in elements
at higher levels. Equation (2) describes this relationship making use of the floor
function ⌊x⌋ which gives the largest integer less than or equal to x:

q(t) =

⌊
t
∆1

∆15

⌋
, h(t) =

⌊
t
∆1

∆60

⌋
. (2)

Additionally, a 24-hour time format followed by a day index on parenthesis is used
to refer to a particular moment in time, e.g., 13:57 (d), where d is set to zero for the
first day that data is available.

Figure 3: Multi-agent multi-timescale control sequence

Figure 3 illustrates the market program considered in this research using the time
representation described earlier. Bids for energy and AS products in the DA market
must be submitted by 10 a.m. with hourly granularity covering the 24 hour-intervals
of the following day. The DA market establishes schedules for energy and capacity
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for regulation and sets related LMPs and ASMPs. These results are published no
later than 1 p.m. on the same day of bids submission. Meantime, in the RT market,
bids for energy must be submitted one hour before the start of each trading hour and
have 15-min granularity. The RT market establishes binding schedules and LMPs
for the four 15-min intervals at each hour. These results are published no later than
the ending of each trading hour.

3.2 PV-ESS system operation

Figure 4: Power balance at the PV-ESS plant connected to the grid

Alongside the problem of submitting self-scheduling bids to the DA and RT
markets, this research deals with the controlled operation of the PV-ESS system
at a 1-min resolution, which is raised as the following MPC [35] reference-tracking
problem:

min
pct ,p

d
t

δ+t + δ−t (3a)

s.t. prt = pgt + δ+t − δ−t (3b)

pgt = ppvt + pdt − pct (3c)

ěs ≤ est−1 +
(
ηcpct −

pdt
ηd

)
∆1 ≤ ês (3d)

0 ≤ pct ≤ ysp̂s , 0 ≤ pd ≤ (1− ys)p̂s (3e)

ys ∈ {0, 1}, δ+t , δ
−
t ≥ 0 (3f)

which aims to minimize the absolute difference |δt| between the reference signal
prt and the power flow from the hybrid power plant to the power grid pgt , as (3a)
and (3b) depict. This absolute difference is the power imbalance between actual
and requested generation at a 1-min scale and is decomposed into under and over-
generation as δ+t and δ−t , respectively. Equation (3c) models the power balance at
the PV-ESS plant connected to the grid, as reflected in Fig. 4. Equations (3d)
and (3e) are concerned with the ESS dynamics, while (3f) defines the domain of
the variables. This explicit MPC problem is solved as a function of the variables
p∗t = prt − ppvt and est−1, giving rise to the following affine control law:
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pct
(
p∗t , e

s
t−1

)
= 1

(
p∗t ≤ 0

)
min

{
1

−p∗t ,

2

ês − est−1

ηc∆1
,

3

p̂s

}
(4a)

pdt
(
p∗t , e

s
t−1

)
= 1

(
p∗t > 0

)
min

{
4

p∗t ,

5

ηd(est−1 − ěs)

∆1
,

6

p̂s

}
(4b)

where 1 is the indicator function. This mapping comprises piece-wise functions used
to drive the operation of the ESS immersed in the hybrid power plant. Following the
affine control law derived from MPC’s parametric optimization ensures the hybrid
plant’s physical constraints. Figure 5 illustrates the polyhedral partition sets and
corresponding MPC’s objective values, where circled numbers denote the polyhedral
partitions correspondence to (4). The effectiveness of the bidding models partly
relies on an accurate representation of the PV-ESS plant’s operation. The affine
control law guiding the ESS must be considered by the bidding models to properly
simulate the minute-by-minute operation of the hybrid power plant. Equation (4)
and Fig. 5a show that a piece-wise formulation is adequate and accurate for the
control model representation. Figure 5b shows the objective function (3a) convexity
and performance, evidencing a perfect reference tracking for zones 1 and 4 .

(a) (b)

Figure 5: Visual representation of parametric optimization results: (a) Affine control
law polyhedral sets (b) Explicit MPC’s objective value

3.3 PV-ESS efficient multi-timescale bidding in the DA and
RT markets

The efficient multi-timescale bidding of a hybrid power plant is achieved by effec-
tively scheduling and allocating plant resources in the DA and RT markets through-
out time and properly delivering awarded products to the power grid under uncer-
tainty. Notice that the EMS faces price, production, and ISO’s regulation signal
uncertainties (similarly to what would happen in real-world applications), as it does
not know in advance the realizations of the uncertain variables. By this means the
EMS aims to maximize the following stochastic joint-optimization problem:
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max
∑
t∈T

(
λ̃DA
h(t)p

DA
h(t) + λ̃Ru

h(t)p
Ru
h(t) + λ̃Rd

h(t)p
Rd
h(t)+ (5a)

λ̃RT
q(t)p

RT
q(t)−

λimb
∣∣prt − p̃pvt − pdt + pct

∣∣)∆1

s.t. prt = pDA
h(t) + b̃+t p

Ru
h(t) − b̃−t p

Rd
h(t) + pRTq(t) ∀t ∈ T (5b)

est = est−1 +
(
ηcpct −

pdt
ηd

)
∆1 ∀t ∈ T (5c)(

pDA
h(t), p

Ru
h(t), p

Rd
h(t), p

RT
q(t)

)
∈ Πm

t ∀t ∈ T ′
(5d)(

pDA
h(t), p

Ru
h(t), p

Rd
h(t), p

RT
q(t)

)
∈ Πb

t ∀t ∈ T (5e)

(4a), (4b) ∀t ∈ T

where the objective function (5a) maximizes the profit considering the DA and RT
markets incomes for each specific product over the time-intervals included in the op-
timization horizon t ∈ T . To keep the hybrid power plant power generation close to
the ISO’s request, we incorporate an imbalance regularization mechanism to settle
deviations between actual and requested generation with a 1-min resolution at a pe-
nalization value λimb. Since the power plant’s remunerations depend on the market
design, an upper bound for imbalance pricing is chosen in this work, i.e., a high price
for the imbalances. Parameters that can be subject to uncertainty are noted with
the symbol x̃. Notice that certain price related parameters can be known beforehand
for some future periods, according to the market rules detailed in Section 3.1. To
keep track of sequentially self-scheduled products in both markets, the control ref-
erence signal prt is derived in accordance to the awarded energy products and ISO’s
regulation signal at respective 1-min intervals in (5b). The ISO’s requirement to
deploy AS accepted capacity for up-regulation and down-regulation are constructed
using b+t and b−t , whose values correspond, respectively, to the positive and negative
parts of a signal bt (ranging between -1 and 1). Equations (4a), (4b), (5b), and
(5c) are used to simulate the hybrid power plant operation under uncertainty in
accordance to the affine control law discussed in Section 3.2. Set Πm

t in (5d) fixes
decision variables for time-intervals t ∈ T ′

related to self-scheduled products that
have been previously submitted to the ISO at the time of solving this problem, in
accordance to Section 3.1. Set Πb

t imposes domain restrictions to submit reasonable
self-schedule bids to markets and avoid degenerate solutions.

