
UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Repositorio Digital USM https://repositorio.usm.cl

Tesis USM TESIS de Pregrado de acceso ABIERTO

2018-10

AUTOMATION OF RETRIEVAL,

TRANSFORMATION AND UPLOADING

OF GENOMIC DATA AND THEIR

METADATA FOR THEIR

INTEGRATION INTO A GDM REPOSITORY

VERA PENA, JORGE IGNACIO

https://hdl.handle.net/11673/49206

Repositorio Digital USM, UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA

DEPARTAMENTO DE INFORMÁTICA

SANTIAGO - CHILE

Automation of retrieval, transformation
and uploading of genomic data and their

metadata for their integration into a GDM
repository

JORGE IGNACIO VERA PENA

MEMORIA DE TITULACIÓN PARA OPTAR AL TÍTULO DE

INGENIERO CIVIL INFORMÁTICO

PROFESOR GUÍA: ANDRÉS MOREIRA

PROFESOR CORREFERENTE: MARCO MASSEROLI

OCTUBRE 2018

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA

DEPARTAMENTO DE INFORMÁTICA

SANTIAGO - CHILE

Automation of retrieval, transformation
and uploading of genomic data and their

metadata for their integration into a GDM
repository

JORGE IGNACIO VERA PENA

MEMORIA DE TITULACIÓN PARA OPTAR AL TÍTULO DE

INGENIERO CIVIL INFORMÁTICO

PROFESOR GUÍA: ANDRÉS MOREIRA

PROFESOR CORREFERENTE: MARCO MASSEROLI

OCTUBRE 2018

Acknowledgements
Thanks to all the GeCo team, in particular to Professor Masseroli for welcoming me into this chal-

lenging project with great and constructive critical view along the development of GMQLImporter.

Special thanks to Arif for guiding and helping me with the development of this work, your uncondi-

tional support, in the personal and in the technical; you helped me a lot. Sincerely it was a pleasure

working with you and I hope to do so again in the future.

Gracias a toda mi familia por todo el apoyo y la oportunidad de embarcarme en esta aventura en

Italia, esta experiencia concluye con la entrega de mi tesis; pero no solamente es eso, casi 3 años en

los que pude descubrir más del mundo y pude también convertirme en una persona mucho más

completa, con un mejor punto de vista ante los problemas que se vienen en adelante. Gracias por

estar conmigo en todas y a pesar de haberme ido solo, nunca me sentí así.

Thanks to everyone I met and lived with in Italy and have become good Friends, living abroad has

been an incredible experience and it is because of you.

Muchas gracias a todos!

Nacho 2017

i

Table of Contents
Abstract ... 1

Abstract in Spanish ... 2

Chapter 1. Introduction ... 3

Chapter 2. Background Information ... 5

2.1 Next generation sequencing (NGS) ...5

2.2 Genomic Data Model (GDM) ...6

2.3 Data sources ..7

2.3.1 TCGA ..7

2.3.2 TCGA2BED ...8

2.3.3 ENCODE project ...8

Chapter 3. State of the art ... 9

3.1 GenoMetric Query Language (GMQL) ...9

3.2 Genome Query Language (GQL) ... 10

3.3 Other solutions ... 10

3.4 Summary ... 10

Chapter 4. Thesis Goal ... 11

Chapter 5. Software design ... 12

5.1 Architecture design... 12

5.1.1 Requirement analysis ... 12

5.1.2 Source and dataset analysis ... 14

5.1.3 General description for the 3 steps design .. 14

5.2 XML design .. 16

ii

5.3 Database design .. 21

5.3.1 Sources, datasets and files ... 22

5.3.2 Statistics ... 22

5.3.3 Configuration .. 22

5.3.4 Database model ... 23

Chapter 6. Implementation ... 26

6.1 Downloader .. 26

6.2 Transformation ... 27

6.3 Loader ... 27

6.4 Fault tolerance .. 28

6.5 Logging .. 28

6.6 Technologies used .. 29

6.6.1 Scala .. 29

6.6.2 SLF4J + log4j.. 30

6.6.3 Maven ... 30

6.6.4 H2Database .. 31

Chapter 7. Evaluation .. 32

7.1 Configuration XML creation .. 32

7.2 Changes of implementation and adaptation .. 33

7.3 Parallel run .. 33

7.4 Results... 33

Chapter 8. Conclusion and future work .. 37

References ... 38

Appendix A. Requirements Analysis for GMQLImporter .. 40

iii

Appendix B. Specifications for GMQLImporter .. 49

Appendix C. ENCODE Metadata Explanation for GDM ... 59

Appendix D. XSD schema for GMQLImporter configuration file ... 63

Appendix E. Database design for GMQLImporter .. 69

Appendix F. GMQLImporter console & file logging ... 74

Appendix G. Creation of XML configuration file for GMQLImporter 80

Appendix H. TCGA2BED datasets organization .. 106

Appendix I. ENCODE metadata generation for experiment JSON 109

Appendix J. Console manual for GMQLImporter .. 135

Appendix K. Metadata replacement for ENCODE in GMQLImporter 136

List of figures

Figure 2:1 Cost per genome over the years by NIH research institute 5

Figure 5:1 initial domain model for GMQLImporter ... 13

Figure 5:2 root node of the GMQLImporter configuration XSD schema. 17

Figure 5:3 source node of the GMQLImporter configuration XSD schema. 18

Figure 5:4 dataset node of the GMQLImporter configuration XSD schema........... 20

Figure 5:5 dataset node of the GMQLImporter configuration XSD schema........... 21

Figure 5:6 database model for GMQLImporter. ... 23

Figure 5:7 file status usage diagram for GMQLImporter. 25

List of tables

Table 5:1 proposed initial entities for GMQLImporter development 13

Table 7:1 datasets from ENCODE and TCGA2BED to be imported. 33

Table 7:2 execution times in with and without parallelization for dataset. 35

1

Abstract

Due to NGS techniques, whole genome sequences are produced much cheaper and faster

every year, thus genomic data is being gathered at a pace never seen before. By processing

NGS data new sense making relationships between genomic regions are being found and

fundamental biological questions are answered; therefore managing NGS data now seems

to be the most important big data problem of humankind.

As the new NGS data generated are mostly heterogeneous, they are not easily interopera-

ble. The Genomic Data Model (GDM) allows describing NGS data in a homogeneous way for

their interoperation. GMQL is a next-generation query language that by means of using

GDM data, gives genomics specific domain operations to biologists to process large volumes

of data for discovering biological knowledge.

This thesis studies the improvement of NGS data analysis by automating and standardizing

the genomic data and their experimental metadata integration into a GDM repository. The

software developed is GMQLImporter; it extracts NGS data from multiple data providers,

transforms the data according to GDM specifications and loads standardized GDM datasets

into GMQL for further querying.

GMQLImporter was tested to download, transform and load into a GDM repository133,648

samples gathered from 2 different data providers and organized into 16 datasets. This work

provides the capabilities to be easily extended to include samples from new data sources

and in this way provide more NGS data to be queried and making new discoveries in bioin-

formatics.

2

Abstract in Spanish

A causa de las tecnologías NGS, las secuencias completas del genoma se producen cada vez

más rápido y barato cada año, esto implica que la obtención de datos genómicos tiene un

ritmo nunca antes visto. Procesando estos datos NGS se están descubriendo nuevas

relaciones entre distintas regiones genómicas y se están encontrando respuestas a

preguntas biológicas fundamentales. Por lo tanto parece que manejar los datos NGS ahora

es el problema de big data más importante de la humanidad.

Dado que los nuevos datos NGS son mayormente heterogéneos, no son fácilmente

interoperables. El Genomic Data Model (GDM) permite describir datos NGS y sus metadatos

de manera homogénea para su interoperabilidad. GMQL es un next-generation query

language que usando el modelo GDM, entrega a biólogos herramientas específicas del

dominio genómico para procesar gran volumen de datos para así poder generar nuevo

conocimiento biológico.

Este trabajo estudia la mejora del análisis de datos NGS mediante la estandarización y

automatización de la integración de los datos experimentales y sus metadatos en un

repositorio GDM. El software desarrollado es GMQLImporter, que extrae datos NGS de

múltiples proveedores, los transforma de acuerdo a las especificaciones del GDM y carga los

conjuntos de datos estandarizados en el sistema GMQL para posterior consulta.

GMQLImporter fue testeado para descargar, transformar y cargar en el repositorio de GMQL

133.648 muestras obtenidas de 2 proveedores de datos distintos y distribuidos en 16

conjuntos de datos. GMQLImporter permite ser extendido fácilmente para así incorporar

muestras de nuevas fuentes de datos y de este modo disponer mayor cantidad de datos

NGS para interrogar y generar nuevos conocimientos en la bioinformática

3

Chapter 1. Introduction

The rise of NGS technologies, thanks to their high throughput, is producing more genomic

data than ever before, entire genomes can be sequenced within one day and several con-

sortia are publishing this experimental data to be publicly available. By querying NGS data,

fundamental biological questions are now being found; therefore, managing NGS data now

seems to be the most important big data problem for humankind.

The bioinformatics have been mostly challenged by the primary analysis, the production of

sequences from the DNA segments or reads and the secondary analysis, alignment of reads

to a reference genome and search for specific features, such as variants/mutations and

peaks of expression. The most important problem that has been occurring is called tertiary

analysis, which is used to find sense making relationships to explain how different regions in

the genome interact with each other. This newly generated NGS data is mostly heterogene-

ous and data collected in different sources cannot be easily interoperated. Thanks to Ge-

nomic Data Model (GDM), the data can be described in a homogeneous way so the NGS

data can be interoperated with different formats. GDM defines the notion of datasets and

samples, where in each dataset, the genomic data files have to follow a defined schema and

their clinical information have to be in specified metadata files where the general non-

genomic features of the sample are explained.

GMQL is a next-generation query language made for querying NGS data that is improving

the interaction between biologists and genomic data by offering genomics domain specific

operations capable of discovering new biological knowledge by processing huge volumes of

NGS data. GMQL requires minimum informatics knowledge and by using a high level lan-

guage that mixes MapReduce with SQL like characteristics can query NGS data homoge-

neously by using the GDM model.

The need of standardization of NGS data to GDM format is important to be able to easily

integrate the different types of these data and process them through GMQL.In this thesis

Introduction

4

GMQLImporter, a general Extraction, Transform and Load (ETL) tool, is presented to answer

this need; it allows obtaining NGS data from different genomic databanks, and delivering

them into standardized GDM files for further GMQL querying. It is sufficiently generic and

allows further extensions as easy addition of new manageable types of data formats or da-

tabanks. The sources and datasets nowadays present in the GDM repository of the GMQL

system are used for testing the designed and developed tool, which allows running either

sequential or parallel executions with multithreading.

