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Abstract

In this thesis, we will discuss the formation, classical stability, and an obser-
vational signature of black holes in the presence of additional degrees of freedom.
Adding additional degrees of freedom though extra fundamental fields in the ac-
tion seems to be the most promising way to construct theories of gravity beyond
general relativity.

Firstly, we present a numerical study of the gravitational collapse of k-essence
model, in which a scalar field with a non-canonical kinetic term is added into the
action. We will show that the scalar field propagates in the so-called emergent
spacetime described by a metric different from the gravitational one, the effective
metric. In this theory, two horizons emerge, known as the apparent and sonic
horizon, related to the collapse of the gravitational and the effective metric,
respectively. For numerical purposes, we will focus on a particular Lagrangian
K(X) = X + βX2, and study the formation and universal structure dynamics of
the horizons at the threshold of the formation of these objects.

However, the addition of scalar degrees of freedom is not the only alternative.
Higher dimensions, supergravity and string theories naturally lead to additional
scalar and vector fields in the action when we consider the low-energy limit of
such theories. To construct viable theories of gravity with additional fundamental
fields, a review of the stability of black holes must be a necessary task to ensure
the absence of Ostrogradsky instability. In this sense, we study the classical
stability of the generalized Einstein-Maxwell-Scalar theory. We will develop a
perturbation formalism on a static and spherically symmetric background and
show that black holes are generically stable under certain conditions.

Finally, we will discuss a physical observable of black holes, namely the quasi-
normal modes for pure Lovelock black holes in some particular dimensions. It is
well-known that the set of quasinormal modes frequencies depends on the intrin-
sic parameter of the black hole. We will analyze how the spacetime dimension
affects the characteristic time and oscillation frequency of the ringdown signal,
the final state of a perturbed black hole.

The results of this thesis are published in:
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JHEP 07 (2020) 132 [arXiv: 2003.13730].

• R. Gannouji, and Y. Rodríguez Baez, Stability of generalized Einstein-
Maxwell-scalar black holes, JHEP (to appear) (2021) [arXiv: 2112.00109].
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Chapter 1

Introduction

1.1 A brief review of general relativity

Einstein’s theory of general relativity (GR) is based on the Equivalence Principle, which
led to the realization that gravity is best described and understood as a manifestation of
the geometry and curvature of spacetime itself. Spacetime is the unification of space and
time in one entity. It is the domain in which we live. General relativity describes spacetime
as a four-dimensional pseudo-Riemannian manifold: a differential manifold endowed with
a Lorentzian geometry. This manifold is equipped with a metric tensor that enables us to
define notions of distance, time, the angle at an intersection and other geometric quantities.

The metric tensor gµν is defined by1

ds2 = gµνdx
µdxν (1.1)

where ds is the infinitesimal distance measured between two neighboring points in the space-
time. The dynamics of the gravitational field, the spacetime metric, are prescribed by the
Einstein Equations

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c4
Tµν (1.2)

where G is the Newton’s constant and c is the speed of light in vacuum. Tµν is the stress-
energy tensor, it is a physical quantity that encodes the density and flux of energy and
momentum present in spacetime. Rµν is the Ricci tensor, it is the contraction of the Riemann

1In this thesis we work in the (−,+,+,+) metric signature convention.

1



CHAPTER 1. INTRODUCTION 2

tensor Rα
µνβ which express the curvature of the spacetime. Mathematically

Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

σα Γ
σ
νβ − Γµ

σβ Γ
σ
να (1.3)

Γα
µν =

1

2
gασ(∂µgσν + ∂νgσµ − ∂σgµν) (1.4)

Rµν = Rα
µαν . (1.5)

In the above expressions, Γα
µν are the metric connections also called Christoffel symbols.

Using the Bianchi identity2, it can be checked that the Einstein tensor Gµν , defined in (1.2),
is divergenceless ∇µGµν = 0;3 therefore, by the Einstein equations, we get that the energy-
momentum tensor satisfies the same condition, ∇µTµν = 0.

Einstein’s equations reduce to Poisson equation for the Newtonian potential in the limit
where the gravitational field is weak and static. Therefore, GR reproduces the observational
test made by Newtonian physics. Moreover, this theory brings new predictions, like the
deflection of light and the perihelion shift of Mercury, that help to validate the theory. But,
one of the most intriguing predictions of Einstein’s theory of general relativity is the existence
of black holes. A Black Hole (BH) is a region from which a signal can’t be sent to future
null infinity. The boundary of this region is called the event horizon. It defines the point
of no return in which no observer, lightray, and information can escape from the interior of
this region. Strong evidence indicates that black holes are common astrophysical objects.
They are present in the center of most galaxies and can be formed through the gravitational
collapse of massive stars [4].

A remarkable property of a black hole is that its gravitational field is entirely determined
by three asymptotically measurable parameters: its mass M , angular momentum J , and
electric charge Q. In 4 dimensions and in electro-vacuum spacetime (with Λ = 0), GR states
that black holes cannot carry any other charge. This is the so-called no-hair conjecture or
the uniqueness theorem [5]. This stunning result, together with the striking analogy between
the laws of black hole physics and the laws of equilibrium thermodynamics, make black holes
the simplest and most exciting objects to test gravity in the strong-field regime.

Another exciting prediction of Einstein’s theory of general relativity is the emission of
Gravitational Waves (GWs), which are little ripples that propagate through spacetime. These
waves are caused by the time-varying curvature of the spacetime produced by massive ac-
celerating objects. But spacetime is a rigid entity; it requires a large amount of energy to
generate significant waves. Therefore, the collisions of black holes or a star and a black hole

2∇σRµναβ +∇αRµνβσ +∇βRµνσα = 0
3We employ the notation ∇µV

ν = ∂µV
ν + Γν

µαV
α
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are the phenomena that produce gravitational waves with significant amplitude. Clearly,
the final result of a collision is a black hole with a higher mass but fewer to the sum of the
individual masses. Since gravitational waves quickly decay on time, the final stage of this
process — known as the ringdown — can be considered as small perturbations of the final
black hole. The ringdown signal can be modeled as a superposition of damping oscillations
characterized by complex frequencies, called quasinormal modes. The real part describes the
oscillation frequency, while the imaginary part is the decay rate of the signal.

It turns out that general relativity predicts that the late-time behavior of the gravitational
perturbations does not depend on the way they were induced. The quasinormal frequencies
depend only on the black hole parameters (M , J , Q).4 Therefore, detection of quasinormal
modes allows us to determine the intrinsic parameters of such objects and detect any devia-
tion from GR with great accuracy. The existence of BHs and GWs, which are a direct test of
GR in the strong-field regime, have been proven notably through the imaging of a black hole
shadow in the electromagnetic spectrum by the Event Horizon Telescope [6] and through the
observation of coalescing binary black holes by the LIGO/Virgo Collaboration [7, 8].

Since its publication in 1915, General relativity has been kept under extensive experi-
mental scrutiny, passing all experimental tests to date with great accuracy [9]. However, all
attempts to quantize gravity and to unify it with the other interactions of nature have failed,
suggesting that the standard GR may not be the final theory to describe gravity. Power-
counting arguments indicate that GR is an effective field theory and needs to be modified
at low and high energies. For example, in the high energy limit, GR does not address the
problem of singularities inside BHs [10]. As shown in [11], the theory becomes renormaliz-
able if we modify the Einstein-Hilbert action by adding quadratic curvature terms. In the
cosmological scenario, GR does not offer a solution (accepted by all) to the horizon and flat-
ness problem [12, 13], or explain the late-time acceleration of the universe [14, 15]. Since GR
contains no adjustable constants, nothing can be changed. Any other attempt to describe
gravity necessarily modifies GR.

1.2 Theories beyond general relativity

In 4-dimensions, Einstein’s theory of general relativity is the unique interacting theory of a
Lorentz-invariant massless spin-2 particle on a pseudo-Riemannian manifold, and any mod-
ification inevitably introduces new degrees of freedom. In order to construct a relativistic
theory of gravity, it is necessary to review the bases that ensure that any modification could

4From the astrophysical point of view, BHs have no electric charge, so they are described uniquely with
two parameters.
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be considered a viable theory. Any theory of gravity must be constructed from the met-
ric tensor; it encodes the geometrical properties of spacetime. Lovelock’s theorem [16, 17]
collects all the bases on which we can build a theory of gravity. It states that [18]:

The only divergence-free symmetric rank-2 tensor constructed solely from the
metric and its derivatives up to second order in four dimensions, preserving
diffeomorphism invariance, is the Einstein tensor plus a cosmological term.

Despite the powerful restrictions imposed by this theorem, it does not imply that the
Einstein-Hilbert action is the only action constructed from gµν that results in the Einstein
equations. Giving up each assumption made by this theorem gives a hint to construct
modifications of general relativity. Specifically, there are at least four inequivalent ways to
circumvent Lovelock’s theorem [18]:

• Consider other fields beyond the metric tensor

• Include higher dimensions

• Violate diffeomorphism invariance

• Violate the weak equivalence principle

In this thesis, we will study three theories of gravity beyond general relativity that include
new degrees of freedom (adding extra fundamental fields) and higher spacetime dimensions.
These are the most common and conservative ways to construct theories of gravity beyond
GR.

1.2.1 k-essence theory

Dropping the assumption that “a theory of gravity must depend only on the metric tensor gµν”
opens a route to consider new fundamental fields. The simplest field to add is a scalar field.
This modification gives the well-known Scalar-Tensor theories of gravity. In general, these
theories allow for exact analytical solutions. It would be impossible to cite all the different
origins for the scalar field, but Brans-Dicke theory of gravity [19] was one of the first theories
beyond GR that introduced a scalar field with non-minimal coupling to gravity. This theory
was constructed with the intention that the scalar field plays some role in the late-time
evolution of the universe. However, as shown in [20] and references therein, cosmological
observations impose strong restrictions on this model to the point of being discarded.

After this proposal, other scalar-tensor theories have been constructed. For example,
Horndeski theory [21] is the most general action that leads to second-order equations of
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motion for a metric and a scalar field in 4 dimensions, although the scalar field is coupled to
gravity and higher curvature terms appear in the Lagrangian. Detection of the gravitational
waves GW170817 [22] coming from the collision of a binary neutron star system, in combi-
nation with its electromagnetic counterpart [23], have served to put constraints in the tensor
mode propagation speed, restricting the parameter space of Horndeski theory [24, 25, 26, 27].

In this thesis, we will consider a simple class of Horndeski gravity, the k-essence theory,
whose Lagrangian contains the non-standard kinetic term of the scalar field. The action is
given by

S[gµν , ϕ] =
∫
d4x

√−g
[
1

2
R +K(ϕ,X)

]
(1.6)

where X = −1/2(∂µϕ)
2 is the standard kinetic term of the scalar field ϕ. As shown in

[28], under particular choices of the Lagrangian K, this theory leads to the suppression
of the sound speed, giving a small value of the tensor-to-scalar ratio, which is strongly
favored by observations. Another motivation to study the k-essence model comes from
string and supergravity theories. Non-standard kinetic terms of the massless scalar degrees
of freedom generically appear in the low energy limit of such theories [29]. In cosmology,
k-essence Lagrangian was first studied in the context of k-inflation [30]. Then these types of
models were suggested as dynamical Dark Energy for solving the late-time acceleration of
the universe and the cosmic coincidence problem [31].

An attractive property of k-essence theories is that the inclusion of non-canonical terms in
the action makes that perturbations of the field propagate in the so-called emergent spacetime
described by a metric different from the gravitational one, the effective metric. As we stated
before, black holes are some of the most intriguing solutions of Einstein’s equations. It has
been found that the dynamical evolution of a k-essence scalar field coupled to gravity allows
for the existence of two horizons, one corresponding to the fluctuations of the k-essence scalar
field, called the sonic horizon, and the other being the usual light horizon [32].

Physically, these horizons can be formed by the gravitational collapse of the scalar field.
Gravitational collapse has been one of the most studied subjects in General Relativity since
it has profoundly impacted our understanding of astrophysical phenomena. Einstein’s equa-
tions form a highly complex system of differential equations; therefore, we frequently impose
some symmetries on the spacetime to make the problem more tractable. Spacetimes with
spherical symmetry are one of the cases. The numerical study of spherical gravitational col-
lapse has a long history which began with the work of the collapse of ideal fluid spheres with
an equation of state P = 2ρ/3 [33]. They found that collapse could lead to the formation
of a black hole or a bounce according to initial conditions. Many new codes have been later
developed with a focus on applications to realistic stellar collapse. But there has also been
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considerable interest in more theoretical problems such as critical phenomena. Choptuik
[34] has shown that if p is a parameter describing some aspect of the initial distribution of
scalar field energy, there exists a critical value p⋆ which denotes the threshold of black hole
formation. For p < p⋆, the scalar field disperses to infinity while for p > p⋆ black hole forms.
In the supercritical regime, meaning for p > p⋆ but very close to the threshold, a universal
behavior appears (i.e., independent of the initial data) relating the mass M of black holes
to a universal scaling behavior

M ∝ (p− p⋆)γ , γ ≃ 0.37 (1.7)

This solution has been repeatedly verified, also by using a fully 3D code [35]. But as in
critical phenomena, there exist classes of universality. Adding a mass term to the theory
[36], which introduces a length scale, produces also a universal behavior but with a different
scaling parameter γ. See also studies with a massive complex scalar field [37], with radiation
fluid [38] or with extra dimensions [39].

The Choptuik problem has been one of the most significant works done in the context
of Numerical relativity. Applying numerical techniques, it is possible to solve the time
evolution of Einstein’s equations. Since part of our investigation is inspired by these results,
in Chapter 2, we review the Choptuik problem in more detail. Breaking the explicit general
covariance of Einstein equations using the 3+1 formalism, we rewrite these equations as a
system of partial differential equations in which the time coordinate plays a special role. In
Chapter 3, we show the numerical techniques that we employed to develop a numerical code
to solve the numerical evolution in time.

In this thesis, we study a natural extension of the work performed by Choptuik by study-
ing models known as k-essence. For this purpose, in Chapter 4, we will describe the generic
theory and summarize the various conditions for the viability of these models at classical
as well as quantum level. We will derive the characteristics for these models and therefore
their hyperbolicity. Using a spherically symmetric spacetime, we will obtain the constraints
and evolution equations. In chapter 5, for numerical purposes, we will assume a particular
k-essence model which will be studied in the weak as well as the strong gravitational regime.
We have published the main results of this investigation in Ref. [1].

1.2.2 Generalized Einstein-Maxwell-scalar gravity

Adding extra fundamental fields in the action seems to be the most promising way to modify
GR. However, adding extra degrees of freedom can affect the stability of the theory since
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these new fields can be coupled to the metric tensor in unconventional ways, giving higher-
order derivatives in the Lagrangian. When this happens, the Hamiltonian usually depends
linearly on the canonical momentum (this dependence cannot be eliminated with integration
by parts), and the system is kinetically unbounded from below. Therefore, nondegenerate
Lagrangians with higher-order time derivatives lead to ghost-like instabilities, also known
as Ostrogradsky instabilities [40, 41]. To avoid ghost degrees of freedom in the theory,
all we need to ensure is that equations of motion remain up to second-order derivatives.
Well-known examples are the Galileon models [42] and Horndeski theory, which lead to
second-order equations of motion despite the presence of higher-order derivatives in their
Lagrangian.

In the same way, as we introduced a scalar field, we can add a vector field. In this
context, we have the generalized Proca theories [43], which are the most general vector-
tensor theories with second-order equations of motion. However, we do not have to limit
ourselves to include only one field. Adding a scalar field plus a vector field into the gravity
sector, we can construct a Scalar-Vector-Tensor (SVT) theory [44].

Among all possible choices for a SVT theory, in this thesis we will deal with the so-called
Einstein-Maxwell-Scalar (EMS) theory. This theory can be thought of as the generalization
of the Einstein-Maxwell theory since we add a scalar field in the action with its corresponding
kinetic energy term and with a coupling to the Maxwell field. Adding a scalar field in the
action enhances the solutions of the field equations compared to the Reissner-Nordström
solution, which is the charged black hole solution of the Einstein-Maxwell theory. The EMS
theory arises as the effective action in the low-energy limit of string theories, in which the
coupling between the scalar and Maxwell field typically has the form of an exponential
function; here, the scalar field is dubbed as the dilaton since it describes how the extra
dimensions dilate along the four-dimensional spacetime.

The EMS theory has its roots in the Kaluza-Klein models [45, 46]. Immediately after the
publication of Einstein’s theory of general relativity, which considers gravity as an effect of
the curvature of the spacetime, Kaluza-Klein models suggested that the electromagnetic and
gravitational fields were thought to be the components of a five-dimensional gravitational
field. In fact, considering a five-dimensional theory of gravity, with the extra dimension
compactified on a circle, the reduction of the theory to a four-dimensional spacetime gives
the Einstein gravity coupled to a U(1) vector field plus a single massless scalar field. In con-
sequences, Maxwell’s theory of electromagnetism arises naturally from a higher-dimensional
theory.

The history of black hole solutions in EMS theory is fascinating since this theory provides
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black hole solutions with mass, rotation, charge, and scalar hair. Therefore, it provides an
attractive theoretical and computational playground to explore possible deviations from GR
prediction. Nevertheless, given any black hole solution, it is necessary to check its dynamical
stability to ensure that this solution would describe a physical phenomenon. The classical
stability analysis is performed by making linear perturbations around the background solu-
tion; therefore, the problem changes to studying how small perturbations propagate on the
background of a stationary BH. Studying wave propagation in black hole geometries gives
an understanding of several topics in theoretical physics as the radiation from a slightly
non-spherical gravitational collapse, scattering and absorption of waves by black holes, the
generation of gravitational waves by coalescing binary systems.

Theoretical studies of BH linear perturbation theory to Schwarzschild spacetime date
back to 1957 due to the pioneering work done by Regge-Wheeler [47] and Zerilli [48]. This
theory was summarized in an influential monograph by Chandrasekhar [49], and it has been
applied to many different physical situations.

In a spherically symmetric spacetime, the formalism consists in decomposing the pertur-
bations in terms of spherical harmonics. In four dimensions, the metric perturbations are
classified —according to their transformation properties under two-dimensional rotations—
as odd (axial or vector) perturbations and even (polar or scalar) perturbations. A third
type of perturbations emerges in dimensions larger than 4, known as tensor perturbations.
The key point of this formalism is that the gravitational perturbation equation is reduced
to a master linear differential equation similar to the Schrödinger equation with a scattering
potential, from which the stability of the solution can be derived following the work done by
Vishveshwara [50], Price [51] and Wald [52].

Using linear perturbation theory, in Chapter 6, we study the stability of black holes in
generalized Einstein-Maxwell-Scalar theories around static spherically symmetric spacetimes,
the simplest non-trivial theories including a scalar and Maxwell fields. To investigate whether
or not BH solutions in this theory suffer from ghost or Laplacian instabilities, we extend
the Regge-Wheeler formalism to include perturbations of the new fields. This makes the
mathematical analysis more involved.

Since perturbations are decoupled at the level of the action, we discuss odd- and even-
parity modes separately. In both cases, we reduce the linearized field equations to coupled
differential equations for the dynamical variables corresponding to the GW and the scalar
and vector field degrees of freedom. Requiring the absence of ghost instabilities in the
second-order Lagrangian, we derive conditions to get the stability of BH solutions in this
theory. We will also see that the propagation speeds of the GWs are the same in both types
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of perturbations, giving a consistent relation that holds in any second-order SVT theories.
However, the propagation speed of the scalar wave is generically different from the other
fields. This yields another condition to avoid gradient instabilities, restricting further the
form of the EMS action.

We published the main results of this investigation in Ref. [2].

1.2.3 Pure Lovelock theory

As stated before, the Lovelock theorem guarantees that Einstein’s theory of general relativity
represents the most general theory of gravity with a single metric tensor that has field
equations with at most second-order derivatives in four dimensions. Therefore, another
way to construct theories beyond GR is to extend the spacetime dimension. Gravitational
theories in dimensions other than four have a strong theoretical interest since they offer a
solution to the hierarchy problem: why gravity is the weakest interaction of nature.

Dropping the assumption of the dimension in the Lovelock theorem and preserving the
others, we get that Einstein-Hilbert action is not the most general action in higher dimen-
sions. In fact, the quadratic Gauss-Bonnet term, given by R2 − 4RµνR

µν + RµναβR
µναβ,

preserves the divergence-free symmetric rank-2 tensor required by the Lovelock theorem. In
this sense, there is no reason to exclude higher-order curvature terms in the action. Hence, for
d > 4, the most general theory of gravity is obtained by adding higher curvature corrections
to the Einstein-Hilbert action, which is unique in d = 4 and none else.

Under plausible assumptions, David Lovelock [6] obtained, for any dimension d, the most
general, symmetric and conserved tensor, which is quasi-linear in the second derivatives
of the metric. It is the generalization of the Einstein tensor Gµν in higher dimensions.
He also showed that this tensor could be derived from the action principle in which the
Lagrangian is a homogeneous polynomial in the Riemann curvature of arbitrary degree N .
It is a linear combination of N = [d−1

2
] dimensionally continued Euler densities. In five-

and six-dimensions, the explicit form of the Lovelock Lagrangian is a linear combination
of the Einstein-Hilbert term plus the quadratic Gauss-Bonnet term and the cosmological
constant. Due to their properties, the Lovelock Lagrangian is the most natural generalization
of Einstein-Hilbert theory to describe pure gravity in dimensions larger than four.

Since its publication, much attention has been applied to study the main properties of
Lovelock’s theories of gravity: their vacuum structure, hamiltonian formalism, dimensional
reduction, induced cosmologies, wormhole configurations, and their black hole solutions,
including their formation, stability and thermodynamics.

However, this generalization obscures the simplicity of general relativity. Every term in
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the Lovelock Lagrangian is multiplied by a dimensionful coupling constant. Therefore, in
addition to the Newton and the cosmological constants, this theory has [d−3

2
] dimensionful

parameters that can be adjusted. Finding solutions to this theory is not an easy task.
Many investigations centered on black hole solutions in Lovelock gravity restrict the space of
parameters to simplify the mathematical analysis. This is the case of Pure Lovelock gravity.
Instead of considering the full Lovelock polynomial, the Lagrangian —and consequently
equations of motion— has only the Nth order term. There is no sum over lower orders.
Remarkably, black hole solutions of this theory are asymptotically indistinguishable from
those appearing in General Relativity [53].

In this thesis, we will focus on particular dimensions d = 3N + 1, in which the BH
solution corresponds to the Schwarchild geometry even though the action does not contain the
Einstein-Hilbert term. In such dimensions, the potential falls off exactly as four-dimensional
GR, 1/r. Based on this surprising property, we would address the question: would pure
Lovelock black hole in d = 3N + 1 be stable? For this purpose, in Chapter 7, we will focus
on the study of stability of pure Lovelock black holes with horizon having spherical topology.
We apply perturbation theory to the background solution. We will continue the formalism
of linear perturbation theory presented in Chapter 6 and extend it to higher dimensions.

As we stated before, following the gauge-invariant formalism developed in [54, 55], per-
turbations can be decomposed into tensor, vector and scalar perturbations according to their
transformation properties with respect to (d− 2)-dimensional rotations. The last two types
correspond, respectively, to odd- and even-parity modes in the four-dimensional case, while
tensor perturbations are new and emerge only in higher dimensions.

Despite the complicated form of Pure Lovelock equations, all perturbation equations are
reduced to a Schrödinger-type equation

[
− d2

dr2∗
+ V (r)

]
ψ = ω2ψ (1.8)

from which the stability of the solution can be easily derived. The above equation can be
treated as an eigenvalue problem, where the wavefunction ψ is the eigenvector and ω is the
eigenvalue of the corresponding operator.

A remarkable outcome obtained from the analysis of this equation (first showed by
Vishveshwara [50], which studies the Schwarzschild BH in four-dimension) is that the eigen-
values that solve equation (1.8) are discrete complex quantities. This result is obtained after
imposing physical boundary conditions at the horizon and at spatial infinity. The set of
these discrete complex frequencies are called quasi-normal modes (QNMs). The real part
describes the oscillation frequency, while the imaginary part is the decay rate of the signal.
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Since we considered a time dependence of the form e−iωt, we should find that the imaginary
part of these frequencies must be negative to obtain a mode decaying with time, signaling
the stability of the solution.

Centered on this result, besides proving the stability of Schwarzschild-type black holes
in dimension d = 3N + 1 from the analytical point of view in Sec. 7.2, we compute the
set of quasinormal modes frequencies, in Sec. 7.6 and 7.7, to demonstrate the stability of
these BHs using numerical techniques. This numerical analysis will give us more relevant
conclusions above the properties of these BHs. In particular, we will focus on studying how
the dimension affects the frequency and the decay rate of the oscillation.

Determining quasinormal mode frequencies has become one of the primary goals in any
theory of gravity since this set of frequencies depends on the intrinsic properties of the black
hole. For this reason, this set is also known as the spectrum/fingerprint of the BH. Although
QNMs are well described by linear approximation theory, they can be used to test general
relativity in the non-linear regime. Through this approach, we can study some aspects of the
gravitational field that cannot be experimentally confirmed without considering the strong
gravity regime.

We have published the main results of this investigation in Ref. [3].

As we have seen, this thesis addresses three issues around black holes. Through grav-
itational collapse, we will analyze the local properties at the threshold of BH formation.
By applying linear perturbation theory, we will explore the existence and the signature of
black holes. Since general relativity is a well-tested theory, we consider modifications adding
new fundamental fields and increasing the spacetime dimension. Therefore our research is
devoted to study the Classical stability and formation of Black holes beyond general relativity.



Chapter 2

Massless Scalar Field: review

Understanding gravitational collapse phenomena have been a key point to understand the
nature of the gravitational field. Based on general relativity, the dynamics of an isolated
system that interacts only through the gravitational field typically ends up in one of these
three possibilities: the system collapses into a black hole, produces a self-sustained object
like a star, or it is dispersed to infinity leaving a flat spacetime. Thus, it is through gravita-
tional collapse that objects like stars, clusters of stars, galaxies, and black holes are formed.
Understanding these phenomena is of great interest in the astrophysical community.

One of the simplest ansatz to understand gravitational collapse is to consider a scalar field
as the matter content that interacts with gravity. With this simplification, we avoid effects
that come from internal degrees of freedom of matter. One of the first people to study the
evolution of this system from the analytic point of view was D. Christodoulou [56, 57, 58].
He studied the initial value problem for Einstein’s equations in the spherically symmetric
case with a massless scalar field minimally coupled to gravity. Studying the evolution of this
system, he concluded, in a pair of theorems, that if the initial Cauchy data describing the
scalar field is sufficiently small, there exists a global classical solution which disperses in the
infinite future. On the contrary, for a high initial data, the field collapsed forming a black
hole. From the analytical point of view, it was not possible to conclude the final state of the
system for an intermediate value between these two cases.

Since General relativity is a theory formulated in a covariant way, it is not simple to
obtain analytical solutions except when the spacetime has a lot of symmetries, as we saw
in the previous example. One way to overcome this issue, and gain some understanding of
the evolution of the system given any spacetime, is to apply numerical techniques to solve
the dynamics. Numerical relativity is, in principle, a way to understand physical problems
brought up in General Relativity; it is a tool that focuses on resolving Einstein equations

12
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using algorithms and numerical approximations. One of the pionering works in this area
was performed by M. Choptuik [34], who solved the dynamical evolution of a scalar field
minimally coupled to gravity from the numerical point of view. To model this collapse,
Choptuik considered a massless spherically symmetric scalar field. These considerations have
the advantages of reducing the collapse to a problem in 1+1 dimensions. In this case, there is
no gravitational radiation; this feature is important because it simplifies the problem focusing
only on the collapse itself. However, since the scalar field depends on spacetime coordinates,
this system has a lot of freedom that overcomplicates the solution. To simplify even more the
problem, Choptuik chooses an initial scalar field described by a unique parameter, known
as 1-parameter family of initial data. One example of these configurations is a scalar field
with the form of a Gaussian distribution, in which the amplitude, position or width is the
variable that characterized the family (refered as p) that he could control to fix the value
of the scalar field at each point in space. As we described, Choptuik’s investigations were
the continuation of Christodoulou’s conclusions. He wanted to know if the parameter had a
critical value (p⋆) and answer the question: how is the behavior of the black hole mass when
the parameter is moved from the BH side towards the dispersion side?

To obtain conclusions that were not family dependent, tens of 1-parameter families were
considered, each of them forming a BH or leaving a flat spacetime depending on the initial
parameter. Choptuik found, by fine-tuning the initial data, three highly convincing numerical
conclusions [34]:

1. Scaling relation

When the parameter of the initial data approaches the critical values from above (in
the BH side), we can produce infinitesimal black holes, with the property that its mass
satisfy the scaling relation

MBH ≈ C(p− p⋆)γ (2.1)

where C is a constant and p⋆ is the critical parameter, both depending on the chosen
particular 1-parameter family. γ is a critical exponent that is universal; it means that
it is independent of the initial family, having a value of γ ≈ 0.37 for this particular
type of matter. This phenomenon of universality implies that one can tune the black
hole mass to zero.

2. Universality

For a finite time and a finite region in space, the solution obtained for all near-critical
data was the same. This universality of the solution ends when the system’s evolution
decides between the BH formation or dispersion.
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3. Scale-echoing

The critical solution is the same when a rescaling of space and time is performed by a
factor of e∆

ϕ∗(t, r) = ϕ∗(e
∆t, e∆r) , (2.2)

where ∆ is another universal dimensionless parameter. For a massless scalar field,
∆ ≈ 3.44.

As a summary, and making a qualitative description, what happens is the following:
For a massless scalar field, the phase space of solutions is divided into two regimes, one for

which all trajectories result in a black hole formation, the other in the dispersal of the field
to infinity. The connection between them is a critical surface in which a critical point acts as
an attractor. Any solution that starts near the critical surface evolves almost parallel to the
critical solution; after a finite time, the system chooses one of the two possible endpoints; see
Figure 2.1 for a schematic representation. As described in [59], the property of Universality
can be explained in a similar way. Any solution that evolves near the critical surface loses
all its initial configuration details, except the distance from the black hole threshold.

After the empirical discovery made by Choptuik, gravitational collapse was discovered in
many other types of matter coupled to gravity, and even in gravitational waves [61], that can
collapse to a BH even in the absence of matter. Thanks to these later studies, it was obtained
that the parameters γ and ∆ are not universal, their values depend on the type of matter
that is contained in the spacetime, but the general conclusions remain unchanged. Based
on these properties and the existence of a critical value, the collapse of some type of matter
coupled to gravity is known as critical collapse. The critical phenomena can be understood
from the pull between the kinetic and potential energy; the former tends to disperse the
scalar field to infinity while the gravitational potential tries to trap some energy of the field;
if the potential is strong, a black hole can be formed.

Based on the scaling relation (2.1) and its similarity with phase transition observed in
statistical mechanics, this type of collapse is known as Type II: the mass of the BH starts from
an infinitesimal value and the transition is smooth. Another type of transition, known as
Type I, was discovered in other types of matter. In this case, the solution is not characterized
by a scaling relation; the solution is static: the BH mass has a finite (non zero) value, so the
transition between solutions is not continuous. This type of critical phenomena are observed
when there is a preferred length scale within the theory, such in the gravitational collapse of
a massive scalar field, for example.

The mathematical theory of both types of gravitational collapse is well described in [62].
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Figure 2.1: The phase space picture for the black hole threshold in the presence of a critical point.
The arrow lines are time evolutions, corresponding to spacetimes. The line without an arrow is not
a time evolution, but a 1-parameter family of initial data that crosses the black hole threshold at
p = p⋆ (Figure from [60]).
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2.1 Description of the Problem

Before describing the numerical procedure that we employ to solve the evolution of the
system, first, we will explain the physical situation and determine the equations that Chop-
tuik used to describe the coupling between gravity and a real massless scalar field. A more
extended review of this topic can be found in [59, 60, 62].

We start by introducing the action of the system

S = SEH + Sϕ =

∫
d4x

√−g
(
R

2κ
− 1

2
∂µϕ∂

µϕ

)
(2.3)

where g is the determinant of the metric gµν , R is the Ricci scalar curvature, ϕ the scalar
field, and κ = 8πG, with G the gravitational constant. We will consider geometrized units,
where c = G = 1. We apply the standard procedure of the minimal action principle, first
with respect to the metric field to obtain the Einstein equations of motion that describe the
dynamics of the spacetime, and next to the scalar field to obtain the Klein-Gordon equation
that describes the evolution for the scalar field. Together they describe the dynamics of the
system. Explicitly, they read

Gµν = 8π

(
∇µϕ∇νϕ− 1

2
gµν∇αϕ∇αϕ

)
, (2.4)

2ϕ = 0 . (2.5)

These equations are written in a fully covariant way, where there is no clear distinction
between space and time. Although this form of the equations is quite natural from the
point of view of differential geometry —which has been a key feature to understand how
gravity works— in particular cases it is more convenient to return to the classical picture of
studying the problem in terms of the dynamical evolution of the field in “time”. It can be
done by rewriting the four-dimensional Einstein field equations as a Cauchy problem where
the system of equations is transformed into a system of partial differential equations in which
a unique solution is obtained if we provide initial conditions. Clearly, this process breaks the
explicit covariance of general relativity.