Πb
t =

{(
pRup
h(t) , p

Rdn
h(t) , p

DA
h(t), p

RT
q(t)

)
∈ R4 :

0 ≤ pRu
h(t) ≤ β̂ , 0 ≤ pRd

h(t) ≤ γ̂ ,

α̌ ≤ pDA
h(t) ≤ α̂ , and α̌ ≤ pRTq(t) + pDA

h(t) ≤ α̂
}
. (6)

A multi-stage stochastic optimization method can be used to approximate this
problem, where the EMS in charge of the hybrid power plant can derive its self-
schedule bids in the DA and RT markets through a two-stage procedure. In the
first stage, the EMS determines its bidding in the DA market for hourly energy and
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AS products at 10 a.m. each day. Meanwhile, the second stage comprises the self-
scheduling of 15-min energy products in the RT market for the hour-ahead period
each hour. Since the EMS has to make decisions in the RT market for periods with
already procured DA products, decisions made in the first stage affect the decisions
in the second stage.

The performance of problem (5) depends on the representation of the system
dynamics, controller design, and uncertainty modeling. This problem has been
previously approximated by a two-stage formulation for different energy systems,
such as in [9] and [4]. In this context, the use of MVANN-based agents to make
bidding decisions in both markets can turn beneficial because of MVANN’s state-
of-the-art ability to fit complex maps and handle uncertainty in time series [36].
When enough data is available, MVANNs can be more computationally efficient for
modeling complex problems than conventional optimization approaches [37]. We
propose a MADRL framework with a learning phase driven to maximize (5a) by
using a shared reward function that depends on the adopted agents’ policies in a
simulated environment. The environment is simulated by employing historical data,
and ensuring that the physical and financial constraints of the optimization problem
in (5) are met. This is achieved by employing the MPC affine control law (4a)-(4b)
and handling MVANNs’ actions in accordance to the market structure. Appendix
B presents the detailed model formulation for both scenario-based stochastic and
robust optimization stages.
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4 Methodology

The proposed methodology considers the formulation, implementation, and test
of a novel MADRL framework, comparing it against scenario-based optimization
frameworks with stochastic and robust objective functions. These different ap-
proaches share the goal of maximizing the profit of a PV/ESS power plant over
time. The joint-optimization objective function comprises making DA, RT, and AS
bidding decisions for energy and capacity for up/down regulation products (specific
AS product) meanwhile minimizing energy imbalance through an imbalance pricing
mechanism.

Performance testing for the different frameworks considers using open-access
databases of PV generation and prices of different electricity market products. This
Section intends to introduce the proposed methodology to test the hypothesis and
achieve the research objectives in a staggered manner.

4.1 MADRL for efficient multi-timescale bidding in the DA
and RT markets

In order to improve market participation, we introduce an implementation of MADRL
for the efficient bidding and operation of a PV-ESS system. ANNs with well-known
function approximation properties are employed to learn non-linear mappings to
adopt DA and RT cooperative bidding policies as outputs. Two different MVANN-
based agents are employed to make bidding decisions for the DA and RT markets,
namely DA-MVANN and RT-MVANN as agents 1 and 2, respectively. The inputs
of each MVANN-based agent use only currently available information following the
market structure discussed in Section 3.1: information related to electricity mar-
ket products, previously made bidding decisions, PV generation, stored energy, and
time representations. For a given time window, we can make bidding decisions from
MVANNs following the market program by adjusting agents’ timescales (N1 and
N2) and lead times (k1 and k2). On the one hand, financial constraints are ensured
by handling MVANNs’ outputs, in accordance to (5d) and (5e) (See Section 3.1).
On the other hand, physical constraints (i.e. hybrid power plant’s injections and
storage evolution) are ensured by (5b), (5c), and following the affine control law (4).
Initial conditions are required for simulation purposes, as discussed in Section 4.3.

To adjust both MVANN-based agents’ policies, we require historical informa-
tion for market-clearing prices, ISO’s reference signal for capacity deployment for
up/down-regulation (scaled), and PV generation. Considering the price-taker as-
sumption, we can use historical market clearing prices on the environment’s sim-
ulation. For practical implementation, in case of lack of historical PV production
information, synthetic data could be generated from 1-min irradiance measurements
or local weather information, such as in [38].

Note that optimization, bidding submission, and price reception are assumed to
be immediate processes in this work, as related timeouts would depend on external
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factors. A readjustment of the market participant decision timeline would be needed
for real-world applications based on available computational resources and practical
experience.
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(a) DA-MVANN architecture

(b) RT-MVANN architecture

Figure 6: Diagrams of the DA-MVANN and RT-MVANN architectures
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4.2 MVANNs architectures

The DA-MVANN and RT-MVANN architectures are illustrated in Fig. 6. Giv-
ing multi-modal measurements to facilitate extracting readily helpful information
to increase ML models performance has become a promising topic, covered by the
multi-view representation learning field [39]. Acceptance of multi-view representa-
tions for MVANNs’ inputs allows to include further relevant available information
for model performance improvement, such as contemporaneous images of the sky to
provide MVANNs with extra information to better forecast future photovoltaic gen-
eration [40]. In our implementation, each MVANN takes as inputs multiple features,
such as time series at different time resolutions corresponding to past, current, and
future periods, currently stored energy, and two-dimensional time representations.
To deal with the ANNs model complexity and performance trade-off, we use opera-
tors µh/µq and σh/σq to down-sample time series to 60-min/15-min intervals using
the mean and standard deviation for the respective intervals.

Long short-term memory (LSTM) layers are employed in the MVANNS’ archi-
tectures due to their ability to capture both long- and short-term patterns, frequent
in power systems time-series [41]. Inputs to the second LSTM layer in the DA-
MVANN and at the third LSTM layer in the RT-MVANN are related to already
made bidding decisions and revealed product prices for future periods. According to
the market rules, the DA-MVANN inputs corresponding to future periods (second
LSTM layer inputs) are formed considering the DA market information available at
10 a.m. Meanwhile, the RT-MVANN inputs corresponding to future periods (third
LSTM layer inputs) consider a range of 12 hours, as DA information is revealed at
most at 1 p.m. every day. Time-series containing information for future periods
are time-reverted to keep closer information at the end of associated LSTM layers
inputs. Outputs from the LSTM layers, bidding decisions made at the RT market
for the next four 15-min intervals, currently stored energy, and two-dimensional time
representations enter a batch normalization layer and then into a dense feed-forward
architecture with ReLU activation functions. The amount of data to consider from
the past in each LSTM layer input are adjustable hyper-parameters (T1, T2, and
T3). Furthermore, the number of LSTM cells for each LSTM layer l (N l

L), the
number of neurons in each dense layer l (N l

D), and the number of dense layers, are
alsoadjustable hyper-parameters for each MVANN.