The whole GMQL project and therefore GMQLImporter module is developed under Apache

License 2.0, which allow the freedom to use the software for any purpose, distribute it,

modify it and to distribute modified versions of the software, without any royalties. All the

projects developed by the GeCo team at Politecnico di Milano can be found on GitHub

https://github.com/DEIB-GECO.

https://github.com/DEIB-GECO

5

Chapter 2. Background Information

2.1 Next generation sequencing (NGS)

Next generation sequencing (NGS) is a revolutionary research technology for DNA sequenc-

ing. With NGS complete human genome sequencing can take less than one day, in compari-

son with the previous sequencing technology Sanger, which needed almost 10 years to se-

quence a final version for a human genome. Also as shown in the Figure 2:1 the cost per

genome has substantially decreased over time, and the improvement in NGS technologies

allows sequencing a whole genome for less than $1,000 U.S.

Figure 2:1 Cost per genome over the years by NIH research institute

NGS technologies are increasing the rate of finding answers for fundamental biological and

clinical research questions, giving the possibility for comprehensive characterization of ge-

nomic and epigenomic landscapes. Questions as how DNA-protein interactions and chroma-

tin structure affect gene activity, how does cancer develop, how genomic or epigenomic

traits affect complex diseases such as cancer or diabetes. NGS catalyzes the arrival of perso-

nalized and precision medicine by finding sense-making relationships between different

Background Information

6

biological samples on the same regions based on their reference genome. NGS are used to

collect genomic and epigenomic features such as DNA mutations or variations (DNA-seq),

transcriptome profiles (RNA-seq), DNA methylations (BS-seq), DNA-protein interactions and

chromatin characterizations (ChIP-seq and DNase-seq). Research centers collect the very

numerous genomic features produced by NGS raw data processing done by large-scale se-

quencing projects. Some research centers belong to world-wide consortia such as ENCODE,

TCGA, 1000 Genomes Project, Roadmap Epigenomics, and others [1].

Due to the many different laboratories and techniques used in NGS, several formats for the

storage of the results exist and cause the data to be highly heterogeneous. Multiple data

formats are available for describing NGS experiments such as BED, NARROWPEAK, VCF,

SAM, etc [2].

2.2 Genomic Data Model (GDM)

NGS technologies are creating huge amounts of epigenomic and genomic data of different

types, and these data are used in tertiary analysis; tertiary analysis focuses in finding mea-

ningful relations on how different regions interact with each other. A new paradigm is pro-

posed for tertiary analysis, and is based in the Genomic Data Model (GDM) [2]. GDM allows

describing in a homogeneous way, data that is semantically heterogeneous, in addition

enables the interoperability for the data by setting a schema to describe heterogeneous

genomic regions data and the incorporation of clinical and experimental metadata.

GDM defines the notion of dataset and samples, and for each sample, the abstraction of

genomic region data and metadata. The region data provides representation of DNA and its

genomic features, while the metadata describes general properties of the sample.

In GDM a sample is modeled by 3 attributes (id, R and M). Where id is an integer used as

identifier of the sample, R is a set of genomic regions for the sample and M is a set of meta-

data for the sample. A genomic region (r) is a portion of the genome well defined and identi-

fied by 4 values called region coordinates (chr, left, right and strand). chr represents the

Background Information

7

chromosome where the region belongs, left and right are the starting and ending position

inside the chromosome, finally strand indicates the direction of reading for the region en-

coded as ‘+’ (positive), ‘-’ (negative) or ‘*’ (missing: not assigned to a specific strand). The set

R is built by pairs (c, f) where c represents the 4 coordinates of the region and f represents

the region features as typed attributes, typed attributes can be any of boolean, char, string,

integer, long or double and is assumed they have arbitrary names. The schema for the sam-

ple region contains a list of attribute names and types for the identifier, coordinates and

features. M represents the metadata of the sample region, composed by attribute-value

pairs (a, v) assuming values to be strings, attribute names are not necessarily unique as they

can be multi-valued by appearing multiple times.

A GDM dataset, in short, is a group of samples sharing a common region schema, including

features of the same types; every sample has its unique id inside a dataset and a corres-

ponding metadata with experimental conditions.

2.3 Data sources

Multiple NGS data providers exist, and the main ones used in GMQL are TCGA2BED and

ENCODE. Both sources have their data in GDM format and each one have multiple datasets

with different schemas between them, in this section TCGA, TCGA2BED and ENCODE project

are explained:

2.3.1 TCGA

The Cancer Genome Atlas (TCGA) [3] is a collaboration project between National Cancer

Institute and National Human Genome Research Institute; they produce NGS data and have

made available publically genomic changes in 33 types of cancer. Data provided by TCGA

have contributed for many cancer studies. By creating a genomic data analysis pipeline,

TCGA analyzes human tissues on a very large scale to collect and select genomic alterations.

Background Information

8

2.3.2 TCGA2BED

TCGA to BED format (TCGA2BED) [4] is a software tool for extraction, extension and integra-

tion of TCGA genomic data and its clinical metadata. The process of enrichment of the TCGA

data includes the addition of annotations from important genomic repositories such as Ent-

rez Gene, HGNC, UCSC and miRBase. The output files are transformed into BED files for the

region data and tab-delimited for its metadata. BED format is column-based and contains

one line per gene and is GDM friendly also. An open access FTP repository is kept updated

with the TCGA2BED generated files.

2.3.3 ENCODE project

Encyclopedia of DNA Elements (ENCODE) [5] is a consortium founded by National Human

Genome Research Institute (NHGRI) and receives collaboration of multiple international

research groups. Its goal is to generate a comprehensive list of functional human genome

elements. A functional element is a segment of the genome that encodes a defined product.

ENCODE has performed a large number of NGS studies to map functional elements across

the human genome and they provide all their data and protocol descriptions publicly availa-

ble via their website.

9

Chapter 3. State of the art

3.1 GenoMetric Query Language (GMQL)

As NGS data availability is increasing, the ability to process and gather information from

these data is necessary: GenoMetric Query Language (GMQL) [6], a next-generation query

language, is created to improve the interaction between biologists and NGS data. By offer-

ing bioinformatics domain-specific operations, it allows scientists to discover knowledge

processing great volume of samples together, including the analysis of their region data and

their experimental metadata.

GMQL deals with distances inside the genome: every sample is aligned to a reference ge-

nome, and samples with the same reference genome can be processed using these dis-

tances in different arithmetic operations between them. GMQL provides a simple yet po-

werful high level language that combines procedural MapReduce with SQL inspired capabili-

ties with low requirements in informatics knowledge. GMQL changes the paradigm of how

NGS data is being managed [7] by providing standard unary operations of SELECT, ORDER,

AGGREGATE, PROJECT and MERGE; binary operations of UNION and DIFFERENCE. An on the

other hand it provides domain specific operations as: COVER, JOIN and MAP; these opera-

tions have a biological interpretation. This paradigm abstraction is proven useful using sev-

eral biological query examples.

GMQL enables biologists to easily query NGS genomic region data and their metadata, being

a pioneer in including metadata in the computation process, and moreover, supports meta-

data management. Thus metadata is involved in the selection and matching and also is car-

ried along the process, making it available to access it after the execution of the query. Ac-

tually GMQL includes available experimental data from ENCODE and TCGA2BED provided in

GDM friendly format and therefore ready to be used for querying.

Being a state of the art tool, GMQL is highly scalable and portable due to the dominant

cloud computing paradigms in which is inspired and therefore is well supported in cloud

State of the art

10

execution. This allows millions of genomic samples to be queried at once with enough ab-

straction of the language to perform high level processing in a compact way.

3.2 Genome Query Language (GQL)

Genome Query Language (GQL) [7] analyzes NGS data using an SQL extension, they imple-

ment their tool by directly connecting it to the sequence reads from a NGS machine, there-

fore highly specific development is done to operate this kind of data, the processing of raw

data is powerful in the sense that the data is non-generalized thus it can be queried with

high precision at the cost of identifying the genomic regions of interest. Nowadays the most

common way to solve this identification problem is done by developing ad hoc specific tools

to fit every type of analysis separately.

3.3 Other solutions

Other tools as The Genome Analysis Toolkit [8], provides a programming framework for

analyzing NGS data in SAM format. BEDOPS [9] provides high-performance genomic feature

operations focused in BED format, they improve the performance of the tool by file com-

pression. SAMtools [10] provide universal utilities for processing read alignments in Se-

quence Alignment/Map (SAM) format. Another genomic toolkit is BEDTools [11] allows

comparing large datasets in multiple formats, and provides also tools for genomic features

manipulation operations.

3.4 Summary

Among the available tools for genomic research, GMQL allows easier usage by the users, it

encapsulates multiple processes commonly done in the field and in comparison with other

tools where data selection, annotation retrieval and data interoperation have to be done

manually; GMQL is robust enough to be simple to use, allows also the dataset selection over

their experimental metadata. GMQL is also independent tool, does not need external script-

ing and thanks to these features and allows the integration for biologists with no advanced

computer programming skills to research in the field of genomics.

11

Chapter 4. Thesis Goal

This thesis focuses on the improvement of NGS data analysis by standardizing the acquisi-

tion and integration of genomic region data and their clinical metadata into a GDM reposi-

tory. Specifically in the GMQL project, the need of standardization and integration of NGS

data to GDM friendly format is very important for further development and testing. The

solution proposed is GMQLImporter, a software that allows acquiring NGS data including

their metadata from different genomic databanks and deliver them into standardized GDM

datasets ready to use for GMQL querying; it is sufficiently generic to import the nowadays

available information in the GDM repository of the GMQL system and allows further exten-

sions as easy additions of managed new data formats or databanks. The designed and im-

plemented software allows incrementally gathering new datasets and iteratively integrating

more metadata for better GMQL metadata based querying. For testing the implementation

of GMQLImporter, the system will update the datasets already manually loaded in GMQL for

the sources of ENCODE and TCGA2BED, where multiple dataset types are found with differ-

ent downloading procedures and data formats.

12

Chapter 5. Software design

In this chapter the general software architecture and workflow are described, database de-

sign for storage of the historical progress of the importing process and the design for the

configuration of the GMQLImporter tool for importing new genomic data.

5.1 Architecture design

This thesis requires developing an automatic system to build and keep updated a big inte-

grative repository of genomic data and their metadata publicly available from several specif-

ic sources, transforming it into GDM format to be seamlessly used for genomic data

processing through GMQL. The main sources of datasets to be imported are the Encyclope-

dia of DNA Elements (ENCODE) and The Cancer Genome Data into bed format (TCGA2BED).

The module has to allow easy addition of future data sources to be imported. This section

describes the business rules for the project, also description for key concepts used in

GMQLImporter.

5.1.1 Requirement analysis

As pointed in appendix A “Requirements Analysis for GMQLImporter” the aim is to make

easy integrating heterogeneous repository from publicly available genomic data and per-

forming transformation to GDM if needed and standardization for the experimental meta-

data. As extension for GMQL, GMQLImporter is also developed in Scala programming lan-

guage. NGS data and their metadata are provided by sources and kept organized in datasets

with a variety of formats, to load the datasets inside GMQL, they have to be in a compatible

GDM format, have a valid schema for the region data files it contains and one file of meta-

data for every file of region data. GMQLImporter has to receive the list of sources and their

datasets to be imported into GMQLRepository. During the requirement analysis, the initial

domain model is collected:

Software design

13

Figure 5:1initial domain model for GMQLImporter

Entity Description

Source NGS region data and metadata provider.