In the literature, we can find various formalisms to break the covariance of the equations;
we will apply the 3+ 1 formalism, also known as ADM (Arnowit-Deser-Misner) formulation
[63]. The formalism consists in a foliation of the spacetime in hypersurfaces of constant
time, because time coordinate acquires a special role. Each hypersurface is described by a
3-Riemaniann metric. Since this formulation is so important to numerical relativity, we will
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review the crucial aspects in the next section. It is useful to mention that this foliation is
possible for any globally hyperbolic spacetime; see Appendix D of reference [64].

2.1.1 ADM metric

The ADM formalism is only one of the different approaches to break the covariance of
Einstein field equations1. It consists of a foliation where we split spacetime into

three-dimensional space + time coordinate .

As we stated before, the main goal of this formalism is to rewrite the Einstein field equations
in a way that allows us to give a set of initial Cauchy data that determines the evolution of
the gravitational field at any later time t.

The foliation starts by considering a globally hyperbolic spacetime with metric gµν . The
slicing of the manifold into a one-parameter family of three-dimensional hypersurfaces is
done by imposing some restriction on the coordinates

Φ(xµ) = ctte.

Since we are interested in a foliation in which the time coordinate plays a special role, we
choose space-like hypersurfaces that are parameterized by Φ(xµ) ≡ t = ctte (see Figure 2.2).
Therefore, the hypersurfaces have time-like normal vectors and space-like tangent vectors.

Going further into the analysis, we can characterize this foliated spacetime as follows: let
nα be a unit normal vector field to the hypersurface Σt and let ta be a vector field on the
spacetime manifold (see Figure 2.3). We can interpret ta as being the “flow of time” through
spacetime2. To deduce the metric in this foliated spacetime, we can employ the geometric
analysis (see also [67]):

• Consider a hypersurface Σt at some coordinate time t in which we define a spatial coor-
dinates basis xi(t). The proper distance in this slice is determined by a 3−dimensional
spatial metric

dl2 = γijdx
idxj . (2.6)

• Now, consider the subsequent hypersurface Σt+dt. An observer traveling through the
normal direction will experience some proper time dτ , which is some multiple of the

1Other two alternatives are the characteristic formalism [65] and conformal formalism [66].
2In general, the normal direction of the hypersurface is not necessarily the same as the ta coordinate

direction.
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Figure 2.2: Foliation of spacetime into three-
dimensional spacelike hypersurfaces.
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Figure 2.3: Two adjacent hypersurfaces. We
show the lapse function α and shift vector βi.

change in the time coordinate
dτ = α(t, xi)dt (2.7)

where α is called the lapse function, it measures the ratio between proper time and
coordinate time. The lapse encodes our freedom to slice the time-like evolution, it is a
gauge variable.

• On the other hand, an observer which travels through ta, will arrive at the coordinates

xit+dt = xit − βi(t, xj)dt (2.8)

where β is the shift vector that measures the spacelike shift of the coordinates while
traveling normally and along the ta direction (see Figure 2.3).

In terms of the functions {α, βi, γij}, the metric of spacetime, in the coordinates xµ = (t, xi),
can be written as

ds2 = −α2 dt2 + γjk(dx
j + βjdt)(dxk + βkdt) . (2.9)

Note that the lapse function α and the shift vector β, usually referred as gauge vari-
ables, completely determine the foliation of the spacetime by the t = constant spacelike
hypersurfaces. Equation (2.9) is then the most general form of the metric for any foliated
spacetime.
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2.1.2 Spherically symmetry metric

Although the form of the line element (2.9) gives the most general metric, it overcomplicates
the solutions for a spherically symmetry spacetime. This spacetime has extra degrees of free-
dom —invariance under rotations— that we can use to simplify this line element. Consider
a spherically symmetry space given by the coordinates xi = (r, θ, ϕ). If θ and ϕ are chosen
as the polar-angular coordinates on the hypersurface, we can set the gauge in which the
shift vector has r-component only, since any displacement in the angular coordinates can be
obtained by a rotation of the space. Thus

βi = β δir .

We can rewrite the metric on the hypersurface as

dl2 = γijdx
idxj = γrrdr

2 + γθθdσ
2

where dσ2 is the standart metric on the unit sphere. Inserting this form in (2.9), we obtain

ds2 = −α2dt2 + γrr(dr + βdt)(dr + βdt) + γθθdσ
2

= −(α2 − γrrβ
2)dt2 + 2γrrβdtdr + γrrdr

2 + γθθdσ
2

where we have supressed the coordinate dependence of each function to simplify the notation.
We can rename the metric component as: γrr = a2(t, r) and γθθ = r2b2(t, r), so

ds2 = −(α2 − a2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dσ2 .

Notice that to get the above line element, we used the gauge degrees of freedom associated
to coordinates θ and ϕ to eliminate two components of the shift vector. Therefore, we have
two remaining functions linked with the coordinates t and r. We can chose the radial
coordinate in such a way that it gives the correct area of the unit surface sphere; thus, we set
b2(t, r) = 1. The remaining function is used in a way that one requires that each hypersurface
be a maximal hypersurface; this means that coordinates t and r are perpendicular to each
other, which implies that β(t, r) = 0. Thus, the final metric is

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dσ2 . (2.10)

This is the most general metric with spherical symmetry for a foliated spacetime. It
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is also referred to as a metric in polar-areal coordinates. This is the metric that Choptuik
employed to solve numerically the evolution of the system described in the above section.

2.2 Evolution equations

The above line element gives the metric in polar-areal coordinates; it is the generalization of
Schwarzschild coordinates in the numerical relativity scheme. Using this metric (2.10), the
Klein-Gordon equation (2.5) takes the simple form

0 = 2ϕ =
1√−g∂µ

[√−ggµν∂νϕ
]
=

1

r2aα

(
−r2∂t

[ a
α
∂tϕ
]
+ ∂r

[
r2
α

a
∂rϕ
])
. (2.11)

To solve this equation, it is convenient to introduce two auxiliary fields

Φ(t, r) = ∂rϕ(t, r) , Π(t, r) =
a

α
∂tϕ(t, r) (2.12)

in order to rewrite the second-order Klein-Gordon equation as a system of two one order
partial differential equations

∂tΦ = ∂r

(α
a
Π
)

(2.13)

∂tΠ =
1

rn
∂r

(
rn
α

a
Φ
)
= (n+ 1)

∂

∂rn+1

(
rn
α

a
Φ
)

(2.14)

where n = d− 2 is the dimension of the sphere. In the above equations, we have generalized
the line element (2.10) to any dimension d, in order to study gravitational collapse in higher
dimensions, see Appendix A. For d = 4 (n = 2) we recover Choptuik’s equations [34]. The
last equality in (2.14) is helpful for the computational solution; this is a common practice in
spherically symmetric codes. On the other hand, the first two components of the Einstein
tensor are

Gtt =
n

r

α2

a2

[
a′

a
+ (n− 1)

a2 − 1

2r

]
, (2.15)

Grr =
n

r

[
α′

α
+ (n− 1)

1− a2

2r

]
, (2.16)

where a prime denotes derivative with respect to r. The last remaining pieces of the evolution
are the components of the energy-momentum tensor. For a massless scalar field, the non-
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vanishing components are

Ttt =
1

2

α2

a2
[
Π2 + Φ2

]
, Trr =

1

2

[
Π2 + Φ2

]
,

Ttr =
α

a
ΠΦ , Tij =

1

2

r2

a2
[
Π2 − Φ2

]
γ̄ij ,

(2.17)

where indices (i, j) denote angular coordinates, xi = (θ, φ), γ̄ij is the metric of the unit
sphere, and we have employed definitions (2.12). With all these quantities on hand, the tt−
and rr−component of Einstein equations (2.4) become

a′

a
+ (n− 1)

a2 − 1

2r
− 4πr

n

(
Π2 + Φ2

)
= 0 , (2.18)

α′

α
+ (n− 1)

1− a2

2r
− 4πr

n

(
Π2 + Φ2

)
= 0 , (2.19)

which has no time derivatives; therefore, these equations do not describe evolution in time.
They are constraint equations that must be satisfied at each hypersurface (at each time).
In the language of (3 + 1)−formalism, these equations are the Hamiltonian and Momentum
constraints in GR.

At the end, the gravitational collapse of a massless scalar field coupled to gravity is
described completely by equations (2.13), (2.14), (2.18) and (2.19); they form a fully con-
strained evolution scheme to solve for the coupled system of equations. In this scheme, the
metric variables are determined using the Hamiltonian and momentum constraint equations,
and the scalar equation is treated as hyperbolic, which determines the time evolution of the
system.

2.2.1 Initial Conditions

The foliation of the spacetime allowed us to rewrite Einstein equations in a set of partial
differential equations (2.13, 2.14, 2.18, 2.19). To completely specify the Cauchy problem, we
need to provide initial data to obtain exact solutions. This can be done by fixing the form
of the scalar field at the initial time, ϕ(t = 0, r). We follow the same scheme that Choptuik
used in [34], in which a smooth function parameterizes the initial distribution of the scalar
field. This function depends on one parameter, refered as p, that characterizes the strength
of the initial conditions. A simple example is a Gaussian distribution

ϕ(t0, r) = ϕ0r
3 exp

[
−
(
r − r0
δ

)q]
(2.20)
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where t0 is the initial time and ϕ0, r0, δ and q are constant. In this case, Choptuik found
that the control parameter p (which describes the family) can be any of the four

p ∈ {ϕ0, r0, δ, q} .

That is, fixing any three of them, we shall obtain a family of initial data, S[p]. We will take
the overall amplitude factor (ϕ0) to be the parameter that characterized the family. Once
the initial data for the scalar field is established, we are free to choose the initial data for
the auxiliary fields (2.12). For example we can set

Φ(t0, r) = ∂rϕ(t0, r) , Π(t0, r) =
ϕ(t0, r)

r
+ ∂rϕ(t0, r) . (2.21)

These conditions describe a scalar field that is initially ingoing; the shape of this field is
shown in Fig. 2.4. Another choice of initial data, commonly taken in gravitational collapse,
is Π(t0, r) = 0; in this case, the field comprises two small packages, one traveling to the
origin and the other one to infinity.

In order to obtain results that are family independent, i.e. conclusions do not depend on
the initial data that is chosen; it is necessary to consider another type of family to describe
the initial scalar field. We also perform the evolution of the system using

ϕ(t0, r) = ϕ0 tanh

(
r − r0
d

)
, (2.22)

where r0, d and ϕ0 are constants. Again we used the amplitude of the field to describe the
family. We will identify the Gaussian profile (2.20) as Family A and the other one (2.22) as
Family B. It should be mentioned that these choices of the initial data are not unique. In
Appendix B, we review other choices of the initial conditions typically found in the literature.

2.2.2 Boundary Conditions

Although spacetime is infinite, we have limited computational resources to solve equations
in a numerical scheme. For this reason, we have to restrict our solution to a finite range,
r ∈ (0, rmax); where rmax simulates the infinity and numerically has to be chosen in a way
that our solutions do not depend on this parameter. This can be done by imposing boundary
conditions at the edges of this range.

The first boundary is located at r = 0, which is the origin of the spherically symmetric
coordinate system, it is not a physical boundary. One can impose regularity conditions to
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Figure 2.4: Scalar field and auxiliary fields at initial time. The numerical integration of all the
equations are performed between r ∈ (0, 50]. The shape of the scalar field is shon in (2.20) where
we choose ro = 20, δ = 3 and q = 2.

ensure that fields at this point are not ill-defined. We require spacetime to be locally flat
there

ds2 = −dt2 + dr2 + r2dΩ2 .

In this case, the Klein-Gordon equation of the scalar field is

2ϕ = 0 −→ ∂2t ϕ =
1

r2
∂r(r

2∂rϕ) (2.23)

which can be rewritten as the ordinary one-dimensional wave equation, ∂2t (rϕ) = ∂2r (rϕ).
The general solution of this equation is

ϕ(t, r) =
1

r
[f(t+ r) + g(t− r)] (2.24)

where f and g are two arbitrary differentiable functions. The former describes an ingoing
wave to the center, r = 0, and the latter describes an outgoing wave from the center. Let us
now examine the behaviour near r = 0 assuming that ϕ(t, 0), as well as f and g, are smooth.
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Making a Taylor expansion around r → 0, we obtain

f(t+ r) = f(t) + r∂rf(t, r)|r→0 +
1

2
r2∂2rf(t, r)

∣∣∣∣
r=0

+ . . .

g(t− r) = g(t)− r∂rg(t, r)|r→0 +
1

2
r2∂2rg(t, r)

∣∣∣∣
r=0

+ . . .

it follows for the general solution

lim
r→0

ϕ(t, r) =
1

r
[f(t) + g(t)] + f ′(t)− g′(t) +

r

2
(f ′′(t) + g′′(t)) + . . . .

Therefore, in order for the solution to be well defined at the origin r = 0, we must impose
f(t) = −g(t). As a consequence of this regularity condition, it follows that f (n)(t) = −g(n)(t).
Thus

lim
r→0

ϕ(t, r) = 2f ′(t) +
r2

3
f ′′′(t) + . . . .

From this last result we can conclude

∂rϕ(t, r)|r=0 = 0 +O(r) . (2.25)

On the other hand, if we set a distance far enough from the origin, we can guarantee that
our spacetime is asymptotically flat, e.g. Minkowski. In this case, the dynamic equation is
given by (2.23) and its solution by (2.24). At infinity, we must impose boundary conditions
to have a zero amplitude for signals entering the integration domain. In contrast, information
leaving the domain is unaffected; no boundary conditions are specified for outgoing waves.
This condition is known as the radiation boundary condition [68] and can be applied to our
problem by imposing

lim
r→∞

rϕ(t, r) = g(t− r) .

From this relation we can easily compute that

∂t[rϕ(t, r)] = ∂tg(t− r) , ∂r[rϕ(t, r)] = ∂rg(t− r) (2.26)

since ∂tg(t− r) = −∂rg(t− r), we get

lim
r→∞

(∂t[rϕ(t, r)] + ∂r[rϕ(t, r)]) = 0 .
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This condition can be re-written in terms of our domain variables as

∂ϕ(t, rmax)

∂t
+
∂ϕ(t, rmax)

∂r
+
ϕ(t, rmax)

r
= 0 . (2.27)

Notice that this boundary condition is exact only for spherically symmetric waves, char-
acterized by the property that they are incident normal to the boundary r = rmax. Since
auxiliary fields also approach the right boundary, the same conditions must be applied to
Φ(t, r) and Π(t, r).

As we will see in the next chapter, we will discretize the spacetime in a fixed integration
domain to solve evolution equations. Although we cannot dwell on this issue in much detail,
it should be pointed out that the above boundary conditions have to be well integrated into
the discretization scheme to perfectly couple the data provided by the interior evolution and
constrain equations in order to have a stable evolution scheme.

2.2.3 Regularity Conditions

As the origin is not a special point, we require spacetime to be locally flat there, like all other
non-singular points. This condition implies a(t, r = 0) = 1; otherwise, a conical singularity
develops at the origin. To understand where this condition comes from, let us consider a
circle at the origin (with θ = π/2) that is parametrized by φ. The proper circumference is
given by ∫ 2π

0

r sin(π/2)dφ = 2πr

while the proper radius is∫ r

0

(
a(t, 0) + ra′(t, 0) +O(r2)

)
dr = a(t, 0)r +O(r2) .

As r → 0, their ratio approaches to the value 2π/a(t, 0), which is not the locally flat
value of 2π unless a(t, 0) = 1. On the other hand, since the equation for α(t, r) is also first
order, we need one initial condition for it, as well. This condition can be motivated by the
requirement that our metric approaches the Schwarzschild form as r → ∞, that is

a(rmax)α(rmax) = 1 . (2.28)

Given this initial conditions, the Hamiltonian constraint (2.18) can be integrated radially
outwards (starting at r = 0) and no additional condition is required at r = rmax. When a(t, r)
is known, we can compute the initial condition (2.28) for α(t, r) and the slicing condition
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(2.19) can be integrated radially inwards (starting from r = rmax to r = 0). However, the
equation (2.19) is linear in α(t, r) and it is invariant under the rescaling α(t, r) → κα(t, r)

where κ is a constant. Therefore, instead of integrating equation (2.19) radially inwards, we
can obtain the solution for the metric function α(t, r = 0), giving an arbitrarily initial value
for α(t, r = 0), then rescale the solution with the constant κ chosen in a way that condition
(2.28) is satisfied.

2.3 Black hole detection

In the weak-field regime (when the amplitude of the scalar field is close to zero), the physical
situation is as follows: the initial imploding scalar field travels towards the origin, increases
its amplitude as it approaches r = 0, and then, as the gravitational interaction is weak, the
scalar field is reflected with the same shape but inverted (i.e. ϕ→ −ϕ). After enough time,
all the scalar field is dispersed to infinity (traveling towards r ≫ 0), leaving a Minkowski
spacetime in the interior, see Fig 2.5.

As we increase the initial amplitude of the scalar field ϕ0, we increase the amount of matter
in spacetime. When the scalar field collapses near the origin, the ensuing gravitationally-
induced self-interaction of the scalar field gets stronger. Therefore, we can reach the limit
where a black hole forms in the evolution. However, as we stated before, our metric —written
in the polar/areal coordinates (2.10)— cannot penetrate apparent horizons; time evolution
breaks down at this point. Nevertheless, we can detect signals that indicate the formation
of a black hole: the lapse function goes to zero, signaling that the coordinate system starts
to become singular near what would be the radius of the black hole.

In spherical symmetry, we can monitor the Misner-Sharp mass [69] (see Appendix C)

mMS(t, r) =
r

2

(
1− (∇r)2

)
=
r

2

(
1− 1

a2(t, r)

)
(2.29)

which has been used for a long time in the context of gravitational collapse. It satisfies
several useful criteria for a quasi-local mass. For example, in asymptotically flat spacetimes
it reduces to the ADM mass at spatial infinity and the Bondi-Sachs mass at future null
infinity.

In a collapse simulation where a black hole is formed, we will see that the function 2mMS/r

rapidly tends to 1 at some specific radius, r = RBH (see Fig 2.6), where RBH is precisely the
radius of the black hole and, in addition, the mass of the hole is then immediately given by
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Figure 2.5: The scalar field profile ϕ(t, r) (blue solid line) and Misner-Sharp mass mMS(t, r) (orange
dashed line) for a weak field. The reported time is the iteration step (not proper time), normalized
in terms of the number of points where the coordinate r is discretized. The metric fields (not shown)
remain smooth and close to their Minkowksi spacetime values throughout.
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Figure 2.6: The scalar field profile ϕ(t, r) (blue solid line) and the ratio 2mMS/r (orange dashed
line) for a strong field.
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Figure 2.7: Dispersion of the field. Evolution
of the mass function when p < p∗.

Figure 2.8: Black hole formation. Evolution
of the mass function when p > p∗.

the expected expression

MBH =
RBH

2
. (2.30)

Numerically, we can say that we have detected a black hole if 2mMS/r ≥ 0.995.

2.4 Final comments - results of our code

As we mentioned during this chapter, the gravitational collapse of a scalar field has two
possible final states: dispersion of the field or formation of a black hole. We have already
shown some results of the scalar field evolution in each case, Fig 2.5 and Fig 2.6. However,
as we mentioned in the above section, instead of studying the evolution of the scalar field or
the auxiliary quantities, it is better to monitor the mass function: 2mMS(t, r)/r. In Figs. 2.7
and 2.8, we show the whole evolution of this function for two simulations: two different
values of the initial amplitude of the scalar field.

In Fig. 2.7 we see that after some time of the evolution, the amplitude of the mass
function starts to grow near the origin but rapidly decays to small values. At the end of the
simulation, the mass function is almost zero. This evolution is an example that the scalar
field is dispersed to infinity at the end of the collapse. Instead, in Fig. 2.8, we can see that
the mass function starts to grow, reaching the limiting value of 1 near the origin, a signal
that a black hole is formed.

To reproduce Choptuik’s conclusions, we take these two different values of the initial
scalar field and perform bisection of this range. This fine-tuning procedure gives the critical
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Figure 2.9: Illustration of the conjectured mass-scaling relation (2.31). Data from two different
one-parameter families.

value, p∗, that separates the phase space of the solution. In the upper limit, when the
amplitude of the scalar field is greater than p∗ but near it, we obtain that the mass of the
black hole that is formed satisfies the scaling relation

MBH ∝ (p− p∗)γ (2.31)

where γ = 0.376. This scaling relation is shown in Fig. 2.9 for the two families we are
studying. Since this exponent is the same for both families and many others analyzed in
[34], it has the character of a universal parameter. However, after many studies, it has been
found that this parameter depends on the type of matter that is chosen and the dimensions of
the spacetime. For example, we have generalized our code to perform gravitational collapse
of a massless scalar field in d dimensions. For d = 6, we have obtained γ = 0.42, reproducing
the well-known results of [70]. For dimension d = 5 to d = 8, we recover the results of [39].

The pioneering work of Choptuik on the spherical massless scalar field opened a new
line of investigation to study the gravitational collapse of other fields. For example, the
previous work has been extended to massive scalar fields [36], the gravitational collapse of
radiation [38] and perfect fluid [71], a complex scalar field with angular momentum [72], the
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Einstein-Massless-Dirac system [73], massive vector field [74].
As shown in [59], the gravitational collapse of various types of matter/fields has been

studied in the literature because it could have an impact on understanding astrophysical
phenomena. Other examples have been analyzed as toy models to get a deep insight into
the gravitational field in (3 + 1)−dimensions, and others for purely mathematical interest.
In particular, we will extend these studies by investigating the gravitational collapse of the
k-essence model, which can be thought of as the generalization of the Choptuik problem.



Chapter 3

Numerical Techniques

As we mentioned in the previous chapter, we solve the equations that govern the evolution of
gravitational collapse using numerical techniques, e.g., the Runge-Kutta method. In order to
gain confidence that the numerical evolution works appropriately, we also solve the constraint
equations using the Newton solver approximation, also known as the relaxation method. In
this way, we ensure that any error in the evolution of the system is given by physical prop-
erties rather than a numerical instability associated with a particular discretization scheme.
This chapter explains these numerical approximations and gives some stability conditions
that guarantee that our numerical evolution converges to the analytical/real solution. For
this section, we follow the standard textbooks [75, 76, 77].

Before describing any numerical solution of partial differential equations, we need to
discretize the spacetime in a discrete grid. Instead of evaluating any function f(t, x) at all
values of x and t, we will only consider discrete values. The distance between spacial points
in the grid (∆x) is called grid spacing, which in principle could depend on the position, but
to simplify the numerical scheme, it is chosen to be constant. Thus, given an initial point
on the grid (x0), any further point is obtained by

xi = x0 + i∆x (i ∈ N). (3.1)

In the same manner, we discretize the time coordinate as

tn = t0 + n∆t (n ∈ N), (3.2)

where ∆t is the spacing in the time coordinate. If our problem depends on more spatial
dimensions, they are discretized in a similar way.

31
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3.1 Finite Difference Methods

The result of the discretization is a spacetime lattice/grid in which all functions have to
be evaluated. The purpose of a finite-difference approximation, when applied to a PDE, is
to replace the continuum function by its discrete values in this grid and the replacement
of derivatives/differential operators by its finite-difference expressions. In this process, any
continuum function is replaced by

f(t, x) −→ fn
i = f(tn, xi) + truncation error

where fn
i represents the value of the function at the discrete point (tn, xi) on the grid. In

the above expression, we have explicitly added the “truncation error” as a warning that fn
i

only approaches the correct value of f(t, x) as the finite difference solution converges to the
correct solution. To discretize derivatives on the grid, consider that function f(x) depends
only on one coordinate (the generalization with a dependency of two or more variables is
performed in the same way) and assume that f(x) can be differentiated to sufficiently high
order. Using a Taylor expansion, we get

fi+1 = f(x+∆x) = f(x) + ∆xf ′(x) +
1

2
(∆x)2f ′′(x) +O(∆x3) (3.3)

from which we obtain
[∂xf(x)]i =

fi+1 − fi
∆x

+O(∆x) . (3.4)

In the computational language, this expression is known as the forward finite-differencing
stencil, which is first order in ∆x. As we see, if we take the limit ∆x → 0, we recover
the standard definition of the partial derivative. Another option is to perform the Taylor
expansion using the xi−1 point, in this case

fi−1 = f(x−∆x) = f(x)−∆xf ′(x) +
1

2
(∆x)2f ′′(x) +O(∆x3) (3.5)

from which we obtain
[∂xf(x)]i =

fi − fi−1

∆x
+O(∆x) (3.6)

which is known as the backward finite-differencing stencil. Combining (3.3) and (3.5) we get

[∂xf(x)]i =
fi+1 − fi−1

2∆x
+O(∆x2) (3.7)

which is second order in ∆x, meaning that the truncation error drops by a factor of four
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when we reduce in half the grid spacing. The main conclusion is: we can combine two (or
more) Taylor expansions so that the leading order error term cancels out, leaving us with a
higher-order representation of the derivative. The cost required to achieve better truncation
error is introducing more grid points in the differential stencil. Equation (3.7) is known as
centered finite-differencing stencil.

Higher-order derivatives can be constructed in a similar way. Using the Taylor expansions
shown above, we can obtain an expression for the second derivative

[
∂2xf(x)

]
i
=
fi+1 − 2fi + fi−1

∆x2
+O(∆x2) (3.8)

which is a centered derivative and second-order in ∆x.

Example: Discretization of equation (2.18)

To illustrate how the discretization of an equation works in a grid, we discretized the Hamil-
tonian equation (2.18). Since this equation has only one spatial derivative, the discretization
is simple

ani+1 − ani−1

2∆r
+ ani

[
(ani )

2 − 1

2ri
− 2πri

(
(Φn

i )
2 + (Πn

i )
2
)]

= 0 . (3.9)

We have used the centered finite-differencing stencil to keep the truncation error at second
order. From the above discretization, we can solve for the variable ani+1. This means we can
compute the value of the function a(t, r) at any subsequent step (i + 1) if we know the
values of the function at a previous step. This is known as an explicit method. The above
discretization scheme can be applied to field equations (2.13) and (2.14). For example, in
addition to discretizing the radial coordinates as in the previous case, we can use a first- or
second-order scheme to discretize the time derivative. However, in general, equations with
time derivatives and small order truncation error give instabilities at a later time because
errors accumulate during the evolution and break the convergence of the solution. For this
reason, to solve equations (2.13) and (2.14), we used the Runge–Kutta method. It is an
explicit and a higher-order scheme.

3.2 Runge-Kutta Method

As we stated before, the difference between the numerical and real solution of a partial
differential equation resides in the truncation error. We have to apply a numerical scheme
with many grid points in the finite difference method to minimize this error. When applied
to time evolution, the disadvantage of this scheme relies on the fact that we have to store
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a large amount of data for previous time steps. Instead, another technique widely used
in numerical relativity codes that achieves higher-order solutions taking few points on the
grid is the Runge-Kutta Method. These methods use the information on the slope at more
than one point to extrapolate the solution to the future time/spatial step. The most widely
known method of the Runge–Kutta family is generally referred to as “RK4” — a fourth-order
scheme. It consists in the following. Let an initial value problem be

ẏ = f(t, y), y(t0) = y0.

Given the initial condition at time t0, the solution in the future time step can be computed
as

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4) ,

tn+1 = tn + h
(3.10)

where
k1 = h f(tn, yn) , k3 = h f

(
tn +

h

2
, yn +

k2
2

)
k2 = h f

(
tn +

h

2
, yn +

k1
2

)
, k4 = h f (tn + h, yn + k3)

(3.11)

and h is the grid spacing in the coordinate, in this case, time. The above discretization
scheme for the RK4 method is known as the “classic Runge–Kutta method”1. RK4 is an
excellent method to solve a numerical equation with time derivatives since we do not have
to store large amounts of data for previous time steps. This approach is much easier than
implementing a fourth-order time differencing scheme from scratch.

A simpler numerical scheme is obtained by applying a second-order Runge-Kutta method
(RK2), but it is unconditionally unstable for the linear wave equation.

3.3 Method of lines

The method of lines (MoL) is a numerical technique to solve partial differential equations in
which one of the variables (typically a spatial component) is replaced by algebraic approxi-
mations using Finite Difference Methods and leaving the other coordinate (time variable, in
our case) as continuous. This formalism leads to a system of ordinary differential equations
that can be solved using a numerical method with initial conditions, like the Runge-Kutta
Method.

1There are infinite variants of the fourth-order Runge–Kutta scheme and the other well-known variant
is the Runge–Kutta 3/8 scheme, see [77].
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To illustrate this procedure, we consider the MoL in evolution equations, (2.13) and
(2.14). As we pointed out, we replace the spatial derivative using the centered finite-
differencing stencil (3.7)

∂tΦi =
1

2∆x

(
αi+1

ai+1

Πi+1 −
αi−1

ai−1

Πi−1

)
∂tΠi =

1

2r2i∆x

(
r2i+1

αi+1

ai+1

Φi+1 − r2i−1

αi−1

ai−1

Φi−1

) (3.12)

where i is an index designating the position along the grid. Equations (3.12) have to be
integrated at all grid points, using boundary conditions that may either result in ordinary
differential equations or algebraic equations. Since equations (3.12) are first order in time,
we used the initial form of the auxiliary fields, equation (2.21), as initial conditions to solve
the system of equations using the RK4 method. This is the numerical technique that we
used to solve partial equations with time derivatives.

3.4 Newton solver method

The Hamiltonian and Momentum constraint equations can be solved using the RK4 method.
In fact, these equations can be written in the form

∂rf = S(a, α,Φ,Π)

where f can be any of the metric functions, and S is a general function. Thus, given initial
conditions, the scheme (3.10) can be applied.

As a further check, we solve these constraint equations using Newton’s solver method.
The purpose of implementing this extra calculation is to ensure that any error in the evolution
of the system is given by physical properties rather than a numerical instability associated
with a particular discretization scheme. Since the equation for a(t, r) is nonlinear, solving
the Hamiltonian constraint requires an extra step. The ODE for the metric function a can
be written as

E(a) ≡ ∂ra+ F(a) = 0 (3.13)

where F(a) is a nonlinear function in a that depends on the variables Φ and Π. The Newton
method consists in discretizing the above equation by means of a finite difference approxi-
mation and defining the vector Rj ≡ (E(a))j which is the residual of equation (3.13). We
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iteratively find aj by solving the linear correction δaj

Jijδaj +Ri = 0 (3.14)

where Jij ≡ δRi/δaj (see Section 10 in [78]). To solve the above equations, we inverted the
matrix Jij using the Gauss-Seidel method. The Newton iteration was then repeated until
the residual Rj was below some tolerance, smaller than the truncation error.

On the other hand, the ODE for the function α(t, r) can be written in the form

∂rα +H(α) = 0 . (3.15)

Since H(α) does not depend on α, from the discretization of this equation, it follows

αi+1 = αi −∆r[H(α)]i+1/2 (3.16)

where [f ]i+1/2 = (fi+1 + fi)/2 is the average value of the function between two grid points.
From the numerical point of view, Newton’s method is more time-consuming due to the
iterative process and the inversion of the equation (3.14).

3.5 Courant–Friedrichs–Lewy condition

To ensure convergence of our numerical solutions, we have to choose the correct value for
the time-step interval, ∆t. For the (1 + 1)−dimensional case, our continuous-time model
equations have the general form

∂tf + v∂rf = 0 ,

which is sometimes referred to as the model advective equation, where v is the magnitude
of the velocity. Performing a von Neumann stability analysis (as shown in section 6.2.3 of
[76]), the stability for the scheme is obtained if the condition λ := v∆t/∆x ≤ 1 is satisfied.
Such constraint is called the Courant–Friedrichs–Lewy (CFL) condition, and λ is referred
to as the Courant number. Physically, the CFL condition states that the grid point for
fn+1
j at the new time level n + 1 has to reside inside the domain of determinacy of the

interval spanned by the finite-difference stencil at the time level n; if fn+1
j were outside this

domain, its physical specification would require more information about the past than we
are providing numerically, which may trigger an instability.
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3.6 Testing the numerical evolution

3.6.1 Convergence Test

Once developed the numerical scheme that solves the system of equations, the next important
step is to check the numerical solution. One obvious test to the code is to treat a case in
which an analytical solution, or at least some very accurate numerical solution, is available
for comparison. In our case, we have compared our numerical solutions with the well-known
results obtained by Choptuik [34]; we reproduced the scaling relation for the mass of the
black hole near the critical solution.

However, comparing a single simulation with an “analytical” solution is not the most
desirable way because it would not be possible to distinguish a deviation caused by a coding
error from a truncation error. A more meaningful test, common in the numerical relativity
community, is to perform a sequence of simulations. Since the truncation error decrease in
a predictable way with increasing numerical resources, we used this fact to detect the loss of
convergence due to an error/typo in the code.