The DA-MVANN output layer consists of 72 neurons related to bidding decisions
for hourly energy and capacity for up/down-regulation products for the following
day. Meanwhile, the RT-MVANN output layer consists of 4 neurons related to 15-
min energy product bid decisions for the hour-ahead interval. Both output layers
dote with tanh() activation functions are MVANN-based agent actions related to
each market products for a given time-period denoted by x̄, whose output domain
remains between -1 and 1. Following (6), bidding decisions must be feasible. To
transform MVANN-based agent actions to the respective bidding domains, a scaled
min-max normalization function ϕ transforming a variable x from the domain [č, ĉ]
to [−1, 1] is inverted, obtaining ϕ−1. Thus, we ensure that DA and RT markets’
bidding constraints (6) are satisfied by transforming agents actions with an invertible
function.
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ϕ(x, č, ĉ) =
2x− (ĉ+ č)

ĉ− č
(7a)

ϕ−1(x, č, ĉ) =
č+ ĉ+ x(ĉ− č)

2
. (7b)

4.3 Buffer-rolls for data management

To split available data in training, validation, and test sets, information is divided
into three time-consecutive sets, as usual in time series manipulation for ML. We use
the training set to fit both MVANNs’ weights, which are updated at each training
iteration. The validation set is used to check MVANN-based agents’ performance
after each training iteration. Once both agents achieve satisfactory results for the
validation set, the test set is used to provide an out-of-sample evaluation of the
fitted models.

We use training and validation buffer-rolls to manage available data. Each buffer-
roll element is associated with a day d and contains enough information to simulate
sequential MVANNs’ bidding decisions and the PV-ESS’s controlled operation for a
horizon of H hours since the start time. For each buffer-roll d, we set the start time
and time reference to 10:00 (d). Therefore, consecutive buffer rolls contain informa-
tion shifted 24 hours in time. Each buffer-roll d requires storing entry information,
control information, and initial conditions.

Entry information: Time series information for λDA
h , λRu

h , λRd
h , λRT

q , ppvt , bt, and
two-dimensional time representations to serve as part of the DA-MVANN’s inputs
for each 10 a.m. time-step into the buffer-roll’s horizon H and as part of the RT-
MVANN’s inputs for each hour. As pre-process, using only the training set partition,
we sum to each time series (excluding time representations) its minimum value plus
one, apply a log-transformation (except for ppvt ), and then apply ϕ using the resultant
minimum and maximum values for each variable.

Control information: Time series information for λDA
h , λRu

h , λRd
h , λRT

q , ppvt and bt
to contribute to the simulation of PV-ESS controlled operation and obtain markets
payments and penalizations based on bidding decisions for the buffer-roll’s horizon
H. Each control time series remain as originally acquired, as their transformation
would distort the environment simulation.

Initial conditions: DA market decisions p̄DA
h , p̄Ru

h and p̄Rd
h for hourly intervals from

10:00 (d) until 23:00 (d), RT market decisions p̄RTq for 15-min intervals from 10:00 (d)
until 10:45 (d), and ESS stored energy at 10:00 (d). Initial conditions can serve as
inputs for the MVANNs as well as for simulation. When serving for simulation, each
time series is transformed using the ϕ−1 function and the domain bounds depicted
in (6). The buffer-roll’s initial condition values are randomly initialized under a
uniform distribution within the respective domain bounds. Note that DA market
decisions must be generated before the RT market decisions to ensure (6).

In order to compensate for the MARL non-stationary pathology [29] where agents
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face a moving target due to agents’ policies evolution through training, we make
initial conditions adaptable through an established communication channel between
consecutive buffer-rolls. To this end, the hourly horizon H is forced to be more
than 24 hours. Hence, consecutive buffer-rolls overlay for some periods. We use this
feature to establish a one-way communication channel from buffer-roll d to buffer-
roll d + 1 to update initial conditions iteratively. This update can be done at the
end of buffer-roll d time-windows simulation, where DA-MVANN and RT-MVANN’s
bidding decisions and ESS’s stored energy are available for the periods to which the
initial conditions of buffer-roll d+ 1 are linked.

To keep all consecutive buffer-rolls communicated and initial conditions adapt-
able for a comprehensive evaluation, communication is available between the last
training and first validation buffer-roll. The maximum number of buffer-rolls that
can be built depends on the maximum of MVANNs architecture parameters T1, T2,
and T3, the selected horizon H, and the number of available days on the dataset.

4.4 MVANN-based agents learning phase

As mentioned in Section 4.3, for each buffer-roll d, it is possible to simulate H con-
secutive hours starting at 10:00 (d). We carry out the learning phase by simulating
the MVANN-based agents’ bidding decisions and 1-min PV-ESS’s controlled oper-
ation in a mini-batch of buffer-rolls at each training iteration. Algorithm 1 depicts
this learning phase.

Algorithm 1 Learning phase

Require: Initialize MVANNs’ weights (θ, ω)
1: for each training iteration do
2: Randomly sample a mini-batch of buffer-rolls D
3: for h from 0 to H − 1 do
4: if h mod 24 = 0 then
5: Collect DA bids from DA-MVANN
6: end if
7: Collect RT bids from RT-MVANN
8: for t from 60h to 60h+ 59 do
9: prt = pDA

h(t) + b+t p
Ru
h(t) − b−t p

Rd
h(t) + pRTq(t).

10: Execute (4)
11: Update est by (5c)
12: end for
13: end for
14: Update buffer-rolls d ∈ D+ 1 initial conditions
15: Compute Rd for each buffer-roll d ∈ D by (8)
16: Update (θ, ω) by (9a)-(9b)
17: if stop criterion is met then
18: break
19: end if
20: end for

Following Algorithm 1, the learning phase requires initializing the weights of

29



both MVANNs, where θ and ω corresponds to DA- and RT-MVANNs’ weights,
respectively. At each training iteration, we simultaneously carry a simulation for a
mini-batch of buffer-rolls. In the simulation, we call the MVANNs to make bidding
decisions under the market rules, where DA-MVANN and RT-MVANN outputs are
transformed by the ϕ−1 function in (7b). Data manipulation is required during the
learning phase to build the inputs for both ANNs. For instance, computed bids
for an hour-step can be required as MVANNs’ inputs for a further hour-step. At
each hour, the PV-ESS 1-min controlled operation is simulated by using the power
reference prt, (4), and (5c). Each buffer-roll d ∈ D simulation is done independently
of each other.