Dataset Collection of region data and metadata, where all samples respect a

given region data schema and file format.

GMQLRepository Interface to connect and import datasets inside GMQL.

GMQLImporter Downloads multiple datasets from different sources. Transforms down-

loaded Datasets into GMQL compatible format (GDM) with standardized

metadata. Loads GDM compatible format datasets into the GMQL repo-

sitory. Tracks historically the status of downloaded and transformed

files.

Table 5:1proposed initial entities for GMQLImporter development

Software design

14

5.1.2 Source and dataset analysis

For the correct abstraction of the data importing process is needed to specify what is a

source and a dataset in the GMQLImporter context, the full explanation is in the appendix

B“Specifications for GMQLImporter” and its main specifications are now explained.

A source is considered to be a provider of NGS data, it could be potentially anyone, from

ENCODE, TCGA, TCGA2BED, etc. The sources publishes genomic data with experimental

metadata, they usually have their data accessible through a unique platform, as ENCODE

provides in their website or TCGA2BED in their FTP server. The region data with its metadata

is organized into datasets regardless their original format; the same dataset must be always

together, from origin to delivery at GMQLRepository. This datasets have to be treated

equally along the processing cycle. The general attributes for sources are their name, loca-

tion and the way data is organized inside their side. For datasets, the important is to know

their name, region and metadata files format, and the schema of their region data files.

TCGA2BED and ENCODE provide data in GDM friendly formats, and some of those datasets

are used in the development of this thesis. They differ in the downloading process and the

metadata gathering. The complete generalization of the sources and dataset performed in

this thesis is later explained in the XML design section.

5.1.3 General description for the 3 steps design

For the correct and easy to understand the process of importing the heterogeneous data, a

3 step general procedure is defined. Inspired in Extraction, Transform and Load (ETL) para-

digm the first step is named download and manages the connection and retrieval of data-

sets from a source, the second step is called transformation and handles, if needed, the

conversion into GDM format and then, the modification of metadata to allow its interope-

rability with datasets from other sources. The final and third step is called loading where the

transformed datasets in GDM format are loaded into the destination GDM repository. A full

step by step detailed procedure is as follows:

Software design

15

5.1.3.1 Download

In this step the connection to the source’s server is carried out, allowing the download of

the files that compose the desired dataset. The download has to ensure only needed files

are downloaded, in short, not to download the same file 2 times when updating the local

copy of the data and to know which files are outdated or the ones that are no longer used in

the source’s datasets. For this management, the source should provide ideally with file size,

file last modification date and the file’s hash but even with one of those attributes the up-

dating process could be done.

The hash is the most accurate attribute to know if the local copy is a reflect image of the

source’s, then it's the first priority to check, then the last modification date allow to know if

the server side file has been updated but does not allow to certainly know if the download-

ing of the file is correct. The final attribute to check is the file size, by assuming the source

only modifies the files to make them better or more updated, the file size can tell if the file

has changed as to have 2 files with the exact size after modification is hard but not impossi-

ble, therefore this attribute constitutes the 3rd priority of checking as neither provides suffi-

cient information to check if the file is correctly downloaded or if the version in the server is

newer or not. There are multiple protocols that allow file transferring and many ways to

distribute data on the server side so non-universal approach for downloading all sources is

possible, worth notice that download procedure depends more in the source than the data-

set itself, therefore different download methods can be visualized for different sources.

5.1.3.2 Transform

Transformation in this context means to modify the data to be queried seamlessly not caring

about the source’s differences, an important step for the correct transformation is done at

metadata level, where the metadata names have to be standardized by modifying them if

needed. Following this logic, the metadata from different sources could be used equally

when the real attribute represented by it is the same or can be related. GMQLImporter gives

the general tools for the correct transformation of the region data and their metadata. First

ensures the genomic data and their metadata are in a GDM compatible format therefore

Software design

16

performs if needed modification of the original sources’ files into GDM format, this opera-

tions could include full translation from raw data to GDM or extracting compressed contain-

ers to name some, but could potentially be any data modification or translation. Once the

NGS data and metadata are GDM friendly the transformation process checks for the region

data to fulfill the dataset schema and the metadata to be revised and modified if needed for

importing it. In the specific case of TCGA2BED they provide the region data and metadata in

perfectly compatible GDM format because their project is based on that. For the ENCODE

side, they provide region data in GDM friendly format compressed, therefore extraction is

needed. The metadata from ENCODE project is provided in several ways, as seen in appen-

dix C “ENCODE Metadata Explanation for GDM” and an special operation has to be done to

transform it into GDM. The transformation process as the files provided by the source could

be potentially in any format, cannot be universal therefore a generalization is needed, no-

tice that same source could provide different file formats as ENCODE, causing that process

to potentially be specific for every different kind of region data and metadata obtained. This

generic approach gives GMQLImporter to be potentially capable of managing any kind of

genomic data.

5.1.3.3 Load

As the thesis goal is to import all the processed data into a GDM repository, the final step of

this process is to load the data into it. Without performing this loading step, GMQLImporter

could be an independent tool for gathering GDM data, but it’s particular use as part of the

GMQL project needs to connect with the GMQLRepository, the interface provided by GMQL

for dataset importing, to load and make available for GMQL querying the integrated data-

sets. Potentially could connect to any GDM repository for loading the datasets, therefore

the loading step could be specialized to load into another repository.

5.2 XML design

GMQLImporter is designed to receive a configuration XML file with the needed parameters

to perform the downloading, transforming and loading steps of the datasets, to provide a

Software design

17

general approach for the formal creation of this file; an XSD schema file is designed to vali-

date any configuration XML file given as input for the tool. The schema comprehends a root

node where general settings and a source list are stored. Sources as seen before, represent

NGS data providers which provide those genomic data and experimental metadata divided

in datasets, each source contains a list of datasets, each dataset after processing, represents

a GDM dataset where every sample has a region data file and a metadata and every sample

share the same region data schema. The configuration XSD shown in appendix D “XSD

schema for GMQLImporter configuration file”, the file is organized in a tree structure start-

ing from the root node, passing through the sources and ending in the datasets as shown

below:

Figure 5:2root node of the GMQLImporter configuration XSD schema.

 root: contains general settings and a list for sources to import.

o settings: general settings for the program execution.

 base_working_directory: folder where the importer will use during

execution.

Software design

18

 download_enabled: indicates if download process will be executed.

 transform_enabled: indicates if transformation process will be ex-

ecuted.

 load_enabled: indicates if loading process will be executed.

 parallel_execution: indicates if the whole execution is run in single

thread processing or multi-thread processing.

o source_list: collection of sources to be imported.

Figure 5:3 source node of the GMQLImporter configuration XSD schema.

Software design

19

 source: represents an NGS databank, contains basic information for downloading,

transforming and loading process.

o name: identification for the source.

o url: address of the source.

o source_working_directory: sub directory where the source’s files will be

processed.

o downloader: indicates the downloading process to be performed to down-

load the samples from this source.

o transformer: indicates the transformation process to be performed to

change the source samples into GDM compatible files for interoperability.

o loader: indicates the responsible for loading the processed data into a GDM

repository.

o download_enabled: indicates if this source is going to be downloaded from

the source.

o transform_enabled: indicates if transformation process is executed for this

source.

o load_enabled: indicates if loading into GDM repository is executed for this

source.

o parameter_list: collection of parameters for downloading or loading the

source.

 dataset_list: collection of datasets to import from the source.

Software design

20

Figure 5:4 dataset node of the GMQLImporter configuration XSD schema.

 dataset: represents a set of samples that share the same region data schema and

the same types of experimental or clinical metadata.

o name: identifier for the dataset.

o dataset_working_directory: subfolder where the download and transfor-

mation of this dataset is performed.

o schema_url: address where the schema file can be found.

o schema_location: indicates whether the schema is located in FTP, HTTP or

LOCAL destination.

o download_enabled: indicates if the download process will be performed for

this dataset.

Software design

21

o transform_enabled: indicates if the transformation process will be per-

formed for this dataset.

o load_enabled: indicates if the loading process will be executed for this data-

set.

o parameter_list: list of dataset specific parameters for downloading, trans-

forming or loading this dataset.

Figure 5:5 dataset node of the GMQLImporter configuration XSD schema.

 parameter: defines specific information for a source or a dataset, this information is

useful for downloading, transforming or loading procedures.

o key: is the name for the parameter, its identifier.

o value: parameter information.

o description: explains what the parameter is used for.

o type: optional tag for the parameter.

5.3 Database design

A really important requirement for the solution is to maintain the genomic repository up-

dated and provide historical status for every file and to know when there are new files or

Software design

22

ones that are obsolete. The database for GMQLImporter allows knowing the status for every

file, on every dataset, on every source ever imported through GMQLImporter. It is possible

to know whether a source was downloaded or transformed, also it’s belonging datasets and

all the files inside the dataset. The full database design description is in the appendix E “Da-

tabase design for GMQLImporter” and the main components are:

5.3.1 Sources, datasets and files

To know exactly the status and which files were provided by the source in a given execution,

a general structure for sources, datasets and files is contained inside the GMQLImporter’s

database, the possibilities to know how many files are provided on the source, how many

were downloaded, transformed or loaded already. The history for every file, to know when

they were updated is also contained. With this implementation, it is possible to know the

status of the files inside the repository at any given point in time, with the correspondent

details of the files at that time. GMQLImporter can give important feedback for every execu-

tion so the user can know easily the status of the repository.

5.3.2 Statistics

During the execution of GMQLImporter some important information is collected, such as the

number of available files for download from the source, the amount of failed or replaced

files, the correctly transformed ones and the also the wrong ones. In every run the total

number of files available to download or transformed is stored, together with the number of

correct and failed ones, after the number of files that do not fit the dataset’s schema.

GMQLImporter can provide this statistical historical data as it keeps track of it in the data-

base.

5.3.3 Configuration

On every run, the configuration XML file could differ and give a different output or substan-

tial change to the status of the repository, therefore the information provided in the confi-

guration file is stored for every run to know what the desired actions to perform in

Software design

23

GMQLImporter were. As the configuration XML schema, is needed to store the general set-

tings information, the specifications for every source involved and their datasets.

5.3.4 Database model

Here the main features of the database model are explained, most important indices and

methods:

Figure 5:6 database model for GMQLImporter.

Software design

24

In this model, the sources with their datasets and files are represented by the tables

Sources, Datasets and Files; the configurations for the execution are saved in tables Runs,

RunSourceParameters and RunDatasetParameters where the configuration XML file para-

meters are saved distributed in the same way the XSD schema defines. Statistics are carried

out using tables of RunFiles and RunDatasetLog where information is stored during runtime

to let the user know the total available files to download and also failed, outdated and up-

dated files during the execution.

To know the status of any file, 4 statuses are defined for a file:

 Updated: The file download/transformation is correctly performed in the local repo-

sitory as it was in the server the last time the dataset where the file belongs was

downloaded.

 Failed: The file download/transformation failed and the file may not be valid, in this

case the file is marked as failed.

 Outdated: The file was removed from the server; this causes the file to exist locally

but not remotely.