In order to get this analysis, we compute three distinct finite-difference solutions χh, χ2h,
χ4h at resolutions h, 2h and 4h, respectively, using the same initial data. We also assume
that the finite difference meshes coincide, i.e., the h−grid is contained in the 2h−grid, and
this one is inside the 4h−grid. Let us denote a numerical solution for any of the evolving
fields by χh(t, r), with a corresponding exact (continuum) solution, χc(t, r). Making a Taylor
expansion, we get

χh(t, r) = χc(t, r) + h2E2 +O(h3) (3.17)

where the error terms Ei are independent of the grid spacing h. We now define the conver-
gence factor, Q[χ](t), associated with χ by

Q[χ](t) =
||χ4h − χ2h||2
||χ2h − χh||2

(3.18)

where || · || is any suitable discrete norm, such as the l2 norm, || · ||2, defined for any grid
function, fi, by

||fi||2 =
√

ΣN
i=1f

2
i

N
(3.19)

where N is the total number of spatial grid points. It should be noted that the subtractions
in (3.18) can be taken to involve the sets of points that are common between the grids. Using
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(3.17), we obtain that the convergence factor should asymptote to 4 in the continuum limit:

lim
h→0

Q[χ](t) = 4 . (3.20)

When this condition is satisfied for any variable/field evolving in the grid, we say that the
finite-difference approximation is converging.

3.6.2 Redundant Equation Test

To obtain the full constrained evolution scheme that describes the gravitational collapse of
a massless scalar field (see Chapter 2), we employed only the tt− and rr−components of
Einstein’s equations. Hence, we have two remaining equations that we can use to check
the evolution of our numerical code. These equations are the tr− and θθ−components of
Einstein’s equations. Notice that this particular test is only present in spherically symmetric
scenarios, in which the Einstein equations are over-determined, i.e., not independent.

Therefore, we define the following quantities

Rtr ≡ Gtr − 8πTtr , Rθθ ≡ Gθθ − 8πTθθ (3.21)

which, for a numerical solution, should be the residuals. Replacing the right-hand side
of the above equations with the finite-difference approximations, which are second-order
in the grid spacing, and taking the continuum limit, we should find ||Rtr||2 = O(h2) and
||Rθθ||2 = O(h2).

3.6.3 Conservation of Energy

During the evolution of our simulation, it is necessary to make tests that validate that
the numerical solutions are physically correct. One of these tests is monitoring the energy
contained in the spacetime. When all the scalar field is inside our domain, energy can not
be created or destroyed, so the energy has to be constant at infinity.

In general relativity it is no so easy to define mass/energy. However, it is still possible to
define a global mass in an asymptotically flat spacetime. As mentioned before, in numerical
relativity with spherical symmetry problems, the most usual definition of mass is the Misner-
Sharp mass [69] (see Appendix C), which is defined as

mMS(t, r) =
r

2

(
1− (∇r)2

)
=
r

2

(
1− 1

a2(t, r)

)
. (3.22)
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Also, we can derive this expression by comparing the form of the metric in polar-areal coordi-
nates (2.10) with the usual Schwarzschild metric. The Misner-Sharp mass, in asymptotically
flat spacetime, approaches the Arnowitt-Deser-Misner (ADM) mass

MADM = lim
r→∞

mMS(t, r) (3.23)

which is a conserved quantity. Physically, mMS(t, r) measures the amount of mass inside a
sphere with radius r at time t: in vacuum regions it is thus (locally) conserved and this fact
can be used to advantage in the testing of a spherically symmetric code.

3.7 FMR: Fixed Mesh Refinement

In order to get a numerical solution, we have bounded and discretized the spacetime to a
domain where all functions must be evaluated. As we described earlier, the standard method
introduces a grid with fixed spacing, ∆x, which determines the local errors and the solution’s
accuracy. Through the CFL condition, this spacing also determines the number of evolution
steps that we need to perform to cover the time domain of the problem and thus the cost of
the computation.

The disadvantage of working with a grid whose spacing is constant comes from the
required computational cost. To analyze the global picture, let us focus on our problem: we
solve the evolution equations in a grid whose spatial component ranges from r = 0 to rmax =

50. With this range, we ensure that matter/energy is contained inside the integration domain
for most of the simulation. When a black hole is produced, to identify a scaling relation,
it is necessary to determine the radius of the black hole that is formed with considerable
precision, typically ∆x = 10−5. If we take a fixed grid, we will need ≈ 105 points for each
iteration of time. Computational resources scale, in our case, as quadratic with the number
of grid-points processed during an evolution. Obtaining results with this type of grid requires
a lot of computing time (weeks!). One obvious solution is to use non-uniform grids; however,
this complicates the finite difference stencil.

Instead, considering that the event horizon occurs near the origin, one strategy to circum-
vent this problem is to apply Fixed Mesh Refinement (FMR). It consists in taking several
grids, each with a fixed grid spacing, with the particularity that the first grid (Grid 1: main
grid) has a spacing ∆x, the subsequent grid (Grid 2) has ∆x/2, and the next one (Grid 3)
has ∆x/4, and so on. To respect the CFL condition, it is necessary to emphasize that the
temporal spacing must also be adapted (∆t, ∆t/2, ∆t/4 for each grid), see Fig. 3.1.

In general, solving evolution equations with multiple grids is not too difficult, except
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Figure 3.1: Schematic figure of computational domains in an FMR scheme. In this example, the
total computational domain is composed of three subdomains Grid 1, Grid 2, and Grid 3. Each
subdomain is supposed to be covered by the same grid number, N, and thus, the grid spacing is
∆x = L/N , ∆x/2, and ∆x/4, respectively.

when we have to evaluate derivatives of functions in the vicinity of outer-boundary regions
of each subdomain. This is the most crucial process for implementing an FMR algorithm.
We have followed the process described in [77], and we will review it in the following.

A good implementation of a FMR technique has to consider two crucial points:

• Spatial interpolation: To compute derivatives at the edges of each inner grid, we
have to extend each sub-grid with the necessary number of points. Such regions are
knowns as refinement boundaries or buffer zones. The data in these zones must be
supplied from their “parent” subdomain by an interpolation procedure. Therefore, it is
crucial that the parent subdomain completely encloses its “child” subdomain, including
the buffer zone.

• Time integration scheme: Since we deal with different time spacing, we have to
assign the data in the buffer zone for intermediate time steps by an interpolation
scheme in time. Furthermore, we need interpolation procedures in time for several
substep levels because we employ a higher-order time integration scheme in which one
time-step integration is composed of multi-substep procedures, like the Runge–Kutta
scheme.

The question is, how many points are required in the buffer zones? It depends on the
differential stencil that we use to solve the numerical equations. In our case, since we use the
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RK4 scheme combined with a finite-difference of second- and fourth-order, the buffer zone
must have 12 points at least.



Chapter 4

k-essence field

4.1 Introduction

General relativity (GR) has been our best classical theory to describe gravity. All direct
experimental tests are consistent with the theory [9]. However, there are pieces of evidence
that tell us that GR is not a complete theory. To begin with, GR is a purely classical theory;
it is valid up to some energy scale. We can find many/infinite arguments that indicate that
GR is not renormalizable in the standard quantum field theory sense. In the high energy
limit, it is geodesically incomplete for most of its solutions, like black holes that contain
spacetime singularity.

In addition, cosmological observations of the large-scale structure of the universe, the
cosmic microwave background anisotropy, and Type IA supernovae at deep redshift suggest
that our Universe is expanding at an accelerating rate [14, 15, 79]. The most straightforward
solution to this acceleration based on GR is adding a cosmological constant [80]. However,
this explanation introduces other conceptual issues that need to be addressed. For example,
astronomical observations indicate that the cosmological constant is many orders of magni-
tude smaller than estimated in modern theories of elementary particles [81]. Also, recently,
a lot of attention has focused on String Swampland conjectures [82, 83], which reject any de
Sitter solution [84] and therefore the existence of the cosmological constant. Therefore, no
dynamic solution to the expansion of our Universe is possible within GR and the standard
model of particle physics.

The above arguments suggest that GR should be modified. But, there are countless
unequal ways to modify this theory. Nevertheless, Lovelock’s theorem serves as a guide to
classify modified theories of gravity [18]. The most conservative and trodden path is to
introduce new degrees of freedom. In this context, the most promising way to explain the

42
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origin of the recent acceleration of the Universe could be due to a scalar field. This would
be an exciting promotion of the relevance of scalar fields in the dynamics of the Universe.
The simplest modification is obtained by adding a canonical massive scalar field described
by the Lagrangian

L = −1

2
(∂ϕ)2 − 1

2
mϕ2 . (4.1)

However, a simple generalization of the above Lagrangian is obtained by replacing the stan-
dard mass term by an arbitrary potential; namely

L = −1

2
(∂ϕ)2 − V (ϕ) ≡ X − V (ϕ) (4.2)

where X is the standard kinetic energy term and V (ϕ) is the potential energy that takes into
account the interaction. This type of Lagrangian has been popular in the literature for some
time by the name Quintessence as a model to explain Dark energy [85]. Depending on the
ratio of its kinetic and potential energy, quintessence can be either attractive or repulsive.

When applied to the late time evolution of the Universe, the accelerated expansion is due
to the potential energy of the scalar field; a similar mechanism as in slow-roll inflation. Also,
the aim of considering quintessence models is to address the cosmic coincidence problem,
the issue of explaining the initial conditions of the Universe necessary to yield the densities
of dark energy and dark matter with the same order of magnitude that we observe today.
However, to explain this coincidence, we need to fine-tune the potential energy density. In
fact, the mass of the quintessence field (defined by m2

ϕ = d2V (ϕ)/dϕ2) needs to be small
enough, i.e., |mϕ| ≈ 10−33 eV, in order to realize the cosmic acceleration. In general, there is
a difficulty to reconcile such an ultra-light mass with the energy scales appearing in particle
physics [86]. Even though quintessence theory has been discarded, it provided a way to
construct more general theories using scalar fields.

A more recent model is to go further than the quintessence model and promote the scalar
field Lagrangian density to be an arbitrary function of the standard kinetic term as

L = K(X,ϕ) , (4.3)

this type of model is known as k-essence. It was introduced by Armendariz-Picon, Mukhanov
and Steinhardt [31] following the earlier application of similar models to the very early
Universe under the name k-inflation [30]. K-essence model is a scalar-tensor theory that
considers gravity and a scalar field ϕ with the non-standard (non-canonical) kinetic sector in
the action. The advantage of introducing k-essence is that we avoid the fine-tuning problem
of initial conditions since k-essence model has a dynamical attractor behavior as a solution,
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so cosmic evolution is insensitive to initial conditions [87].
In the literature, the inclusion of non-linear terms in the action has been considered in

previous theories. For example, in 1934, Born and Infeld [88] used a non-linear electromag-
netic field to avoid the infinite self-energy of the electron in classical electrodynamics. The
proposal of scalar fields with nonminimal couplings to gravity appears in several contexts,
such as in string theory [89], in Kaluza-Klein-like theories [90] or in braneworld scenar-
ios [91, 92]. They also have important applications in cosmology [93]. Usually, non-linear
terms are neglected because they are supposed to be small and irrelevant since the Hubble
expansion dilutes the kinetic energy density over time.

Since scalar fields have played an important role in the development of the fundamental
theories of physics, more complex Lagrangian and generalized extensions have been con-
structed. For example, Galileons theory [42] try to produce an accelerated expansion of the
Universe without introducing any dark energy nor cosmological constant. Horndeski theory
[21] is the most general theory of gravity in four dimensions whose Lagrangian is constructed
out of the metric tensor and a scalar field and leads to second order equations of motion.
Even if these models seem to have been finely constructed, they appear to be viable models
in high symmetrical backgrounds such as homogeneous and isotropic or spherically symmet-
ric spacetimes. But, they suffer from a major problem [94]. The equations of motion are
not strongly hyperbolic for most Horndeski models except k-essence which arise as the most
legitimate sub-class of scalar-tensor theories. At the same time, many studies try to see if
scalar fields could be locally observed and what are their effects around black holes. For
example, we can ask if we could observe any deviation from Kerr black hole by measuring
quasi-normal modes. Even if the answer is, at present time, negative, quintessence and their
extensions with non-standard kinetic terms, attracted considerable interest.

Much of the effort to understand k-essence theory has focused on the cosmological scenario
[95, 96, 97], through this way, k-essence enter to modify GR at large scales. However, we
also have to understand the effects that this field causes at high energies. We have seen that
black holes serve as the ideal laboratory to detect intrinsic properties of spacetime. Thus,
what are the new features that arise when this field is coupled to gravity? If any, what are
the characteristics of a black hole formed through the gravitational collapse of this scalar
field? In Chapter 2, we saw that the numerical study of gravitational collapse has a long
history with a significant impact on understanding astronomical phenomena.

At the moment, few previous investigations explored this issue. For example, numerical
simulations of various k-essence-type scalar fields under spherically symmetric gravitational
collapse are studied in [98, 99]; they focused on the superluminality and Cauchy breakdown
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present in those models. On the other hand, the intention of [100] is to identify conditions for
achieving global solutions in Horndeski’s theory, giving as a numerical example a model of
k-essence. However, not much has been investigated in the local properties at the threshold
of black hole formation. Choptuik’s results have inspired us to analyze the scaling relation
when a non-canonical scalar field is coupled to gravity. In such a way, we generalize the
pioneering work done by Choptuik and complement the study of gravitational collapse of
scalar fields.

For this purpose, in section 4.2, we describe the dynamics of a general k-essence field
and review the exciting properties that arise when a non-canonical scalar field is coupled to
gravity. Next, we describe some physical conditions that constrain the Lagrangian (4.3) in
order to describe physical situations. As in chapter 2, the main goal of this section is to
find a set of equations that forms a fully constrained evolution scheme. Using the numerical
techniques described in the last chapter, these equations will enter into the numerical code
to solve the gravitational collapse. The main results of these evolutions are given in the next
chapter.

4.2 Dynamics for k-essence field

We study k-essence as a real scalar field ϕ, minimally coupled to gravity with a non-canonical
kinetic energy term. In general, the action is of the form

S =

∫
d4x

√−g
[
1

2κ
R + L(ϕ,X)

]
, (4.4)

where X := −1
2
∂µϕ ∂

µϕ is the kinetic term and L is the Lagrangian for the k-essence field. In
particular, we will consider models where the action is a function of X only, i.e., L = K(X).
For example, considering small values of1 X, we have K(X) = const+X +O(X2); ignoring
quadratic and higher-order terms, we recover the Lagrangian with the usual canonical scalar
field with some potential. For this choice of the Lagrangian, we have a new global symmetry:
our theory is invariant under constant translation in field space, ϕ → ϕ + const. This
symmetry should either be manifest in the original field variables or reveal itself after an
appropriate field redefinition. As described in [101], this is the only possible solution for
stationary configurations of the scalar field.

Variation of the action with respect to the metric gives us the Einstein field equations,

1An requiring K to be regular when X = 0
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Gµν = 8πTµν , where the energy-momentum tensor for the k-essence scalar field has the form

Tµν = K,X ∂µϕ∂νϕ+Kgµν . (4.5)

For convenience, we have introduce the notation K,X = ∂K/∂X. On the other hand, the
equation of motion for the scalar field is obtained by variation of (4.4) with respect to ϕ

gµν∇ν(K,X ∇µϕ) = g̃µν∇µ∇νϕ = 0 (4.6)

where, in order to rewrite it as a generalized Klein-Gordon equation, we have defined

g̃µν ≡ gµνK,X −K,XX ∇µϕ∇νϕ (4.7)

which is the inverse effective metric governing propagations of perturbations of the k-essence
scalar field2. As usual, this effective metric must satisfy g̃µν g̃να = δµα, thus we can propose
that effective metric has the form

g̃µν =
1

K,X
gµν + F∇µϕ∇µϕ

where F is a function to be determined by the previous condition. Evaluating

δµα = (gµνK,X −K,XX ∇µϕ∇νϕ)

(
1

K,X
gνα + F∇νϕ∇αϕ

)
= δµα + FK,X ∇µϕ∇αϕ− K,XX

K,X
∇µϕ∇αϕ+ 2FXK,XX ∇µϕ∇αϕ

so, we finally conclude that

g̃µν =
1

K,X
gµν + c2s

K,XX

K,2X
∇µϕ∇νϕ , c2s =

K,X
K,X +2XK,XX

(4.8)

where c2s is defined as the effective “speed of sound”, which determines the propagation
of perturbations of k-essence field. We can see that this velocity is always equal to one
for models with the canonical kinetic energy term. The metric g̃µν describes the emergent
spacetime and determines the cone of influence for k-essence. We observed from (4.8) that
the effective metric g̃µν is not conformally equivalent to gµν .3 Therefore, its features (cone of
influence) are not the same as the ones of the standard canonical scalar field Lagrangians.

2In this definition, it is assumed that the metric is invertible. It is an additional condition that physically
means the scalar field is a propagating degree of freedom.

3Except for the trivial configuration ∂µϕ = 0.
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Since we are working with a coupled system of equations of motion, the gravitational
and k-essence field equations, a key aspect that we need to take care of is the breakdown
of the Cauchy problem. As explained in Chapter 2, to study the evolution in time of the
gravitational collapse, we foliated the spacetime with spacelike hypersurfaces orthogonal to
a timelike vector. Therefore, the Cauchy problem is well-posed if the condition gtt < 0 is
satisfied at each time. In this manner, we ensure that all evolution of the system is determined
uniquely from the initial data. In k-essence theory, we have to check that our hypersurface
is also spacelike to the effective metric. A breakdown of the Cauchy problem happens when
the time-constant hypersurface becomes null concerning any metric. If this happens, the
Cauchy problem ceases to be well-posed, and our simulations must end. Clearly, for some
Lagrangians, g̃tt can go to zero independently of gtt.

In the literature, the spacetime described by the metric (4.8) is also known as acoustic
spacetime. We can find singularities that occur when the effective metric collapse, forming a
trapped surface known as the sonic horizon. GR tells us that the luminal apparent horizon
forms when surfaces of constant r become null; if we consider a coordinate basis where r is
the only spatial coordinate, this happens when

gµν∇µr∇νr = 0 −→ grr = 0 .

Similarly, as described in [98], a sonic horizon requires the same condition as before but in
the effective metric, so

g̃µν∇µr∇νr = 0 −→ g̃rr = 0

is the condition to detect a surface trapped in the emergent spacetime.

4.3 Analogy with a perfect fluid

One of the remarkable properties of the k-essence theory is its versatility. Although this
theory was inspired by studying models with non-canonical scalar fields, using Lagrangian
(4.4), we can model other types of matter characterized by a particular equation of state.
This relations is revealed when we closely analyze the energy–momentum tensor of the k-
essence field. If the gradient of the scalar field is timelike, X > 0, we can define a four-velocity
as uµ = ∂µϕ/

√
2X. So, the energy-momentum tensor (4.5) is written as

Tµν = 2XK,X uµuν +Kgµν . (4.9)
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It implies that, the energy density measured by an observer with this four-velocity reads

ρc = Tµνu
µuν = 2XK,X −K (4.10)

while the pressure is
Pc = Tµνn

µnν = K (4.11)

where nµ is a space-like unit vector, perpendicular to uµ. These are the usual definitions
for pressure and energy density for a “cosmological” fluid; for this reason, in the previous
equations, we added the subscript c. Based on this, we can rewrite the energy-momentum
tensor as

Tµν = (ρc + Pc)uµuν + Pcgµν (4.12)

which has the same form as the energy-momentum tensor of a perfect fluid. In this case, the
equation of state (EoS) is

ωc =
Pc

ρc
=

K

2XK,X −K . (4.13)

On the other hand, when the gradient of the k-essence field is spacelike, X < 0, we can
also define an energy-momentum tensor similar (in form, but not physically equivalent) to
the perfect fluid. Defining a spacelike unit vector nµ = ∂µϕ/

√
−2X, the relation (4.5) is

written as
Tµν = −2XK,X nµnν +Kgµν . (4.14)

In this case, an observer with four-velocity uµ —perpendicular to nµ— measures an energy
density ρ, and a pressure in the direction perpendicular to nµ given by

ρ = Tµνu
µuν = −K

P = Tµνn
µnν = K − 2XK,X .

From these equations, it is easy to check that the EoS is the inverse of the equation defined
for the timelike gradient of the scalar field. Finally, we can rewrite the energy-momentum
tensor as

Tµν = (ρ+ P )nµnν − ρgµν . (4.15)

Note that the last term is different from (4.12), thus the pressure of the fluid is no longer
isotropic.

In any case, we can see that for a purely X−dependent Lagrangian, the pressure is a
function of the energy density only, P = P (ρ). Therefore, choosing an action is equivalent
to specifying an EoS for the equivalent hydrodynamical model. For a standard kinetic term,



CHAPTER 4. K-ESSENCE FIELD 49

K(X) = X, the EoS is wk = 1. However, for a general choice of K(X), it is easy to get
any value of wk. For example, considering K = (αX1/2β − A)β, the EoS is P = Aρ(β−1)/β,
a polytropic law similar to various models describing neutron stars (without the anisotropic
stress tensor). In many cases, the EoS can be written as P ∝ ρκ, where κ is a constant.
When κ = 1, the theory is known as Barotropic Lagrangian; on the other hand, when κ > 0

or κ < 0, we have Polytropic or Born-Infeld Lagrangian, respectively. From this analysis,
we notice that we can work in the opposite direction, i.e., given the form of the EoS, we can
derive the k-essence Lagrangian needed to describe such fluid, see [95] for various examples.

Notice also that K(X) models can be related to canonical complex scalar field theories
[102], where the potential of the complex scalar field is defined by K(X). More than an
equivalence between these theories, this is an extension which eliminates the caustics of
K(X) models. In fact, the complex scalar field can be seen as a theory with 2 real scalar
fields with an O(2) symmetry. It’s only when one of these fields is frozen, that the model
reduces to k-essence.

4.4 Constraining the Lagrangian

4.4.1 Null Energy Condition

Since the action (4.4) is general, the possible Lagrangians that we can consider are almost
infinite. In order to describe physical situations, there are several conditions on the energy-
momentum tensor, consequently on the Lagrangian, which are essential for crucial results
in General Relativity as singularity theorems, vacuum conservation theorem, and black hole
area theorem [103]. One of these restrictions is imposed by the Null Energy Condition (NEC)

Tµνn
µnν ≥ 0 (4.16)

where nµ in any null vector, nµnµ = 0. Using the energy-momentum tensor for the k-essence
field (4.5), we obtain

(K,X ∇µϕ∇νϕ+Kgµν)n
µnν = K,X (nµ∂µϕ)

2 ≥ 0 −→ K,X ≥ 0 (4.17)

Physically, this requirement guarantees that perturbations of the scalar field carry pos-
itive kinetic energy density. Violation of this condition would imply that Hamiltonian is
unbounded from below, leading to the inherent instability of the system [104, 105, 106].
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4.4.2 Hyperbolicity Condition

To ensure that field equation (4.6) describes the dynamics of the system, we need to check
that this equation is globally hyperbolic; it means that the effective metric has a Lorentzian
signature. As proved in Theorem 10.1.3. of Ref. [64], if a metric has a Lorentzian signature,
the field equation admits a well-posed initial value-formulation. Therefore, we have to prove
that g̃µν has a negative determinant.

We review the procedure presented in [95]. Let us take the determinant of equation (4.7)

det g̃ = det (K,X g +K,XX n) = K,4X · detg · det
(
1+

K,XX

K,X
g−1n

)
, (4.18)

where g̃, g and n denote the matrices with elements g̃µν , gµν and ∇µϕ∇νϕ, respectively, and
we have assumed K,X ̸= 0. Using the identity det eA = etrA, we get

det

(
1+

K,XX

K,X
g−1n

)
= exp

[
tr ln

(
1+

K,XX

K,X
g−1n

)]
. (4.19)

Furthermore, expanding the logarithm in a Taylor series around the identity, we obtain

tr ln

(
1+

K,XX

K,X
g−1n

)
=
∑
k

(−1)k+1

k

(
K,XX

K,X

)k

tr
(
g−1n

)k
= ln

(
1 + 2X

K,XX

K,X

)
,

(4.20)
where we have used tr (g−1n)

k
= (2X)k. Finally, substituting equation (4.20) back into

equation (4.19) we arrive at our desired result

det g̃ = K,4X · detg · K,X +2XK,XX

K,X
. (4.21)

We know that the metric of spacetime is Lorentzian, so detg < 0. Therefore, g̃ is Lorentzian
if and only if

1 + 2X
K,XX

K,X
> 0. (4.22)

This is the condition obtained in [107] and [108]. If equation (4.22) is satisfied, the
generalized Klein-Gordon equation for the k-essence scalar field has a well-posed initial value
formulation, at least locally. We can use the sign of K,X +2XK,XX to monitor the character
of the equation of motion for the scalar field: if positive, it is hyperbolic; when negative, it
is elliptic and when null it is parabolic.

A similar approach is taken in [100]. In that paper, the character of the equation is
given by the sign of det(g̃µν) —which is the same condition as (4.22)— and the sign of the
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eigenvalues of the effective metric

λ± =
g̃tt + g̃rr

2
±
√(

g̃tt + g̃rr

2

)2

− g̃ttg̃rr + (g̃tr)2

=
g̃tt + g̃rr

2
±
√(

g̃tt + g̃rr

2

)2

− det(g̃µν) . (4.23)

4.4.3 Superluminality Condition

Theories that minimally couple fields to the metric tensor have a unique cone of influence.
All connected causal events of any field are inside this region. Therefore, the gravitational
metric gµν defines global chronology of the spacetime. When we consider theories in which
at least two fields are coupled to different metric tensors that are not equivalent, these
conditions break down4, and we obtain solutions in which perturbations of the matter field
propagate faster than light, so we get superluminal signals. This property has been debated
for a long time in different contexts in the literature, see for example Ref. [108] and the
references therein.

To further illustrate the causal structure tied to the propagation of a k-essence field and
determine a condition for a superluminal signal, let us consider the cone of influence of the
effective metric g̃µν (portion of the emergent spacetime causally connected) defined by the
condition g̃µνNµN ν = 0. Then it follows from equation (4.8) that

gµνN
µNν = −c2s

K,XX

K,X
(Nµ∇µϕ)

2 . (4.24)

Thus, Nµ is not a null vector for the metric gµν , unless K,XX = 0. Going further, taking into
account (4.17), we have that Nµ is a spacelike vector with respect to gµν (gµνN

µN ν > 0) if
and only if K,XX < 0. Therefore, to avoid superluminal signals, we require

K,XX > 0 . (4.25)

This condition is also obtained in [109] considering the tree-level scattering amplitude be-
tween two massive particles on a flat background and applying cosmological parameter es-
timation analysis. Also, this condition is related to the Positivity bounds of Scalar-Tensor
theories [110, 111, 112], meaning that it is a consequence of requiring a unitary, causal, local
UV completion of the theory.

4For example, Galileon models and Horndeski theories naturally predict that the spin-2 and scalar degrees
of freedom propagate in different effective metrics, which depend on the background solution.
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4.5 k-essence in polar-areal coordinates

We study gravitational collapse of k-essence scalar field in the simplest geometry, a spherically
symmetry spacetime. We choose polar-areal coordinates where the line element is given by

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2(dθ2 + sin2 θdφ2). (4.26)

We have to mention that these coordinates are not the best suitable ones to describe
the k-essence model because these coordinates are only valid until the first horizon forms.
However, as we will see later, when we apply it to our particular model, the sonic horizon
is produced before or at the same time as the luminal horizon. Thus, these coordinates are
valid to study gravitational collapse and the dynamics of the horizons.

Following a similar procedure as the one used for the massless canonical scalar field, we
introduce the same two auxiliary fields defined in (2.12). Then, the generalized Klein-Gordon
equation for the scalar field (4.6) can be rewritten as a set of two partial differential equations

∂tΦ = ∂r

(α
a
Π
)

(4.27)

A ∂tΠ =
1

r2
∂r

(
r2
α

a
ΦK,X

)
+ B , (4.28)

where we have defined

A = K,X +K,XX
Π2

a2
, B = K,XX

[
8πr

α

a
ΦΠ2XK,X +

ΦΠ

a2
∂r

(α
a
Π
)]

. (4.29)

In the case of a canonical scalar field, the above equations reduce to the Choptuik problem.
On the other hand, the tt− and rr−component of Einstein equations become

a′

a
+
a2 − 1

2r
= 4πr

(
KXΠ

2 − a2K
)
, (4.30)

α′

α
+

1− a2

2r
= 4πr

(
KXΦ

2 + a2K
)
, (4.31)

and the other components are zero or not independent of these ones. As in the massless
scalar field case, the previous equations contain no time derivatives, so they are constraint
equations that must be satisfied at all times. The equations (4.27)–(4.31) form a fully
constrained evolution scheme that describes the gravitational collapse of a k-essence field.
Since the above equations require initial conditions to determine an exact evolution scheme,
we use a 1-parameter family as initial data. See sec. 2.2.1 and Appendix B for more details.
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4.6 Characteristics

The inclusion of non-canonical terms in the action makes that perturbations of the k-essence
field propagate in the emergent spacetime. Thus, we have to analyze the causal structure
defined by the effective metric g̃µν .

This analysis is performed using the characteristic curves, which describe the “light-
cone” where perturbations of the field propagate. In the case of a canonical scalar field in a
Minkowski spacetime, the characteristic curves are parallel straight lines. It is well known
that in GR, the cone of influence is not the same in all spacetimes; namely, the light–cones
may differ from one point to another. As noted in [113], in a non–canonical field theory,
characteristic curves can intersect, leading to caustic singularities (see also [114]). This is a
severe problem because, when a caustic forms, the system of equations becomes singular and
the theory loses predictability. Additionally, the method of characteristic curves is commonly
used to study the hyperbolicity of a system of partial differential equations.

We follow the standard textbooks [115] to compute the characteristic structure of our
system of PDEs (see also [116]). Since metric functions a and α are fully constrained, it is
sufficient to analyze the evolution equations of (Φ, Π) defined in eqs.(4.27, 4.28) in which
we replace (α′, a′) from the constraint equations to reach a system of 2 equations of the
following form

E(i)[α, a, w(j), ∂rw
(j), ∂tw

(j)] = 0,

where w(1) = Φ and w(2) = Π. We introduce the principal symbol

P i
j (ξa) ≡

δE(i)

δ(∂aw(j))
ξa (4.32)

where (ξt, ξr) define the characteristic covector. This definition does not assume any prop-
erties of the system of partial differential equations, except that we can take functional
derivatives of them. By solving the characteristic equation defined by

det
[
P i
j (ξa)

]
= 0

we deduce the characteristic speed as c = −ξt/ξr. Taking our system of PDEs, we obtain
the speed for a k-essence field in the form

c± =
−K,XXaαΠΦ± a3α

√
K,X(K,X + 2XK,XX)

K,Xa4 +K,XXa2Π2
. (4.33)
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In the case of a canonical scalar field, K = X, we get c± = ±α/a, which reduce to the
characteristic speeds of GR, and the equation is always hyperbolic. For a k-essence field,
to keep the hyperbolicity character of the system of equations, the discriminant must be
positive; thus, relation (4.22) has to be satisfied.



Chapter 5

Gravitational Collapse of k-essence

model: Numerical results

In the last chapter, we described the k-essence model from a general point of view and showed
its main properties. Despite being a fairly flexible theory, in section 4.4, we showed various
conditions which constrain the Lagrangian such that its corresponding dynamics describe
physical processes. For numerical purposes, we have to define a particular model. We choose
the simplest extension of quintessence, which fulfills all previously required conditions, given
by a quadratic correction to the canonical kinetic energy term,

K = X + βX2 . (5.1)

The constant β could take any real value but, as previously mentioned, we have to impose
K,XX > 0 (4.25) which implies β > 0. As mentioned before, this condition, which leads to
a standard UV completion of the theory, turns out to be also related to the hyperbolicity of
the equations and therefore causality.

Performing the numerical evolution of the gravitational collapse of this model, we found
that there are two regimes. Similarly as in the Choptuik case, depending on the amplitude
of the initial scalar field, we obtain either a dispersion of the k-essence field, or the formation
of a trapped surface. As we will see later, the big difference concerning the canonical case
resides in the second regime, which becomes more complicated. In what follows, we give our
numerical results in both cases separately.

To ensure that our results are family independent, we run simulations using two different
families. The Family A: describes a Gaussian pulse (2.20); whereas the Family B: presents a
step function (2.22). For each family of initial conditions, we keep only ϕ0 as a free parameter,

55
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the other parameters are fixed to r0 = 20, q = 2, and d = 3. The system evolves between
r = 10−50 and r = 50 from t = 0 until it forms an apparent horizon (rH) featuring fixed
mesh refinement (see section 3.7). The grid spacing ∆r varies from the finest value near the
origin to larger values of r in 5 different sectors. Near the origin and up to rH (which is
approximately determined in a first run) the resolution is ∆r = 10−4. The time resolution
is also fixed, but it satisfies the Courant-Friedrichs-Lewy condition ∆t = ∆r/5. It means
that, we have considered 1/5 as a Courant number. All results are verified by modifying the
resolution in space and time and for most of them we checked with a fixed grid spacing of
∆r = 10−4 in all space.