After simulating H hours, initial conditions are updated for the mini-batch of
buffer-rolls d ∈ D + 1 using the communication channel described in Section 4.3.
Afterwards, the shared reward function for each buffer-roll d is obtained as follows:

rdt = ∆1
(
λDA
h(t)p

DA
h(t) + λRu

h(t)p
Ru
h(t) + λRd

h(t)p
Rd
h(t)+

λRT
q(t)p

RT
q(t) − λimb |δt|

)
, (8a)

Rd =
∆1

H

H
∆1−1∑
t=0

rdt , (8b)

where (8a) comes from the objective function depicted in (5a) for each minute t
and (8b) is the average reward signal per minute at each buffer-roll d ∈ D for the
simulated time-window, functioning as a cumulative reward function over a finite
horizon. Note that DA and RT bidding decisions can come from initial conditions
or transformed MVANNs’ outputs.

In order to update both MVANNs’ weights using back-propagation at each train-
ing iteration, the gradient of the cumulative shared reward function for a mini-batch
of buffer-rolls simulations is calculated with respect to each MVANN’s weights for
user-defined time-steps. The gradient for each MVANN can be decomposed as fol-
lows:

▽θR
D ≈ 1

|D||HΘ|
∑
d∈D

∑
h∈HΘ

▽Θh
Rd▽θΘh, (9a)

▽ωR
D ≈ 1

|D||HΩ|
∑
d∈D

∑
h∈HΩ

▽Ωh
Rd▽ωΩh, (9b)

where Θh and Ωh correspond to DA and RT MVANNs’ outputs at hour-step h. The
gradient of RD is derived only with respect to the DA-MVANN and RT-MVANN
outputs for user-defined hour-steps contained in the sets HΘ and HΩ, respectively.
The exclusion of some MVANNs’ outputs to compute the gradient relies on the ob-
servation that if the gradient of the reward function is taken over MVANNs bidding
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decisions for all time-steps, resources at the final time-steps would be fully exploited
to maximize rewards (maximize profits), without taking future bidding and oper-
ational steps into account. This approach to controlling the MVANNs’ behaviors
is similarly present on rolling horizon optimization frameworks [42], where an ad-
justable time horizon and decisions stated as resource variables for user-defined steps
are included to regularize resource exploitation.

Note that the MVANNs architectures are independent of each other, as no
weights are shared between them. Nevertheless, each MVANN influences the weight
update calculation of the other through the shared reward function in (8), looking
to achieve a cooperative behavior as both MVANNs share the same goal. As a
communication mechanism between agents, specific inputs for each architecture are
related to already made bidding decisions, as discussed in Sections 4.2 and 4.3.

At the moment of computing, the gradients depicted in (9), inter-temporal de-
pendencies between variables at different time-steps appear, as we are not relying on
a Markov Decision Process assumption [28]. For instance, following (5c) it is possible
to discern that variable est at each buffer-roll propagate inter-temporal dependencies
on previously made MVANNs’ bidding decisions throughout simulation time-steps,
given its relation with (4), and the relation of (4) with (5b). The horizon H must be
set with the goal of capturing the impact into the future of bidding decisions made
at hour-steps into HΘ and HΩ. In our particular context, we consider that bidding
decisions for a given day do not have major effects on decisions to be made a month
or week ahead, based on the hybrid power plant’s characteristics.

Using mini-batches instead of simulating one buffer-roll d at a time for MVANNs
training allows a more accurate representation of the population distribution into
the dataset for weights updating. In order to get an exhaustive evaluation at the
validation set, validation buffer-rolls must be simulated in the original order of days,
running one validation buffer-roll at a time and dismissing the MVANNs’ weights
update steps depicted in Algorithm 1. Nevertheless, as this evaluation can be com-
putationally expensive, a batch simulation is conducted to obtain an approximate
evaluation to meet a stop criterion for the MVANNs learning phase. In the case
of the test set evaluation, we simulate all hours consecutively, and the already fit-
ted MVANNs make bidding decisions over time by re-arranging and processing the
incoming data for each hour to serve as inputs following how the real-world infor-
mation flow would be. Our proposed MADRL framework can follow the real-world
information flow as MVANNs’ architectures were constructed for this end: the test
phase considers this information flow. It is unnecessary to calculate reward signals
at minute-by-minute PV-ESS simulation in the test set, as its unique purpose is to
fit both MVANNs’ weights in the learning phase. The proposed learning framework
allows the use of state-of-the-art optimizers for MVANNs’ weights update, such as
Adam, RMSprop, and Adadelta [43].
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5 Case study

5.1 Data

Related energy LMPs and capacity for up/down-regulation ASMPs are obtained
from California’s ISO Open Access Same-time Information System (OASIS) website
for the time range from 6/19/2017 0:00 until 6/28/2020 23:00. Please refer to [31] for
a better understanding of CAISO’s market mechanisms. LMPs are obtained for the
generation node TOT210S1 7 N002 located near the border between Inyo County
(California) and Las Vegas (Nevada). ASMPs are obtained for the AS CAISO EXP
region. As stated before, we are using historical market clearing prices on the
environment’s simulation due to the price-taker assumption. As regulation signals
are not publicly available at CAISO sites, PJM’s traditional regulation signal is used
in its stead. PJM’s site [44] counts with a 2 seconds resolution historical database for
the years 2018, 2019, and 2020. This signal is downsampled to a 1-min resolution
for our purposes by taking the respective period’s average. We complete missing
data for the year 2017 by using the 2018 signal’s time series reversed.

Figure 7: Visualization of dataset from 6/19/2017 0:00 to 6/7/2019 23:00 (First
training set).

Regarding PV generation, 1-min resolution data for the time range from 6/19/2017
0:00 to 6/28/2020 23:00 are obtained from an existing PV plant named RTC, NV,
Baseline. This power plant is located near Las Vegas and approximately 130 km
apart from the CAISO’s generation node aforementioned. According to NREL’s
specifications, this site rate power is 6 MW and features a 30-degree tilt and two
strings. This dataset is publicly available at NREL’s site [45]. Small missing data
time-intervals are handled by performing time-interval averages, while more exten-
sive missing data periods (longer than 30 days) at years 2017 and 2018 are patched
with data from 2015 and 2016. Fortunately, for the periods at years 2019 and 2020,
only small missing data time-intervals are detected. Figure 7 visualizes this dataset
by showing variable values according to the time of the day and respective 5th,
50th, and 95th time-interval quantiles. Because of outliers at the RT energy prod-
uct LMPs, we clip its values at the top by its quantile 99.9th (training set) only for
scenario-generation (for baseline methods) and before pre-processing this time series
to serve as entry information for both MVANNs. PV-ESS and market interaction
parameters are shown in Table 1.