 Compare: Auxiliary status used to know which files do not exist anymore on the

server, this status is meant to be used while the program is executing.

The following diagram shows the transitions of different file statuses and after every func-

tion inside is explained.

Software design

25

Figure 5:7 file status usage diagram for GMQLImporter.

The main database methods include:

 MarkToCompare: by receiving a dataset, the database changes the status of every

file in the dataset as to compare, this method is used to notice which files are no

longer in the server side and have to be marked after as outdated in the local copy.

 MarkAsUpdated: indicates the file was correctly downloaded or transformed and it

is ready for the next step that could be transformation or loading.

 MarkAsFailed: when trying to download or transform a file, if the procedure fails,

the file has to be excluded from further processing and thus it is marked as failed.

 MarkAsOutdated: once the whole dataset is downloaded or transformed this pro-

cedure allows finding the files that no longer exist in the remote server, and marks

those local files as outdated. These files are no longer used in transformation or

loading procedures.

26

Chapter 6. Implementation

The GMQLImporter module uses several technologies and frameworks. The project is mainly

developed in Scala programming language. It is used to import GDM processed data into

GMQL through GMQLRepository, the interface used by GMQL to load the datasets. Before

the implementation of GMQLImporter, the importing processes for GMQL were done by

running specifically developed scripts for TCGA2BED and ENCODE sources.

As defined in the design, the overall importing process is decomposed into 3 sequential

steps. GMQLImporter has to tolerate all the possible faults from multiple technologies in-

volved in the process such as internet loss or missing files in the source and also needs to

provide enough feedback for the user to know the actual status of the repository. This chap-

ter explains these processes in detail as implemented in GMQLImporter.

6.1 Downloader

The first step is downloading the files from the source’s server, and as discussed in the de-

sign, multiple download methods can exist depending on different servers. The implementa-

tion for downloading is done by using a generalization of the process of download for any

source. The generalization includes the ability to download by source, where every source

has its datasets, only datasets that are marked to download will be downloaded. During the

download, the downloader has to feed the database with the files it is checking to download

and downloading, indicating if the file is correctly downloaded, outdated, updated or failed.

Also the generalization was implemented with the possibility of downloading the failed files,

in this way not the whole downloading process has to be checked again and can download

just the missing files.

The implementation done in this thesis comprehends the implementations of FTPDow-

nloader and ENCODEDownloader, the first one goes over folders provided by a FTP server,

finds folders to download by using regular expressions and inside those folders uses regular

expressions to know which files to download. The FTPDownloader is used to download

Implementation

27

TCGA2BED datasets and could be used in many other FTP servers. On the other side, ENCO-

DEDownloader is used specifically for ENCODE data, it uses the provided HTTP batch down-

load by ENCODE discussed in appendix C“ENCODE Metadata Explanation for GDM” and by

specifying a set of rules to generate an specific URL, allows to get an index file with the ref-

erences to download every region data file with its metadata from ENCODE. These 2 differ-

ent implementations follow the general procedures of downloading files and downloading

failed ones.

6.2 Transformation

The transformation step consists in turn NGS data into GDM friendly format and to modify if

needed the metadata provided. In this process, if the data is not provided as needed for the

GDM repository, a transformation of the files is needed. The transformation process is done

different for different types of files, therefore for every type of files have to exist a trans-

formation definition to turn it into GDM. The data transformers have to provide the ability

to transform any specific file and to know how many files are derived from it, to allow the

insertion in the database to know the origin of every file that is going to be in the repository.

After getting all region data and metadata in GDM friendly formats, it checks the region data

files to know if they fit the dataset schema, then to make metadata easily interoperable

changes metadata names as indicated in the configuration. Before finishing the transforma-

tion step, the metadata names contained for the experiment have to be transformed if

needed to be valid as Java identifier for its correct function in GMQL. Any transformer that

follows the general procedure can be added later in the GMQLImporter module.

6.3 Loader

GMQL provides an interface for loading data into it, it is GMQLRepository and GMQLImpor-

ter has to communicate with it. By giving the GMQL user name to load a source’s datasets it

checks the consistency of the dataset by checking it has a schema defined and that every

region data file has its respective metadata. As by business rules of GMQL, a dataset cannot

have added files once is already created, if this happens, GMQLImporter allows the user to

Implementation

28

confirm the choice to delete the previous one to be replaced, or to change the name of the

updated dataset using the configuration XML file. This process is done by the functions pro-

vided by GMQLRepository as check if the dataset already exists, delete a dataset and to load

dataset into GMQL.

6.4 Fault tolerance

Due to the mix of technologies, there are many faults that can affect the GMQLImporter

functioning. Internet connection is one of the possible problems, it may cause some file

downloads to fail and this problem is solved by retrying on every failed file and giving proper

feedback to the user. Some files can be provided by non-functioning links and GMQLImpor-

ter has to deal with it, if missing region data or metadata, the whole sample must be dis-

carded from the importing process and give feedback to the user. Files also can be filtered

locally to ensure correctness and completeness if the source provides the data with anoma-

lies, this includes as example, metadata filtering for ENCODE files since the batch download

in some attributes does not filter correctly. Also if files on a dataset do not fit to the schema,

this is notified to the user.

6.5 Logging

GMQLImporter provides constant feedback to the user both by console and by file logging.

These logs allow the user to know the updated status while GMQLImporter is running and

also to search over the operations done in the run. Also at the end of each run, a general

statistics report for the run is given for the different sources and datasets.

Every GMQLImporter module defines its log, as the downloaders, importer, transformers

and loaders. Full description for the implemented logging is on appendix F “GMQLImporter

console & file logging”.

The logging structure for the messages has 4 levels: DEBUG, INFO, WARN and ERROR. The

messages are given in hierarchical order depending in the process being run, this means first

messages correspond to general process then download messages for each source and da-

Implementation

29

taset, then transformation and finally loading. DEBUG messages are used for checking the

correct working and fine grained status in the run, example of this are checking if the inter-

net connection is active, to know also the changes done in metadata files, notify if a folder is

created, among others. INFO messages indicates which action is being done and when it

finishes, as example notifies when a file is being downloaded or transformed and when the

process is done, also gives information about the configuration for the user to check wheth-

er is correct. WARN messages tell the user if something is not correct but the program still

can handle the processing; it can be a file that does not match the schema or if the local files

referenced do not exist. ERROR is used to notify a file download failed after retrying, if a link

is not working or if the given parameters are causing problems and the system cannot work

properly.

Different information is shown on console log and on file log throughout the execution. The

console log is designed to let the user know the overall status, including messages as ERROR,

WARN and INFO. The file logging is designed for debugging of the GMQLImporter function-

ing, it gives sufficient information to know where the program failed if so and to generate a

fast identification of the problem.

6.6 Technologies used

Many technologies are used in the development of GMQLImporter, the main ones are ex-

plained below:

6.6.1 Scala

Scala is a highly scalable programming language that combines both functional and object

oriented languages. It runs on the Java Virtual Machine (JVM) by compiling Scala to Java

bytecode, so Scala and Java can be freely mixed. Scala allows a much faster development

than plain Java with the same performance. Conceptually Scala is a pure object oriented

Implementation

30

language, all variables and values are objects and any operation is a method. Allows easy

transition to a functional style programming and is backed up by a huge range of libraries,

frameworks and IDEs. Scala is maintained by the Scala community using GitHub for code

management.

6.6.2 SLF4J + log4j

Simple Logging Facade for Java (SLF4J) is a Java logging API that serves as abstraction for

multiple logging frameworks, such as the one used in GMQLImporter, log4j. This logger is set

up at runtime and allows the communication in the console, and also straight to a file. The

logging framework provides a level oriented messaging with the following levels (in decreas-

ing priority order) ERROR, WARN, INFO, DEBUG or TRACE; ERROR is meant to communicate

wrong functioning of the process, WARN is used to notice the user that something is not

completely correct but the program can still work, INFO is to communicate general message

feedback to the user in the application, DEBUG is used to describe the internal steps taken

in the program for developers to have extra information during the program run, and TRACE

is to fine grain the debugging by communicating more details to developers. The logger has

the option to set up a threshold level, this allows to limit information shown to the user and

to easily create multiple types of log, such as in GMQLImporter where log4j is used to show

just up to INFO to the user, and DEBUG for developers.

6.6.3 Maven

Maven is a tool used mainly in Java projects for build automation; it describes how the soft-

ware has to be built, including dependencies used inside the project and how those compo-

nents are built together. It uses an architecture based in plugins, and provides a full plugin

catalog for easily using them inside a project. The full configuration relies in a Project Object

Model (POM) XML file. The full development of GMQLImporter is done using Maven, caus-

ing the project to be easy to expand, as the programming environment is easily portable.

Implementation

31

6.6.4 H2Database

H2Database is a lightweight database management system that runs embedded in the pro-

gram code, this means it needs no installation and as it runs in Java over the JVM, is easily

portable between many platforms. In GMQLImporter the database configured as text based

database, the database allows a subset of SQL queries. Is a complete transactional database

and provide SQL injection protection, encryption password by using SHA-256 and communi-

cation security as SSL or TLS connections.

32

Chapter 7. Evaluation

For the evaluation phase, the datasets that are at present already loaded into GMQL-

Repository are chosen for testing the GMQLImporter module. In this chapter, the essential

features on the creation of the configuration XML using the previously defined schema are

explained. After download, transform and load processes are discussed and finally a sum-

mary of the overall results in the execution of the module is presented. The execution of

GMQLImporter was done using 32 cores with 2 threads each Intel(R) Xeon(R) CPU E5-2650 0

@ 2.00GHz with 378 GB System memory with an internet connection tested between

605.39 and 749.43 Mbit/s during the download process, the test was done in parallel mode

and also sequentially.

7.1 Configuration XML creation

The whole creation process is detailed in appendix G “Creation of XML configuration file for

GMQLImporter” and here, the main settings used for evaluation are explained. The included

sources to be imported are 2 sources already included in GMQL and the new imported data-

sets will be the update of them, the sources are TCGA2BED and ENCODE. Following the

schema for the configuration file, the datasets desired to load into GMQL are:

TCGA2BED ENCODE

cnv HG19_broadPeak

dnametylation HG19_narrowPeak

dnaseq GRCh38_broadPeak

mirnaseq_isoform GRCh38_narrowPeak

mirnaseq_mirna

rnaseq_exon

rnaseq_gene

rnaseq_spljxn

rnaseqv2_exon

Evaluation

33

rnaseqv2_gene

rnaseqv2_isoform

rnaseqv2_spljxn

Table 7:1 datasets from ENCODE and TCGA2BED to be imported.

7.2 Changes of implementation and adaptation

The versatility of the GMQLImporter was also proven during the development, as the re-

quirements changed constantly, the XML configuration file provided enough freedom to

give multiple parameters for the correct download and transformation of the datasets. The

presented module is robust with fault tolerance. Also the 3 steps of download, transform

and load gave a correct abstraction for the problem proposed and allowed the generaliza-

tion of the Importing process.