5.1 Weak field regime

This regime is obtained when the amplitude of the initial scalar field is small, ϕ0 ≪ 1. In this
case, the scalar field bounces at the origin (r = 0) and then disperses to infinity. We see in
Fig. 5.1 this behavior for three different time1 and for three different values of β = {0, 5, 10}
for the two families of initial conditions that we are considering, (2.20) and (2.22). For
t = 4000 for family A and t = 1000 for family B, the field is yet collapsing. Around t = 9500

for Gaussian initial conditions and t = 10000 for the second family of initial conditions the
field bounces at r = 0 and finally at a later time, the field disperses to infinity. We see that
the parameter gives a small variation to the dynamics of the scalar field because of the weak
regime studied in this section. However, we can notice that, for larger values of β, the field
takes more time to bounce and therefore it reaches infinity a bit later compared to β = 0.
Notice that taking larger values of the constant β increases the mass of the spacetime and
therefore we get closer to the threshold of black hole formation.

For k-essence model, instead of studying the scalar field, it is better to monitor the
rr−component of the gravitational metric (grr) and the effective metric (g̃rr). A complete
evolution is shown in Fig. 5.2, where we can notice that after some time, the minimum value
of both metric components are near the origin but are far from collapsing (min[grr(t, r)] ∼ 1,
min[g̃rr(t, r)] ∼ 1). It means, when ϕ0 is far from the critical point, both metrics remain
closer to one in all the evolution. Instead, as we will see, when ϕ0 approaches the critical
point, the minimum value of both metrics approaches zero, indicating a formation of a
horizon. This figure was done for an arbitrary value of the initial scalar field.

1Time is the iteration step and not proper time at r = 0.



CHAPTER 5. GRAVITATIONAL COLLAPSE OF K-ESSENCE MODEL 57

0 20 40
r

0.000

0.002

0.004

0.006

0.008

φ
(t
,r

)

t = 4000

β = 0.0

β = 5.0

β = 10.0

0 20 40
r

−0.04

−0.03

−0.02

−0.01

0.00

φ
(t
,r

)

t = 9500

β = 0.0

β = 5.0

β = 10.0

0 20 40
r

−0.015

−0.010

−0.005

0.000

φ
(t
,r

)

t = 16000

β = 0.0

β = 5.0

β = 10.0

0 20 40
r

−0.04

−0.02

0.00

0.02

0.04

φ
(t
,r

)

t = 1000

β = 0.0

β = 5.0

β = 10.0

0 20 40
r

0.05

0.10

0.15

0.20

φ
(t
,r

)
t = 10000

β = 0.0

β = 5.0

β = 10.0

0 20 40
r

0.02

0.04

0.06

0.08

φ
(t
,r

)

t = 16000

β = 0.0

β = 5.0

β = 10.0

Figure 5.1: Scalar field profile ϕ in the weak field regime, for β = 0.0 (solid line) which is the
canonical case, β = 5.0 (dashed line) and β = 10.0 (dash-dotted line). Upper panel is for Gaussian
family type of initial conditions (Family A) while the bottom panel represents family B.

Figure 5.2: Complete evolution of the rr−component of the metric (left) and the effective metric
(right) for a value of the initial scalar field in the weak field regime. Both metric components remain
closer to one; they are far to collapse.
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5.1.1 Convergence and consistency checks

In this section, we applied the numerical tests presented in section 3.6 to check the design
and implementation of our numerical solver for the system of equations (4.27)–(4.31).

Our first check is monitoring the Misner-Sharp or ADM mass. As mentioned in section
3.6.3, this has to be a conserved quantity. Fig. 5.3 shows a plot ofMADM as a function of time
during a period when there is no scalar field leaving the computational domain. We observe
that the value of MADM is roughly conserved. More importantly, as the resolution increases,
we have convergence to the conservation: the deviation of MADM from its time-averaged
value decreases as the resolution increases.

Our second check is the convergence test described in section 3.6.1 that we applied to
the metric functions and the auxiliary scalar fields. To perform a basic convergence test, we
had to run the code with the same initial data using three different mesh spacings. Fig. 5.4
plots the value of the convergence factor (3.18) as a function of time for the metric functions
a(t, r) and α(t, r), as well as for the scalar fields (Φ(t, r), Π(t, r)). The displayed results
suggest that our numerical method is second-order convergent for all of the variables. In
Fig. 5.5, we show the same convergence test. In this case, for the Ricci scalar, the left hand
side of the Hyperbolicity condition (4.22), and the Null Energy Condition (4.16). It is shown
that any function computed from the fundamental variables (a, α, Φ, Π) also must satisfy
the convergence inside the grid.

Our final check is the Redundant Equation, section 3.6.2. Since we are working in a
spherical symmetry scenario, the tr−component of the Einstein equations serves to test our
numerical scheme. In Fig. 5.6, we plot the residual of this equation for three different grids.
Convergence of the residual is evident, and closer examination reveals that the convergence
is also second-order, as expected. Also, from this figure, we observe that the residual norm
shows more variation around the time t = 15, which corresponds to the time in which most
of the scalar field is concentrated near the origin. Around this time, the evolution of the
system is more dynamica and the scalar fields have more significant gradients, which results
in relatively large fluctuations.

5.2 Strong field regime

We expect that, when the mass of the scalar field is sufficiently large, it would collapse and
produce a black hole. We run simulations varying the amplitude of the k-essence scalar field
ϕ0 from a value in the weak limit regime to a value where the final result of the evolution is
the creation of an event horizon (collapse of the metric) or a sonic horizon (collapse of the
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Figure 5.7: Last time evolution before formation of a horizon. The event horizon forms when
grr = 0 and the sonic horizon when g̃rr = 0. For ϕ0 = 3.7 10−6 and ϕ0 = 6 10−6 a sonic horizon
forms while the event horizon is not yet formed, while for ϕ0 = 5 10−6 and ϕ0 = 8 10−6 both
horizons form at the same time within our numerical precision.

effective metric). As we described previously, since our metric is not horizon penetrating,
we cannot evolve the spacetime beyond the formation of any horizon. The main difference
with respect to the Choptuik case is that we found four different regimes, depending on the
value of ϕ0. For β = 5, we found situations described in Fig.(5.7) but which are generic for
any value of β ̸= 0.

Explicitly, we obtained the following results:

• For a small amplitude of the scalar field, ϕ0 = 3.7 × 10−6 for β = 5, we observe the
formation of a sonic horizon without being able to continue the simulation to know
if a black hole (event horizon) forms. However, it is interesting to notice that during
a very short period of time, the simulation continues and this regime shows a loss of
hyperbolicity, namely, the condition (4.22) breaks down. This result is similar to [100].

• Increasing the amplitude of the initial field, the sonic horizon is still present, but now
the metric also tends to collapse forming an event horizon with the same radius than
the sonic horizon (within the accuracy of our simulation). This behavior is observed
when the β parameter is not too strong. We do not observe any loss of hyperbolicity.

• Increasing the amplitude of the scalar field, the evolution ends because of the formation
of a sonic horizon, similarly as in the previous case, but this time the dynamics of the
metric seems clearly to indicate that a black hole would form in the future and it seems
that hyperbolicity will not be lost, the function K,X + 2XK,XX is far from vanishing.
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Figure 5.8: Radius of the first horizon formed as a function of the amplitude of the initial scalar
field, ϕ0, for various values of β. The blue-branch represents the formation of both horizons at the
same time while the orange-branch describes formation of a sonic horizon only. Results are shown
for the Gaussian family (first two columns) and the Family B initial conditions (last two columns).

• For strong values of ϕ0, both metrics collapse at the same radius (within the accuracy
of the numerical evolution). This behavior has been observed for all values of β. The
larger the value of β, the larger the value of ϕ0 is, producing this behavior. In this
case, a BH forms and hyperbolicity is maintained until the end of the simulation.

In general, the formation of a sonic horizon indicates the formation of an event horizon
in the future, except in the first regime described earlier, where the hyperbolicity is lost and
therefore the BH never forms.

As shown in Fig. 5.7, depending on the initial value of the amplitude of the scalar
field, we have either the formation of a sonic horizon without the existence yet of an event
horizon, or both horizons (sonic and luminal) form and are indistinguishable. To illustrate
these behaviors in a better way, in Fig. 5.8 we show the variation of the apparent radius
defined either by the sonic horizon or by both horizons when formed simultaneously. We
see, e.g., for β = 5 and for the Family A of initial conditions, that we have four different
regimes corresponding to the cases described in Fig. 5.7. The first and the third regimes (in
orange) correspond to the formation of the sonic horizon, while the second and the last ones
(in blue) correspond to the simultaneous formation of both horizons. For larger values of
β, some regimes disappear since the non-linear term are predominant; in contrast, for small
values, the range of the first regime tends to be very small. In the case of Family A and
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Figure 5.9: Integral curves of the ingoing (orange) and outgoing (blue) characteristic speed c±
defined by eq. (4.33) for β = 5 and Gaussian initial conditions. In the left panel, ϕ0 = 3.5 10−6

and therefore the solution belongs to the first branch, where we have formation of the sonic horizon
only. In the right panel, ϕ0 = 8 10−6 and therefore it belongs to the last branch where a black hole
forms.

β = 5, the blue lines seem to form only one line if extended. In fact, we expect, in this case,
the third regime where only a sonic horizon forms to evolve in time with an increasing sonic
horizon until it forms the link between the second regime and the last one. This behavior
can be observed in all cases like, e.g., β = 1 for Family B, where the two blue lines seem
clearly to be extended and joined.

Therefore, we expect the sonic horizon to be dynamical and evolve in time until the
formation of the event horizon if hyperbolicity is not lost. Because in all our simulations,
the spacetime seems to converge to the Schwarzschild solution, we expect both horizons to
join in the future. Therefore, we presume that for longer time evolution, the radius of the
black hole formed should describe a continuous function of the initial condition ϕ0 except if
hyperbolicity is lost as shown in the first branch. Surprisingly, the first branch which does
not represent a BH because hyperbolicity is lost, and therefore an event horizon will never
form, shows a universal behavior as if it represents the threshold of black hole formation.

We can see from Fig. 5.9 the evolution of the characteristic line defined from equation
(4.33) in (t, r) coordinates. In the first case, a sonic horizon is formed but we do not expect a
black hole to form as explained previously, while in the second case, an event horizon forms
at normalized radius r = 1. Recently, it has been shown that, in the flat spacetime, these
models could produce caustics [113]. But as it can be seen from Fig. 5.9, the characteristic
lines do not intersect. We have not found any formation of caustics in our simulations. In
the second case, where the event horizon forms, indicated by the lines converging to r = rs
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Figure 5.10: Curvature scalar R and Ricci tensor squared RµνR
µν as a function of the radial radius

r at last time t before formation of the event horizon for β = 10 and ϕ0 corresponding to the last
branch. The vertical line represents the position of the event horizon for each initial condition ϕ0.

of the characteristic lines, the BH is Schwarzschild.
In fact, every time a black hole forms, the exterior solution is the Schwarzschild one as

we can see in Fig. 5.10. Considering, e.g., the Family A of initial conditions and for various
values of ϕ0 which all correspond to the fourth branch where the event horizon forms at the
same time as the sonic horizon (blue-branch in Fig. 5.8), we have represented the curvature
scalar R and the Ricci tensor squared RµνR

µν during the last moment of evolution before a
black hole formation. We see that, for all values of ϕ0, the curvature scalar and the Ricci
tensor squared vanish for r larger than the event horizon, indicating the formation of the
Schwarzschild solution, which has also been checked directly from the metric. This behavior
has been observed for both families of initial conditions and for all values of β. The end state
of the evolution when the event horizon is formed is the Schwarzschild spacetime. Notice
also that the event horizon increases with increasing ϕ0, as expected.

On the other hand, when the sonic horizon forms first, the metric is not Schwarzschild as
seen in Fig. 5.11. In this case, we expect the system to continue to evolve until the formation
of the Schwarzschild spacetime or a loss of hyperbolicity. This behavior should be checked
with coordinates such as Gullstrand-Painlevé.

For a given family of initial conditions and for a given β, values of ϕ0 lower than the
first branch produce dispersion and therefore flat spacetime, while values taken within this
branch produce a sonic horizon and later a loss of hyperbolicity. It is interesting to see from
the curvature in Fig. 5.11 that we are still far from the Schwarzschild solution and therefore
the formation of the event horizon but, very surprisingly, considering the sonic horizon we
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Figure 5.11: Curvature scalar R and Ricci tensor squared RµνR
µν as a function of the radial

radius r at last moment t before the formation of the sonic horizon for various values of β and ϕ0

corresponding to the first branch. The vertical line represents the position of the sonic horizon.

found a universal behavior. For any family of initial conditions and for any β, there exists
a critical value of ϕ0 named ϕi in Fig. 5.12 around which the radius of the sonic horizon
follows a universal behavior given by

r = r0 + (ϕ0 − ϕi)
γ , γ ≃ 0.51 (5.2)

This is very similar to the scaling relation that Choptuik found for the massless scalar field,
relation (2.31). In the k-essence case, because of the existence of an additional scale in
our system (β), we have a non-vanishing minimum radius of the black hole corresponding
therefore to the Type I critical phenomena [59].

5.3 Discussions

In this chapter, we presented studies of numerical solutions of k-essence models in spherically
symmetric case, in gravitational collapse scenarios with additional shift symmetry. We have
presented the various constraints for a well-defined problem at classical level and for its
quantum completion which reduces to K,X > 0, K,XX > 0 and K,X + 2XK,XX > 0. For
these theories, we generically have the formation of two horizons, an event horizon and a
sonic horizon, which define a limit for the propagation of the perturbations of the scalar field.
For numerical purposes, we focused on a particular model defined by K = X + βX2. We
found that in the weak field regime, the scalar field disperses and spacetime is flat, while in
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Figure 5.12: Radius scaling relation of the sonic horizon for the two families of initial conditions
and for various values of β. Data with filled markers correspond to Family A. Data with empty
markers correspond to Family B.

the strong field regime, we have the formation of a horizon. Two situations occur, either only
a sonic horizon forms or both horizons form at the same time. In this last case, the exterior
solution is always Schwarzschild and we never observed formation of caustics. In the cases
where the sonic horizon formed first, we could have either a dynamics of the field showing
the possible formation of a BH in the future or a loss of hyperbolicity of the equations. Very
surprisingly, the lowest regime, corresponding to a situation were the field does not disperse
to infinity, and which corresponds to the formation of a sonic horizon, reveals a universal
behavior even if the hyperbolicity is rapidly lost after the formation of the sonic horizon. We
found that in the critical limit of the formation of the sonic horizon rS, a universal power-law
scaling of rS appears with a critical exponent of order 0.51 for any parameter β ̸= 0. This
result seems to indicate that the universal behavior is also encoded in the sonic horizon.



Chapter 6

Stability of generalized

Einstein-Maxwell-Scalar black holes

Dropping the assumption of Lovelock theorem that “a theory of gravity must be constructed
only from the metric tensor” opens the window to include extra fundamentals fields. As
we mentioned in the previous chapters, the simplest modification is obtained by adding a
scalar field ϕ in the action. In this context, and assuming a second-order equation of motion,
Horndeski theory [21] is the most general covariant scalar-tensor theory that introduces one
scalar degree of freedom. Similarly, we can introduce a vector field into the gravity sector.
This gives the generalized Proca theories [43], the most general vector-tensor theory. Both
theories can be unified in the framework of Scalar-Vector-Tensor (SVT) theories [44].

The simplest example of a SVT theory is the Einstein-Maxwell action plus a scalar field
in which we add its respective kinetic energy term and consider a general coupling to the
Maxwell field. If the coupling is minimal, we obtain the Reissner-Nordström spacetime; no
new charged BH solutions are possible. If we relax this condition and consider a non-minimal
coupling between the scalar and Maxwell field, hairy BH solutions can be obtained.

In the literature, it is common to find that the coupling between such fields is in an
exponential form. This type of coupling arises in the low-energy limit of Kaluza-Klein
models [45, 46] and supergravity/string theories [117], in which the scalar field describes
how the extra dimensions dilate along the four-dimensional spacetime; consequently, the
scalar field is referred to as the dilaton. The first black hole solution in the Einstein-Maxwell-
dilaton (EMD) theory was presented in 1982 by Gary Gibbons and Kei-ichi Maeda [118, 119].
This is a BH with electric and magnetic charges that contains a scalar (dilaton) hair. The
magnetically charged solution was later reobtained by Garfinkle, Horowitz and Strominger
[120] in the context of string theory, giving a more profound discussion about this solution.

66
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Instead of studying a particular model, we will focus on the classical stability of black
holes in the generalized Einstein-Maxwell-Scalar (EMS) theory in which the scalar field is
nonminimally coupled to gravity and, with an arbitrary coupling between the scalar and
Maxwell field. Stability is one of the most important areas in physics. It distinguishes cos-
mological solutions from transient situations. Also, this analysis is used to constrain the
space of solution of any theory of gravity. On the other hand, thermodynamic stability is
also widely studied. But, it is important to mention that (mechanical) stability should be a
condition before any thermodynamical analysis. Indeed, if the black hole is mechanically un-
stable, any Hawking radiation would destabilize it and therefore render any thermodynamic
analysis impossible.

The formalism of BH stability was developed by Regge and Wheeler [47], where they
proved partially the stability of the Schwarzschild black hole. This analysis was completed
by Zerilli [48], who provided the stability equations for the even-parity perturbations. They
showed that after separating the angular part of the equations through an expansion in
tensor spherical harmonics, the formalism reduces the problem to a master linear differ-
ential equation similar to the Schrödinger equation. Since this formalism is based on the
geometrical properties of spacetime, it has been applied and extended to other solutions.
For example, following the same approach, Moncrief [121, 122] derived the stability of the
Reissner-Nordstrom black hole.

Since in the EMS theory, we add a scalar and vector field into the action, in this chapter
we will extend the Regge–Wheeler formalism to include perturbations of the new degrees
of freedom. It is expected that linearized field equations in the EMS theory reduce to
coupled differential equations describing the propagation of the gravitational, scalar and
vector modes. As we mentioned, the generalized EMS theory allows for black holes with mass,
rotation, electric charge and scalar hair; thus, this theory offers an attractive theoretical and
computational playground to explore possible deviations from GR predictions.

The inclusion of new degrees of freedom would leave an imprint in the gravitational
radiation. Since typical gravitational waves come from strong gravity regions such as the
vicinity of a BH, the detection of GWs enables us to test general relativity and alternative
theories of gravity in the strong-field regime. However, to distinguish GR from other theories
of gravity, a theoretical understanding of the fundamental properties of modified gravity is
crucial. Any deviation from GR can be measured via the frequency emitted during the last
moments of BH mergers, the so-called quasinormal modes (QNMs). Any hairy BH could be
discriminated through these modes. QNMs are easily computed if their equation is known.
The analysis performed in this chapter will provide these equations.
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We begin this chapter with section 6.1, by introducing the action for the generalized EMS
theory that we are interested in. Next, we derive the dynamics of the model, considering
the particular case of a spherically symmetric and static background, to then discuss the
separation of perturbations into odd- and even-parity modes in section 6.2. Since we focus
on a theory that is invariant under parity transformation, perturbation modes are decoupled
from each other. Therefore, in section 6.3, the action is expanded up to second order in
odd-parity perturbations; we analyze the stability of the solution and determine conditions
to avoid ghost instabilities. The analysis of even-parity perturbations is made in section 6.4,
where we derive the stability conditions as well as the propagation speeds for the available
degrees of freedom in this sector. Finally, in Sec. 6.5, we apply our results to some well-known
examples.

6.1 Background equations of motion

We are interested in generalized Einstein-Maxwell-Scalar theories described by the following
action

S =

∫
d4x

√−g
[
f1(ϕ)

R

2
+ f2(ϕ,X, F )

]
(6.1)

where R is the Ricci scalar, f1(ϕ) is a function of the real scalar field ϕ, representing the
non-minimal coupling to gravity, and f2(ϕ,X, F ) is a function of the scalar field and its
kinetic energy X, and the kinetic energy of the vector field F . In particular, we use the
notation

X = −1

2
∂µϕ∂

µϕ , F = −1

4
FµνF

µν , Fµν = ∂µAν − ∂νAµ (6.2)

where Fµν is the field strength. We can see from the action that our theory respects the
U(1) gauge symmetry. We do not consider any mass term à la Proca AµA

µ, therefore, we
have five propagating degrees of freedom —one scalar, two vectors, and two tensors. We will
study the linear stability of static spherically symmetric spacetimes. To begin with, we will
consider a background spacetime described by the following general line element1

ds2 = ḡµνdx
µdxν = −A(r)dt2 + dr2

B(r)
+ C(r)

(
dθ2 + sin2 θdφ2

)
(6.3)

where the metric functions A(r), B(r) and C(r) depend on the radial coordinate r. It is
common to fix C = r2, but we will work as general as possible because various solutions
in the literature cannot be written in a coordinate system with that choice for the metric

1We will use the notation X̄ to refer to quantities evaluated at the background level.
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function C(r).
To satisfy the background symmetries, the scalar field only depends on the radial coor-

dinate, ϕ̄ = ϕ(r), and the vector field takes the form

Āµ = (Ā0(r), Ā1(r), 0, 0) (6.4)

where Ā1 is the only possible non-zero spatial component. Using the Helmholtz’s theorem,
we get that Ā1 is a longitudinal mode since the transverse part is eliminated by regularity
condition at r = 0, see [123]. The background (6.4) is not the most generic spherically
symmetric spacetime2. In fact, we should only impose that the energy-momentum tensor
Tµν is invariant under the lie derivative along the generators of the group SO(3), or we could
consider a less restrictive situation where the electromagnetic part of the energy-momentum
tensor is spherically symmetric. Therefore we could consider Ā = Ā0(r)dt+ P̄ cos θdφ where
P̄ is the magnetic charge. We will consider in this chapter only electric charge.

On the background, the kinetic terms for the fields takes the simple form

X̄ = −1

2
Bϕ′2 , F̄ =

BĀ′2
0

2A
(6.5)

where here, and in the rest of the chapter, a prime denotes derivative with respect to the
radial coordinate r. Replacing the metric (6.3), the scalar and vector field in (6.1) and
varying the action with respect to the functions {A, B, C, ϕ, Ā0} we get the equations of
motion shown in Box 6.1. As we can see from these equations, the longitudinal mode Ā1(r)

does not contribute to the vector-field dynamics since our action is invariant under U(1)
gauge symmetry. Also, from equation (6.10), it follows that G(r) = constant; this expresses
the existence of a conserved charged current (related to the electric charge) arising from this
symmetry.

It is useful to introduce the following variables to simplify the notation

J (r) =
√
ABCf2,X ϕ

′(r) , S(r) =
√
A

B
C

(
f2,ϕ +

1

2
f1,ϕR

)
. (6.11)

Hence, the equation of motion for the scalar field (6.9) is written as Eϕ = J ′ + S.

6.2 Perturbation formalism

2We are thankful to Julio Oliva for mentioning to us this point.
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EA :=
1

C

[
f1

(
1 +

BC ′2

4C

)
−BCf ′′

1 − 1

2
B′(Cf1)

′ −B(C ′f1)
′
]
+ f2 − 2Ff2,F (6.6)

EB :=
1

C

[
f1

(
1− BC ′2

4C

)
− BA′

2A
(Cf1)

′ −BC ′f ′
1

]
+ f2 − 2F̄ f2,F − 2Xf2,X (6.7)

EC := 2f2 − f1

[√
B

A

(√
B

A
A′

)′

+

√
B

C

(√
B

C
C ′

)′

+
BA′C ′

2AC

]

− f ′
1

AC
(ABC)′ − 2B f ′′

1 (6.8)

Eϕ := ∂r

[√
ABC f2,X ϕ

′(r)
]
+

√
A

B
C

(
f2,ϕ +

1

2
f1,ϕR

)
(6.9)

EĀ0
:= G ′(r) = ∂r

(√
B

A
C Ā′

0 f2,F

)
(6.10)

Table 6.1: Background equations of motion for the SVT theory

We can find exact solutions by solving the background equations shown in Box 6.1, but not
all of them describe a gravitating system. The stability of an exact solution is the first step
that we have to examine to ensure a good description of a physical phenomenon. Showing
stability is an essential issue for any theory of gravity. If we prove the stability of the solution,
we can guarantee that it will be the final state of a gravitating system. On the contrary, the
solution will decay in a different branch of solutions. This analysis can be done by applying
linear perturbation theory.

In this section, we will briefly summarize the formalism for perturbations around a spher-
ically symmetric spacetime. Let us consider small perturbations hµν on top of the static and
spherically symmetric background (6.3)

gµν = ḡµν + hµν (6.12)

where |hµν | ≪ |ḡµν |. The previously studied problem of how a perturbation propagates
through a BH spacetime changes to finding an evolution equation for hµν . The starting
point of the mathematical analysis is to take advantage of the spacetime symmetries.

To begin with, notice that under two-dimensional rotations on a sphere, the ten compo-
nents of the metric perturbations hµν transform in different ways:3

3In the rest of the chapter, the indices i, j, . . . refer to vi = (t, r), while a, b, . . . to the spherical angular
coordinates xa = (θ, φ).
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• hij transform as scalar,

• hia transform as vector, while

• hab transform as tensor quantities.

In fact, under a reparametrization of the angles xa into xa → Ra(θ, φ) we get

hiadx
idxa → hia∂bR

adxidxb ,

meaning that hia indeed transform as a vector.
Thus, we have classified perturbations into three types. We have three scalars, two

vectors of dimension two and a rank two tensor. Since we are considering a spherically
symmetric background, we follow a standard decomposition of these components into a
basis of (scalar/vector) spherical harmonics to derive perturbation equations.

Each scalar function S can be decomposed as

S(t, r, θ, φ) =
∑
ℓ,m

sℓm(t, r)Yℓm(θ, φ). (6.13)

On the other hand, any vector Va can be decomposed using an orthogonal decomposition

Va(t, r, θ, φ) = ∇aΦ1 + wa (6.14)

where Φ1 is a scalar function and wa is a divergence-free vector. As we know (∇⃗ × A⃗)a =

ϵabc∇bAc, which in two dimensions gives wa = ϵab∇bΦ2, where Φ2 is another scalar function,
and ϵab = {0,+1,−1} is the Levi-Civita symbol, normalized as ϵθφ = 1. Substituting in the
above expression, we get

Va(t, r, θ, φ) = ∇aΦ1 + Eb
a∇bΦ2, (6.15)

where Eab ≡
√
det γ ϵab is the covariant Levi-Civita symbol such that the indices are raised

and lowered by the two-dimensional metric on the sphere γab and its inverse. Also, ∇a rep-
resents the covariant derivative with respect to the metric γab. Since Va is a two-component
vector, it is completely specified by the potentials Φ1 and Φ2. It can be checked that the first
and second terms of Eq. (6.15) transform as scalar and vector modes, respectively. Applying
the scalar decomposition (6.13), we get

Va =
∑
ℓ,m

wℓm(t, r)∇a Y
m
ℓ (θ, φ) +

∑
ℓ,m

ωℓm(t, r)Eab∇b Y m
ℓ (θ, φ) . (6.16)
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From this relation we recognize Eℓm
a ≡ ∇a Y

m
ℓ (θ, φ) and Sℓm

a ≡ Eab∇b Y m
ℓ (θ, φ) as the electric

and magnetic vector spherical harmonics, respectively.
Finally, any symmetric tensor Tab can be decomposed as

Tab(t, r, θ, φ) = ∇a∇bΨ1 + γabΨ2 +
1

2
(Ea

c∇c∇bΨ3 + Eb
c∇c∇aΨ3) + tab, (6.17)

where Ψ1, Ψ2 and Ψ3 are scalar functions, and tab is a transverse-traceless tensor. Since we
are interested in studying gravitational perturbation in four dimensions (4D), any symmetric
tensor, such as tab, has only three independent components. However, none of them is a
degree of freedom since the conditions ∇atab = 0 (transverse) and taa = 0 (traceless) impose
three relations or constraints that determine them completely. So, in 4D there are no tensor
perturbations. Thus, (Ψ1,Ψ2, Ψ3) completely specify Tab. As before, we can apply the scalar
decomposition (6.13) to these functions to decompose the tensor quantity into spherical
harmonics. As we have seen, in 4D we only have two types of perturbations, whereas in
higher dimensions, we have an additional tensor mode. We will give a more in-depth detail
of this type of perturbations in Chapter 7.

It is also common in the literature to label perturbations depending on how they trans-
form under parity transformation. In fact, changing (θ, φ) → (π−θ, π+φ), we get that any
scalar perturbation picks a factor (−)ℓ, which is thus said to be polar or even. In contrast,
a vector perturbation picks a factor (−)ℓ+1, it is said to be axial or odd.

At the end, decomposition of the perturbed metric into spherical harmonics leaves us
with ten functions representing the ten components of the metric. With the above analysis,
it can be checked that seven of them behave as scalar quantities and the rest as vectors.
Because of general covariance, not all metric perturbations are physical, because some of
them can be set to zero by means of the gauge transformation

xµ −→ x′µ = xµ + ξµ . (6.18)

Choosing ξµ so that ∇̄µξν is of the same order as hµν , under this transformation the back-
ground metric ḡµν becomes invariant while, to linear order in ∇̄µξν , the perturbation metric
hµν transforms as

hµν −→ h′µν = hµν − ∇̄µξν − ∇̄νξµ . (6.19)

Since ξµ is a generic four-vector field, using the above arguments, we get that the t− and
r−component transform as scalars, while the θ− and φ−component transform as vector
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quantities. Thus, they can be expanded in scalar and vector spherical harmonics as follows:

ξt =
∑
ℓ,m

T(ℓm)(t, r)Y
m
ℓ (θ, ϕ)

ξr =
∑
ℓ,m

R(ℓm)(t, r)Y
m
ℓ (θ, ϕ)

ξa =
∑
ℓ,m

Θ(ℓm)(t, r)∇aY
m
ℓ (θ, ϕ) +

∑
ℓ,m

Λ(ℓm)(t, r)Eab∇bY m
ℓ (θ, ϕ) .

(6.20)

Clearly, the coefficient proportional to Λ(ℓm)(t, r) generates a contribution to the vector
sector, while the other terms contribute to the scalar perturbations.

What makes these decompositions useful is that in the linearized equations of motion
—or equivalently, in the second-order action for hµν— scalar/even-parity and vector/odd-
parity perturbations completely decouple from each other, reflecting the invariance of the
background spacetime under a parity transformation. Clearly, this is not the case in a
Lagrangian containing parity-violating terms, which leads to an analysis of coupled equations
[124, 125]. Based on these properties, we can analyze each type of perturbations separately.

6.3 Odd-parity perturbations

In this section, we will study the odd-parity perturbations of generalized Einstein-Maxwell-
Scalar theories given by the action (6.1) around the spherically symmetric spacetime (6.3).
This type of perturbation is also known in the literature as axial or vector perturbation.
Since the scalar field does not contribute, we will consider only perturbations of the metric
and the vector field

gµν = ḡµν + hoddµν , Aµ = Āµ + δAodd
µ . (6.21)

As we mentioned earlier, only three components of the metric perturbations belong to
this sector. Thus, decomposition of the odd-type metric perturbations can be written as

htt = 0, htr = 0, hrr = 0, (6.22)

hta =
∑
ℓ,m

h
(0)
ℓm(t, r)Eab∇bYℓm(θ, φ), (6.23)

hra =
∑
ℓ,m

h
(1)
ℓm(t, r)Eab∇bYℓm(θ, φ), (6.24)

hab =
1

2

∑
ℓ,m

h
(2)
ℓm(t, r) [E

c
a ∇c∇bYℓm(θ, φ) + E c

b ∇c∇aYℓm(θ, φ)] . (6.25)



CHAPTER 6. STABILITY OF GENERALIZED EMS BLACK HOLES 74

The expansion coefficients h(0)ℓm, h(1)ℓm and h(2)ℓm are not independent. We can set to zero some of
them using the gauge transformation (6.18). For odd-parity perturbations, transformation
(6.20) is simplified to:

ξt = ξr = 0, ξa =
∑
ℓm

Λℓm(t, r)E
b

a ∇bYℓm. (6.26)

Under this gauge transformation, the expansion coefficients transform as

h
(0)
ℓm → h

(0)
ℓm − Λ̇lm (6.27)

h
(1)
ℓm → h

(1)
ℓm − Λ′

lm +
C ′

C
Λlm (6.28)

h
(2)
ℓm → h

(2)
ℓm − 2Λlm (6.29)

thus, we can choose Λℓm such that h(2)ℓm = 0. This choice is known as the Regge-Wheeler
gauge. It is valid for higher multipoles (ℓ ≥ 2), since the odd-parity perturbations do not
have the monopole term (ℓ = 0), and h(2)ℓm coefficient is vanishing for the dipole term (ℓ = 1).
We can also use other gauges to simplify the problem. Notice that Λℓm is completely fixed
and there are no remaining arbitrary gauge functions.