The dataset is partitioned four times in time-consecutive training, validation,
and test sets to evaluate the MADRL framework for a one-year-round period (360
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Table 1: PV-ESS and market interaction parameters

p̂s ěs ês ηc ηd
2.5 MW 0.25 MWh 2.25 MWh 0.9 - 0.95 -

α̌ α̂ β̂ γ̂ λimb

0 MWh 6 MWh 2 MWh 2 MWh 200 $/MWh

days). For each of the four partitions, the test set consists of 90 days, and the
validation sets correspond to the 30 days before the beginning of each test set. The
training sets correspond to all data before the beginning of each validation set. The
first partition test set starts at 7/7/2019 00:00.

5.2 MVANNs tuning

Experiments were run on a machine with ST2000DM001-1ER164 disk, Intel (R)
Xeon (R) CPU E5-2630 v4 @ 2.2 GHz processor, and an NVIDIA Quadro K620
GPU.

Since the hyper-parameter space is too ample for an exhaustive search, we have
performed limited tuning. To select MVANNs hyper-parameters and adjust their
weights, a random search of 30 hyper-parameter samples is carried out using both
training and validation sets. We have set the horizon simulation length H to 62
hours. HΘ is set only for DA-MVANN outputs at 10:00 (d), meanwhile HΩ is set
for RT-MVANN outputs between 23:00 (d) and 22:00 (d + 1), included. We have
performed weight update calculation using RMSprop on uniformly sampled mini-
batches of 16 training buffer-rolls. To adjust the number of training iterations, an
early stopping criterion with 50 iterations patience is used [46], which keeps track of
the validation buffer-rolls batch cumulative reward function. Weights are initialized
using Glorot uniform’s initialization. The execution time of each training iteration
is approximately 35.9 seconds.

Table 2 shows the selected hyper-parameters for each dataset partition with their
respective search spaces, and Fig. 8 shows the training (validation) cumulative mini-
batch (batch) rewards for selected MVANNs by dataset partition. We can see in Fig.
8 that for the fourth set partition, the validation cumulative batch reward separates
from the training cumulative mini-batch reward. This separation could indicate that
the training and validation sets do not represent similar population distributions for
the last partition. An existing concept-drift in electricity prices due to pandemic
effects and more significant PV generation variability due to winter effects in the
fourth partition can partly explain this behavior.
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Table 2: Hyper-parameter values for each dataset partition.

MVANN
Hyper-
param.

Dataset partition Search
space1 2 3 4

DA-

MVANN

T1 168 168 96 96
72, 96,

120, 144,
168, 192

N1
L 18 45 25 21 10-64

N2
L 20 32 14 63 10-64

N1
D 93 84 88 44 40-100

N2
D - 48 - 22 20-100

RT-
MVANN

T2 3 1 3 1 1-3

T3 48 48 24 48
24, 48,
72

N1
L 52 60 59 58 10-64

N2
L 22 15 20 40 10-64

N3
L 44 16 18 20 10-64

N1
D 93 92 84 53 40-100

N2
D 84 21 - 91 20-100

Figure 8: Training and validation shared cumulative rewards (RD) versus number
of training iterations for selected MVANNs by dataset partition.
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5.3 Scenario-based robust and stochastic optimization

Scenario-based robust (worst-case) and stochastic optimization methods are em-
ployed as baselines for the surrogate two-stage optimization problem stated in (5).
For the first and second stage formulation (bidding in the DA and RT market), a
horizon |T | of 62 and 12 hours are selected, respectively. Decision variables are
stated as recourse variables, with the exemption of the ones required to be sub-
mitted to the ISO when solving the problem at each optimization stage, i.e., each
variable has an additional dimension s to indicate the scenario to which it is linked.
To introduce the presented PV-ESS 1-min explicit control solution stated in (4), it
is necessary to include binary variables at each step t and scenario s, dramatically
increasing the computational efforts. To keep computational tractability, binary
variables are only included for the first two-hour intervals in the second stage of the
model and avoided in the first stage.

5.3.1 Scenario generation

An adaptation of k-nearest neighborhood to historical data paths is employed as a
scenario-generation technique for both stages, similar to the work done in [47]. This
method implies constructing a ranking based on the L2 norm values of vectors, where
these vectors consist of the difference between the last T variable measurements and
same-length paths created from historical data of the same variable acquired at
equivalent time-intervals in previous days. Once this ranking has been constructed,
we select the Ns vectors with lower L2 norm values, then the next |T | measurements
that follow the ending of each correspondent path serve as scenarios, where |T |
corresponds to the horizon length of each stage. The last T measurements to be
considered to generate each variable scenarios are independent for each stage and
hour of the day, as different horizon requirements and variable’s nature calls for
different adjustments. For assessing the quality of generated scenarios for each
variable, stage, and hour of the day, we employed the energy score [48] metric EST .
In the case of equally likely scenarios, the formula is simplified as:

EST =
1

|T |

|T |∑
t=1

( 1

Ns

Ns∑
i=1

|λ̃i
t − λt| −

1

2N2
s

Ns∑
i=1

Ns∑
j=1

|λ̃i
t − λ̃j

t |
)

(10)

where λ̃i
t is the variable value for the scenario i and time-interval t and λt is the real

variable value at time-interval t. To adjust the length T of the vectors used to select
Ns historical data paths of length |T | to serve as scenarios for each variable, hour of
the day, and stage, scenarios are generated for each hour-step of the validation set
and related ES’s are calculated. We made a grid search with a T hourly equivalent
range running from 1 to 193 hours. The number of scenarios Ns is set to 10 for both
stages.

Unlike the stochastic and robust formulations, which require scenarios to explic-
itly represent the uncertainty, our proposed MADRL framework directly maps infor-
mation that would be available in accordance to the real-world environment under
the assumptions. Thus, the MADRL framework does not require an intermediate
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step to explicitly represent the uncertainty by forecasting or scenario generation.
In other words, the MVANNs learn this mapping during the learning phase driven
directly by the finite cumulative reward function stated in (8b). By this means, it
adopts an implicit uncertainty representation within the hidden layers.

5.4 Results

This section analyzes the main experimental results by comparing the proposed
MADRL framework to scenario-based two-stage robust and stochastic optimization
baselines. For a one-year-round period (360 days), the computing time for our
proposed method was 0.02 s per hour-step on average, i.e., the time for computing
the corresponding bidding decision for each hour-step. Meanwhile, the optimization
times for the robust and stochastic methods were 10.63 s and 2.83 s per hour-step on
average, respectively. Thus, the computing times of the proposed framework were
only 0.18% and 0.7% of the robust and stochastic methods’ optimization times.