7.3 Parallel run

To evaluate GMQLImporter it is tested using both parallel and non-parallel executions, as

the process includes multiple downloads and file processing in a very tidy way, the overall

process is highly parallelizable. The download or transformation of multiple datasets at the

same time is enabled for testing the parallel execution of GMQLImporter and it is activated

or deactivated in the XML configuration file. The main variable to compare is the time used

for the complete process of downloading and transforming the data, both runs are executed

in different times and using different folders to isolate the processes.

7.4 Results

The imported data results are given in the following table specifying comparable times (ex-

pressed as HH:MM:SS) for download and transform, using parallel download and using se-

quential download:

Evaluation

34

Dataset

N
º

o
f

sa
m

p
le

s

Si
ze

D
o

w
n

lo
ad

P
ar

al
le

l

D
o

w
n

lo
ad

se
q

u
en

ti
al

ly

 Tr
an

sf
o

rm

p
ar

al
le

l

Tr
an

sf
o

rm

se
q

u
en

ti
al

ly

cnv 22632 869 MB 19:53:17 75:57:58 02:59:47 01:02:27

dnamethylation 12860 235 GB 19:55:28 76:05:16 04:44:48 03:19:32

dnaseq 6914 305 MB 19:52:54 75:57:06 00:58:09 00:18:27

mirnaseq_isoform 9909 4.1 GB 19:52:55 76:19:14 01:55:57 00:31:48

miranseq_mirna 9909 775 MB 19:52:56 76:18:21 01:28:03 00:26:51

rnaseq_exon 3675 46 GB 18:01:29 72:35:19 01:38:35 00:40:39

rnaseq_gene 3675 5 GB 18:59:35 72:37:32 00:57:03 00:14:56

rnaseq_spljxn 3675 43 GB 19:05:05 72:58:50 01:37:14 00:40:57

rnaseqv2_exon 9825 119 GB 19:54:09 76:01:29 03:19:26 01:46:39

rnaseqv2_gene 9825 21 GB 19:53:06 75:58:17 02:24:43 00:43:14

rnaseqv2_isoform 9825 50 GB 19:53:22 75:59:30 02:32:07 01:02:20

rnaseqv2_spljxn 9825 110 GB 19:54:08 76:02:03 03:16:03 00:41:23

Evaluation

35

HG19_broadPeak 1534 7.7 GB 02:47:45 02:19:53 01:19:24 00:27:11

HG19_narrowPeak 9783 54 GB 19:17:04 20:03:15 03:41:39 02:07:12

GRCh38_broadPeak 367 3.4 GB 00:36:44 00:37:52 00:11:29 00:04:02

GRCh38_narrowPeak 9415 57 GB 19:12:24 18:16:22 03:48:32 02:12:57

Table 7:2 execution times in with and without parallelization for each dataset.

It is worth to mention the times on TCGA2BED datasets for download always have similar

times for download as the download is done by traversing the folder structure in the FTP

repository; this causes all the datasets to start the downloading process on the first folder

visited and to end in the last folder to visit.

For calculating the total download time sequentially, the maximum time spent for a dataset

download in TCGA2BED (76:19:14) is considered as the total time for downloading that

source while in ENCODE, the sum of all download times for each dataset is the total time for

downloading the source (41:54:22); giving a total time for download sequentially of

118:13:36. Downloading in parallel for TCGA2BED speeds up every dataset as 1 process

takes care of traversing the repository and multiple sub processes download the files; for

ENCODE in parallel download the speed up is also substantial as all datasets are downloaded

at the same time instead of waiting sequentially. For the total time of download in parallel,

the maximum time for a dataset download is considered as the total time for downloading

all the sources, giving a total time for parallel download of 19:55:28.

As for the transformation time when done sequentially, the total transformation time of all

sources is equal to the sum of every transformation time for each dataset thus the total

transformation time sequentially is 16:20:35. When transformation is done in parallel, mul-

tiple dataset are processed at the same time, therefore sub processes share the local re-

sources causingthe time for individual datasets to increase; but as for parallel execution, the

Evaluation

36

total transformation time is equal to the maximum transformation time among the datasets

which is 04:44:48 and therefore the parallel execution speeds up the overall transformation

process.

All these datasets were loaded into GMQL in a total time of 11:43:44. The loading process is

always done sequentially.

37

Chapter 8. Conclusion and future work

GMQLImporter by using correspondent generalization for the process of retrieving genomic

data and metadata from multiple sources, standardize them towards their integration, and

importing them into a GDM repository for their comprehensive processing through GMQL,

effectively accomplishes these tasks and allows easy further development for the inclusion

of new data sources that may be added later.

GMQLImporter solves the problem of supporting the automated gathering of genomic data

with their respective metadata into a GDM repository, providing the correspondent feed-

back to the user. Thus, the process of importing distributed heterogeneous data for their

integrated GMQL processing is highly automated and no complex supervision is needed.

As the presented results show, the use of parallel execution speeds up substantially the

downloading process by taking less than a fifth of the time for the sequential download; and

the transformation process done in parallel takes less than a third of the time for sequential

transformation. These times can be improved even more by optimizing the parallelization

processes as doing transformation in parallel to handle multiple files for each dataset at the

same time.

As part of future work, new downloaders and transformers will be developed; also further

analysis of clinical metadata to allow a complete interoperation between data from differ-

ent sources will be done.

38

References

[1] V. Jalili, M. Matteucci, M. Masseroli and S. Ceri, "Indexing Next-Generation Sequencing

data," Information Sciences, vol. 384, no. 1, pp. 90-109, 2017.

[2] M. Masseroli, A. Kaitoua, P. Pinoli and S. Ceri, "Modeling and interoperability of

heterogeneous genomic big data for integrative processing and querying," Methods,

vol. 111, no. 1, pp. 3-11, 2016.

[3] The Cancer Genome Atlas, "THE CANCER GENOME ATLAS," [Online]. Available:

https://cancergenome.nih.gov/. [Accessed 2 6 2017].

[4] F. Cumbo, G. Fiscon, S. Ceri, M. Masseroli and E. Weitschek, "TCGA2BED: extracting,

extending,integrating, and querying The Cancer GenomeAtlas," BMC Bioinformatics,

vol. 18, no. 1, p. 1, 2017.

[5] The ENCODE Project Consortium, "An integrated encyclopedia of DNA elements in the

human genome," nature, vol. 489, pp. 57-74, 2012.

[6] M. Masseroli, P. Pinoli, F. Venco, A. Kaitoua, V. Jalili, F. Palluzzi, H. Muller and S. Ceri,

"GenoMetric Query Language: a novel approach to large-scale genomic data

management," Bioinformatics, vol. 31, no. 12, pp. 1881-1888, 2015.

[7] S. Ceri, A. Kaitoua, M. Masseroli, P. Pinoli y F. Venco, «Data Management for

Heterogeneous Genomic Datasets,» IEE/ACM Transactions on Computational Biology

and Bioinformatics, vol. PP, nº 99, pp. 1-1, 2016.

[8] C. Kozanitis, A. Heiberg, G. Varghese and V. Bafna, "Using Genome Query Language to

uncover genetic variation," Bioinformatics, vol. 30, no. 1, p. 1, 2014.

39

[9] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella,

D. Altshuler, S. Gabriel, M. Daly and M. DePristo, "The Genome Analysis Toolkit: A

MapReduce framework for analyzing next-generation DNA sequencing data," Genome

Research, vol. 20, no. 9, pp. 1297-1303, 2010.

[10] S. Neph, S. Kuehn, A. Reynolds, E. Haugen, R. Thurman, A. Johnson, E. Rynes, M.

Maurano, J. Vierstra, S. Thomas, R. Sandstrom, R. Humbert and J. Stamatoyannopoulos,

"BEDOPS: high-performance genomic feature operations," Bioinformatics, vol. 28, no.

14, pp. 1919-1920, 2012.

[11] H. Li, B. Handsaker, A. Wysoker, T. Fennel, J. Ruan, N. Homer, G. Marth, G. Abecasis, R.

Durbin and 1. G. P. D. P. G. , "The Sequence Alignment/Map format and SAMtools,"

Bioinformatics, vol. 25, no. 16, pp. 2078-2079, 2009.

[12] A. Quinlan y I. Hall, «BEDTools: A flexible suite of utilities for comparing genomic

features,» Bioinformatics, vol. 26, nº 6, pp. 841-842, 2010.

[13] A. Goguel d'Allondans, S. Boutillier, D. Uzunidis y N. Labère, Méthodologie de la thèse

et du mémoire, Studyrama - Vocatis , 2012.

40

Appendix A. Requirements Analysis for

GMQLImporter

A.1. Project objective

This project requires developing an automatic system to build and keep updated a big inte-

grative repository of genomic data and their metadata publicly available from several specif-

ic sources, transform them into GDM format to be seamlessly used for genomic data

processing through GMQL.

A.2. Project summary

The aim is to make easy integrating heterogeneous genomic data and performing complex

processing on them. GMQL is currently being developed in Scala programming language and

for this module to be an extension; Scala is also used in the development of GMQLImporter

module. Data and their metadata are provided by Sources and kept organized in Datasets

with a variety of formats, to load the data inside GMQL, these have to be in a compatible

format, have a valid schema file and one file of metadata for every file of region data; the

GDM is being used in the GMQL project for region data and metadata representation. The

main sources of datasets to be imported into GMQL are the Encyclopedia of DNA Elements

(ENCODE) and The Cancer Genome Data into bed format (TCGA2BED). The module has to

allow easy addition of future data sources to be imported.

A.3. Requirements list

During the analysis, a starting point for the overall process was set by defining a list of re-

quirements to be accomplished in the software implementation:

Requirements Analysis for GMQLImporter

41

A.4. Heterogeneous genomic data and metadata download from

multiple different sources

 The software must support different downloading protocols.

 Flexibility to allow downloading from different sources and therefore it has to adapt

to remote source data organization.

 Specific parameters for download are defined by source and/or dataset.

A.5. Genomic data and metadata transformation towards data inte-

gration

 Organize region data and metadata according to the Genomic Data Model (GDM),

this may include processes as:

o Extract compressed files.

o Obtain metadata from different files.

o Define or change a region data schema.

 Modify/standardize data/metadata attribute names, contents or format.

A.6. Load downloaded and transformed data and metadata into an

integrative GDM repository

 Connect to the repository by using provided API according to the rules defined in

the repository.

 Create, delete and update datasets into the repository.

A.7. Automatic checking, monitoring and recording quantitatively

Requirements Analysis for GMQLImporter

42

 Keep track of the processes done in region data and metadata from its download to

its loading into the repository.

 Control automatically when possible the correctness and completeness of the steps

performed to the data and metadata.

 Provide quantitative summary descriptions of the process steps.

 Support in efficient and feasible way the easy evaluation of correctness and com-

pleteness on each step.

A.8. Support data and metadata update and extension

 The software has to allow easy extension of the processes previously performed

over the data and metadata for further processing or for aggregation of similar

sources, datasets, region data, metadata or other files.

 Newer versions of the data with their respective metadata provided by the sources

must be easily updated in future executions. As different sources release new in-

formation at different pace, the software must check for updates in the origin

source and add the new data and metadata to the process.

 The main application of the development must be done for the sources of

TCGA2BED and ENCODE and the loading process into GMQL repository.