On the other hand, the perturbation for the vector field is given by

δAt = δAr = 0 , δAa =
∑
ℓm

A
(v)
ℓm(t, r)Eab∇bY m

ℓ (θ, φ) . (6.30)

As explained in [49], when studying perturbations of any spherically symmetric system,
without any loss of generality, we can restrict oneself to axisymmetric modes of perturbations,
we will assume m = 0. With this simplification, we can rewrite spherical harmonics in terms
of Legendre Polynomials. Also, since modes with different ℓ evolve independently, we focus
on a specific mode and omit the indices.

In what follows, we investigate ℓ ≥ 2 and ℓ = 1 modes separately and discuss the stability
of BH solutions.

6.3.1 Second order action for higher multipoles, ℓ ≥ 2

In this section we will focus on higher multipoles since dipole modes ℓ = 1 require a special
treatment. To obtain linear equations for h0, h1 and Av,4 we expand the action (6.1) to

4We have renamed for simplicity of notations h
(0)
ℓm → h0, h

(1)
ℓm → h1, A

(v)
ℓm → Av.
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second order in perturbation coefficients. We obtain the following action

S
(2)
odd =

2ℓ+ 1

4π

∫
dt drL(2)

odd , (6.31)

where we performed an integration over angular variables (θ, φ) by using the standard re-
lations of Legendre Polynomials (see Appendix D) and multiple integration by parts. The
second-order Lagrangian is of the form

L(2)
odd = a1h

2
0 + a2h

2
1 + a3

[
ḣ21 + h′20 + 2

C ′

C
h0ḣ1 − 2h′0ḣ1 + 2a4

(
h′0 − ḣ1

)
Av

]
+

a5h0Av + a6A
2
v + a7Ȧ

2
v + a8A

′2
v ,

(6.32)

where the coefficients ai are given in Box 6.2. Here, a dot denotes differentiation with
respect to t, and a prime is a differentiation with respect to the radial coordinate r. We
have defined λ = ℓ(ℓ + 1) to simplify the expressions. On-shell, EA = EB = EĀ0

= 0, thus,
background equations allow us to rewrite these coefficients in a simpler form. Performing
a few integrations by parts, the term inside square brackets in (6.32) can be rewritten in a
more convenient way such that the Lagrangian is simplified to

L(2)
odd = b1h

2
0 + a2h

2
1 + a3

[
ḣ1 − h′0 +

C ′

C
h0 − a4h2

]2
+
(
a6 − a3a

2
4

)
h22 + a7ḣ2

2
+ a8h

′2
2 + b2h0h2 ,

(6.33)

where we have defined

b1 = a1 − (C ′a3)
′/C , b2 = a5 + 2a3a4C

′/C = λEĀ0
/C .

a1 =
λ

4C

[ d
dr

(
C ′

√
B

A
f1

)
+

(λ− 2)f1√
AB

+
2C√
AB

EA
]
, a5 =

λ

C

(
EĀ0

− C ′

C
G
)

a2 = −λ
2

√
AB

[
(λ− 2)f1

2C
+ EB

]
, a6 = −λ

2Ā′
0

4C2

G
F̄

a3 =
λ

4

√
B

A
f1 , a7 =

λ

2BCĀ′
0

G

a4 = 2

√
A

B

G
Cf1

, a8 = − λA

2CĀ′
0

G

Table 6.2: Coefficients of the second-order Lagrangian (6.32)
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On-shell, the last coefficient vanishes, b2 = 0. We can see from the above Lagrangian that h0
is an auxiliary field since it does not contain time derivatives; consequently, variation with
respect to h0 yields a constraint equation. However, because of the presence of h′0 in the
action, this constraint results in a second-order ordinary differential equation which cannot
be immediately solved for h0. To overcome this obstacle, we follow the procedure described
in [124, 126]. We introduce an auxiliary field q(t, r) and define the following Lagrangian

L(2)
odd = b1h

2
0 + a2h

2
1 + a3

[
2q

(
ḣ1 − h′0 +

C ′

C
h0 − a4Av

)
− q2

]
+
(
a6 − a3a

2
4

)
A2

v + a7Ȧ
2
2 + a8A

′2
v .

(6.34)

We can easily check that, by substituting the equation of motion for q(t, r) into Eq. (6.34),
we recover the original Lagrangian. This trick enables us to put all derivatives on q using
integration by parts, transforming both h0 and h1 to removable auxiliary fields. Variation of
the Lagrangian (6.34) with respect to h0 and h1 leads to

b1h0 +

[
(a3q)

′ + a3q
C ′

C

]
= 0 −→ h0 = −(a3qC)

′

Cb1
(6.35)

a2h1 − a3q̇ = 0 −→ h1 =
a3
a2
q̇ . (6.36)

These relations explicitly link the physical modes h0 and h1 to the auxiliary field q. Once
q(t, r) is known, also h0 and h1 are, and thus all perturbation variables in the Regge-Wheeler
gauge are fixed. Notice that one cannot rewrite the previous Lagrangian for ℓ = 1 since
a2 = b1 = 0, thus the redefinition of the variables h0 and h1 are not well defined. This is
why this mode has to be studied separately.

Substituting these expressions into the Lagrangian and performing integration by parts,
we get

L(2)
odd = α1q̇

2 + β1q
′2 + γ1q

2 + α2Ȧ
2
v + β2A

′2
v + γ2A

2
v + σAvq (6.37)

which explicitly shows that we only have two degrees of freedom, one associated with the
gravitational perturbation and another related to vector perturbation of the electromagnetic
field. The coefficients of the above Lagrangian, in terms of the variables defined in Box 6.2,
are

α1 = −a
2
3

a2
, α2 = a7 , σ = −2a3a4

β1 = −a
2
3

b1
, β2 = a8 , γ2 = a6 − a3a

2
4

γ1 =
a3
b21C

2

[
−Cb′1(a3C)′ + b1 [C(a3C)

′′ − 2C ′(a3C)
′]− b21C

2
]
.

(6.38)
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We see that, in the absence of electromagnetic perturbations, the Lagrangian (6.37)
becomes L(2)

odd = α1q̇
2 + β1q

′2 + γ1q
2, from which we should at least impose the no-ghost

condition α1 > 0 translating into a2 < 0 and therefore f1 > 0. Similarly, in the absence of
the gravitational perturbations, we have L(2)

odd = α2Ȧ
2
v + β2A

′2
v + γ2A

2
v, from which we impose

the condition α2 > 0 which means Q/Ā′
0 > 0 and using Eq. (6.10) gives f2,F > 0.

Thus, from the odd-parity sector we obtain the conditions

f1(ϕ) > 0 and f2,F (ϕ,X, F ) > 0 . (6.39)

■ Master equation

To arrive at our final result, it is convenient to rescale variables in (6.37) as

q(t, r) =

√
A

f1BC
Vg(t, r) , Av(t, r) =

Ve(t, r)√
2(λ− 2)f2,F

, (6.40)

where (Vg, Ve) represent, respectively, the vector perturbations associated to the gravitational
and electromagnetic sector. Notice that we have assumed the previous conditions (6.39).
Finally, introducing the tortoise coordinate, dr =

√
AB dr∗, we get that the action (6.31)

can be written in the simple form

S
(2)
odd =

ℓ(ℓ+ 1)(2ℓ+ 1)

16π(ℓ+ 2)(ℓ− 1)

∫
dtdr∗

[
Ψ̇2

i −
(
∂Ψi

∂r∗

)2

− VijΨiΨj

]
, (6.41)

where Ψ⃗ = (Vg, Ve)
t encloses the two degrees of freedom, and Vij are the components of

a 2 × 2 symmetric potential energy matrix whose components are given, after substituting
relations of Box 6.2, by

V11 = (λ− 2)
A

C
− ∂r∗S1 + S2

1 , S1(r) =

√
AB

2

(
C ′

C
+
f ′
1

f1

)
(6.42)

V22 =
λA

C
+G(r)− ∂r∗S2 + S2

2 , S2(r) = −
√
AB

2

f ′
2,F

f2,F
(6.43)

V12 =

√
(λ− 2)

A

C
G(r) , G(r) = 2

√
AB

Ā′
0

Cf1
G . (6.44)
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The introduction of the functions (S1, S2) will be clearer in the stability analysis section.
Variation of the action (6.41) with respect to Ψ⃗ leads to a wave-like equation

− ∂2Ψ⃗

∂t2
+
∂2Ψ⃗

∂r2∗
−VΨ⃗ = 0 (6.45)

from which we conclude that odd-parity modes propagate at the speed of light, independently
of the choice of functions f1(ϕ) and f2(ϕ,X, F ). Since matrix V is not diagonal, the previous
equation is a set of two coupled differential equations.

6.3.2 Stability Analysis

Equation (6.45) tells us that a BH reacts to a perturbation emitting a signal in the form
of waves, the gravitational radiation. Detection of gravitational waves [127] opened the
possibility of testing GR in the strong-field regime of gravity. It is well known that the
signal of a GW can be divided into three stages:

1. An early response which depends strongly on the initial conditions, the merger.

2. An exponentially decaying phase known as the ringdown.

3. A late tail.

The linear theory of perturbations tackles the last two stages of this process. The waveform
of the ringdown is accurately described by a superposition of damped oscillations, called the
quasi-normal modes (QNMs) of the BH. Thus we can write

Ψ(t, r) =
∑
n

e−iωntϕn(r) . (6.46)

Replacing into (6.45), we found that the problem is reduced to an eigenvalue equation

ĤΨ⃗ = ω2Ψ⃗ , Ĥ ≡ − d2

dr2∗
+ V (r) , (6.47)

where Ψ⃗ are the eigenvectors and ω2 the eigenvalues of the operator Ĥ. We can find stable
solutions to this equation if all the eigenvalues of the differential operator Ĥ are positive.
Therefore, the stability of the spacetime is related to the positivity of Ĥ; it must have no
negative spectra. To prove the stability, let us define the inner product

(ψ⃗, ξ⃗) =

∫
dr∗

[
ψ̄1ξ1 + ψ̄2ξ2

]
(6.48)
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where ψ⃗ = (ψ1, ψ2)
T and ξ⃗ = (ξ1, ξ2)

T . Stability means that the operator Ĥ is a positive self-
adjoint operator in L2(r∗) —the Hilbert space of square integrable functions of r∗. Therefore,
we need to prove the positivity defined as

∀χ , (χ⃗, Ĥχ⃗) > 0 . (6.49)

This condition will imply that, given a well-behaved initial data, of compact support, χ
remains bounded at all times. This is a sufficient condition. The rigorous and complete
proof of the stability related to equations of the form (6.45) can be found in [52, 128] using
spectral theory.

When the potential in (6.47) is non-negative everywhere, it can be checked that condition
(6.49) is automatically satisfied. However, even if the potential contains a small negative
region, the spacetime is still stable against linear perturbations. In this case, and when the
potential is not positively defined at first glance, to prove (6.49), it is common to apply
the S-deformation approach [55, 54]: If there exists a function S such that it is continuous
everywhere and satisfies V + dS/dr∗ − S2 ≥ 0, then the solution of (6.47) remains stable.

In what follows, we apply a similar procedure to deduce the stability of Eq. (6.45). From
(6.41) we have

(χ⃗, Ĥχ⃗) =

∫
dr∗

[
χ̄1

(
−∂2r∗χ1 + V11χ1 + V12χ2

)
+ χ̄2

(
−∂2r∗χ2 + V22χ2 + V12χ1

)]
=

∫
dr∗

[∣∣∣dχ1

dr∗

∣∣∣2 + ∣∣∣dχ2

dr∗

∣∣∣2 + V12

(
χ̄1χ2 + χ1χ̄2

)
+ V11|χ1|2 + V22|χ2|2

]
=

∫
dr∗

[∣∣∣dχ1

dr∗
+ S1χ1

∣∣∣2 + ∣∣∣dχ2

dr∗
+ S2χ2

∣∣∣2 + (λ− 2)
A

C
|χ1|2 + (λ

A

C
+G)|χ2|2

+

√
(λ− 2)

A

C
G
(
χ̄1χ2 + χ1χ̄2

)]
=

∫
dr∗

[∣∣∣dχ1

dr∗
+ S1χ1

∣∣∣2 + ∣∣∣dχ2

dr∗
+ S2χ2

∣∣∣2 + ∣∣∣√(λ− 2)
A

C
χ1 +

√
Gχ2

∣∣∣2 + λ
A

C
|χ2|2

]
≥ 0 .

In the second line, we have neglected the boundary term χ̄1∂r∗χ1 + χ̄2∂r∗χ2 coming from
the integration by parts, because we assumed χ1 and χ2 to be smooth functions of compact
support, while in the third line we have neglected the boundary term S1|χ1|2 + S2|χ2|2.

Therefore, we conclude that the black hole is stable under vector perturbations for ℓ ≥ 2

if the no-ghost conditions (6.39) are satisfied5.

5It was also noticed that, in Horndeski theory, the black hole is stable if the no-ghost and hyperbolicity
conditions are satisfied [126]. Notice that, for Lovelock black holes, the no-ghost and hyperbolicity conditions
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6.3.3 Second order action for ℓ = 1

We should first mention that, for ℓ = 0, spherical harmonics are constant and therefore the
three vector perturbations of the metric and the vector perturbation of the electromagnetic
field are identically zero, as we can see from their definition (6.23, 6.24, 6.25, 6.30).

For the dipole mode, ℓ = 1, the perturbation hab (6.25) vanishes identically by properties
of the spherical harmonics. In fact, assuming m = 0 because the final result is independent
of the azimuthal angle, we have Y 0

1 ∝ cos θ, and substituting in (6.25) we get hab = 0.
Consequently, it does not make sense to apply the Regge-Wheeler gauge. Instead, we can
use the gauge degree of freedom to vanish h1. However, we can see from the transformation
(6.28) that the gauge is not entirely fixed. We have a residual gauge degree of freedom,
defined as Λ → Λ + f(t)C(r). For this reason, we will fix the gauge after finding the
equations of motion.

We start from the Lagrangian (6.33) with ℓ = 1. After imposing background equations,
we get a2 = b1 = 0; thus, the Lagrangian simplifies a bit

L(2)
odd, ℓ=1 = a3

[
ḣ1 − h′0 +

C ′

C
h0 − a4Av

]2
+
(
a6 − a3a

2
4

)
A2

v + a7Ȧ
2
v + a8A

′2
v . (6.50)

Variation of this action with respect to h0 and h1 gives

Ė = 0 , (CE)′ = 0 (6.51)

where we have defined
E = a3

(
ḣ1 − h′0 +

C ′

C
h0 − a4Av

)
. (6.52)

The solution to equations (6.51) is given by E = J /C(r), where J is an integration constant.
Fixing the gauge and integrating this solution with (6.52) to solve for h0, it follows that

h0(t, r) = −JC(r)
∫

dr

C(r)2a3
− C(r)

∫
a4
C(r)

Avdr + F (t)C(r) (6.53)

where F (t) is a constant of integration. This last term can be eliminated using the residual
gauge function, giving finally

h0(t, r) = −2JC(r)
∫

1

C2(r)f1

√
A

B
dr − 2QC(r)

∫
Av

C(r)2f1

√
A

B
dr . (6.54)

could be satisfied while the black hole is unstable [129].
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Variation of the action (6.50) wrt Av gives

a7Äv + (a8A
′
v)

′ −
(
a6 − a3a

2
4

)
Av + a4

J
C(r)

= 0 . (6.55)

Defining a new variable av =
√
f2,FAv and using the tortoise coordinate, we find

−∂
2av
∂t2

+
∂2av
∂r2∗

− V22av −
2QJA

C2f1
√
f2,F

= 0 (6.56)

where V22 is the coefficient defined in Eq.(6.43) for ℓ = 1, i.e. λ = 2.
The solution of Eq.(6.56) is the sum of a particular solution that we can consider as a

function of r only and a homogeneous solution. In order to understand this solution, let
us consider the simple case where we have perturbed Reissner-Nordström BH in general
relativity. For that we take f1 = 2, f2 = 4F and Q = 4q, from which we get

A(r) = B(r) = 1− 2M

r
+
q2

r2
, C(r) = r2 . (6.57)

For this spacetime, a particular solution of Eq. (6.56) is

av = −Jq/6Mr −→ Av = −Jq/12Mr . (6.58)

Therefore, integrating (6.54), we have

h0 = − J
6M

(−2M

r
+
q2

r2

)
. (6.59)

which means that the metric perturbation is

htφ = − J
6M

(−2M

r
+
q2

r2

)
sin2 θ (6.60)

This is the Kerr-Newman solution at the first order in J if we define J = −12J . Therefore,
the particular solution of Eq.(6.56) describes a slow rotating black hole, while the homoge-
neous solution describes the propagation of the electromagnetic field in our spacetime [130].
This propagation is stable because the potential V22 can be easily deformed to a positive
potential using the function S2(r). In fact, as we have shown in Sec. 6.3.2, the associated
operator is positive definite.

In conclusion, we have shown that for any theory described by the action (6.1) and
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satisfying the conditions f1 > 0 and f2,F > 0, the static spherically symmetric spacetime
described by a generic metric (6.3) is stable under vector perturbations.

6.4 Even-partiry perturbations

In this section we analyze even-parity perturbations, also referred as polar or scalar pertur-
bations, since under parity transformations (θ → π− θ, ϕ→ ϕ+ π) they are multiplied by a
factor (−1)ℓ. In contrast with the odd-parity modes, here we have to include perturbations
of the scalar field. Using the harmonic decomposition (6.13), it is introduced as

ϕ(t, r, θ, φ) = ϕ̄(r) +
∑
ℓm

δϕℓm(t, r)Y
m
ℓ (θ, φ) (6.61)

where ϕ̄(r) is the background value, and δϕℓm is the perturbed part being a function of t
and r. As we mentioned in section 6.2, seven components of the perturbed metric belong
to this sector. Therefore, the mathematical analysis is more involved. The first three scalar
functions come from the components htt, htr and hrr and we write them as

htt =
∑
ℓ,m

A(r)H
(0)
ℓm(t, r)Y m

ℓ (θ, φ)

htr =
∑
ℓ,m

H
(1)
ℓm(t, r)Y m

ℓ (θ, φ)

hrr =
∑
ℓ,m

1

B(r)
H

(2)
ℓm(t, r)Y m

ℓ (θ, φ)

(6.62)

where we have factorized the functions A(r) and B(r) for convenience. The second set of
scalar functions come from the vector decompostion of the componets hta and hra

hta =
∑
ℓ,m

βℓm(t, r)∇aY
m
ℓ (θ, φ) (6.63)

hra =
∑
ℓ,m

αℓm(t, r)∇aY
m
ℓ (θ, φ) . (6.64)

Finally, the last scalar component comes from the tensor decomposition (6.17)

hab =
∑
ℓ,m

[Kℓm(t, r) γab Y
m
ℓ (θ, φ) +Gℓm(t, r)∇a∇bY

m
ℓ (θ, φ)] . (6.65)

As we mentioned before, we can set to zero some of these functions using the gauge fixing.
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Applying the infinitesimal transformation (6.18), the components of (6.20) that contribute
to the scalar sector are

ξt =
∑
l,m

Tℓm(t, r)Y
m
ℓ (θ, φ)

ξr =
∑
l,m

Rℓm(t, r)Y
m
ℓ (θ, φ)

ξa =
∑
l,m

Θℓm(t, r)∇aY
m
ℓ (θ, φ) .

(6.66)

Then, the perturbation functions transform as

H
(0)
ℓm → H

(0)
ℓm − 2

Ṫℓm
A

+
BA′

A
Rℓm (6.67)

H
(1)
ℓm → H

(1)
ℓm − Ṙℓm − T ′

ℓm +
A′

A
Tℓm (6.68)

H
(2)
ℓm → H

(2)
ℓm − 2BR′

ℓm −B′Rℓm (6.69)

β
(0)
ℓm → β

(0)
ℓm − Θ̇ℓm − Tℓm (6.70)

α
(0)
ℓm → α

(0)
ℓm −Θ′

ℓm −Rℓm +
C ′

C
Θℓm (6.71)

K
(0)
ℓm → K

(0)
ℓm − BC ′

C
Rℓm (6.72)

G
(0)
ℓm → G

(0)
ℓm − 2Θℓm (6.73)

For lower multipoles ℓ = {0, 1}, some perturbations are identically zero; thus, we have to
analyze each case separately. For multipoles l ≥ 2, the scalar transformation functions Tℓm
and Θℓm can be fixed by choosing the gauge in which

βℓm = 0 , Gℓm = 0 . (6.74)

At this point, we have a remaining gauge freedom associated with the function Rℓm(t, r).
Depending on its values, different gauge choices can be found in the literature.

(i) Uniform curvature gauge : Kℓm = 0 , (6.75)

(ii) Unitary gauge : δϕℓm = 0 , (6.76)

(iii) Spatially diagonal gauge : αℓm = 0 . (6.77)

The results are independent of the choice of the gauge. The pioneering work made by Zerilli
[48] that computes the perturbation of Schwarzschild black hole was done using the spatial
diagonal gauge. However, the Uniform curvature gauge has recently been applied in the
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study of perturbations since the equations appear to be more manipulable, see for example
[124, 125, 131, 132]. Following this line of work, we will choose the uniform curvature gauge
(6.75) to compute the second-order action of even-parity perturbations.

On the other hand, we introduced even-parity perturbation of the vector field as Aµ =

Āµ + δAµ, where the components of the perturbation are decomposed as

δAt =
∑
ℓm

A
(0)
ℓm(t, r)Y

m
ℓ (θ, φ) , (6.78)

δAr =
∑
ℓm

A
(1)
ℓm(t, r)Y

m
ℓ (θ, φ) , (6.79)

δAa =
∑
ℓm

A
(2)
ℓm(t, r)∇aY

m
ℓ (θ, φ) . (6.80)

In addition, we have a gauge freedom associated to the vector field, which can be used
to set A(2)

ℓm = 0. In fact, computing the field strength Fµν , we get that the components are
proportional to the combination, (A(0)

ℓm − Ȧ
(2)
ℓm), (A

′(0)
ℓm − Ȧ

(1)
ℓm) or (A(1)

ℓm −A′(2)
ℓm). Therefore, we

can define the transformation

At → At −
∑
ℓm

Ȧ
(2)
ℓmY

m
ℓ , Ar → Ar −

∑
ℓm

A
′(2)
ℓm Y m

ℓ , Aa → Aa −
∑
ℓm

A
(2)
ℓm∇aY

m
ℓ

to simplify the expressions. It is important to notice that scalar perturbations remain scalar
after this redefinition. Since we choose the Uniform curvature gauge, which is valid for higher
multipoles, we study this case separately from ℓ = {0, 1}.

6.4.1 Second order Lagrangian for ℓ ≥ 2

Substituting the above relations into the action (6.1), after integrating the angular coordi-
nates and many integrations by parts, the second-order action is expressed in the form

S(2)
even =

2ℓ+ 1

2π

∫
dt drL(2)

even , (6.81)
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where the second-order Lagrangian is

L(2)
even = a1H

2
0 +H0 [a2H

′
2 + λa3α

′ + (a4 + λa5)H2 + λa6α + (a7 + λa8)δϕ+ a9δϕ
′

+a10δϕ
′′ + a11(A

′
0 − Ȧ1)

]
+ (b1 + λb2)H

2
1 +H1

[
b3Ḣ2 + λb4α̇ + b5 ˙δϕ+ b6 ˙δϕ

′]
+ c1H

2
2 + λc2α

2 + λc3H2α + λc4α̇
2 + (c5 + λc6)H2δϕ+ c7H2δϕ

′ + c8Ḣ2
˙δϕ

+ λc9αδϕ+ λc10αδϕ
′ + c11H2(A

′
0 − Ȧ1) + λc12αA0 + e1 ˙δϕ

2
+ e2δϕ

′2

+ (e3 + λe4)δϕ
2 + e5δϕ(A

′
0 − Ȧ1) + e6δϕ

′(A′
0 − Ȧ1)

+ d1(A
′
0 − Ȧ1)

2 + λd2A
2
0 + λd3A

2
1 .

(6.82)

Here ai, bi, ci, di and ei are all functions of r only and their expressions are given in Box 6.3.

In what follows, we will reduce this Lagrangian and rewrite it in terms of three variables,
representing the remaining three degrees of freedom of the theory. Variation of the action
(6.81) with respect to A0 and A1 leads to

λc12α + 2λd2A0 − ∂r

[
a11H0 + c11H2 + e5δϕ+ e6δϕ

′ + 2d1(A0
′ − Ȧ1)

]
= 0 (6.83)

2λd3A1 + ∂t

[
a11H0 + c11H2 + e5δϕ+ e6δϕ

′ + 2d1(A0
′ − Ȧ1)

]
= 0 (6.84)

which inspired us to introduce a new variable

Se(t, r) = a11H0 + c11H2 + e5δϕ+ e6δϕ
′ + 2d1(A0

′ − Ȧ1) (6.85)

which will be associated to the scalar perturbation of the electromagnetic field. Thus, we
can rewrite

A0 =
1

2λd2
(S ′

e − λc12α) , A1 = − Ṡe

2λd3
. (6.86)

We can see from Lagrangian (6.82) that H1 is an auxiliary field, because it has no deriva-
tives. Thus, we can integrate out this non-propagating field by using its own equation of
motion

H1 = − 1

2λb2
∂t[b3H2 + λb4α + b5δϕ+ b6δϕ

′] . (6.87)

Notice that the coefficient b1 is zero on-shell, so we have dropped this term in the previous
equation. At this point, the Lagrangian (6.82) only depends on the variables H0, H2, α, Se
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a1 = −C

4

√
A

B
(F + EA)

a2 = −1

2

√
ABΞ

a3 =
√
ABf1

a4 = a′2 +
C

2

√
A

B
(F +M−EB)

a5 = −1

2

√
A

B
f1

a6 = a′3 +

(
C ′

2C
− A′

2A

)
a3

a7 = −C

√
A

B

∂EA
∂ϕ

a8 = −
√

A

B

Z
C

a9 =

√
AC

Z

[√
B

C
Z2

]′
+ J −

√
A

B

C

ϕ′M

a10 =
√
ABZ

a11 = −
√

A

B

C

Ā′
0

F

b1 =

√
B

A
CEB

b2 =
1

2

√
B

A
f1

b3 =

√
B

A
Ξ

b4 = −2b2

b5 =
2

A

(
a′10 − a9

)
− 2CM√

ABϕ′

b6 = −2

√
B

A
Z

c1 =
C

4

√
A

B

[
2Σ + 2B

(
A′

2A
+

C ′

C

)
f ′
1 − EB

+

(
A′

A
+

C ′

2C

)
BC ′

C
f1 −F − 2M

]

c2 =
√
AB(f1 − CEB)/C

c3 = −1

2

√
AB

[
f1

(
A′

A
+

C ′

C

)
+ 2f ′

1

]
c4 =

1

2

√
B

A
f1

c5 = C

√
A

B

∂EB
∂ϕ

c6 = −a8

c7 = −
√
AB

[(
A′

2A
+

C ′

C

)
Z +

C

Bϕ′ (2Σ−M)

]
c8 = − Z√

AB

c9 =
2J
C

+ 2
√
ABC

( Z
C3/2

)′

c10 =
2
√
AB

C
Z

c11 =

√
A

B

C

Ā′
0

(F +M)

c12 = −2G/C

d1 = −
√

A

B

C

Ā′2
0

F

d2 =
G

BCĀ′
0

d3 = −AB d2

e1 =
J

ABϕ′

e2 = −
√
ABC

Σ

X̄

e3 =
∂Eϕ
∂ϕ

e4 = − J
BCϕ′

e5 = 2CĀ′
0

√
B

A
f2,ϕF

e6 = − 2C

Ā′
0ϕ

′

√
A

B
M

Table 6.3: Coefficients of the second-order Lagrangian (6.82). A prime denotes derivative wrt r.
Z = Cf1,ϕ. The other functions are given in the text.
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and δϕ. Variation of the action with respect to H0 leads to

E1 ≡ 2a1H0 + a2H
′
2 + λa3α

′ + (a4 + λa5)h2 + λa6α+

(a7 + λa8)δϕ+ a9δϕ
′ + a10δϕ

′′ + a11(A
′
0 − Ȧ1) = 0

(6.88)

Taking the combination E1 − a11/(2d1)Se(t, r), and using the fact that 2a1 − a28/2d1 = 0,
we obtain a relation that sets a constraint for the other fields, but this is not an algebraic
constraint. In order to resolve this issue, we perform a field redefinition introducing a new
variable Sq(t, r) defined by

H2 =
1

a2
[Sq(t, r)− a10δϕ

′ − λa3α] (6.89)

which will be associated to the scalar perturbation of the gravitational field. Using this
relation, the constraint becomes an algebraic equation for α(t, r), which can be solved to
give

α =
a3
λb4

T (r)

[
S ′
q + λ

a5
a2
Sq +

(
P (r)− λ

a10a5
a2

)
δϕ′ +

a11Se

2d1
+ (P ′(r) + λa8)δϕ

]
(6.90)

where we have defined

T (r) =
2

Af1
√
AB

(
C ′

C
− A′

A
− 2λf1
B(Cf1)′

)−1

,

P (r) =
√
BC

[
A

(
f1,ϕ√
A

)′

+
√
Aϕ′f2,X

]
.

(6.91)

Replacing this definition into E1, we can rewrite H0 in terms of the other variables and
their derivatives (this is a large expression and, at this point, it is not necessary to write it).
Substituting this relations into (6.82) we obtain a Lagrangian that only depends on variables
Sq(t, r), Se(t, r) and δϕ(t, r) given by

L(2)
even = α1Ṡg

2
+ β1S

′
g
2
+ γ1S

2
g + α2Ṡe

2
+ β2S

′
e
2
+ γ2S

2
e + α3

˙δϕ
2
+ β3δϕ

′2 + γ3δϕ
2

+ σ1SgSe + σ2S
′
gSe + σ3S

′
gS

′
e + σ4ṠgṠe + η1Sgδϕ+ η2S

′
gδϕ+ η3S

′
gδϕ

′ + η4Ṡg
˙δϕ

+ ν1Seδϕ+ ν2Seδϕ
′ + ν3S

′
eδϕ

′ + ν4Ṡe
˙δϕ . (6.92)

Since the coefficients are long expressions, we give their definition in the Mathematica®
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notebook [133]. The above Lagrangian can be rewritten in matrix form6

L(2)
even = Kijχ̇iχ̇j − Lijχ

′
iχ

′
j +Dijχ

′
iχj +Mijχiχj (6.93)

where χ⃗ = (Sq, Se, δϕ)T encloses the three degrees of freedom and (Kij, Lij,Mij) are
symmetric matrices while Dij is anti-symmetric. Studying the stability of this Lagrangian
is more complicated than the odd-parity sector, and the reduction to a wave-like equation is
more involved. However, from the Lagrangian (6.93), we can derive some conditions which
have to be fulfilled in order to describe physical processes.

■ No-ghost condition

The no-ghost condition requires the matrix K to be positive definite; for this purpose, we
employ the Sylvester’s criterion7, which is

K11 > 0 , K11K22 −K2
12 > 0 det(Kij) > 0 . (6.94)

Substituting all previous expressions, we obtain that the first two conditions correspond to

K11 =
AT 2

λC

√
A

B

(
λP1 − f1 +

BC

A
Ā′2

0 f2,F

)
> 0 (6.95)

K11K22 −K2
12 =

A

BC

(
T

2λ

)2
λP1 − f1
f2,F

> 0 , (6.96)

where we have defined

P1 =
BΞ

2ACf 2
1

[
AC2f 4

1

Ξ2B

]′
, and Ξ = (Cf1)

′ . (6.97)

Imposing the conditions that we obtained in the odd-parity sector (6.39), i.e. f1 > 0 and
f2,F > 0, we get that the last term in (6.95) is always positive, so the previous two relations
are reduced to a single constraint: λP1 − f1 > 0. Finally, the third condition is given by

det(Kij) =

√
A

B

(
TC ′

4λCϕ′

)2
(λ− 2)f1
B f2,F

(2P1 − f1) > 0 (6.98)

which is satisfied if and only if
2P1 − f1 > 0 . (6.99)

6Definitions of these matrices are given in the Mathematica® file [133]
7See Theorem 7.2.5 of Ref. [134]
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Clearly, if Eq. (6.99) is satisfied then conditions (6.95) and (6.96) are satisfied automatically,
given that ℓ ≥ 2. This no-ghost condition is the same that was computed in [131] for a general
scalar-tensor theory. Using the background equations, we find

2P1 − f1 =
C2f1ϕ

′2

Ξ2

(
3f1

2
,ϕ + 2f1f2,X

)
(6.100)

and assuming stability of odd-parity perturbations, namely f1 > 0, we obtain

3f1
2
,ϕ + 2f1f2,X > 0 . (6.101)

■ Speed of propagation of scalar perturbations

We know that our model contains five degrees of freedom. They are decomposed around a
spherically symmetric spacetime as two vector perturbations and three scalar perturbations.
As we have seen, vector perturbations propagate at the speed of light. From the Lagrangian
(6.93), it is not possible to get the propagation speed of scalar modes at first glance. In
that direction, to compute the propagation of perturbations (along the radial direction),
let us consider that the solution of the EOM obtained from this Lagrangian is of the form
χ ∝ ei(ωt−kr). Considering the small scale limit, the dispersion relation obtained from (6.93)
can be expressed as

det
(
ω2Kij − k2Lij

)
= 0.