Figure 9: Hybrid PV-ESS plant operation and results for a given test set day

Figure 9 shows results of the plant’s operation for a given day of a test set,
which is driven by the proposed MADRL agents’ adjusted policies for bidding in
both electricity markets. From top to bottom row: (i) LMPs and ASMPs for energy
and AS products; (ii) DA-ANN and RT-ANN agents’ biddings for each electricity
product; (iii) cumulative revenues compounded by all electricity products incomes in
green and cumulative profits in black at 1-min granularity; (iv) schedule fulfillment
shows PV generation, awarded DA and RT energy and AS products, requested ref-
erence signal in accordance to MADRL self-scheduled products and ISO’s regulation
signal, and energy imbalances indicating the difference between agreed and actual
generation; and (v) ESS’ energy storage evolution through time.
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Figure 10: Daily market incomes, energy imbalances (positive domain: over-
generation — negative domain: under-generation), and profits boxplots per method
and for each dataset partition.

Figure 10 shows boxplots for the daily market incomes, energy imbalances, and
profits for the different test sets and methods. While the daily market incomes
consist of total payments received by the PV-ESS plant for its participation in the
DA and RT markets, the daily energy imbalances consist of the daily sum of over and
under-generation at each minute, i.e., δ−τ and δ+τ . The daily profits comprises both
the incomes for each product and the penalizations using the imbalance price λimb.
This factor also serves as a regularization mechanism in (8a) to drive the MVANNs
weights’ updating for the MADRL approach and in the objective function (5a) for
the robust and stochastic methods.

F-tests and t-tests were performed to assess the statistical significance of the dif-
ferences in variance and mean, respectively, between the results obtained by MADRL
and stochastic and robust methods. Table 3 shows statistics for daily market in-
comes, imbalance penalizations, and profits. The daily market incomes obtained
with the proposed MADRL framework have smaller variance than the stochastic
and robust implementations (F-test’s p-values of 5.66×10−9 and 6.45×10−5), while
it shows smaller incomes (t-test’s p-values of 1.23× 10−19 and 1.97× 10−7).

The daily energy imbalances show statistically significant smaller variance at
over and under-generation for the MVANNs implementation when compared against
stochastic and robust approaches (F-test’s p-values of 7.24× 10−12 and 1.64× 10−32

for over-generation, and 2.78×10−3 and 1.2×10−3 for under-generation). Even more,
the MVANNs method achieved smaller values for both energy imbalances, with a
bias towards under-generation (t-test’s p-values of 2.48×10−119 and 7.27×10−66 for
over-generation, and 4.7× 10−17 and 1.99× 10−13 for under-generation). Reference-
tracking performance consists of the percentage of 1-min steps where the PV-ESS’s
power injections to the grid pgτ matched the power reference signal prτ , i.e. |δ| = 0.
Results show that while the sum of daily market incomes seems favorable for the
baseline methods, they are subject to higher and more dispersed energy imbalances.
This behavior, coupled with a more accurate reference-tracking performance of the
signal generated by the MVANN-based agents, shows that our approach achieved
less variability at controlling the PV-ESS power plant than the baseline approaches.
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Table 3: Statistics for daily market incomes, imbalance penalizations, and profits
(test sets combined)

Robust Stochastic MADRL

DA energy
product ($)

Mean 1,789 2,125 1,898
Std. 1,059 1,548 740
Sum 642,260 762,989 681,227

Capacity for
up-regulation
product ($)

Mean 321 347 168
Std. 143 147 89
Sum 115,128 124,728 60,214

Capacity for
down-regulation
product ($)

Mean 381 382 347
Std. 233 235 208
Sum 136,717 137,044 124,628

RT energy
product ($)

Mean -647 -914 -678
Std. 965 1,421 376
Sum -232,120 -328,265 -243,549

Daily market
incomes ($)

Mean 1,844 1,940 1,734
Std. 598 662 488
Sum 661,985 696,496 622,520

Imbalance
penalizations ($)

Mean 1734 1169 697
Std. 631 582 477
Sum 622,512 419,641 250,341

Daily
profits ($)

Mean 110 771 1,037
Std. 861 875 684
Sum 39,473 276,854 372,179

Table 4: Daily under/over-generation and reference tracking performance by method
(test sets combined)

Robust Stochastic MADRL

Daily under-
generation (MWh)

Mean 2.95 2.64 2.04
Std. 2.39 2.36 2.04
Sum 1,059.07 947.99 730.60

Daily over-
generation (MWh)

Mean 5.72 3.20 1.45
Std. 2.67 2.01 1.40
Sum 2,053.49 1,150.22 521.11

Reference-tracking
performance (%)

73.05 79.13 86.63
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Table 4 summarizes under/over-generations shown in Fig. 10 and reference-tracking
performance for the one-year-round implementation of each method.

Figure 11: Total market incomes and imbalance penalizations: (a) Total profits per
method (b) Total market incomes versus imbalance penalizations per method and
for each dataset partition.

Figure 11a shows the total profits for the one-year-round market participation
for each method, showing that, from this perspective, our proposed MADRL frame-
work achieved superior performance. The daily profits show statistically significant
higher mean (t-test’s p-values of 1.44×10−80 and 2.98×10−19) and smaller variance
(F-test’s p-values of 6.53 × 10−6 and 1.73 × 10−6) than the robust and stochastic
methods, respectively. However, Fig. 11b shows that the proposed MADRL frame-
work achieves this higher performance by trading-off market incomes for a better
provision of services, i.e., lower energy imbalances. Also, note that all three meth-
ods’ performances follow a similar trend across test sets, evidencing that all methods
captured the effects of winter (first and fourth test sets) and coronavirus (third and
fourth test sets).

Figure 12: Daily incomes versus daily net bid quantity per method for each market
product.

In order to better understand each method’s bidding strategy, Fig. 12 shows
each market product daily incomes against daily net self-scheduled bids quantity
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by method, where the latter refers to the total sum of self-scheduled products for
each daily period in (MWh). We observe that the DA-MVANNs and RT-MVANNs
derived a different strategy for each dataset partition, as each one concentrates its
bids around different values and with different levels of dispersion, where the latter
is caused due to each MVANN sensitivity to input values. The proposed MADRL
framework achieved statistically significant smaller bids quantity variance for each
product, with the exemption of the capacity for down-regulation product. F-test’s
p-values of 3.39×10−41 and 8.33×10−12 (DA energy), 4.98×10−22 and 4.01×10−20

(up-regulation), 8.1×10−3 and 1.25×10−2 (down-regulation), and 3.46×10−111 and
1.09× 10−62 (RT energy).

Figure 13: MADRL submitted bis and energy imbalances on each day for each test
set.

Figure 13 shows the submitted bids for each product and measured energy im-
balances against the time of the day for each test seat. We observe that adjusted
MVANNs for each test set adopted different yet similar bidding strategies, such as
Fig. 12. Nevertheless, it allows us to appreciate that adopted strategies are robust
between days, only existing minor decision-making deviations. Therefore, our pro-
posed MADRL method achieves superior performance by finding a pattern to follow
every day, being susceptible to variations in the input in specific day hours for each
product. For example, the DA energy product bids seem to be rigorously high at
mid-day. Nevertheless, it can be seen as a higher susceptibility to MVANNs inputs
at night. In contrast, the RT energy product bidding seems to follow the opposite
behavior, presenting higher variations at mid-day.