A.9. Initial domain model

Requirements Analysis for GMQLImporter

43

Entity Description

Source NGS region data and metadata provider.

Dataset Collection of region data and metadata, where all samples respect a

given region data schema.

GMQLRepository Interface to connect and import datasets inside GMQL.

GMQLImporter Downloads multiple datasets from different sources. Transforms down-

loaded datasets into GMQL compatible format (GDM) with standardized

metadata. Loads GDM compatible format datasets into the GMQLRepo-

sitory. Tracks historically the status of downloaded and transformed

files.

Requirements Analysis for GMQLImporter

44

A.10. Key actors and tasks

Actor Description

Source Provider of the datasets used in the GMQLRepository.

GMQLRepository Module of GMQL project that has the datasets to be queried.

GMQLImporter Module of GMQL project that obtains datasets from sources and trans-

forms their region data and metadata into GDM to be loaded inside the

GMQLRepository. Keeps track of downloaded, transformed and loaded

files in order to keep the GMQLRepository updated and non-redundant.

Administrator Configures the GMQLImporter based on his knowledge of the sources

and their datasets

Task Description

Download Gets datasets from a source, has to keep the files updated.

Transform Transforms and/or process data and metadata into GDM format to be

imported in GMQLRepository, has to keep the files updated.

Load Inserts into GMQLRepository GDM compatible datasets with their cor-

responding schema.

A.11.

Requirements Analysis for GMQLImporter

45

A.12. Use cases

A.13. Download

Name Download datasets from source

Description By giving description of a source and specifying types of datasets of

interest, the application downloads those datasets and puts them

ordered into a local folder.

Preconditions The source and its datasets have to exist. The source downloading

procedure has to be defined previously.

Post conditions There is a local copy of the files in the source ordered in separate fold-

ers by dataset.

Nonfunctional

Requirements

Is needed to track of downloaded files, and when download only

download files to be updated if already have been downloaded. Keep

the user notified about the loading process.

Requirements Analysis for GMQLImporter

46

A.14. Transform

Name Transform datasets from source

Description By giving description of a source and specifying datasets of interest, the

system if needed applies a specific transformation for the files to be in

GDM format for further data or metadata standardization.

Preconditions The source and its datasets have to be already downloaded and their

transformation procedure has to be defined previously.

Post conditions There is a transformed copy of the source’s original datasets in the

destination folder in GDM compatible format.

Nonfunctional

Requirements

Is needed to track of the files to know their status. Keep the user noti-

fied about the loading process.

A.15.

Requirements Analysis for GMQLImporter

47

A.16. Load

Name Load datasets from source

Description By giving description of a source and specifying datasets of interest,

the application loads into GMQLRepository those datasets with their

respective schema file.

Preconditions The source and its datasets files have to be in a GDM compatible for-

mat with region data and metadata plus the schema file.

Post conditions The datasets are available for querying inside GMQL.

Nonfunctional Re-

quirements

Keep the user notified about the loading process.

Requirements Analysis for GMQLImporter

48

A.17. Check historical statistics

Name Check historical statistics

Description Shows to the administrator the statistics of files tracked while down-

loading and transforming datasets.

Preconditions Files are tracked already in download or transform steps, indicating

how many files have been downloaded or transformed and informa-

tion about the problems had in the process.

Post conditions

Nonfunctional

Requirements

Has to provide enough information to understand the status of the

GMQLRepository, downloaded and transformed files.

49

Appendix B. Specifications for GMQLIm-

porter

B.1. Specifications Summary

This appendix is a continuation of appendix A “Requirements Analysis for GMQLImporter”.

Shows how data is downloaded from different Sources, how the data is transformed into a

GDM compatible format and how it is loaded for each Source. The sources explained are

TCGA2BED and ENCODE. After explaining the process, a generalization of the sources and

their procedures is presented, followed by a new general domain model of the GMQLImpor-

ter module.

B.2. Requirements Analysis by Source

This section explains how the data is acquired;specifies the data location, retrieval methods,

and how to import them into GMQLRepository. For inserting files into the repository, they

have to be in GDM format, separated by experiment every data and metadata file. Also a

schema file is required to define the file format.

B.3. TCGA2BED

Contains data from TCGA converted in BED format, for experiments of DNA-Seq, RNA-Seq

(V1 and V2), DNA-Methylation, miRNA-Seq and CNV. Data is located inside a FTP repository

where original (TCGA) and converted (TCGA2BED) files are stored. Inside the converted di-

rectory the files are grouped by tumor name into folders with their respective tumor tag,

inside every tumor folder, the files are again grouped by experiment type into folders with

the experiment name. Each of those folders contains: the dataset schema, file with total

number of files in the folder, file with md5 checksum for every file in the folder, region files

and metadata files. The region data files are presented in BED format with its associated

metadata, each experiment has a .bed and a .bed.meta file. Inside GMQLRepository the

Specifications for GMQLImporter

50

TCGA2BED files should be grouped by experiment type and not by tumor name. Files are

downloaded from the source; grouped by experiment type and then the schema file is add-

ed, after this if needed, metadata can be modified before being imported into GMQLReposi-

tory.

B.4. ENCODE

Contains data for a great amount of experiments and data types, data is provided by HTTP

access using a direct link for downloading every file, the file format depends on the type of

experiment. ENCODE allows 3 types of metadata download as explained in appendix C “EN-

CODE metadata explanation for GDM”. To load ENCODE data inside GMQLRepository is ne-

cessary to download every data file, initially the GMQLImporter project aims to integrate

BED broadpeak and BED narrowpeak format types of ENCODE, so bed files have to be down-

loaded, they are provided in compressed containers (.gz) so extraction after downloading is

needed. For the creation of metadata files is necessary to download the metadata and then

create for every data file, a respective metadata file by merging the rows from both metada-

ta files or extracting the metadata from JSON files downloaded. Data and metadata have to

be put together with the dataset schema and then they are ready to be imported into the

GMQLRepository.

B.5. Model Generalization

Thinking in a complete generic model to describe all the available sources and datasets is

not possible, but the main operations needed to achieve correct integration are possible.

For transforming procedure, initially complex data file transformation is not needed, but in

the future could be, and this problem has to be addressed. TCGA2BED has the files just as

GMQLRepository needs them just not in the order it is desired. ENCODE data files come in

.gz containers that have to be extracted, their metadata has to be separated into several

files, and source metadata files may be in different formats. At the loading stage, GMQLRe-

pository needs to have the following files for each dataset:

Specifications for GMQLImporter

51

 Schema file describing region data format.

 Set of region data files in GDM compatible format.

 Set of metadata with 1 metadata file for each region data file.

Loading procedure in the development is by using the GMQLRepository interface provided

by GMQL project, but any other repository could be used and that flexibility also has to be

addressed.

B.6. General Domain Model

The GMQLImporter module has been divided by the 3 basic operations to be performed in

the import process; those ones are download, transform and load. For the transformation

procedure, although similarities could be found, because of the variety of different NGS

formats and the need of transform those to GDM format, GDMTransformer represents a

type of transformation procedure, where a particular set of operations can be defined for

each source to transform original files into GDM friendly ones. Same as for downloading

procedure, no unique generic way to download datasets from sources is feasible so

GMQLDownloader represents a type of downloading procedure, where any particular im-

plementation for downloading different sources can be implemented. The new domain

model is the following:

Specifications for GMQLImporter

52

B.7. Sequence diagrams

In this section the main processes for GMQLImporter are defined and also the details for the

interaction sequences between the different modules involved in the software execution.

The diagrams explain the main desired behavior:

Specifications for GMQLImporter

53

Specifications for GMQLImporter

54

The main program loads the configuration from the XML file, with this configuration, the

program recreates the sources requested and the datasets for every source. With this struc-

ture, iterates on every source for download, transform and load. For the download part, as

discussed before, specific operations must be done separately for TCGA2BED and ENCODE,

therefore the process of download happens completely separated between both sources.

The main program by the giving configurations has to select the needed implementation

for“Download process” and“Transform process”. Load process is done always by using

GMQLLoader but may be extended to use another GDM repository.The transformation

process has a general transformation part and a specific transformation part; in the specific

one the files have to be transformed to GDM friendly format. Whilst in the general part, the

region data schema and the metadata files are checked for correctness. The next steps

shown are subsections of the overall execution and therefore assume the main program’s

load of the XML configuration file and the existence of the FileDatabase.

Specifications for GMQLImporter

55

B.8.

Specifications for GMQLImporter

56

Specifications for GMQLImporter

57

Specifications for GMQLImporter

58

ENCODE Metadata Explanation for GDM

59

Appendix C. ENCODE Metadata Explana-

tion for GDM

C.1. Metadata Organization

For the ENCODE project, the metadata for every experiment is distributed in a tree structure

of entities, the root node is the experiment entity where the immediate metadata for the

experiment is found, this includes metadata such as “biosample_type”, “date_released”,

“replication_type” and “status”. Also in the root,non-immediate metadata is referenced,

this comprehends metadata like “files”, “award” and “replicates”. The tree created is non-

cyclical therefore exists a unique way of getting the information starting from the root. The

root node contains 48 branches, 19 of them are leaves (immediate metadata referred as

plain text) of the tree, 3 are other complex entities that represent by themselves a complete

tree structure and the remaining 26 branches are arrays that can contain either leaves or

other complex types.

C.2. Metadata Acquisition

Downloading metadata from ENCODE is a straightforward action that defines a metadata

filter for the experiment files to download; this filter can select any metadata as criteria

such as Genome Assembly, File Format, Output Type, Biosample Life Stage, among others.

ENCODE’s model has as root level the experiments, and all the experimental metadata is

linked to this entity as explained before.

From the ENCODE project metadata can be downloaded in 3 different ways (where each

one gives different amount and/or type of metadata).

C.3. Metadata.tsv

ENCODE Metadata Explanation for GDM

60

ENCODE defines this metadata.tsv file as a pre-defined set of metadata meant to be down-

loaded using theirBatch Download method, it contains 48 fields of metadata associated to

every region data file. The file defines a table where every row describes a sample file and

every column gives metadata about them. The metadata contained is gathered from differ-

ent nodes of the metadata tree and then the names are changed to the preferred term on

ENCODE’s ontology for the field name.

To download the metadata.tsv, the creation of a URL is needed. The URL creation is done in

3 blocks: prefix, filter and postfix.

The prefix is always the same:

https://www.encodeproject.org/metadata/

The filter is created by setting a conjunction of metadata filters, an example that gets the

metadata for files related to experiment, where the files are bed narrowpeak and limits the

files to be just the first 2 of the list:

type=Experiment&limit=2&files.file_type=bed+narrowPeak

 The postfix is always the same:

/metadata.tsv

 Example of download link for metadata.tsv with the filter explained before:

https://www.encodeproject.org/metadata/type=Experiment&limit=2&files.file_type=bed+n

arrowPeak/metadata.tsv

C.4. Tabular report

https://www.encodeproject.org/metadata/
https://www.encodeproject.org/metadata/type=Experiment&limit=2&files.file_type=bed+narrowPeak/metadata.tsv
https://www.encodeproject.org/metadata/type=Experiment&limit=2&files.file_type=bed+narrowPeak/metadata.tsv

ENCODE Metadata Explanation for GDM

61

Tabular report is a customizable table, the table columns can be specified using any type of

metadata related to the experiment, by acceding to ENCODE Rest API it can select any me-

tadata to be displayed.