The propagation speed cr along the radial direction in proper time outside the horizon is
given by cr = dr∗/dτ , where we have defined dτ =

√
Adt and dr∗ = dr/

√
B. Since this is

related to the propagation speed ĉr in the coordinates (t, r) as ĉr =
√
ABcr, by substituting

ω =
√
ABcrk into the dispersion relation and solving for cr, we get

c2r1 = c2r2 = 1 , c2r3 =
C2f1

(
3Bf ′

1
2 − 2P3f1

)
BΞ2(2P1 − f1)

(6.102)

where we have defined
P3 = 2Σ +

M2

F (6.103)

with

Σ = X̄
(
f2,X + 2X̄f2,XX

)
, (6.104)

M = −4X̄F̄ f2,FX , (6.105)

F = −2F̄
(
f2,F + 2F̄ f2,FF

)
. (6.106)
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The propagating mode different than the speed of light is related to the scalar field pertur-
bation. Indeed, in the case where the vector field is absent, we have that P3 = 2Σ, and c2r3

reduces to the propagation speed of the scalar field given in [131] (Eq. (41)). As we will
see, this conclusion is also supported by the propagation speeds of the monopole and dipole
perturbations. Using previous relations, we get

c2r3 = 1 + 4X̄f1
f2,XX(f2,F + 2F̄ f2,FF )− 2F̄ f2

2
,XF

(f2,F + 2F̄ f2,FF )(3f1
2
,ϕ + 2f1f2,X)

. (6.107)

Notice that if we consider a theory for which f2,F + 2Ff2,FF = 0, that is,

S =

∫
d4x

√−g
[
F (ϕ)R +K(ϕ,X) +G(ϕ,X)

√
F
]
, (6.108)

one of the degrees of freedom propagates at infinite speed, which could be similar to the
Cuscuton [135], for which this perturbation does not carry any microscopic information.

It is important to emphasize that these velocities are very weakly constrained by grav-
itational waves. Certainly, between the merger of two compact objects and an observer,
the wave propagates mostly over a FLRW spacetime and not on a static spherically sym-
metric background. However, we should also take into account that a model described by
our action is just an effective low energy description of some more fundamental theory. For
that reason, we should also impose standard conditions such as Lorentz invariance, uni-
tarity, analyticity. Even if not proved generically, it has been shown in various situations
and around different backgrounds that these conditions imply nonsuperluminal propagation
(see e.g. [110, 42, 109]). Hereafter, we will not consider this condition but the much more
restrictive, possibly more interesting, condition c2r3 = 1, which translates from Eq.(6.107)
into

f2,XX =
2F̄ (f2,XF )

2

f2,F + 2F̄ f2,FF

. (6.109)

We conclude that any action given by the form below would propagate at the speed of light
and contain five degrees of freedom

S =

∫
d4x

√−g
[
f1(ϕ)R + f2(ϕ, F ) +Xf3(ϕ)

]
, (6.110)

where (f1, f2, f3) are generic functions.
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■ Master equation

Varying the action (6.93) with respect to the fields χi, we obtain the equations of motion

Lijχ
′′
j + (L′

ij −Dij)χ
′
j + (Mij + ω2Kij −

1

2
D′

ij)χj = 0 (6.111)

where we have performed a Fourier transform with respect to the time variable, i.e., we have
employed χ⃗(t, r) → e−iωtχ⃗(r).

Making a change of variable χi → Φj given by χi(r) = Sij(r)Φj(r), and changing to
tortoise coordinates dr =

√
ABdr∗, we get

d2Φq

dr2∗
+ ω2

(
ABS−1

qp L
−1
pi KinSnk

)
Φk + ABS−1

qp L
−1
pi BinSnkΦk = 0 (6.112)

where the matrix S is a solution of

S ′
ij + CikSkj = 0 . (6.113)

This set of four first-order differential equation will have four integration constants which
can be left arbitrary, as long as S is invertible. In Eq. (6.112), we have defined

Cmj =
1

2
L−1
mi

[
L′
ij −Dij −

1

2

(
A′

A
+
B′

B
Lij

)]
Sjk (6.114)

Bin = Lij(CjmCmn − C ′
jn)− L′

ijCjn +DijCjn +Min −
1

2
D′

in . (6.115)

When the condition (6.109) is taken into account, the matrix of the second term in (6.112)
is the identity matrix (we have L = ABK); thus, the equation of motion is simplified to:

d2Φ⃗

dr2∗
+ ω2Φ⃗−VΦ⃗ = 0 (6.116)

where V is the matrix potential, whose expression can be read off directly from (6.112)

V = −S−1K−1BS . (6.117)

Given the matrix S, the potential V can be easily derived and the stability of a solution
studied. Unfortunately, in the generic case, we were not able to obtain the matrix S, but
we will see in the following sections a number of examples where these calculations can be
performed easily.
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As already mentioned, generic conditions of stability are difficult to obtain. Proceeding
as in the vector case, let us define the operator Hij = −δij d2

dr∗
+ Vij. We have

(Φ,HΦ) =

∫
dr∗Φ̄iHijΦj

=

∫
dr∗

[∣∣∣dΦi

dr∗

∣∣∣2 + VijΦ̄iΦj

]
(6.118)

where we have as usual performed an integration by parts and eliminated the boundary term.
Even if a generic stability condition cannot be obtained, we still can discuss sufficient stability
conditions. In fact, a sufficient but not necessary condition of the stability is obtained if the
potential is positive definite. On the contrary, if there is a trial function8 Φ0, such that
(Φ0,HΦ0) < 0, the spacetime is unstable [136].

In the case9 where f2,XF = 0, we found for large λ

V22 = λ
A

C

f2,F
f2,F + 2Ff2,FF

+O(λ0) . (6.119)

Considering Φ0 = (0, ϕ0(r), 0)
T with (ϕ0, ϕ0) <∞ (a normalizable trial function), we get

(Φ0,HΦ0) =

∫
dr∗

[∣∣∣dϕ0

dr∗

∣∣∣2 + λ
A

C

f2,F
f2,F + 2Ff2,FF

|ϕ0|2
]
+O(λ0) . (6.120)

Therefore we conclude that if

f2,F
f2,F + 2Ff2,FF

< 0 (6.121)

the integral is negative for sufficiently large λ, which implies an instability.

6.4.2 Second order Lagrangian for ℓ = 0

Similarly to the vector perturbations, the generic analysis we have performed in the previous
section is valid only for higher modes, ℓ ≥ 2. For scalar perturbations, we will see that for
ℓ = 0, we have only one perturbation related to the scalar field, the breathing mode, which
is the spherically symmetric perturbation.

When ℓ = 0, we only have the spherical harmonic Y 0
0 (θ, φ), which is constant. Therefore,

8Because the lowest eigenvalue ω0 of the spectrum of H gives ∀ Φ, ω2
0 ≤ (Φ,HΦ)/(Φ,Φ). Therefore if a

trial function Φ0 is such that (Φ0,HΦ0) < 0, we have ω2
0 < 0, for a normalizable trial function.

9Notice that this condition includes most, if not all, models studied in the literature for generic Einstein-
Maxwell-dilaton theories.
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the perturbations associated to the functions β00, α00 and G00 vanish. The same argument
apply to the gauge function transformation Θ(t, r). In the gravitational sector, there are
four functions H0, H1, H2 and K. As in the case of higher multipoles, ξr is fixed completely
by setting K00 = 0. We can use ξt to eliminate H0 or H1. However, since it is not a
complete gauge fixing, we will postpone it until we derive the perturbation equations from
the second-order Lagrangian.

The second-order Lagrangian for the monopole perturbations can be obtained by setting
λ = 0 in (6.82). Thus

L(2)
even, ℓ=0 = a1H

2
0 +H0

[
a2H

′
2 + a4H2 + a7δϕ+ a9δϕ

′ + a10δϕ
′′ + a11(A

′
0 − Ȧ1)

]
+H1

[
b3Ḣ2 + b5 ˙δϕ+ b6 ˙δϕ

′]
+ c1H

2
2 + c5H2δϕ+ c7H2δϕ

′ + c8Ḣ2
˙δϕ

+ c11H2(A
′
0 − Ȧ1) + e1 ˙δϕ

2
+ e2δϕ

′2 + e3δϕ
2 + e5δϕ(A

′
0 − Ȧ1)

+ e6δϕ
′(A′

0 − Ȧ1) + d1(A
′
0 − Ȧ1)

2

(6.122)

Variation of the action with respect toA0 andA1 leads to the relations ∂tSe(t, r) = ∂rSe(t, r) =

0, where Se(t, r) is defined in (6.85); thus, Se(t, r) ≡ C1 is constant. Variation wrt H0, and
using the previous equations, we arrive to

∂r

[
P (r)δϕ+ a2H2 + a10δϕ

′ − C1

2
Ā0

]
= 0 , (6.123)

while variation wrt H1 gives

∂t

[
P (r)δϕ+ a2H2 + a10δϕ

′
]
= 0 . (6.124)

Therefore, we conclude that

P (r)δϕ+ a2H2 + a10δϕ
′ =

C1

2
Ā0(r) + C2 (6.125)

where C2 is a new integration constant. This equation will be used to eliminate H2.
We can use the freedom on ξt to partially fix the gauge by choosing H1 = 0, which

would also leave an additional freedom, H0 → H0 − f(t). Taking now the variation wrt to
H2 and fixing this gauge, we obtain an expression for H ′

0 which can be integrated and the
integration constant g(t) eliminated by the remaining gauge function. These expressions are
not especially illuminating and therefore will not be written. Notice that, with the above
procedure, we have eliminated variables H0, H1, H2, A0, and A1 from the Lagrangian (6.122);
at the end, we only have the perturbation associated to the scalar field, which is the only
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propagating degree of freedom with ℓ = 0.
Thus, a variation in δϕ leads to the equation

−K0δ̈ϕ+
(
L0δϕ

′
)′

+M0δϕ+N0(r) = 0 (6.126)

where we have defined
K0 =

C ′2(2P1 − f1)

2
√
ABCϕ′2

. (6.127)

From the above expression, we can see that the no-ghost condition, K0 > 0, is the same as
the one for higher multipoles, i.e., equation (6.99). On the other hand, in the limit of a large
wavenumber k, we get that the velocity of the propagation is

c20 =
L0

ABK0

=
C2f1 (3Bf

′2
1 − 2P3f1)

BΞ2(2P1 − f1)
(6.128)

which also coincides with c2r3 given in Eq. (6.102). Since only the scalar wave is excited
in the monopole perturbation, this result allows to interpret c2r1 and c2r2 as the propagation
speeds of gravitational and electromagnetic field, and c2r3 as the propagation of the scalar
waves.

The Eq.(6.126) admits a particular and homogeneous solution. The homogeneous solution
will describe the propagation of the spherical scalar wave in the fixed background metric,
while the particular solution should modify the constants of the metric. To obtain this result,
let us focus on the electric Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GM-GHS) BH

f1 = 2 , f2 = −2(∂µϕ)
2 − e−2ϕFµνF

µν (6.129)

A = B = 1− 2M

r
, C = r(r − q2

M
) (6.130)

A0 = −q
r
, ϕ =

1

2
log

(
1− q2

Mr

)
(6.131)

Using the previous equations, we found that a particular solution of Eq.(6.126) is a constant
which determines (H0, H2) and therefore the metric perturbations have the form

htt =
α

r
, hrr =

α

r(1− 2M/r)2
, (6.132)

where α is a real constant, α =M(C1q − 4c2M)/(8M2 − 2q2). That produces the result

A(r) = B(r) = 1− 2M + α

r
.
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Therefore, only the mass of the black hole has been modified. Also we have

A′
0 − Ȧ1 =

MC1 + 4αq

8Mr2
(6.133)

which shifts the electric charge as F01 → F01 − (MC1 + 4αq)/8Mr2. Therefore, we expect
that for any spacetime, the particular solution shifts the constants of the spacetime while
the homogeneous solution describes a scalar wave propagating in a fixed background.

6.4.3 Second order Lagrangian for ℓ = 1

Let us analyze now the dipole perturbation. When ℓ = 1 we have Y 0
1 ∝ cos θ, and the

components of the metric perturbation hab acquire the form

hθθ = (K(t, r)−G(t, r)) cos θ (6.134)

hφφ = (K(t, r)−G(t, r)) cos θ sin2 θ (6.135)

hθφ = 0 . (6.136)

Therefore, hab depend on K and G only through the combination K − G. We can use a
function of the coordinate transformation (6.66), ξa, to set K − G = 0. Similarly, we make
use of the transformation ξt to define β(t, r) = 0. Thus, we have a remaining arbitrary
function which we can use to also set δϕ(t, r) = 0. In fact, under the gauge transformation
(6.18) the scalar field transforms as

δϕ→ δϕ−Bϕ̄′R.

Hence, we can use the transformation of coordinate ξr to vanish the scalar field. In this case,
the gauge becomes totally fixed and therefore we can proceed as usual. The Lagrangian for
the dipole mode is obtained by taking λ = 2 (ℓ = 1) in (6.82)

L(2)
even, ℓ=1 = a1H

2
0 +H0

[
a2H

′
2 + 2a3α

′ + (a4 + 2a5)H2 + 2a6α + a11(A
′
0 − Ȧ1)

]
+ (b1 + 2b2)H

2
1 +H1

[
b3Ḣ2 + 2b4α̇ + b5 ˙δϕ

]
+ c1H

2
2 + 2c2α

2 + 2c3H2α

+ 2c4α̇
2 + c11H2(A

′
0 − Ȧ1) + 2c12αA0 + d1(A

′
0 − Ȧ1)

2 + 2d2A
2
0 + 2d3A

2
1

(6.137)

Performing similar calculations to those in the section of higher multipoles, after taking
δϕ = 0, we get a second-order Lagrangian similar to (6.92). Again, after redefining variables,
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we obtain that the Lagrangian takes the canonical form

L(2)
even = K1

ijχ̇iχ̇j − L1
ijχ

′
iχ

′
j +D1

ijχ
′
iχj +M1

ijχiχj . (6.138)

Here, χ is a two-component vector representing the two propagating degrees of freedom, (K1,
L1, M1) are 2× 2 symmetric matrices while D1 is anti-symmetric. The no-ghost conditions,
positivity of the matrix K1

ij, are the same as in the higher multipole case, i.e., given by
equations (6.95) and (6.96), which are reduced to the stability condition (6.99) after taking
λ = 2. Also, from this Lagrangian, we find that the propagation speeds along the radial
direction are given by

c21 = 1 , c2s =
C2f1 (3Bf

′2
1 − 2P3f1)

BΞ2(2P1 − f1)
(6.139)

which, again, both coincide with the propagation speed in the case of higher multipoles, see
Eq. (6.102). We conclude that the degree of freedom associated with the scalar field travels
at the same speed, regardless of the multipole order.

6.5 Application to particular models

The results obtained in this chapter are so general that they can be applied to any scalar-
vector-tensor theory of the form (6.1). In this section, we will use our formalism to some
particular examples that have been frequently studied in the literature.

6.5.1 Schwarzschild BH

The most simple case to analyze is the Schwarzschild solution of general relativity given by
f1 = 2 and f2 = 0, while the metric functions are

A(r) = B(r) = 1− 2M

r
, C(r) = r2 . (6.140)

With this choice, the wave-like equations (6.45) and (6.116) reduce to a single equation for
each case, since we only have two degrees of freedom. In the odd-parity sector, we get that
the potential V11 (6.42), which correspond to the only non-vanishing degree of freedom in
this sector, is simplified to

VRW = A(r)

[
ℓ(ℓ+ 1)

r2
− 6M

r3

]
(6.141)
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Figure 6.1: The Regge–Wheeler potential VRW (r) (solid lines) and Zerilli potential VZ(r) (dashed
lines), as a function of r for ℓ = (2, 3). The radial coordinate r is measured in units of GM/c2 (so
the horizon is at r = 2) and the potential is measured in units of (GM/c2)−2 .

which is known as the Regge–Wheeler potential. Now, in the even-parity sector we also get
a wave-like equation. The effective potential given in (6.116) becomes

VZ = A(r)
6L2Mr2 + 2L2(L+ 1)r3 + 18LM2r + 18M3

r3(Lr + 3M)2
(6.142)

where we defined L = (ℓ+ 2)(ℓ− 1)/2. This is the Zerilli potential for scalar perturbations
of Schwarzschild BHs.

It is well-known that Schwarzschild BH is classically stable. Applying the results of our
analysis, the unique stability condition is f1 > 0, which is trivially satisfied. Also, this conclu-
sion can be obtained by analyzing the potentials; they are completely positive in the region
outside the event horizon; thus, solutions of the wave-like equations are stable. Despite its
more complicated analytic form, the Zerilli potential is numerically almost indistinguishable
from the Regge–Wheeler potential, as we show in Fig. 6.1, especially at large ℓ. They also
have the same asymptotic behavior

VRW ≃ VZ ≃ 0 , r → 2M

VRW ≃ VZ ≃ ℓ(ℓ+ 1)

r2
, r → ∞ .
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Also, QNM frequencies describing the odd- and even-parity perturbation equations are
the same. We will show more details about this property in the next chapter.

6.5.2 Reissner–Nordström BH

As a second example, we take the Einstein-Hilbert action and introduce the electromagnetic
field. The solution corresponds to the Reissner–Nordström BH, which is obtained by setting
f1 = 2 and f2 = 4F . In this case, we have four degrees of freedom, two in each type of
perturbations, traveling at the speed of light. The metric functions are

A(r) = B(r) = 1− 2M

r
+
q2

r2
, C(r) = r2 (6.143)

where q denotes the electric charge. Because f2,F (ϕ,X, F ) = 4 > 0, we conclude that its
vector perturbations are stable. For completeness, let us write the perturbation potential
for this sector

VRN
odd (r) = A(r)

[
1

r2

(
λ− 3M

r
+

4q2

r2

)
I +

1

r3

(
−3M 2q

√
λ− 2

2q
√
λ− 2 3M

)]
(6.144)

which corresponds exactly to the potential derived10 originally in [121].
Focusing on the scalar perturbation sector, we have first to eliminate a row and a column

of our matrices because of the absence of the scalar field. Then, we need to solve the Eq.
(6.113) which gives

S =

(
6Mr−4q2+(λ−2)r2

r2
c1

6Mr−4q2+(λ−2)r2

r2
c2

8c1
r
q + c3

8c2
r
q + c4

)
(6.145)

where (c1, c2, c3, c4) are integration constants, which should be chosen freely as long as c1c4−
c2c3 ̸= 0 in order for S to be invertible. Finally, the calculation of the scalar potential is
trivial and we found that our potential V is similar to the original potential11 derived in
[122] with a change of basis matrix constant. Both matrices describe the same problem. In
fact, if we write

−∂
2Ψ

∂t2
+
∂2Ψ

∂r2∗
−VΨ = 0 , (6.146)

10Our perturbations (Vg, Ve) correspond respectively to (π̂g, π̂f ) of [121].
11Where our variables (Sg, Se) correspond respectively to (Q,H) of [122]



CHAPTER 6. STABILITY OF GENERALIZED EMS BLACK HOLES 99

we can always define a transformation Φ = PΨ and the similar potential W = PVP−1 such
that

−∂
2Φ

∂t2
+
∂2Φ

∂r2∗
−WΦ = 0 (6.147)

if P is a constant matrix. From the potential, the stability can be easily obtained because
of the positivity of the matrix.

Since the computation of even-parity potential is more involved, this example has been
included in the Mathematica® notebook [133] to show a specific application of how the
formalism works and compare our results with the original paper [122].

6.5.3 Nonlinear electrodynamics

Now, let us analyze the dynamical stability of black hole solutions in self-gravitating nonlin-
ear electrodynamics theory, given by the action

S =

∫
d4x

[
R

4
+ L(F )

]
(6.148)

where L is an arbitrary function of F = −FµνF
µν/4. From the background equation we can

find the following relation
A′

A
− B′

B
+
C ′

C
− 2C ′′

C ′ = 0 , (6.149)

which can be easily integrated to
AC

BC ′2 = α , (6.150)

where α is an integration constant. If we were interested only in the background solution, we
could have always reparametrized our time coordinate such that α = 1. However, because
the perturbations are time dependent, we will keep thus constant arbitrary.

In the odd-parity sector, we have that perturbations are stable if LF ≡ ∂L/∂F > 0. For
completeness of the vector perturbations, the potential (6.42,6.43,6.44) is given by

V11 = (λ− 2)
A

C
+
ABC ′

2C

(C ′

C
− A′

A

)
(6.151)

V12 =
2A

C

√
G2(λ− 2)

CLF

(6.152)

V22 =
A

C

(
λ+

4G2

CLF

)
+
ABL′

F

4LF

(A′

A
+
B′

B
+ 2

LF
′′

LF
′ −

LF
′

LF

)
. (6.153)
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In [130], the perturbations for this model were studied in a gauge invariant formalism. We
find exactly the same potential when C(r) = r2.

Focusing on the even-parity sector, since we have only two degrees of freedom, the stability
conditions reduce to (for the sake of simplicity, we have eliminated the obvious positive
factors)

K11 ∝ λ− 2 + 4G2C−1L−1
F > 0 , det(K) ∝ (λ− 2)L−1

F > 0 (6.154)

leading to the same condition as the odd-parity sector, namely L,F > 0. Continuing with the
components of the potential that describe the Schrödinger-type equation, as we have shown
before, we have to find the matrix S (6.113)

S =

 c1
(
2αλ+ CA′

C′ − A
)

c3
(
2αλ+ CA′

C′ − A
)

c2
√
C′

C3/4
√

Ā′
0

− 8c1G
√

α
C

c4
√
C′

C3/4
√

Ā′
0

− 8c3G
√

α
C

 , (6.155)

where, as in the previous case, the constants (c1, c2, c3, c4) can be arbitrarily chosen as long
as c1c4 − c2c3 ̸= 0. The expression of the potential in the generic case is long and not
necessarily instructive. It can be straightforwardly obtained from the Eq.(6.117). It is,
anyway, interesting to derive the most used expression in the literature, namely A(r) = B(r)

and C(r) = r2, which implies from Eq.(6.150), that α = 1/4. We will take, without any loss
of generality, c2 = c3 = 0 and c4 =

√
2Q(λ− 2)c1. We get

V11 =
A[λ(λ− 2) + rA′(a+ 2)− 2A(λ− 2)]

r2(λ+ a)
+

2A2(λ− 2)B
r2(λ+ a)2

(6.156)

V12 = V21 =
2A
√

G2(λ− 2)

r3(λ+ a)
√LF

(
λ− a+ 2Aκ− 4A+

2AB
λ+ a

)
(6.157)

V22 = A

(
κλ

r2
+

4G2 (λ− 2A+ 4κA− rA′)

LF (λ+ a) r4
+

8G2AB
r4LF (λ+ a)2

+ L1/2
F

[
A(L−1/2

F )′
]′)

(6.158)

where we have defined

a = rA′ − 2A ,

B = λ− 2 + 4G2/r2LF ,

κ = −rĀ′′
0/(2Ā

′
0) = LF/(LF + 2F̄LFF ) .

This potential is the same as the one discussed in [130]. From it, we can easily derive the
stability condition for a specific model or calculate the QNMs.

It is important to notice that the stability will depend only on the metric function A and



CHAPTER 6. STABILITY OF GENERALIZED EMS BLACK HOLES 101

its derivatives. In fact, using the equations of motion, we can eliminate the electric potential
Ā0 and the Lagrangian L from all expressions, reducing the potential matrix to

V11 =
A

r2

[
rA′ − λ+ 2 +

2(λ− 2)(λ− 2A)

rA′ − 2A+ λ
+ A

2(λ− 2) (r2A′′ − 2A+ λ)

(rA′ − 2A+ λ)2

]
, (6.159)

V12 =
√
λ− 2

A

r2

√
2− 2A+ r2A′′

[λ− 4A− rA′

λ− 2A+ rA′ + 2A
λ− 2A+ r2A′′

(λ− 2A+ rA′)2

+ A
4− 4A+ 2rA′ − r3A′′′

(λ− 2A+ rA′)(2− 2A+ r2A′′)

]
, (6.160)

V22 =
A

r2

[
2rA′ + 7A− 2− λ− r2A′′ + 2

8A2 + λ(2 + r2A′′)− A(4 + 4λ+ 4r2A′′ + r3A′′′)

λ− 2A+ rA′

+
2A(2− 2A+ r2A′′)(λ− 2A+ r2A′′)

(λ− 2A+ rA′)2
− A(4− 4A+ 2rA′ − r3A′′′)2

4(2− 2A+ r2A′′)2

+
(λ− rA′)(4 + 2rA′ − r3A′′′) + A(−4λ+ 4rA′ + 4r3A′′′ + r4A′′′′)

2(2− 2A+ r2A′′)

]
. (6.161)

From this, we conclude that different theories (Lagrangians) having the same black hole
solution will exhibit the same stability. In that direction, we found that the choice A =

B = 1− 2M/r+ q2/r2, gives that the stability potential reduces to the Moncrief potential12

which implies the stability of the Reissner-Nordström metric independently on the nonlinear
electrodynamics theory considered.

6.5.4 Bardeen black hole

As an application of the above example, let us consider one of the first singularity free black
hole proposed by Bardeen [137]. This metric was shown to be an exact solution of Einstein
equations with a nonlinear magnetic monopole [138]. It is described by the metric

A(r) = B(r) = 1− 2Mr2

(r2 + q2)3/2
(6.162)

and C(r) = r2. In order to study black hole solutions, we consider M > 0. Because we
have focused on an electric source, we know from the FP duality13, that a solution can be

12Our potential V can be written as V = PWP−1 with W the Moncrief potential and P =

(
0 1
−1 0

)
,

therefore they are similar.
13The Lagrangian L(F ) can also be written in terms of the field P = PµνP

µν/4 where Pµν = FµνL,F

[139]. This is the so-called P framework. The equations in the P framework are equivalent to the equations
in the F framework by performing a transformation while the metric remains unchanged [140]. Therefore,
the FP duality connects theories with different Lagrangians but similar metric. A purely magnetic solution
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generated by two different Lagrangians, where one theory contains only a magnetic field and
another only an electric field. It is easy to find that a Lagrangian with an electric field,
generating the Bardeen spacetime, is

Ā0(r) = α
r5

(r2 + q2)5/2
, (6.163)

L(r) = 3Mq2(3r2 − 2q2)

2(r2 + q2)7/2
, (6.164)

where α is a constant. From this, we could obtain L(F ), but because the expression is
numerical and not analytical, we will just mention that such Lagrangian exists. We can see
from the electric potential, that we will not recover the Coulomb potential at large distances,
which could also be seen from the metric that reduces to

A(r) = 1− 2M/r + 3Mq2/r3 , r → ∞.

Therefore, even at large distances, the black hole is not similar to Reissner-Nordström space-
time. Interestingly, long distance quantum corrections to the Schwarzschild black hole go
like 1/r3 [141, 142] which is similar to the Bardeen solution if we identify q2 to 62ℏ/45π.

Looking now to the stability of this black hole, we found that odd-parity perturbations
are stable if f2,F = 3M/αr2 is positive which implies the trivially satisfied condition Mα > 0.

Considering finally the even parity sector, we have analysed the stability numerically
from the potential (6.159, 6.160, 6.161). For that purpose, we redefined the variables r → r̄q,
M → M̄q such that M̄ remains the only free parameter. Considering the normalized mass
in the range 0 < M̄ < 10 and for ℓ = 2, ..., 10, we found that the potential is definite positive
and therefore the black hole is stable in this range.

6.5.5 Hayward black hole

An other interesting singular free black hole is defined as [143]

A(r) = B(r) = 1− 2Mr2

r3 + 2Ml2
. (6.165)

This black hole is known as the Hayward black hole. It reproduces the Schwarzschild space-
time at large distances with corrections O(1/r4) which are not similar to loop quantum
contribution as noticed in the Bardeen solution. But similarly, the black hole is regular at

in the P framework will correspond to a purely electric solution in the F framework or vice versa. This
transformation exists [130] if L,F (L,F + 2FL,FF ) ̸= 0.
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the origin and has a de Sitter core, A ≃ 1− r2/l2.
As in the previous case, the solution can be derived from various theories. We will

consider nonlinear electrodynamics. It is easy to find that a Lagrangian exists, numerically,
which gives this metric

Ā0(r) = −α6l
2M2(r3 +Ml2)

(r3 + 2Ml2)2
, (6.166)

L(r) = 12M2l2(r3 −Ml2)

(r3 + 2Ml2)3
, (6.167)

where α is a constant.
Within this theory, we would like to know if the black hole is stable. The odd-parity

sector is trivially stable because f2,F = (r3 + 2Ml2)3/18α2M2l2r7 > 0.
As for the Bardeen black hole, the even-parity perturbations will be studied numerically.

Interestingly, this spacetime is invariant under a scaling transformation [144]. Therefore,
we can renormalize our variables, r → l

√
Mr, M → M3/2l, which reduces the solution to

only one parameter. We have checked the stability for 0 < (M/l)2/3 ≤ 10 and 2 ≤ l ≤ 10.
We found that the potential is definite positive and therefore the black hole is stable in this
range.

6.5.6 Scalar-tensor theory

After studying spacetimes with the presence of an electric charge, we will consider another
particular case of our general analysis for which only the scalar field is present. Let us take

S =

∫
d4x

√−g
[
f1(ϕ)

R

2
+ f2(ϕ,X)

]
(6.168)

=

∫
d4x

√−g
[
F (ϕ)

R

2
+K(ϕ,X)

]
, (6.169)

where in the second line, we have redefined the functions of the Lagrangian in a more
standard notation used in the framework of k-essence theory (see Chapter 4).

As in the previous cases, the odd-parity sector is trivial. Indeed, we only need to fulfill the
condition F (ϕ) > 0 outside the black hole. For example, any theory expressed in the string
frame [145] where F (ϕ) = e−ϕ would be trivially stable under odd-parity perturbations.
A generic sufficient condition for the stability of even-parity perturbations has not been
found in closed form but we will work out particular examples. This analysis can be easily
generalized to any BH within this class of theories with the Mathematica® notebook file
provided in [133].
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Among all these theories, it was shown that Horndeski theories and Lovelock gravity are
weakly hyperbolic, but might fail to be strongly hyperbolic [146, 94]. The only sub-class
which is strongly hyperbolic are the K-field models defined in Eq. (6.169). Unfortunately,
for most of these models, a non trivial black hole seems to be impossible. For example, it
was shown that if the model is shift invariant, i.e. f1 = 1 and f2 = f2(X) (as in Chapter 4),
the only solution is the Schwarzschild one [147]. For that reason, it was assumed that the
area of a constant r sphere should neither be infinite or zero at the horizon. Violating this
condition, the so-called cold black holes (with zero surface gravity) can be constructed [148].
Thus, we have to violate the null energy condition by choosing f1 = 1 and f2 = −X, where
the scalar field has the "wrong" sign for the kinetic term. The solution is

ds2 = −
(
1− 2k

r

)m/k

dt2 +
(
1− 2k

r

)−m/k

dr2 + r2
(
1− 2k

r

)1−m/k

dΩ2 (6.170)

with

ϕ(r) = −

√
m2

k2
− 1

√
2

ln
(
1− 2k

r

)
, (6.171)

where m is the ADM mass and k is related to the scalar charge. Indeed, we have at infinity
ϕ ≃

√
2m2−2k2

r
.

Even if very interesting, this black hole violates the no-ghost condition (6.94). In fact,
it is easy to show that det(K) < 0. Maybe a stable black hole could be constructed in that
framework by using a non-linear kinetic term.

Another way to escape the no-go theorem previously mentioned is to break the shift
invariance and assume a non-vanishing potential. We know that important no-hair theorems
restrict the existence of non-trivial black holes, see e.g. [149, 150, 151, 152].