We ran two additional one-year-round simulations to evaluate how using storage
and participating in AS markets may improve the economic viability of investing in
ESS. These simulations consisted of 1) the PV-ESS power plant participating only
in the energy markets (i.e., without participating in AS markets), and 2) the PV
power plant without storage selling all its injections at the RT market energy price.
According to our results, cases 1 and 2 would reduce total market incomes by 61.1%
and 67.7%, respectively. Therefore, using an ESS and participating in both energy
and AS markets would increase the total market incomes by approximately 460 k$
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in a year.
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6 Conclusions

This work proposed a MADRL framework to derive efficient bidding strategies to
allocate energy and AS products in the DA and RT markets operating with different
timescales and lead times, while ensuring a feasible physical and financial operation
of the PV-ESS hybrid power plant. Furthermore, we introduced a novel approach to
solve a multi-timescale multi-agent sequential decision-making problem that achieves
competitive results against an implementation of scenario-based two-stage robust
and stochastic optimization. Based on the experimental setup, we observe that our
MADRL framework shows: (i) higher total profits; (ii) comparable mean values
for daily market incomes; (iii) smaller variance for daily market incomes, energy
imbalances, and daily net bid quantities; and (iv) better resource allocation based
on reference tracking performance and energy imbalance results. In future work, the
performance of the proposed method could be further improved by the inclusion of
additional information, the use of different architectures, or a more exhaustive hyper-
parameter search. Moreover, although outside the scope of our work, a performance
comparison of single versus multiple agents could be relevant from a ML perspective.

A key feature of our approach is its flexibility to adapt to new environments from
the points of view of market modeling and the control strategy used in a hybrid power
plant with storage. For example, due to the price-taker assumption, the MVANN-
based agents considers independence of the external variables regarding the EMS’s
bidding decisions. However, this assumption could be relaxed by implementing
a market simulator into the MVANNs learning phase to obtain market-clearing
prices at computational and complex modeling expenses. Moreover, the proposed
implementation could be adapted to other hybrid power plant control methods, as
long as sufficient information is available to simulate its operation.
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Appendix B: Two-stage optimization model formu-

lation

First stage

Parameters and sets

The parameters needed to formulate the first stage of scenario-based optimization
models are:

qRT = 4 , hDA = 14 , T DA =

{
1, ...,

48 + hDA

∆1

}
, Ξ = {1, ..., 10} (11)

where hDA and qRT indicates the time steps where bidding decisions where already
made for the DA and RT market, respectively. T DA and Ξ are the sets containing
optimization’s time horizon in 1-min resolution and generated scenarios indexes,
respectively.

Decision variables

The decision variables considered in the first stage of scenario-based optimization
models are:

pgt,ξ, p
d
t,ξ, p

c
t,ξ, p

r
t,ξ, δ

+
t,ξ, δ

−
t,ξ, p

DA
h(t),ξ, p

Ru
h(t),ξ, p

Rd
h(t),ξ, p

RT
q(t),ξ, e

s
t,ξ ∈ R+

0 ∀t ∈ T DA, ∀ξ ∈ Ξ

(12)

Objective function

The objective function in the first stage of scenario-based optimization models is:

Zξ =

h(|T DA|)∑
h=hDA+1

(
λDA
h,ξ p

DA
h,ξ + λRup

h,ξ pRup
h,ξ + λRdn

h,ξ pRdn
h,ξ

)
∆60+

q(|T DA|)∑
q=qRT+1

λRT
q,ξ p

RT
q,ξ∆

15 −
|T DA|∑
t=1

(
λimb

∣∣prt,ξ − ppvt,ξ − pdt,ξ + pct,ξ
∣∣)∆1 ∀ξ ∈ Ξ (13)

please note that the bids to be submitted in the DA market are unique for all
scenarios, this was not included in formulations to simplify notation. Nevertheless,
this is mathematically equivalent to state:

pDA
h,ξ = pDA

h,ξ+1 ∀h ∈ {hDA + 1, ..., hDA + 24}, ∀ξ ∈ {1, ..., |Ξ| − 1} (14)

pRup
h,ξ = pRup

h,ξ+1 ∀h ∈ {hDA + 1, ..., hDA + 24}, ∀ξ ∈ {1, ..., |Ξ| − 1} (15)

pRdn
h,ξ = pRdn

h,ξ+1 ∀h ∈ {hDA + 1, ..., hDA + 24}, ∀ξ ∈ {1, ..., |Ξ| − 1} (16)
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Initial conditions

The initial conditions included in the first stage of scenario-based optimization mod-
els are:

pDA
h,ξ = pDA

h ∀h ∈ {1, ..., hDA}, ∀ξ ∈ Ξ (17)

pRup
h,ξ = pRup

h ∀h ∈ {1, ..., hDA}, ∀ξ ∈ Ξ (18)

pRdn
h,ξ = pRdn

h ∀h ∈ {1, ..., hDA}, ∀ξ ∈ Ξ (19)

pRTq,ξ = pRTq ∀q ∈ {1, ..., qRT}, ∀ξ ∈ Ξ (20)

where pDA
h , pRup

h , pRdn
h , and pRTq are previously made bidding decisions at current

time (Πm
t ).

Constraints

The constraints included in the first stage of scenario-based optimization models
are:

pgt,ξ = ppvt,ξ + pdt,ξ − pct,ξ ∀t ∈ T DA, ∀ξ ∈ Ξ (21)

prt,ξ = pgt,ξ + δ+t,ξ − δ−t,ξ ∀t ∈ T DA, ∀ξ ∈ Ξ (22)

prt,ξ = pDA
h(t),ξ + b+t,ξp

Ru
h(t),ξ − b−t,ξp

Rd
h(t),ξ + pRTq(t),ξ ∀t ∈ T DA, ∀ξ ∈ Ξ (23)

est,ξ − esini =
(
ηcpct,ξ −

pdt,ξ
ηd

)
∆1 ∀t ∈ {1}, ∀ξ ∈ Ξ (24)

est+1,ξ − est,ξ =
(
ηcpct+1,ξ −

pdt+1,ξ

ηd

)
∆1 ∀t ∈ T DA, ∀ξ ∈ Ξ (25)

ěs ≤ est,ξ ≤ ês ∀t ∈ T DA, ∀ξ ∈ Ξ (26)

0 ≤ pct,ξ ≤ p̂s , 0 ≤ pdt,ξ ≤ p̂s ∀t ∈ T DA, ∀ξ ∈ Ξ (27)

α̌ ≤ pDA
h(t),ξ ≤ α̂ ∀t ∈ T DA, ∀ξ ∈ Ξ (28)

α̌ ≤ pDA
h(t),ξ + pRTh(t),ξ ≤ α̂ ∀t ∈ T DA, ∀ξ ∈ Ξ (29)

0 ≤ pRu
h(t),ξ ≤ β̂ ∀t ∈ T DA, ∀ξ ∈ Ξ (30)

0 ≤ pRd
h(t),ξ ≤ γ̂ ∀t ∈ T DA, ∀ξ ∈ Ξ (31)

where esini is the ESS’ amount of stored energy at current time.