To download the report.tsv, the creation of a URL is needed. The creation includes 2 blocks:

prefix and filter.

 The prefix is constant:

 https://www.encodeproject.org/report.tsv?

The filter is created as defined previously, an example that gets the metadata of files related

to experiment, where files are bed narrowpeak:

 type=Experiment&limit=2&files.file_type=bed+narrowPeak

 Example of download link for report.tsv with the filter explained before:

https://www.encodeproject.org/report.tsv?type=Experiment&files.file_type=bed+narrowPe

ak

C.5. Rest API

ENCODE provides web services for getting the metadata or any information obtained in

their website into JSON format, therefore the complete tree structure for each experiment

can be downloaded. Full description for Rest API procedure is explained in appendix I “EN-

CODE metadata generation for experiment JSON”.

C.6. Metadata Filtering and Renaming

As not all the metadata inside the provided JSON is related to the files, filtering is needed,

an example of pruned branch is the “files” node, that contains all the files referred by the

experiment but only one is needed, the one corresponding to the region data file. Another

example of the filtering needed is the “replicates” array in the experiment node, it contains

https://www.encodeproject.org/report.tsv?type=Experiment&files.file_type=bed+narrowPeak
https://www.encodeproject.org/report.tsv?type=Experiment&files.file_type=bed+narrowPeak

ENCODE Metadata Explanation for GDM

62

all the biological replicates used in the experiment, but every file contains the references to

the biological replicates used by the file, so the non-referenced have to be filtered out in

order to have just metadata related to the file needed. Repeated metadata has also to be

cleaned as original laboratory information is repeated in many entities while exploring the

metadata tree. Finally when the metadata is clean and only the needed metadata is there,

the naming of this metadata is done given the full extension of the path to follow from the

root node, as an example:

Experiment__replicates__biosample__donor__organism__name = “human”

This means the name of the organism of the donor used in the biological sample of the bio-

logical replicate of the file is human. Renaming of the useful metadata has to be done to be

able to keep cleaning the metadata and to give to the user a more meaningful and standar-

dized name to potentially every metadata field.

63

Appendix D. XSD schema for GMQLIm-

porter configuration file

<?xmlversion="1.0"?>
<xs:schemaxmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://polimi.it/GDMImporter"
xmlns="http://polimi.it/GDMImporter"
elementFormDefault="qualified">
<xs:elementname="root"type="root_type">
<xs:annotation>
<xs:documentation>Literally the root of the xml document.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexTypename="settings_type">
<xs:annotation>
<xs:documentation>Contains the general settings for the applica-
tion.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:elementtype="xs:string"name="base_working_directory">
<xs:annotation>
<xs:documentation>Root working directory for the applica-
tion.</xs:documentation>
<xs:documentation>Paths inside the configuration xml are relative to this
path.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="download_enabled">
<xs:annotation>
<xs:documentation>Top level filter for allowing the application to down-
load.</xs:documentation>
<xs:documentation>If false, no source will be downloaded.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="transform_enabled">
<xs:annotation>
<xs:documentation>Top level filter for allowing the application to trans-
form.</xs:documentation>
<xs:documentation>If false, no source will be transformed.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="load_enabled">
<xs:annotation>
<xs:documentation>Top level filter for allowing the application to
load.</xs:documentation>
<xs:documentation>If false, no source will be loaded.</xs:documentation>
</xs:annotation>
</xs:element>

XSD schema for GMQLImporter configuration file

64

<xs:elementtype="xs:boolean"name="parallel_execution">
<xs:annotation>
<xs:documentation>decides whether the application runs with multiple threads or
not.</xs:documentation>
<xs:documentation>If false, no parallel execution is
enabled.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexTypename="parameter_type">
<xs:annotation>
<xs:documentation>Generic parameter with description, key name and val-
ue.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:elementtype="xs:string"name="description"minOccurs="0">
<xs:annotation>
<xs:documentation>Explanation of what means the parameter in the applica-
tion.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:string"name="type"minOccurs="0">
<xs:annotation>
<xs:documentation>type for parameter, when multiple values to use in a single
parameter.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:string"name="key">
<xs:annotation>
<xs:documentation>Name of the parameter.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:string"name="value">
<xs:annotation>
<xs:documentation>value of the parameter.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexTypename="parameter_list_type">
<xs:annotation>
<xs:documentation>List of parameters for source/dataset.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:elementtype="parameter_type"name="parameter"maxOccurs="unbounded"minOccurs=
"0"/>
</xs:sequence>
</xs:complexType>
<xs:simpleTypename="schema_location_type"final="restriction">
<xs:annotation>
<xs:documentation>Enumeration of possible locations for the schema
files.</xs:documentation>

XSD schema for GMQLImporter configuration file

65

</xs:annotation>
<xs:restrictionbase="xs:string">
<xs:enumerationvalue="local">
<xs:annotation>
<xs:documentation>Schema file is inside the root working directo-
ry.</xs:documentation>
</xs:annotation>
</xs:enumeration>
<xs:enumerationvalue="http">
<xs:annotation>
<xs:documentation>Access through http.</xs:documentation>
</xs:annotation>
</xs:enumeration>
</xs:restriction>
</xs:simpleType>
<xs:complexTypename="schema_type">
<xs:simpleContent>
<xs:extensionbase="xs:string">
<xs:attributetype="schema_location_type"name="location"use="required">
<xs:annotation>
<xs:documentation>URL for the schema file of the dataset.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
<xs:complexTypename="dataset_type">
<xs:annotation>
<xs:documentation>Represents a dataset, it belongs to a source and has internal
settings.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:elementtype="xs:string"name="dataset_working_directory">
<xs:annotation>
<xs:documentation>
 Working directory for the dataset, subfolder of its source's work-
ing directory.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="schema_type"name="schema_url">
<xs:annotation>
<xs:documentation>URL of the schema file.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="download_enabled">
<xs:annotation>
<xs:documentation>Indicates whether the dataset has to be down-
loaded.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="transform_enabled">
<xs:annotation>

XSD schema for GMQLImporter configuration file

66

<xs:documentation>Indicates whether the dataset has to be trans-
formed.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="load_enabled">
<xs:annotation>
<xs:documentation>Indicates whether the dataset has to be
loaded.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="parameter_list_type"name="parameter_list">
<xs:annotation>
<xs:documentation>List of parameters for the dataset.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attributetype="xs:string"name="name"use="required">
<xs:annotation>
<xs:documentation>Name of the dataset, final name will be "source-
Name"_"datasetName".</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:complexTypename="dataset_list_type">
<xs:annotation>
<xs:documentation>List of datasets inside a source.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:elementtype="dataset_type"name="dataset"maxOccurs="unbounded"minOccurs="0"/
>
</xs:sequence>
</xs:complexType>
<xs:complexTypename="source_type">
<xs:annotation>
<xs:documentation>
 Represents a source, it has internal settings and contains a list of
datasets.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:elementtype="xs:string"name="url">
<xs:annotation>
<xs:documentation>URL address for the source.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:string"name="source_working_directory">
<xs:annotation>
<xs:documentation>
 Working directory of the source, subfolder of root working directo-
ry
</xs:documentation>
</xs:annotation>
</xs:element>

XSD schema for GMQLImporter configuration file

67

<xs:elementtype="xs:string"name="downloader">
<xs:annotation>
<xs:documentation>Indicates which downloader has to be used by the
source.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:string"name="transformer">
<xs:annotation>
<xs:documentation>Indicates which transformer has to be used by the
source.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:string"name="loader">
<xs:annotation>
<xs:documentation>Indicates which loader has to be used by the
source.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="download_enabled">
<xs:annotation>
<xs:documentation>
 Indicates whether the source is enabled to be downloaded, rules
over dataset and
 is ruled by root settings.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="transform_enabled">
<xs:annotation>
<xs:documentation>
 Indicates whether the source is enabled to be transformed, rules
over dataset and
 is ruled by root settings.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="xs:boolean"name="load_enabled">
<xs:annotation>
<xs:documentation>
 Indicates whether the source is enabled to be loaded, rules over
dataset and is
 ruled by root settings.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="parameter_list_type"name="parameter_list">
<xs:annotation>
<xs:documentation>List of parameters needed for the source.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:elementtype="dataset_list_type"name="dataset_list">
<xs:annotation>
<xs:documentation>List of datasets contained by the source.</xs:documentation>

XSD schema for GMQLImporter configuration file

68

</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attributetype="xs:string"name="name"use="required">
<xs:annotation>
<xs:documentation>Name for which the source is going to be han-
dled.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:complexTypename="source_list_type">
<xs:annotation>
<xs:documentation>List of sources to be handled in the configuration
file.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:elementtype="source_type"name="source"maxOccurs="unbounded"minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexTypename="root_type">
<xs:annotation>
<xs:documentation>Root node contains general settings and list of
sources.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:elementtype="settings_type"name="settings"/>
<xs:elementtype="source_list_type"name="source_list"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

69

Appendix E. Database design for

GMQLImporter

A really important requirement for the solution is to maintain the genomic repository up-

dated and provide historical status for every file and to know when there are new files or

ones that are obsolete. A database was chosen to accomplish this task and in this appendix

its model is explained. The database for GMQLImporter allows knowing the status for every

file, on every dataset, on every source ever imported through GMQLImporter. Is possible to

know whether a source was downloaded or transformed, also it’s belonging datasets and all

the files inside the dataset.

E.1.Sources, datasets and files

To know exactly the status and which files were provided by the source in a given execution,

a general structure for sources, datasets and files is contained inside the GMQLImporter’s

database, the possibilities to know how many files are provided on the source, how many

were downloaded, transformed or loaded already. The history for every file, to know when

they were updated is also contained. With this implementation, is possible to know the sta-

tus of the files inside the repository at any given point in time, with the correspondent de-

tails of the files at that time. GMQLImporter can give important feedback for every execu-

tion so the user can know easily the status of the repository.

E.2.Statistics

During the execution of GMQLImporter some important information is collected, such as the

number of available files for download from the source, the amount of failed or replaced

files, the correctly transformed ones and the also the wrong ones. In every run the total

Database design for GMQLImporter

70

number of files available to download or transformed is stored, together with the number of

correct and failed ones, the number of files that do not fit the dataset’s schema and the

time spent in some important tasks. GMQLImporter can provide this statistical historical

data as it keeps track of them in the database.

E.3.Configuration

On every run, the configuration XML file could differ and give a different output or substan-

tial change to the status of the repository, therefore the information provided in the confi-

guration file is stored for every run to know what the desired actions to perform in

GMQLImporter were. As the configuration XML schema, is needed to store the general set-

tings information, the specifications for every source involved and their datasets. The XML

modifications are also noticed in the sources and datasets, as their names are the only valid

identifier, therefore if a name is changed, it will be considered as another source or dataset.