6.5.7 Bocharova-Bronnikov-Melnikov-Bekenstein (BBMB) solution

Our following example is a scalar-tensor theory with a conformally coupled scalar field given
by the action (6.1) with functions

f1 =M2
Pl −

ϕ2

6
, f2 = X . (6.172)
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Assuming a spherically symmetric background, the line element that satisfies the background
equations is

ds2 = −
(
1− M

r

)2

dt2 +
dr2

(1−M/r)2
+ r2dΩ2, (6.173)

ϕ = ±
√
6MPlM

r −M
, (6.174)

where M is the mass of the black hole. This solution is known as the BBMB black hole
and has been found by Bocharova, Bronnikov, and Melnikov [153] and independently by
Bekenstein [154]. This is a BH solution with a secondary scalar hair. As we can see, the line
element has the same form as the extremal Reissner-Nordström black hole with Rµν ̸= 0,
but the conformal scalar hair blows up at the horizon.

Since we added only a scalar field, we analyze solely even-parity perturbations. The
stability condition (6.99) reads

2P1 −F =
3M2

PlM
2r(r − 2M)

(r2 − 3Mr + 3M2)2
(6.175)

which is positive only for r > 2M . Because the event horizon is located at r = M , there is
an unstable region outside the horizon. Therefore, this solution is classically unstable. This
result was found in [155, 156] for monopole perturbations, and in [131] for higher multipoles.

6.5.8 BH in Einstein-Maxwell-dilaton theory

Another interesting BH solution is obtained in the Einstein-Maxwell-dilaton (EMd) theory.
The action in the Einstein frame is given by

S =

∫
d4x

√−g
(
R− 2gµν∂µϕ∂νϕ− e−2aϕFµνF

µν
)
, (6.176)

where a is the dilaton coupling constant. For a = 0, the theory reduces to Einstein-Maxwell
theory and the BH solution is the Reissner-Nordström metric. The model appears as a low
energy limit of the heterotic string theory for a = 1 and as the dimensionally reduced five
dimensional vacuum Einstein action in the Einstein frame, for a =

√
3.

The static and spherically symmetric black hole solution in the case where the Maxwell
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field is electric is given by [119, 120]

A(r) = B(r) =
(
1− r+

r

)(
1− r−

r

) 1−a2

1+a2

,

C(r) = r2
(
1− r−

r

) 2a2

1+a2

,

(6.177)

where r+ is the position of the event horizon and r− corresponds to a curvature singularity
RµνρσR

µνρσ ∝ (r− r−)
−2(1+3a2)(1+a2) except for a = 0 where the solution reduces to Reissner-

Nordström metric. The two parameters (r+, r−) are related to the ADM mass M and the
electric charge Q by solving [157]

M =
r+
2

+

(
1− a2

1 + a2

)
r−
2
, Q2 =

r+r−
1 + a2

e−2aφ0 . (6.178)

On the other hand, the only non-zero component of the electromagnetic four-potential Aµ

and the scalar field ϕ are given by

Ā0(r) = −1

r

√
r+r−
1 + a2

, ϕ(r) =
a

1 + a2
ln
(
1− r−

r

)
. (6.179)

Given the background solution, we can perform the analysis of perturbation theory. As a
first step, we focus on odd-parity perturbations. The no-ghost conditions (6.39) are trivially
satisfied since f1(ϕ) = 2 and f2,F (ϕ,X, F ) = 4 exp[−2aϕ(r)] > 0. We conclude that the
odd-parity perturbations are stable. From Eqs. (6.42) – (6.44), we get that the components
of the potential associated with this type of perturbations are

V11 = V22 +
T
r

[
(a2 − 3) r−
1 + a2

− 3r+

]
V12 = V21 =

2T
r

√
(λ− 2)r−r+
a2 + 1

V22 = T
[
λ+

r−

(a2 + 1)2 r

(
a4(2r + r− − 3r+)

r − r−
+ 2a2 +

a2r+
r

+
4r+
r

)]
where we have defined

T (r) =
A(r)

(r − r−)2

(
1− r−

r

)2/(a2+1)

. (6.180)

It can be checked that the potential matrix has constant eigenvalues; therefore, we can
diagonalize this matrix to obtain a decoupled system of wave-like equations. After the
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diagonalization, the potentials are

V EMd
± =

T
r

[
λr +

3a4(r − r+)r
2
−

r(a2 + 1)2(r − r−)
+

(4− 3a2) r−r+
(a2 + 1)r

+
(5a2 − 3) r−
2 (a2 + 1)

− 3r+
2

± 1

2

√
9r2+ +

(a2 − 3)2 r2−

(a2 + 1)2
− 2 (7 + 3a2 − 8λ) r−r+

a2 + 1

]
.

(6.181)

As a specific case, setting a = 1, we recover the potential computed in [158]. Now, we turn
to the problem of even-parity perturbations. The no-ghost condition (6.99) is

2P1 − f1 =
2r2−

(2r − r−)2
> 0 . (6.182)

Therefore, the even-parity perturbations are well-defined. It can also be checked that
all perturbations propagate at the speed of light. In order to study completely the stability
of these modes, we need to compute the matrix S (6.113) in order to obtain the potential
associated to these perturbations. Unfortunately, in these type of models, the integration
of Eq. (6.113) is not easy and we have to rely on a numerical analysis. To this end, we
integrate numerically Eq. (6.113) assuming any initial condition such that det(S) ̸= 0.
From this we can easily obtain the potential (6.117). We found that the eigenvectors of the
matrix (6.117) −S−1K−1BS are constant and therefore the system has the same eigenvalues
as the matrix −K−1B. As a consequence, we do not need to calculate the matrix S, but
only the eigenvalues of the matrix −K−1B. Each eigenvalue will be the effective potential
of one of the three perturbations.

From these effective potentials, we have calculated the QNMs using the sixth order WKB
method (we will explain this numerical method in the next Chapter). We see in the Fig.(6.2),
the real and imaginary part of the QNMs associated to this black hole compared to the
Reissner-Nordström solution. We observe that, contrary to the Reissner-Nordström solution,
the electric charge breaks the isospectrality14. From the numerical results, we found that
Im(ω) < 0, for a large number of ℓ, and therefore we conclude that the black hole is linearly
stable. As an example, we have represented, in Figs.(6.2,6.3), the real and imaginary parts
of the QNM for a = 1 and a = 0.5 respectively. These results coincide with [158] for a = 1

and with [159, 160] in the case a = 0.5.

14Same spectrum of quasinormal modes for even and odd perturbations.
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Figure 6.2: Fundamental mode (lowest QNMs) for the EMd black hole as a function of the charge
Q in units M = 1 and for ℓ = 2. In pink, we have the modes associated to the gravitational
sector, which reduce to the Regge-Wheeler and Zerilli potentials. In blue, we presented the QNMs
associated to the electromagnetic sector and, finally, in blue we draw the modes associated to the
scalar field. These perturbations are compared to the Reissner-Nordstrom black hole in dotted line.
The QNMs have been calculated with a step size of 0.0025 for the charge.
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Figure 6.3: Fundamental mode (lowest QNM), for ℓ = 2 and a = 0.5, as a function of the charge Q,
in units M = 1. In pink, we have the modes associated to the gravitational sector, which reduce to
the Regge-Wheeler and Zerilli potentials. In blue, the QNMs are associated to the electromagnetic
sector and finally in blue we have the mode associated to the scalar field. These perturbations are
compared to the Reissner-Nordstrom black hole in dotted line. The QNMs have been calculated
with a step size of 0.0025 for the charge.
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6.6 Discussions

We have studied the stability of static spherically symmetric black holes in generalized
Einstein-Maxwell-scalar theories with an electrically charged Maxwell field. We have ob-
tained the master equations in the odd and even parity sectors. We found that the ghost
free conditions reduce to

f1 > 0 , f2,F > 0 , 3f1
2
,ϕ + 2f1f2,X > 0 . (6.183)

We found that four degrees of freedom propagate at the speed of light, while a degree of
freedom associated to the scalar field could propagate faster or slower than the speed of
light, as its expression is given by Eq. (6.107). From it, we also obtained a subclass of
generalized Einstein-Maxwell-scalar theories where all degrees of freedom propagate at the
speed of light, see Eq. (6.110). Imposing the ghost free conditions, we found that odd-parity
perturbations are always stable and we obtained explicitly the effective potential matrix.
Considering the even-parity sector, we derived the master equation and the procedure to
calculate the effective potential matrix for a given model. We also found that assuming
ghost free conditions, the perturbations are unstable if f2,F + 2F̄ f2,FF < 0 for models with
f2,XF = 0. Finally, we have applied this formalism for several BHs for which we could easily
obtain the stability conditions and calculate the QNMs.

By using our method, we could recover all previously derived results in the literature,
which guarantees the correctness of our calculations. As an application, our investigation
can be used to study the QNMs of gravitational waves, electromagnetic radiation and scalar
radiation. The presence of these three fields appears naturally in higher dimensional theories
of gravity such as supergravity or string theory. Interestingly, we did not find any stable
hairy black hole in scalar tensor theories.



Chapter 7

Pure Lovelock black hole in higher

dimensions

A possibility that the spacetime may have more than four dimensions has become a trendy
topic in the last decades. Gravitational theories built in dimensions other than four have a
strong theoretical interest for several reasons, including the formulation of consistent string
theories or understanding how field equations depend on an extra parameter, in this case, the
spacetime dimension. The most simple extension of general relativity to higher dimensions
is given by the Einstein-Hilbert action in d dimensions

S =
1

κ

∫
ddx

√−g R . (7.1)

It has been shown in [54] that this theory admits the Schwarzschild’s vacuum solution,
and it is stable under metric perturbations in all dimensions ≥ 4. In this black hole, the
gravitational potential goes as 1/rd−3 with d − 3 ≥ 1 always. Therefore, as long as the
potential falls faster than 1/r, the black hole solution is stable. Using the same principles
as the ones from which general relativity has been constructed, the Einstein-Hilbert action
is not unique in higher dimensions. In d > 4, one can add new curvature terms that still
preserve the following features, we expected from a theory of gravity: (a) general covariance
—the Lagrangian is a scalar density constructed from the Riemann curvature, which yields a
non-trivial equation of motion, (b) field equations are expressed in terms of a divergence-free
symmetric rank-2 tensor, and (c) equations of motion remain second-order in the metric.

Taking into account the fact that there is no reason to discard such nonlinear in the
curvature terms in the action, David Lovelock constructed the most natural generalization of
Einstein’s gravity in higher dimensions. The Lovelock Lagrangian [16] is a linear combination

110
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of homogeneous polynomials in the Riemann curvature of arbitrary degree N . The Lovelock
action with N = 1 reduces to the Einstein-Hilbert action (7.1), thus, Einstein’s theory of
general relativity is included as a particular case in this generalization; the polynomial with
N = 2 is the quadratic Gauss-Bonnet (GB) term, so the Lovelock action, in that case, is
a linear combination of two terms, thus it has two integrations constants. Unlike theories
in which additional fundamental fields are added into the gravity sector, Lovelock theory
provides a new exciting scenario to study how gravity is corrected at high energies due to
the presence of higher curvature terms [161]. It has been shown in [162] that the addition
of the quadratic GB term in the action is relevant to the low energy limit of string theory.
This suggests that the correct theory of classical gravity is the Lovelock theory, while GR is
an effective theory that arises in the low energy limit.

The general feature of the Lovelock theory is that, for d = 2N , equation of motion
is trivial, meaning that the corresponding Einstein tensor Gµν vanishes identically. It is
kinematic for d = 2N + 1, implying that the corresponding Riemann is entirely given in
terms of Ricci tensor and hence there can exist no non-trivial vacuum solution [163]. Gravity
could have dynamics admitting non-trivial vacuum solution only in dimensions d ≥ 2N + 2.
That means, it is a quintessentially higher-dimensional generalization of gravity; i.e. the
term corresponding to N > 1 will make a non-zero contribution to equations of motion only
in dimension greater than four.

Lovelock theory admits general solutions describing static black holes [161]. Black holes
are by far the most interesting solutions of gravitational theories. A natural question that
arises is, can these solutions be stable in generalizations of Einstein’s gravity? To show the
stability of a black hole solution, as we saw in Chapter 6, a frequently used method is to apply
linear perturbation theory and prove that its dynamic is governed by a positive self-adjoint
operator. In that way, we guarantee that perturbations radiate and decay sufficiently fast in
time. Studying the stability of a black hole with a horizon having a spherical topology, we
found that metric perturbations are classified into tensor, vector, and scalar perturbations.
The last two types correspond to the odd- and even-parity modes in the four-dimensional
case, while tensor perturbations are new and emerge only in higher dimensions.

Following the scheme introduced in [54, 55], the stability of higher-dimensional black
holes has been an active research topic in recent years. For example, tensor perturbations
of Einstein-Gauss-Bonnet (EGB) gravity were studied in [164, 165]. Then, the results were
generalized to third-order Lovelock in [166] and to any Lovelock order in [167]. On the other
hand, the stability analysis of EGB gravity under scalar and vector perturbations has been
carried out in [168], and it was later generalized to any Lovelock [169]. It was proved in



CHAPTER 7. PURE LOVELOCK BLACK HOLE IN HIGHER DIMENSIONS 112

[129] that Lovelock black holes with small mass are unstable under tensor perturbations in
even-dimensions and under scalar perturbations in odd-dimensions.

Recently, there has been much attention to a particular case of Lovelock gravity, the
Pure Lovelock theory. Instead of considering the full Lovelock polynomial, only the term
proportional to the curvature of order N has been taken into account. As an example, pure
Gauss-Bonnet gravity has only the Gauss-Bonnet term without the Einstein-Hilbert term.
Pure Lovelock gravity has several interesting and remarkable features; see e.g. [170] for
degrees of freedom count. One of the most attractive feature of these theories is that their
black hole solutions are indistinguishable from the ones appearing in General Relativity. As
we will show later, in particular dimensions, we can always recover the 4D Schwarzschild
solution, even when d > 4. Based on this remarkable result, we will study the stability
of these particular higher dimensional Schwarzschild black holes, to see whether they share
stability features with their 4D cousins..

For this purpose, in section 7.1, we review the Lovelock theory and then restrict the action
to Pure Lovelock Lagrangian. In section 7.2, we apply perturbation theory to this particular
solution and determine the stability of these black holes. We also generalize the formalism
of linear perturbation theory given in 6.2 to a higher-dimensional spacetime. To go further
in our results, we apply numerical techniques to get the spectrum, the quasinormal-mode
frequencies, of these black holes. The three most common numerical techniques found in the
literature are described in section 7.5. In section 7.6, we obtain the frequencies for scalar,
vector and tensor perturbations for pure Gauss-Bonnet gravity in d = 7, before generalizing
them to any critical dimension in section 7.7.

7.1 Lovelock Black Holes

Lovelock theory of gravity [16] is the generalization of Einstein’s theory of general relativity
in higher dimensions. The Lagrangian of this theory is constructed with a single symmetric
metric tensor field g endowed with a Levi-Civita connection, which gives a divergence-free
geometric operator and leads to equations of motion that do not contain derivatives of the
metric tensor of order higher than two. These two properties are fundamental because they
are related to the conservation of the energy-momentum tensor and the absence of any ghost
modes in the theory, avoiding the well-known Ostrogradski instability [40, 41].

The corresponding action in d dimensions is

S[g] =
∫
ddx

n∑
k=0

ckLk (7.2)
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where Lk is the dimensionally continued Euler density of order k in the curvature

Lk ≡
1

2k
√−g δµ1ν1···µkνk

α1β1···αkβk
Rµ1ν1

α1β1 ···
···Rµkνk

αkβk , (7.3)

Rµν
αβ is the Riemann tensor and δµ1···µp

α1···αp is the generalized totally antisymmetric Kronecker
delta of order p (0 ≤ p ≤ d). In (7.2) we defined the maximal order of the Lovelock
polynomial, n ≡ [(d−1)/2], where [z] denotes the greatest integer function satisfying [z] ≤ z,
and ck are arbitrary constants. As examples, L0 represents the identity, so c0 is just the
cosmological constant. L1 gives the usual scalar curvature term, while L2 is just the Gauss-
Bonnet term. Any term of order greater than N in the action (7.2) is either zero or at best
a topological invariant and hence it does not contribute to the classical field equations.

It has been shown in [171] that, for particular values of the constants ck, a degeneracy can
appear in the space of solutions when the field equations do not entirely determine the metric.
This problem can be avoided by a suitable choice of the coefficients ck. The simplest example
choice corresponds to the Einstein-Hilbert term alone with the cosmological constant (Λ),
which has a unique Minkowski, de Sitter, or anti-de Sitter vacuum depending on the sign
of Λ. As showed in [172], another way to fix the coefficients is to restrict the theory to
have a unique degenerate vacuum, leading to a family of gravity theories [173]. Requiring
that Lovelock gravity has the maximum number of degrees of freedom, in odd dimensions the
Lovelock Lagrangian can be written as a Chern-Simons form [174]; while, in even dimensions,
the Lagrangian can be written as a Born-Infeld gravity [175]. In those theories all couplings
are expressed only in terms of the gravitational interaction and the cosmological constant.

Another way to fix the constants ck is to demand that there is a non-degenerate vacuum
[176]. Such condition leads to Pure Lovelock theory [53] which consists in the particular case
where the polynomial reduces to a monomial of order N , thus the action is simplified to

SPL[g] =

∫
ddx cNLN . (7.4)

Pure Lovelock gravity has been scarcely discussed in the literature. Their black hole
solutions are asymptotically indistinguishable from the ones appearing in GR [172] even
though the Einstein-Hilbert term is not present in the action. The stability of black holes
in this theory has been analyzed in [177]. Pure Lovelock gravity is also singled out by
another property; it admits bound orbits around a static object [178]. In Einstein gravity,
the gravitational potential goes as 1/rd−3 in d non-compactified spacetime dimensions, and
bound orbits could exist only if d− 3 < 2, the condition required for centrifugal potential to
be able to counter-balance gravitational pull. Thus, for Einstein gravity, bound orbits can
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exist only in d = 4. However, the situation changes in Pure Lovelock gravity because for
it the potential goes as 1/rα where α = (d − 2N − 1)/N [172]. Clearly, for Pure Lovelock
gravity in dimensions d ≥ 2N + 2, we have α < 2 and bound orbits always exist.

From the above discussion, we observe another exciting property of pure Lovelock gravity.
Namely, its potential has the same fall off as four-dimensional GR, 1/r, in d = 3N +1 [179].
In all d > 3N +1, it would fall sharper than 1/r. Therefore, as stated in [179], from a purely
gravitational standpoint, there is no way to distinguish whether solar system observations
correspond to four-dimensional Einstein or (3N+1)−dimensional pure N−th order Lovelock
gravity. Furthermore, since we have the same inverse square law for the potential in both
theories, it is expected that the cosmological dynamics remains the same. Focusing on this
property, the natural question that arises is whether pure Lovelock black hole in d = 3N +1

are stable? This is the question we wish to address in this investigation, thus in the rest of
the chapter we will focus on Pure Lovelock theory.

A variation of the action (7.4) with respect to the metric leads to the equations of motion

GB
A = δBµ1ν1···µNνN

Aα1β1···αNβN
Rµ1ν1

α1β1 ···
···RµNνN

αNβN = 0 . (7.5)

As shown in [171, 180], there exist static spherically symmetric solutions to this equation in
any d, given by

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

d−2 (7.6)

where dΩ2
d−2 = γabdx

adxb is the line element of the (d− 2)−dimensional unit sphere. Using
this metric ansatz, we can compute the Riemann tensor components

Rtr
tr = −f

′′

2
, Rta

tb = Rra
rb = − f

′

2r
δa

b ,

Rab
cd =

(
1− f

r2

)
δcdab (7.7)

where indices (a, b, . . . ) denote angular coordinates. Substituting (7.7) into (7.5) we get

f(r) = 1−
(rs
r

)(d−2N−1)/N

(7.8)

where rs is the location of the event horizon. Notice that the critical dimension d = 3N + 1

gives the Schwarzschild solution, but the action does not correspond to GR. In the rest
of the chapter, we will consider, for each pure Lovelock of order N , the critical dimension
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corresponding to d = 3N + 1, which describes Schwarzschild spacetime at any order N .

7.2 Perturbations and stability

Studying how a BH reacts to external perturbations has been the starting point to analyze
the classical stability of a given solution. Through this approach, we can constrain the
parameters of a given theory to a valid range. As we saw in Chapter 6, the study of
perturbation theory in general relativity has its root in the seminal work done by Regge
and Wheeler [47] for axial modes, and subsequently by Zerilli [48] for polar modes. This
perturbative analyses of black hole spacetimes have provided valuable tools for investigating
astrophysical problems, such as gravitational wave emission from gravitational collapse, and
more fundamental problems, such as the stability and uniqueness of black holes.

The perturbation analysis in four dimensions relies on the properties of a spherically
symmetry spacetime; hence this formalism can be extended to other theories. The extension
of the classical stability of higher-dimensional black holes has been intensively studied by
Kodama and Ishibashi [54, 55]. They showed that in four or more spacetime dimensions, the
Einstein equations for gravitational perturbations of maximally symmetric vacuum black
holes can be reduced to a single second-order wave equation in a two-dimensional static
spacetime, irrespective of the mode of perturbations.

Aimed to this interesting conclusion, we analyzed the stability of higher-dimensional
black holes given by Pure Lovelock gravity in this section. We consider a perturbation (hµν)
to the previous background solution (7.6) described by the metric

gµν = ḡµν + hµν .

In the higher-dimensional case, the role of the two-sphere is played by an n−sphere. Ac-
cording to how they transform under SO(d − 2, 1) [181], the perturbations hµν can be de-
composed into scalar and vector perturbations which correspond to the axial and polar
modes in the four-dimensional case. However, a new type of perturbations appears in di-
mensions larger than four, known as tensor perturbations. In order to verify the stability
of higher-dimensional Schwarzschild black holes (7.8), we have to investigate their stability
with respect to all types of perturbations. Since the Lagrangian is invariant under parity
transformations, perturbations are decoupled from each other at the level of the equations;
thus, we can analyze each of them separately.



CHAPTER 7. PURE LOVELOCK BLACK HOLE IN HIGHER DIMENSIONS 116

7.2.1 Scalar perturbations

For scalar perturbations, instead of working with the Uniform curvature gauge as we did in
section 6.4, we use the metric in the Zerilli gauge (spatially diagonal gauge) that takes the
following form

hµν =

fH0 H1 0
H1 H2/f 0
0 0 r2Kγab

 (7.9)

where γab is the metric of the n−sphere and it depends only on the angular coordinates. As
done in section 6.2, we decompose each perturbation function into higher-dimensional scalar
harmonics which satisfy

∇a∇aY = −γsY with γs = ℓ(ℓ+ d− 3) (7.10)

where ∇a is the covariant derivative associated to the metric γab. Working at the level of
the equations of motion, as shown in [169, 129], all perturbations (H0, H1, H2, K) can be
expressed in terms of a single master function ψ solution of the equation

d2ψ

dr2∗
+ (ω2 − Vs(r))ψ = 0 (7.11)

where r∗ is the tortoise coordinate, ω comes from the fact that we have assumed that each
perturbation function has a time dependence of the form H(t, r) → e−iωtH(r) and Vs(r) is
an effective potential for scalar perturbation

Vs(r) = f(r)
2λ2(λ+ 1)r3 + 6λ2Mr2 + 18λM2r + 18M3

r3(λr + 3M)2
(7.12)

which, we notice, has exactly the same form as the Zerilli potential (6.142), defining

λ =
(ℓ+ d− 2)(ℓ− 1)

d− 2
. (7.13)

Since this potential is completely positive for r > rs (see Fig. 7.1a), we can easily conclude
that higher-dimensional Schwarzschild BH (7.8) is stable relative to scalar perturbations. In
the literature, it is common to call equation (7.11) as the master equation for perturbations.
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7.2.2 Vector perturbations

A general vector perturbation is given by

hij = 0 , hia = rfiVa , hab = 2r2HTVab (7.14)

where fi and HT are functions of (r, t), Va is a divergence-free vector harmonic field and Vab
is a symmetric harmonic tensor; both defined on the n−sphere. For higher multipoles, we
can always choose a gauge where HT = 0. This generalizes the Regge-Wheeler gauge for odd
perturbations to higher dimensions, which simplifies the metric perturbation to

hµν =

 0 0 va

0 0 wa

va wa 0

 (7.15)

with ∇̄av
a = ∇̄aw

a = 0. Each perturbation can be decomposed in terms of vector harmonics
which satisfy the equation

∇̄a∇̄aYi = −γvYi with γv = ℓ(ℓ+ d− 3)− 1 . (7.16)

As for scalar perturbations, we can reduce the problem to a single function ψ solution of

d2ψ

dr2∗
+ (ω2 − Vv(r))ψ = 0 (7.17)

with

Vv = f(r)
[(ℓ+ d− 4)(ℓ+ 1)

(d− 3)r2
− 6M

r3

]
(7.18)

which is also a generalization of the Regge-Wheeler equation (6.141) to any dimension.
Therefore we can conclude that vector perturbations decay with time in any d ≥ 4, because
Vv(r) > 0 for r > rs, see Fig. 7.1b.

7.2.3 Tensor perturbations

Finally, tensor perturbations around the solution (7.6) are characterized by

hµν =

(
0 0
0 r2ϕ(t, r)hab

)
(7.19)
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Figure 7.1: Form of the potential perturbations for various dimensions as a function of tortoise
coordinates r∗. The radial coordinate r is measured in units of GM/c2.

where hab is the traceless, transverse tensor harmonics solution of

∇̄c∇̄chab = −γthab with γt = ℓ(ℓ+ d− 3)− 2 , (7.20)

and ϕ(t, r) represents the dynamical degrees of freedom. From the mathematical point of
view, this is the most simple perturbation. Similarly, we can define a new function ψ related
to the perturbation ϕ, which is a solution of the master equation

d2ψ

dr2∗
+ (ω2 − Vt(r))ψ = 0 (7.21)

with

Vt = f(r)
2M

r3
. (7.22)

This is a new perturbation inexistent in four dimensions. This perturbation is independent
of the angular momentum ℓ, there is no angular dependence. These perturbations are also
stable because Vt(r) > 0 for r > rs, see Fig. 7.1c.

Therefore, we have found that for any critical dimension, d = 3N+1, the Schwarzschild
solution is always stable.

7.3 Isospectrality

In the previous subsection, we studied the stability of the Schwarzschild black hole in the
critical dimensions from an analytical point of view. As we will see in the next section,
another way of exploring this problem is to find the corresponding frequencies ω using nu-
merical techniques. As we saw, all perturbations reduce to a master equation, which can be
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written in the form [
− d2

dr2∗
+ V (r)

]
ψ = ω2ψ . (7.23)

This, the equation is reduced to an eigenvalue problem, where the wavefunction ψ is the
eigenvector and ω the eigenvalue of the corresponding operator. In general, any value of ω
can solve the master equation. But, when physically motivated boundary conditions at the
horizon and infinity are imposed, only few discrete complex values of ω can solve equation
(7.23). These particular solutions are called quasi-normal mode (QNM) frequencies.

In four dimensions, the scalar and vector potentials are quite different for the Schwarzschild
solution, but the QNM frequencies are the same. This is known as Isospectral property. It is
a significant result specific to Schwarzschild black hole and does not hold for neutron stars or
other gravitational theories. The proof of this unexpected fact can be found in [49]. The un-
derlying reason is that a differential transformation relates scalar and vector perturbations,
and both potentials emerge from a single potential W

W =
2M

r2
− 3 + 2c

3r
+

c(3 + 2c)

3(3M + cr)
− c(c+ 1)

3M
(7.24)

β = −c
2(c+ 1)2

9M2
(7.25)

c =
(l + 2)(l − 1)

2
(7.26)

Using this, the vector and scalar potential for the Schwarzschild black hole in 4 dimensions
can be obtained as

Vs(r) = W 2 − f(r)
dW

dr
+ β (7.27)

Vv(r) = W 2 + f(r)
dW

dr
+ β . (7.28)

If ψv is an eigenfunction of the wavelike equation (7.17), then the eigenfunction for the
potential Vs is given by

ψs ∝
(
W − f(r)

d

dr

)
ψv (7.29)

and it corresponds to the same eigenvalue ω. Therefore, the quasinormal spectrum is the
same for both kinds of perturbations.

Returning to our case of Schwarzschild-type black hole in higher dimensions, we found an
almost isospectral behavior. All potentials can be derived from the same form of W (7.24)
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and the potentials can be obtained in the following way

Vs(r) = W 2 − f(r)
dW

dr
+ β , (7.30)

Vv(r) = W 2 + f(r)
dW

dr
+ β , (7.31)

Vt(r) = W 2 − f(r)
dW

dr
+ β , (7.32)

but the spectrum of each operator is different because the constant c differs for each type of
perturbations, namely

c =
(ℓ+ d− 2)(ℓ− 1)

d− 2
, for scalar perturbations

c =
(ℓ+ d− 4)(ℓ+ 1)

2(d− 3)
− 1 , for vector perturbations

c = 0 , for tensor perturbations

Strictly speaking, the potentials are not obtained from the same potential W , because c is
different. In d = 4, tensor modes do not exist and c takes the same value for scalar and vector
perturbations. We, therefore, recover the standard result. In any other critical dimension,
the spectrum will be different.

7.4 Quasinormal modes

As we have shown previously, to get Eqs. (7.23), we assumed a harmonic time dependence
for each perturbation variable of the form

Ψ(t, r) =
∑
n

e−iωntψn(r) . (7.33)

Analyzing this equation from the numerical point of view, we get important conclusions
about how a BH reacts under small perturbations. If it admits solutions whose amplitudes
grow in time, then the black hole is unstable; otherwise, it is stable, at least under the
assumptions made in the analysis.

To get solutions of equation (7.23) we must assign boundary conditions. In general, there
are various possible ways of choosing boundary conditions of a second-order differential
equation defined in the range r∗ ∈ (−∞,∞), and the appropriate choice depends on the
physics of the problem. Considering an asymptotically flat or dS spacetime, the choice of
the boundary conditions are ingoing near the horizon (r∗ = −∞) and outgoing at infinity or
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at the cosmological horizon (r∗ = +∞). Mathematically1

ψn(r∗) ∝ e−iωnr∗ , when r∗ = −∞ and

ψn(r∗) ∝ e+iωnr∗ , when r∗ = +∞ .
(7.34)

Ingoing at the horizon means that there is no signal which comes from the black hole.
Equivalently, we should not have a wave coming from a source at infinity. As proved in
[182], assumption of these boundary conditions selects discrete complex values of ω

ωQNM = ωR + iωI

called Quasinormal frequencies. The solutions constructed from them are the Quasinor-
mal modes (QNM), see [183] for a complete review and references therein. The imaginary
part of ωQNM comes from the fact that Eqs. (7.23) does not admit stationary solutions
since the spacetime is unbounded and energy is radiated away to infinity. QNMs were first
pointed out by Vishveshwara [50] in calculations of the scattering of gravitational waves by
a Schwarzschild black hole. The study of these discrete frequencies has been investigated
in a wide range of solutions employing the linear analysis, in which the fields are treated
as a perturbation in the single black hole spacetime (as we did in section 7.2 and in Chap-
ter 6), but also on fully numerical simulations of black hole-black hole collision processes,
and stellar collapse. The most exciting conclusion is that the frequency and damping of
these oscillations depend only on the parameters characterizing the black hole. They are
entirely independent of the particular initial configuration that caused the excitation of such
vibrations.

Boundary conditions (7.34) imply that an initial BH perturbation decays and disappears
into gravitational radiation at infinity or approaching the horizon; this means that the per-
turbation amplitude must eventually go to zero at each fixed point in the space to ensure
the stability of the solution. Thus, ωQNM must have a negative imaginary part, ωI < 0.
Perturbations with imaginary frequencies that grow exponentially with time are physically
unacceptable.

This conclusion can be derived in the following way. Let us multiply the equation (7.23)
by ψ̄n —the complex conjugate of ψn— and integrate over the tortoise coordinate. We obtain
after an integration by parts

−ψ̄n
dψn

dr∗

∣∣∣+∞

−∞
+

∫
R
dr∗
[∣∣∣dψn

dr∗

∣∣∣2 + V |ψn|2
]
= ω2

nA
2 , (7.35)

1For an AdS spacetime, the condition at the horizon is the same but the Dirichlet one at infinity.
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where A2 =
∫
R dr

∗|ψn|2 > 0. Using boundary conditions (7.34), we have

−ψ̄n
dψn

dr∗

∣∣∣+∞

−∞
= −iωnB

2 , (7.36)

where B2 = |ψn(+∞)|2 + |ψn(−∞)|2 is always a real positive number. Therefore, Eq. (7.35)
becomes ∫

R
dr∗
[∣∣∣dψn

dr∗

∣∣∣2 + V |ψn|2
]
= ω2

nA
2 + iωnB

2 . (7.37)

The imaginary part of this equation reads

Re (ωn)
(
2 Im (ωn)A

2 +B2
)
= 0 . (7.38)

In general, this equation has non-trivial solution if Im(ωn) < 0; therefore, perturbations
decay with time. On the other hand, when Re(ω) = 0, we conclude that growing modes,
which give unstable solutions, do not oscillate. Now, the real part of (7.37) reads∫

R
dr∗
[∣∣∣dψn

dr∗

∣∣∣2 + V |ψn|2
]
= (Re (ωn)

2 − Im (ωn)
2)A2 − Im (ωn)B

2 . (7.39)

For growing modes, Im(ω) > 0 and Re(ω) = 0, the right hand side of the above relation is
negative. Thus, we obtain unstable solutions if the left-hand side of Eq. (7.39) is negative,
and therefore this condition can be fulfilled only if the potential in Eq. (7.39) is negative.
On the contrary, a stable of the solution is obtained if the potential is positive. To prove the
positivity of the potential, we can use the S−deformation technique showed in section 6.3.2.