Second stage

Parameters and sets

The parameters needed to formulate the second stage of scenario-based optimization
models are:

hDA = 10 , qRT = 4 , T DA =

{
1, ...,

hRT

∆1

}
, Ξ = {1, ..., 10} (32)
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where hDA and qRT indicates the time steps where bidding decisions where already
made for the DA and RT market, respectively. T RT and Ξ are the sets containing
optimization’s time horizon in 1-min resolution and generated scenarios indexes,
respectively.

Decision variables

The decision variables considered in the second stage of scenario-based optimization
models are:

pgt,ξ, p
d
t,ξ, p

c
t,ξ, p

r
t,ξ, δ

+
t,ξ, δ

−
t,ξ, p

DA
h(t),ξ, p

Ru
h(t),ξ, p

Rd
h(t),ξ, p

RT
q(t),ξ, e

s
t,ξ ∈ R+

0 ∀t ∈ T RT, ∀ξ ∈ Ξ

(33)

zn1t,ξ, z
n2
t,ξ, z

p1
t,ξ, z

p2
t,ξ ∈ {0, 1} ∀t ∈ T RT, ∀ξ ∈ Ξ

(34)

Objective function

The objective function in the second stage scenario-based optimization models is:

Zξ =

h(|T RT|)∑
h=hDA+1

(
λDA
h,ξ p

DA
h,ξ + λRup

h,ξ pRup
h,ξ + λRdn

h,ξ pRdn
h,ξ

)
∆60+

q(|T RT|)∑
q=qRT+1

λRT
q,ξ p

RT
q,ξ∆

15 −
|T RT|∑
t=1

(
λimb

∣∣prt,ξ − ppvt,ξ − pdt,ξ + pct,ξ
∣∣)∆1 ∀ξ ∈ Ξ (35)

please note that the bids to be submitted in the RT market are unique for all
scenarios, this was not included in formulations to simplify notation. Nevertheless,
this is mathematically equivalent to state:

pRTq,ξ = pRTq,ξ+1 ∀q ∈ {qRT + 1, ..., qRT + 4}, ∀ξ ∈ {1, ..., |Ξ| − 1} (36)

Initial conditions

The initial conditions included in the second stage of scenario-based optimization
models are:

pDA
h,ξ = pDA

h ∀h ∈ {1, ..., hDA}, ∀ξ ∈ Ξ (37)

pRup
h,ξ = pRup

h ∀h ∈ {1, ..., hDA}, ∀ξ ∈ Ξ (38)

pRdn
h,ξ = pRdn

h ∀h ∈ {1, ..., hDA}, ∀ξ ∈ Ξ (39)

pRTq,ξ = pRTq ∀q ∈ {1, ..., qRT}, ∀ξ ∈ Ξ (40)

where pDA
h , pRup

h , pRdn
h , and pRTq are previously made bidding decisions at current

time (Πm
t ).
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Constraints

The constraints included in the second stage of scenario-based optimization models
are:

pgt,ξ = ppvt,ξ + pdt,ξ − pct,ξ ∀t ∈ T RT, ∀ξ ∈ Ξ (41)

prt,ξ = pgt,ξ + δ+t,ξ − δ−t,ξ ∀t ∈ T RT, ∀ξ ∈ Ξ (42)

prt,ξ = pDA
h(t),ξ + b+t,ξp

Ru
h(t),ξ − b−t,ξp

Rd
h(t),ξ + pRTq(t),ξ ∀t ∈ T RT, ∀ξ ∈ Ξ (43)

est,ξ − esini =
(
ηcpct,ξ −

pdt,ξ
ηd

)
∆1 ∀t ∈ {1}, ∀ξ ∈ Ξ (44)

est+1,ξ − est,ξ =
(
ηcpct+1,ξ −

pdt+1,ξ

ηd

)
∆1 ∀t ∈ T RT, ∀ξ ∈ Ξ (45)

zn1t,ξ + zn2
t,ξ ≤ 1 ∀t ∈ T RT, ∀ξ ∈ Ξ (46)

zn1t,ξ ≤
pct,ξ
p̂s

∀t ∈ T RT, ∀ξ ∈ Ξ (47)

zn2t,ξ ≤
est,ξ
ês

∀t ∈ T RT, ∀ξ ∈ Ξ (48)

δ−t,ξ ≤ M · (zn1t,ξ + zn2t,ξ) ∀t ∈ T RT, ∀ξ ∈ Ξ (49)

zp1t,ξ + zp2t,ξ ≤ 1 ∀t ∈ T RT, ∀ξ ∈ Ξ (50)

zp1t,ξ ≤
pdt,ξ
p̂s

∀t ∈ T RT, ∀ξ ∈ Ξ (51)

zp2t,ξ ≤
ês − est,ξ
ês − ěs

∀t ∈ T RT, ∀ξ ∈ Ξ (52)

δ+t,ξ ≤ M · (zp1t,ξ + zp2t,ξ) ∀t ∈ T RT, ∀ξ ∈ Ξ (53)

ěs ≤ est,ξ ≤ ês ∀t ∈ T RT, ∀ξ ∈ Ξ (54)

0 ≤ pct,ξ ≤ p̂s , 0 ≤ pdt,ξ ≤ p̂s ∀t ∈ T RT, ∀ξ ∈ Ξ (55)

α̌ ≤ pDA
h(t),ξ ≤ α̂ ∀t ∈ T RT, ∀ξ ∈ Ξ (56)

α̌ ≤ pDA
h(t),ξ + pRTh(t),ξ ≤ α̂ ∀t ∈ T RT, ∀ξ ∈ Ξ (57)

0 ≤ pRu
h(t),ξ ≤ β̂ ∀t ∈ T RT, ∀ξ ∈ Ξ (58)

0 ≤ pRd
h(t),ξ ≤ γ̂ ∀t ∈ T RT, ∀ξ ∈ Ξ (59)

where zp1t,ξ, z
p2
t,ξ, z

n1
t,ξ, and zn2t,ξ are ancillary binary variables to ensure (4) and M is a

large enough number. In order to avoid high computational efforts, (46) to (53) are
relaxed after 3 h since second stage optimization starting time, i.e., t ≥ 3/∆1.
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