With the previous analysis, we have shown that the stability of a solution can be analyt-
ically demonstrated by the positivity of the potential or numerically, showing that pertur-
bations decay in time. It should be noted that both approaches are equivalent.

7.5 Numerical Techniques to compute QNM

In section (7.2), we showed that Schwarzschild BHs in critical dimensions d = 3N + 1

are stable under scalar, vector, and tensor perturbations using the analytical procedure.
However, using the fact that QNM frequencies decay with time, ωI < 0, we can prove the
stability of a solution from the numerical point of view. In general, it is possible to prove
stability analytically only of some relatively simple solutions of the Einstein equations. That
is why the numerical test is essential for the study of black holes. In addition, as we will see,
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these numerical techniques allow us to obtain more exciting conclusions.
In what follows, we will briefly describe three numerical methods to determine the quasi-

normal mode frequencies, also known as the spectrum of the BH. These are the three widely
used methods found in the literature.

7.5.1 WKB method

The WKB (Wentzel, Kramers and Brillouin) method is an approximate method to solve lin-
ear differential equations. The motivation to apply this numerical procedure is the similarity
between the master equation of black hole perturbation theory and the time-independent
Schrödinger equation for a potential barrier. This method is widely applied to compute
quasinormal frequencies since it provides good accuracy and easy numerical implementa-
tion. To review this method, let us rewrite the master equation (7.23) in the following
form

d2Ψ

dx2
+Q(x)Ψ = 0 , Q(x) = ω2 − V (x) (7.40)

where x is the tortoise coordinates r∗, ω corresponds to the quasinormal mode frequency
and V (x) is the radial potential that takes constant values at x = ±∞, and has a maximum
at x = x0. Now, the key feature of this method consists in approximating the solution in a
single exponential power series of the type

Ψ(x) ≈ exp

[
1

ϵ

∞∑
n=0

ϵnSn(x)

]
, (7.41)

where the parameter ϵ tracks the order of the WKB expansion. Substituting the expansion
(7.41) into the equation (7.40), and equating the same powers of ϵ, we can find the solution
of the equation at any order. It can be checked that the first two terms of the above series
are given by

S0(x) = ±i
∫ x√

Q(x′) dx′ , S1(x) = −1

4
lnQ(x) (7.42)

where the signs correspond to either incoming or outgoing waves at either of the infinities
x = ±∞. Analyzing the equation (7.40) as a wave scattering problem due to a barrier
potential, and noting that potentials obtained from different perturbations have a similar
form (see Fig. 7.1), we can see in Fig. 7.2 that we have two turning points that divide
the radial coordinates into three zones. The quasinormal frequencies are obtained applying
purely outgoing waves boundary conditions (7.34) into regions I and III. Then, we need to
match both WKB solutions with a solution in region II, through the two turning points
{x1, x2}. Since this is a long calculation, we refer to [183] for more details.
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-∞ x1 x2 ∞

Region IIIRegion IIRegion I

Figure 7.2: A sketch of a general potential V (r) with two turning points, x1 and x2.

Considering only the first order in the WKB approximation, Schutz and Will [184] found
that the quasinormal frequencies are given by the solution of

− iQ0√
2Q′′

0

= n+
1

2
, n = 0, 1, 2, ... (7.43)

where the subscript 0 represents the function Q(x0) evaluated at its maximum. The factor
n is known as the overtone number, which is a discrete quantity, and the fundamental
oscillation mode is given by n = 0. Notice that the frequencies enter in the above equation
through the definition of Q(x) (7.40). This approach was extended to the third WKB order
beyond the eikonal approximation by Iyer and Will [185] and to the sixth order by Konoplya
[186, 187]. Using the definition of Q(x), we can write an explicit expression for the QNM
frequency. The sixth order WKB formula has the form

i(ω2 − V0)√
−2V ′′

0

− Λ2 − Λ3 − Λ4 − Λ5 − Λ6 = n+
1

2
, n = 0, 1, 2, .. (7.44)

where the correction terms Λi depend on the value of the effective potential and its derivatives
(up to the 2i-th order) in the maximum. They are long expressions given in [186].

As a final remark, to apply the WKB method the following conditions must be fulfilled:

(i) The potential must possess two turning points;

(ii) The potential must have a maximum;

(iii) There are purely in-going waves arriving to the center and outgoing waves departing
in the spatial infinity.

It is clear from Fig. 7.1, that black hole solution analyzed here satisfies each condition above.
Hence, the WKB method may be correctly applied to these cases.
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7.5.2 Continued fraction method

This method was applied for the first time by E. W. Leaver to compute the QNM frequencies
for Schwarzschild and Kerr black holes [188]. This is the most accurate method for searching
the eigenvalues of the equation (7.23) with arbitrary precision.

To review this method, we will work in radial coordinate r instead of r∗. Thus, the master
equation is rewritten as

r(r − 1)
∂2Ψl

∂r2
+
∂Ψl

∂r
+

r3

r − 1

[
ω2 − V (r)

]
Ψl = 0 . (7.45)

To simplify the notation, we have rescaled the coordinate r in such a way that the event
horizon is located at r = 1. Thus, we have a second order differential equation with two
regular points (r = 0 and r = 1) and one confluent singular regular point (r = ∞). This
types of equations are known as generalized spheroidal wave equation. Again, the quasinormal
mode frequencies are obtained after applying the outgoing boundary conditions (7.34), which
read in the radial coordinates

Ψl ∼ (r − 1)ρ r → 1 and Ψl ∼ r−ρe−ρr r → ∞ , (7.46)

where we have defined ρ = −iω to simplify the notation. This method consists in solving
the differential equation (7.45) using a series expansion around the event horizon (r = 1)
that respects the behavior of the solution at the boundaries

Ψ = (r − 1)ρe−ρ(r−1)r−2ρ

∞∑
n=0

an

(
r − 1

r

)n

. (7.47)

The first two terms outside the sum ensure the behavior at r → 1 and r → ∞, while the
third one repairs the subleading behavior at infinity coming from the change of variable from
tortoise coordinates. Substituting (7.47) into the differential equation (7.45), we obtain that
expansion coefficients an satisfy a three-term recurrence relation

α0a1 + β0a0 = 0

αnan+1 + βnan + γnan−1 = 0
(7.48)

where the coefficients αn, βn, γn are simple functions of the frequency ω and their expres-
sions depend on the particular solution since the potential in (7.45) is different for each
perturbation for each solution. For example, the expressions of coefficients αn, βn, γn for the
Schwarzschild and Kerr BH can be found in [188]. Applying this procedure to our case of
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higher dimensional Schwarzschild BH for vector perturbations, where the potential is given
by (7.18), we found that the coefficients are

αn = n2 − 4inω − 4ω2 − 4

βn = − γv
d− 3

− 2n2 − n(2− 8iω) + 8ω2 + 4iω + 2

γn = n2 + n(2− 2iω)− 2iω + 1

where d is the critical dimension. Now that we have the three-term recurrence relation (7.48)
for determining the expansion coefficients an, we can invoke the continued fraction method
[189, 188], which gives an algebraic equation to determine ωQNM

β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

... ≡ β0 −
α0γ1

β1 − α1γ2
β2− α2γ3

β3−...

= 0 , (7.49)

where the first equality is a notational definition commonly used in the literature for infinite
continued fractions. This equation has an infinite number of roots corresponding to the
quasinormal spectrum. The continued fraction method is very powerful to compute higher
overtones because the n−th overtone turns out to be the most stable numerical root of the
n−th inversion of the radial continued fraction.

7.5.3 Direct integration method

Another method to compute quasinormal modes was developed by Chandrasekhar and De-
tweiler [190]. This method consists in integrating the differential equations within two dif-
ferent regions: near the event horizon up to some point rm (that is somewhere between the
horizon and spatial infinity), and from this point to infinity. To integrate the equation, we
employ the boundary conditions (7.34) with a given choice of ω. The QNM frequencies are
obtained when we compare the two numerical solutions at the matching point rm and impose
that the master function Ψ and their radial derivatives are continuous there.

As described in [190, 191], this approach is numerically difficult to implement due to in-
herent numerical instabilities. To overcome this obstacle and improve the numerical scheme,
we find asymptotic analytic solutions to the perturbation equations around the spatial in-
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finity and the horizon

Ψ ∝


e−iωr∗

∞∑
k=0

αk(r − rH)
k , r → rH ,

eiωr∗
∞∑
k=0

βkr
−k , r → ∞ ,

(7.50)

where the coefficients αk and βk can be determined order by order in a series expansion of
the perturbation equations. The QNM frequencies can be found through

Ψ−(r)|r=rm
= Ψ+(r)|r=rm

,

Ψ−′
(r)
∣∣
r=rm

= Ψ+′
(r)
∣∣
r=rm

,
(7.51)

The conditions (7.51) generate a system of 2N equations for the 2N coefficients αn, βn and
for ω. Since the system is linear, we can set α0 = β0 = 1. We then use 2N − 1 equations
to find the rest of the coefficients as functions of ω. The remaining equation is then used
to find the QNM frequencies. This procedure is equivalent to compute the Wronskian W of
the solutions at rm; then, the QNM frequencies are obtained by det(W )|r=rm

= 0.

7.6 QNM of Pure Gauss-Bonnet BH

In order to determine the spectrum that characterizes a BH, we will focus on a particular
example. We consider d = 7, which is our first new critical dimension after standard Einstein
gravity in d = 4. In this case, the action is given by the N = 2 term in the Lovelock series,
the pure Gauss-Bonnet term

S =

∫
d7x

√−g
[
R2 − 4RµνR

µν +RµνρσR
µνρσ

]
. (7.52)

For each type of perturbations, we will fix the angular momentum (ℓ = 2, 3) and calculate
the first harmonic or fundamental mode (n = 0), the first overtone or second harmonic
(n = 1) and finally the second overtone or third harmonic (n = 2). We computed the
QNM spectrum using the methods described in the last section: the WKB method at sixth
order, the continued fraction method and by direct integration. The quasinormal modes
are compared to Schwarzschild spacetime in d = 4; therefore, we compare BHs with the
same background while the action is modified. Also, we compared to the Schwarzschild-
Tangherlini solution [192] in d = 7; in this way, we analyze BHs with the same dimension
while the action is changed.
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Scalar perturbations
ℓ = 2

n WKB method Continued fraction Direct integration Schwarzschild Schwarzschild-Tangherlini
method in D = 4 in D = 7

0 0.621586 - 0.174806 i 0.621745 - 0.174513 i 0.621745 - 0.174513 i 0.747415 - 0.177847 i 1.44794 - 0.46559 i
1 0.554145 - 0.546684 i 0.555450 - 0.542138 i 0.558945 - 0.546182 i 0.693431 - 0.547752 i 1.00452 - 1.49939 i
2 0.441637 - 0.974783 i 0.440166 - 0.97515 i 0.440006 - 0.969969 i 0.600099 - 0.957657 i 0.12018 - 2.94122 i

ℓ = 3
n WKB method Continued fraction Direct integration Schwarzschild Schwarzschild-Tangherlini

method in D = 4 in D = 7
0 0.952926 - 0.182173 i 0.952919 - 0.182185 i 0.952919 - 0.182186 i 1.198887 - 0.185406 i 2.23178 - 0.54084 i
1 0.910869 - 0.555971 i 0.909113 - 0.561265 i 0.907645 - 0.557741 i 1.165284 - 0.562585 i 1.93141 - 1.68185 i
2 0.835593 - 0.956598 i 0.836303 - 0.956543 i 0.800021 - 0.949965 i 1.10319 - 0.95811 i 1.33485 - 2.99002 i

Vector perturbations
ℓ = 2

n WKB method Continued fraction Direct integration Schwarzschild Schwarzschild-Tangherlini
method in D = 4 in D = 7

0 0.484860 - 0.178144 i 0.489874 - 0.171145 i 0.489877 - 0.171143 i 0.747343 - 0.177925 i 1.96718 - 0.60766 i
1 0.392473 - 0.578251 i 0.395578 - 0.540791 i 0.375665 - 0.526008 i 0.693422 - 0.547830 i 1.52058 - 1.90469 i
2 0.258772 - 1.083567 i 0.211030 - 1.006590 i 0.249988 - 1.000020 i 0.602107 - 0.956554 i 0.57082 - 3.61342 i

ℓ = 3
n WKB method Continued fraction Direct integration Schwarzschild Schwarzschild-Tangherlini

method in D = 4 in D = 7
0 0.747239 - 0.177782 i 0.747343 - 0.177925 i 0.747343 - 0.177925 i 1.198887 - 0.185406 i 2.64217 - 0.60118 i
1 0.692593 - 0.546960 i 0.693422 - 0.547830 i 0.695469 - 0.545779 i 1.165284 - 0.562581 i 2.30384 - 1.84962 i
2 0.597040 - 0.955120 i 0.602107 - 0.956554 i 0.599970 - 0.950054 i 1.10319 - 0.95809 i 1.58364 - 3.29736 i

Tensor perturbations
For any ℓ

n WKB method Continued fraction Direct integration Schwarzschild Schwarzschild-Tangherlini
method in D = 4 in D = 7 (ℓ = 2)

0 0.220934 - 0.201633 i 0.220910 - 0.209791 i 0.225108 - 0.214605 i - 2.49710 - 0.63234 i
1 0.178058 - 0.689058 i 0.172234 - 0.696105 i 0.148482 - 0.678334 i - 2.13340 - 1.98070 i
2 0.383649 - 0.952812 i 0.381050 - 0.952612 i 0.380012 - 0.95002 i - 1.37830 - 3.64177 i

Table 7.1: QNMs for scalar, vector and tensor perturbations for ℓ = (2, 3) and n = (0, 1, 2) using
three different methods. We added, for comparison, the QNM for Schwarzschild in d = 4 and
Schwarzschild-Tangherlini in d = 7.
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The Schwarzschild-Tangherlini solution in 7 dimensions is derived from Einstein action
and gives f(r) = 1− (rs/r)

4. Using exactly the same methodology described in section 7.2,
the new equation for perturbations will have exactly the same structure as Eq. (7.11) with
following potentials for scalar, vector and tensor perturbations respectively

Vs(r) =
[
1−

(rs
r

)4][5r12λ2(4λ+ 7) + 9r4r8s(26λ+ 3)

4r6(λr4 + 3r4s)
2

− 15r8r4sλ(λ+ 18) + 225r12s
4r6(λr4 + 3r4s)

2

]
(7.53)

Vv(r) =
[
1−

(rs
r

)4][(2ℓ+ 5)(2ℓ+ 3)

4r2
− 75r4s

4r6

]
(7.54)

Vt(r) =
[
1−

(rs
r

)4][(2ℓ+ 5)(2ℓ+ 3)

4r2
+

25r4s
4r6

]
(7.55)

In Table 7.1, we give the quasinormal mode frequencies obtained using the numerical
techniques. Notice that for all modes ωI < 0 and therefore the solution is stable. It is
also interesting that the ringdown signal vanishes exponentially with a characteristic time
τ = 1/Im(ω) which is very similar between the Schwarzschild solution in 7 dimensions
and the Schwarzschild spacetime in four dimensions. The dimension affects very little the
characteristic time, while it is very different for similar dimension d = 7 and within different
solution, Schwarzschild-Tangherlini. The characteristic time of decay of the perturbations is
faster for Schwarzschild-Tangherlini background where the gravitational potential falls faster
to zero (1/r4). The characteristic time at which the perturbation decay depends mostly on
the background potential.

On the contrary, the frequency at which these modes oscillate (f = Re(ω)/2π) is very
different for the three spacetimes considered but, again, the analogue Schwarzschild space-
time has a frequency of mode oscillation closer to Schwarzschild spacetime in d = 4 than
Schwarzschild-Tangherlini in d = 7. We conclude that this parameter is more sensitive to
the theory considered and to the dimension.

7.7 Higher dimensions

In this section, we generalize the previous results to any critical dimension, Lovelock of order
N in dimension d = 3N + 1. As we can see from Eq.(7.22), tensor modes do not depend on
the dimension, but they oscillate similarly in any critical dimension. On the contrary, scalar
and vector perturbations depend on the dimension.

We see from Figs.(7.3,7.4) similar results as the ones found in the previous section.
The characteristic time at which the perturbations die is changing very little between all
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these models. Dimension does not affect the characteristic time of the ringdown, only the
background gravitational potential affects it. Notice that for ℓ = 2, the characteristic time
(1/Im(ω)) becomes maximum for d = 10 for scalar and vector perturbations.
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Figure 7.3: Imaginary part of QNM (left) and real part of QNM (right) for scalar perturbations
in all critical dimensions from d = 4 to d = 40 using WKB method of order 6 for the fundamental
tone n = 0 and angular momentum ℓ = 2, ..., 8.

4 7 10 13 16 19 22 25 28 31 34 37 40
D

0.170

0.175

0.180

0.185

0.190

Im
g|
ω
Q
N
M
|

ℓ=2
ℓ=3
ℓ=4
ℓ=5
ℓ=6
ℓ=7
ℓ=8

4 7 10 13 16 19 22 25 28 31 34 37 40
D

0.5

1.0

1.5

2.0

2.5

3.0

Re
al
[ω

Q
N
M
]

ℓ=2
ℓ=3
ℓ=4
ℓ=5
ℓ=6
ℓ=7
ℓ=8

Figure 7.4: Imaginary part of QNM (left) and real part of QNM (right) for vector perturbations in
all critical dimensions from d = 4 to d = 40 using Leaver’s method for the fundamental tone n = 0
and angular momentum ℓ = 2, ..., 8.

On the contrary, the frequency of oscillation is changing much more. It depends on
the type of the action, and therefore on the dimension of the spacetime. The larger the
dimension, the lower the frequency. Notice also that larger angular momentum ℓ increases
these effects. Finally, we can notice that all values settle to some asymptotic value. This is
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due to the fact that Vs and Vv have well defined limit when d→ ∞, e.g. we have

Vv = f(r)
[ℓ+ 1

r2
− 6M

r2

]
+O(

1

d
) (7.56)

and therefore the results of Figs.(7.3,7.4) could be obtained analytically by an 1/d expansion
in higher d−dimensional spacetime.

7.8 Discussions

We have shown that for any dimension d = 3N +1, Schwarzschild spacetime is stable in the
corresponding Nth order pure Lovelock gravity. And it is an exact solution of pure Lovelock
equation in d = 3N + 1. We have studied stability of this static spherically symmetric
spacetime for linear perturbations. We have derived perturbation equation and shown that
isospectrality holds only in d = 4. In any other dimension, the scalar, vector and tensor
perturbations oscillate with different frequencies. We have also studied QNMs for all critical
dimensions from d = 4 to d = 40 and we found that tensor perturbations are isotropic
and do not depend on the dimension of the spacetime, while scalar and vector ones decay
to zero with a characteristic time which depends weakly on dimension. This is because
perturbations depend only on the gravitational potential while frequency of oscillation of
these perturbations does depend on dimension. The larger the dimension, the lower is the
frequency. We have also shown that all QNMs converge to an asymptotic value for large a
dimension, because the potentials (Vs, Vv) have well-defined limit for large d, and therefore
could be tackled analytically using 1/d expansion.

Pure Lovelock gravity is dynamical in d ≥ 2N + 2, however, static black hole is stable
only in dimension d ≥ 3N + 1. This means in dimensions 2N + 2 ≤ d < 3N + 1, black hole
would be unstable. However, for Einstein gravity N = 1, the two limits coincide. For N > 1,
there would always be a dimension window of instability for pure Lovelock black holes. It
would be interesting to study in a future work if third order Lovelock, N = 3, is unstable in
dimension d = 8, 9.



Chapter 8

Concluding remarks

In this thesis, we have studied classical stability and the formation of black holes in theories
beyond general relativity, focusing on their existence, signature and properties when they
are formed.

Part of the investigation centered on the numerical study of gravitational collapse of
k-essence model with additional shift symmetry. The main feature of a k-essence model is
the inclusion of non-canonical kinetic terms of the scalar field in the action. We saw that
k-essence field propagates through the effective metric, g̃µν given by (3.7), which is different
from the gravitational metric gµν , if the Lagrangian K is a non-linear function of X and
the background is nontrivial, ∂µϕ = 0. As we stated in Chapter 4, the k-essence field can
propagate faster than light, provided K,XX/K,X < 0. However, we considered a particular
model in which the propagation is subluminal to be consistent with basic requirements of
quantum field theory, such as Lorentz invariance, unitarity and analyticity [110, 111].

For numerical purposes, we focused on a particular model defined by K = X + βX2. In
the numerical evolution, we detect two regimes, similar to the Choptuik case (in which a
canonical scalar field is considered): in the weak field limit, the scalar field pulse disperses
beyond the integration domain; instead, in the strong field limit, a geometric horizon begins
to form. In the latter scenario, two situations occur, either only a sonic horizon forms
(collapse of the effective metric) or both horizons form at the same time. In this last case, the
exterior solution is always Schwarzschild and we never observed formation of caustics. Near
the threshold of sonic horizon formation, we detect a loss of hyperbolicity, but, surprisingly
we also found that the sonic horizon satisfies a universal power-law scaling (5.2).

Since theories of gravity can be constructed by adding other extra fundamentals fields,
we also studied the classical stability of black holes in generalized Einstein-Maxwell-Scalar
theories, in which a scalar and a vector field are added into the gravity sector. These theories

132
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play a crucial role in understanding fundamental properties of modified theories of gravity
since they arise in the low energy limit of Kaluza-Klein models and string theories. Following
a theoretical procedure, we applied linear perturbation theory around static and spherically
symmetric spacetime, in which perturbations are classified into odd- and even-parity modes.
Expanding the action up to second order in perturbation and appealing to the absence of
ghosts, we have derived conditions to the action (6.1) to get the classical stability of the
theory. In particular, for odd-parity modes, we got that all perturbations propagate at
the speed of light. The stability of the BH is obtained if the conditions f1(ϕ) > 0 and
f2,F (ϕ,X, F ) > 0 are imposed in the action (6.1). In the even-parity sector, we got that
perturbations of the gravitational and electromagnetic fields propagate at the speed of light.
Still, the perturbation associated with the scalar field differs from unity but is the same
irrespective of the multipole order. It is necessary to remark that our formulation can be
applied to any theories belonging to the Einstein-Maxwell-Scalar action of the form (6.1). As
a demonstration, we have considered several concrete models including GR, a nonminimally
coupled scalar field, a black hole without scalar hair, the BBMB solution, and the non-linear
electrodynamic theory.

Finally, to complete our study of stability and signature of BHs, we analyze BH solutions
in Pure Lovelock gravity in critical dimensions, d = 3N + 1. The main feature of these BHs
is that the background solution is the same as GR, the Schwarzschild solution, in which the
potential falls off as 1/r. We have studied the stability of this static spherically symmetric
spacetime for linear perturbations, getting that this solution is stable under scalar, vector
and tensor perturbations; the last one arising only in dimensions greater than 4. Using
numerical techniques, we determined the spectrum – quasinormal modes – of these BHs for
all critical dimensions from d = 4 to d = 40 and we found that tensor perturbations are
isotropic and do not depend on the dimension of the spacetime, while scalar and vector
decay to zero with a characteristic time that depends weakly on the dimension.



Appendix A

Choptuik’s Equatios in d dimensions

As described in the main text, Choptuik studied the gravitational collapse of a massless
scalar field in four dimensions [34]. However, we can perform the same analysis in higher
dimensions. In fact, the gravitational collapse of a massless scalar field minimally coupled
to gravity in d > 4 was studied in [39, 70]. In this section, we deduce the Einstein tensor for
a spacetime in any dimension d. The generalization to higher dimensions of the Choptuik
problem will serve as another check of our numerical code. The action is given by

S =

∫
ddx

√−g
(
R

2k
− 1

2
∂µϕ∂

µϕ

)
. (A.1)

As a metric ansatz, we use the line element given by

ds2 = −f(t, r)dt2 + g(t, r)dr2 + r2γ̄abdx
adxb , (A.2)

where γ̄ab is the metric of the n ≡ (d − 2)−dimensional constant curvature space, with
curvature κ = 0, 1,−1. The non zero components of Christoffel symbols (1.4) are

Γt
tt =

ḟ

2f
, Γr

tt =
f ′

2g
, Γr

ij = −r
g
γ̄ij , Γt

rr =
ġ

2f

Γr
rr =

g′

2g
, Γi

jr =
1

r
δij , Γt

tr =
f ′

2f
, Γr

tt =
ġ

2g
, Γi

jk = Γ̄i
jk

where a prime and a dot denote derivative with respect to the radial and time coordinates,
respectively. We have suppressed the coordinate dependence of the function f(t, r) and
g(t, r) to simplify the notation. Now, the only non zero component of the Ricci tensor (1.5)
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are

Rtt =
f (ġ2 − f ′g′) + gḟ ġ + 2fg (f ′′ − g̈)− gf ′2

4fg2
+
nf ′

2rg
,

Rrr =
f (f ′g′ − ġ2)− gḟ ġ − 2gf (f ′′ − g̈) + gf ′2

4f 2g
+
ng′

2rg
,

Rtr =
nġ

2rg
,

Rab =
rfg′ − rgf ′ + 2gf(n− 1)(κg − 1)

2fg2
γ̄ab .

(A.3)

Here, we used the fact that for a maximally symmetric constant curvature space the Riemman
tensor is R̄cd

ab = κ/r2 δcdab. The Ricci scalar for this metric is

R =
f ′g′

2fg2
− ḟ ġ

2f 2g
+

f ′2

2f 2g
− f ′′

fg
− ġ2

2fg2
+

g̈

fg
+
n(n− 1)(gκ− 1)

gr2
− n

gr

(
f ′

f
+
g′

g

)
(A.4)

Focusing on a spherically symmetric spacetime, where κ = 1, and choosing the metric
functions as f(t, r) = α2(t, r) and g(t, r) = a2(t, r) in order to get a similar expression to the
line element in polar-areal coordinates (2.10), we get that the components of the Einstein
tensor are

Gtt =
n

r

α2

a2

[
a′

a
+ (n− 1)

a2 − 1

2r

]
(A.5)

Grr =
n

r

[
α′

α
− (n− 1)

a2 − 1

2r

]
(A.6)

Gtr =
nȧ

ra
(A.7)

The Gab component is not explicitly given since it is an extended expression but can be
derived using the above relations. To complete the set of equations, variation of the action
(A.1) with respect to the scalar field gives the Klein-Gordon equation

0 = 2ϕ =
1√−g∂µ

[√−ggµν∂νϕ
]

where the determinant of the metric is given by
√−g = aαrn

√
γ. Since the scalar field only

depends on (t, r) coordinates, for d = 4 the above equation reduces to (2.11).



Appendix B

Initial conditions: a review

As described in the text, we have to provide initial data to solve the equations that describe
the gravitational collapse of some type of matter/fields. Initial conditions must be chosen
so that they satisfy the Hamiltonian (2.18) and Momentum (2.19) constraint equations.
Similarly as in chapter 2, in this section we label the initial scalar field as ϕ(0, r) and auxiliary
fields as Π(0, r) and Φ(0, r). The most traditional choice for the initial profile of the scalar
field ϕ(0, r) is a Gaussian pulse

ϕ(0, r) = ϕo exp

[
−
(
r − r0
∆

)q]
(B.1)

where different families S[p] are given fixing three of the four initial parameters {ϕo, ro, q,∆}
and varying the other. It is also common to multiple the above profile by a factor of r, r2

or r3. With this initial profile for ϕ, we are free to choose the initial form of the auxiliary
fields; typically, they are chosen as

Φ(0, r) = ∂rϕ(0, r) , Π(0, r) = 0 (B.2)

which describe two Gaussian pulses, one traveling to the origin and the other to infinity, or

Φ(0, r) = ∂rϕ(0, r) , Π(0, r) = ∂rϕ(0, r) +
ϕ(0, r)

r
(B.3)

which describe one single Gaussian pulse that travels to the origin.
However, in the literature, we can find other choices for the initial profile of the scalar

and auxiliary fields. For example, in the pioneering work on gravitational collapse developed
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by Choptuik [34], the families considered as initial data were

ϕ(0, r) =


ϕ0 r

3 exp [−((r − r0)/σ)
q]

ϕ0 tanh [(r − r0)/σ]

ϕ0 (r − r0)
−5[exp(1/(r − r0))− 1]−1

(B.4)

while the initial form for the auxiliary fields were fixed as shown in (B.2). Other option, as
explained in [60], is to choose Φ(r, 0) = 0 and a Gaussian function (B.1) for Π(r, 0).

In Ref. [193], the gravitational collapse of a scalar field with angular momentum in
spherical symmetry is analyzed using

ϕ(0, r) =


A exp (−(r − r0)

2/σ2)

−2A (r − r0)/σ
2 exp (−(r − r0)

2/σ2)

Ar2 (atan(r − r0)− atan(r − r0 − σ))

(B.5)

while the auxiliary fields are fixed as

Π(0, r) = Φ(0, r) =
∂ψ

∂r
(0, r). (B.6)

On the other hand, critical phenomena in perfect fluids are analyzed in [71]. The following
initial energy density was used as initial condition:

ρ = A exp

[
−
(
r − r0
∆

)2
]
. (B.7)

This means that, in terms of the auxiliary field, what is fixed is the combination Π2 + Φ2.
As a last example, in Ref. [100], initial data are given by:

Φ(t = 0, r) = A exp

(
−(r − r0)

2

σ2

)
cos
( π
10
r
)
, Π(t = 0, r) = 0 . (B.8)



Appendix C

Misner-Sharp quasi-local mass

In General Relativity, definition of the mass/energy for the gravitational field is an intricate
open problem. The difficulty relies on the equivalence principle. Due to this principle, any
free-falling observer should sense a Minkowski spacetime, whose gravitational stress-energy
should be zero. Hence, according to the diffeomorphism invariance, the gravitational stress-
energy must be zero for any observer. Since there is a notorious problem to define global
mass in a spacetime, it forces us to consider the quasi-local mass of gravity. After several
attempts, we have many different forms of quasi-local forms of gravitational mass, see [194]
for a review.

In a spherically symmetric spacetime, it is common to use the Misner-Sharp quasi-
local mass [69, 195]. This mass is sometimes called the Hawking mass and Misner-Sharp-
Hernandez mass. If we consider a spherically symmetric spacetime given by the line element
in areal coordinates

ds2 = hijdx
idxj + r2dΩ2

2 (C.1)

where dΩ2
2 is the line element of the 2-sphere, the Misner-Sharp mass is defined by

1− 2mMS(t, r)

r
≡ ∇ir ∇ir −→ mMS(t, r) =

r

2

(
1− hij∇ir∇jr

)
. (C.2)

The Misner-Sharp mass function can be interpreted as measuring the energy within a sphere
of areal radius r at a time t. Therefore, this mass function gives a quasi-local definition to
the concept of the curvature-producing energy contained within a black hole. We can use
the Misner-Sharp mass to locate black hole horizons.

It can be shown that the Misner-sharp mass is a component of a conserved current
corresponding to the timelike Killing vector in static spherically symmetric spacetime and
to the Kodama vector in a general spherically symmetric spacetime [196].
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Integral of spherical harmonics

As we mentioned in the main text, when studying perturbations around a spherically sym-
metry background solution, it is sufficient to set m = 0. This enables to rewrite the spherical
harmonics in terms of Legendre polynomials

Y m=0
ℓ (θ, φ) =

√
(2ℓ+ 1)

4π
Pℓ(cos θ) . (D.1)

Thus, integration of the angular part of the second-order action can be performed using
orthogonality and recurrence relations. We employ Legendre’s differential equation

(1− x2)
d2Pℓ(x)

dx2
− 2x

dPℓ(x)

dx
+ ℓ(ℓ+ 1)Pℓ(x) = 0 (D.2)

to reduce the derivatives over Pℓ(x). Here, to simplify notation, we denoted x = cos θ. Some
integrals are equivalent to the orthogonality relation of the Legendre’s polynomials∫ 1

−1

Pℓ(x)Pm(x)dx =
2

2ℓ+ 1
δℓm . (D.3)

In addition, we used the following relations∫ 1

−1

xPℓ(x)P
′
ℓ(x)dx =

2ℓ

2ℓ+ 1
(D.4)∫ 1

−1

(1− x2)[P ′
ℓ(x)]

2
dx =

2ℓ(ℓ+ 1)

2ℓ+ 1
(D.5)∫ 1

−1

[P ′
ℓ(x)]

2
dx = ℓ(ℓ+ 1) (D.6)
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