This is used in the development of this thesis by referring to ENCODE as 2 different sources,

one that provides HG19 as reference genome for the data and the other that provides

GRCh38 as reference.

E.4.Database model

Here the features of the database are explained, its indices and methods. In the following

diagram all the database tables are shown, the primary keys are marked with PK, foreign

keys are marked with FK, and unique valid restrictions are marked with U and a number to

know which attributes are linked together. Most of the IDs use surrogate keys instead of

natural keys to avoid the strings comparison when handling data inside the database and

natural keys are kept indexed.

Database design for GMQLImporter

71

In this model, the sources with their datasets and files are represented by the tables

Sources, Datasets and Files; the configurations for the execution are saved in tables Runs,

RunSourceParameters and RunDatasetParameters where the configuration XML file para-

meters are saved distributed in the same way the XSD schema defines. Statistics are carried

out using tables of RunFiles and RunDatasetLog where information is stored during runtime

to let the user know the total available files to download and also failed, outdated and up-

dated files during the execution.

Database design for GMQLImporter

72

To know the status of any file, 4 statuses are defined for a file:

 Updated: The file download/transformation is correctly performed in the local repo-

sitory as it was in the server the last time the dataset where the file belongs was

downloaded. This means the file is ready to be used in the next step of transforma-

tion or loading.

 Failed: The file download/transformation failed and the file may not be valid, in this

case the file is marked as failed. This means the file is not usable for transforming or

loading.

 Outdated: The file was removed from the server; this causes the file to exist locally

but not remotely. This means the file is not included in the next transformation or

loading step.

 Compare: Auxiliary status used to know which files do not exist anymore on the

server, this status is meant to be used while the program is executing. No files are

kept in this state after the program execution.

The following diagram shows the transitions of different file statuses and after every func-

tion inside is explained.

Database design for GMQLImporter

73

The main database methods include:

 markToCompare: by receiving a dataset, the database changes the status of every

file in the dataset as to compare, this method is used to notice which files are no

longer in the server side and have to be marked after as outdated in the local copy.

 markAsUpdated: indicates the file was correctly downloaded or transformed and

that is ready for the next step that could be transformation or loading.

 markAsFailed: when trying to download or transform a file, if the procedure fails,

the file has to be excluded from further processing and thus is marked as failed.

 markAsOutdated: once the whole dataset is downloaded or transformed this proce-

dure allows finding the files that no longer exist in the server, and marks those files

as outdated. These files are no longer used in transformation or loading procedure.

 getFileNameAndCopyNumber: as a source could have more than one file with the

same name but in different folders, at the moment to put them together in the local

folder this could be a problem. The database handles this when 2 or more files ar-

rive with potentially the same name and renames them in FIFO order, adding the

copy number at the end of the file name.

 checkIfUpdateFile: by receiving a file’s remote data such as hash, file size or last

modification date, the database checks its records to know if the file has or not to

be downloaded.

The database also is configured to insert data if it does not exist or to retrieve it if it exists,

as an example, when trying to create a source, it will check if the source already exists and if

it exists it will access to the source already stored, on the other hand if the source does not

exist, it will be created and then accessed.

74

Appendix F. GMQLImporter console &

file logging

F.1. Introduction

GMQL-Importer provides feedback to the user both by console and file logging every time it

is executed; every execution of the program is called run. This log allows the user to know

the updated running status of GMQLImporter and also to search most of the operations

done in the run. Also at the end of each run, it shows general statistics for the run among

the different sources and datasets.

F.2. SLF4J + log4j

Simple Logging Facade for Java (SLF4J) is a Java logging API that serves as abstraction for

multiple logging frameworks, such as the one used in GMQLImporter, log4j. This logger is set

up at runtime and allows the communication in the console, and also straight to a file. The

logging framework provides a level oriented messaging with the following levels (in decreas-

ing priority order) ERROR, WARN, INFO, DEBUG or TRACE; ERROR is meant to communicate

wrong functioning of the process, WARN is used to notice the user that something is not

completely correct but the program can still work, INFO is to communicate general message

feedback to the user in the application, DEBUG is used to describe the internal steps taken

in the program for developers to have extra information during the program run, and TRACE

is to fine grain the debugging by communicating more details to developers. The logger has

the option to set up a threshold level, this allows to limit information shown to the user and

to easily create multiple types of log, such as in GMQLImporter where log4j is used to show

just up to INFO to the user, and DEBUG for developers.

F.3. Messages

GMQLImporter console & file logging

75

Messages are labeled with their level (ERROR, WARN, INFO, DEBUG or TRACE), represented

in a tree structure ordered by time of appearance (all possible options are shown, not all of

them are mandatory) here just an explanation of what is shown in the console is given, not

the exact given message in the log. The file log is set with the threshold DEBUG and the con-

sole log with INFO.

F.4. Main Program:

 [INFO] Help menu is printed if it is asked in the program arguments.

 [INFO] Path for the GMQL configuration xml file and configuration folder given in

the arguments.

 [INFO] If database had to be created.

 [WARN] If no configuration folder for GMQL or no run specified when asked infor-

mation for a run (see appendix J “Console manual for GMQLImporter”.

 [INFO] The configuration xml file is valid for the GMQL-Importer schema.

 [WARN] If the configuration xml file is not valid or the user cancels the run.

 [WARN] If the given metadata replacement names are repeated (see appendix K

“Metadata replacement for ENCODE in GMQLImporter”)

 [INFO] Notifies when a source starts to download, transform or load.

 Download log (in section 6.3.1).

 Transform log (in section 6.3.2).

 Load log (in section 6.3.3).

GMQLImporter console & file logging

76

 [INFO] General statistics at the end of the run, showing for each source and dataset

the available files to download or transform and the correctly downloaded or trans-

formed ones and the time taken in the processes.

F.5. Download:

F.6. FTP download

 [INFO] Connection established or retrying to connect.

 [WARN] Connection lost.

 [DEBUG] If any folder is created (usually when is the first run where no local folders

exist)

 [ERROR] Could not connect to the FTP server.

 For each folder being scanned in the source:

o *INFO+ Folder’s name.

o *INFO+ If the folder’s name matches the regular expressions, tells is search-

ing inside.

o *WARN+ If the folder couldn’t be created.

o [INFO] If it is trying to retry download of failed files.

o For each file being downloaded:

 [INFO] Current folder and file being downloaded and if the hash

code matches.

 [INFO] Current status of the file in the database, UPDATED, OUT-

DATED, FAILED.

GMQLImporter console & file logging

77

 [WARN] If the file download failed 3 times consecutively.

 *WARN+ if the internet connection was lost or couldn’t access to the

directory.

o *INFO+ Summary of how many total files were available from the source’s

folder and how many were successfully downloaded.

o [INFO] Downloading time for the folder

 [INFO] Source download finished.

 [INFO] Downloading time for the source

F.7. ENCODE download

 [DEBUG] If any folder is created (usually when is the first run where no local folders

exist)

 For each dataset to be downloaded:

o [INFO] Name of the dataset being downloaded.

o [INFO] Download of metadata.tsv index file.

o [WARN] If any problem with metadata.tsv file.

o For each file to be downloaded:

 [INFO] Download started or finished, indicating whether it is for

JSON file or region data.

 [WARN] Connection issues or problems downloading files.

o Dataset summary of available files to download and successfully down-

loaded ones.

GMQLImporter console & file logging

78

 [INFO] Source download finished.

F.8. Transformation:

 [INFO] Starting transformation for the source.

 For each dataset in the source:

o [INFO] Starting transformation for dataset.

o [INFO] If the schema file was downloaded.

o [WARN] If the schema file is not found.

o [DEBUG] If any folder is created (usually when is the first run).

o For each file to process:

 [INFO] Transformation process started

 TCGA2BED transformation (NULLTransformer):

 [INFO] File copied, showing origin and destination paths.

 [WARN] If the file failed to copy.

 ENCODE transformation (ENCODETransfomer):

 [INFO] If the file is region data and Gzipped, start unGzip-

ping, and when finished.

 [INFO] Start and finish times of metadata transformation.

 [INFO] If the metadata is extracted from JSON file or meta-

data.tsv.

 [WARN] If the files cannot be extracted or written.

GMQLImporter console & file logging

79

 [WARN] If any file does not respect the schema or could not be

transformed.

 [DEBUG] If any metadata key is modified, e.g. for normalization of

separation characters, validation for java identifier.

o Summary of modified files inside the current dataset, printing files that do

not respect the schema, or if the region data or metadata were changed

and transformation time for dataset.

 [INFO] Summary of modified files in the process of the source transformation, show-

ing files that do not respect the schema, or if any region data or metadata was

changed.

 [INFO] Transformation for the source finished.

 [INFO] Transformation time for the source.

F.9. Load:

 [INFO] Preparing to load the source into GMQL.

 [INFO] Each dataset to be loaded and the user to be loaded to.

 [WARN] If any region data or metadata file is missing.

 [INFO] Each dataset that finished loading the files.

 [INFO] If the dataset has no files, notify that dataset.

 [INFO] Loading time, overall and for every dataset

80

Appendix G. Creation of XML configura-

tion file for GMQLImporter

This document follows the XML schema explained in chapter 5 using the XSD schema ex-

posed in appendix D “XSD schema for GMQLImporter”, complementing it with 2 sources to

be imported into GMQLRepository, the first TCGA2BED (explained in appendix “TCGA2BED

datasets organization”) and finally ENCODE (structure defined in appendix C “ENCODE Me-

tadata Explanation for GDM” and appendix I “ENCODE metadata generation for experiment

JSON”)

G.1. Root node

The root node contains the namespace for the xsd file to be used in the configuration XML,

general settings for the program to run such as:

 base_working_directory: “/home/nacho/GMQL-Importer/workingDirectory” indi-

cates the location path for the folder to be used in downloading and transforming

the later specified sources.

 download_enabled: “true” sets the program to run downloads, this is a top level se-

lection for download, if this is false: neither source nor dataset are going to be

downloaded.

 transform_enabled: “true” sets the program to run transformation of downloaded

datasets, this top level selection enables transformation for sources and datasets if

their transform_enabled attribute is also true.

 load_enabled: “false” sets the program not to load the transformed data into GMQL

repository. This top level selection blocks any source or dataset to be loaded into

GMQL repository.

Creation of XML configuration file for GMQLImporter

81

 parallel_execution: “true” sets the program to run in parallel when allowed inside

the code, when false it will run sequentially.

G.2. Source list node

The source list contains the candidate sources to be downloaded, transformed and loaded

into GMQLRepository with their basic details to get and process the datasets they provide.

The sources included in the attached XML configuration file are:

G.3. HG19_TCGA

Represents the TCGA2BED source for downloading files, these files use HG19 as reference

genome, its details are the following

 url: “bioinf.iasi.cnr.it” this is the base URL for connecting to the ftp server of

TCGA2BED.

 source_working_directory: “HG19_TCGA” this is the local folder to be used to store

all downloaded and transformed data from TCGA2BED source, this folder will be in-

side the base_working_directory defined in the settings in the root node.

 downloader: “it.polimi.genomics.importer.DefaultImporter.FTPDownloader” as the

download for TCGA2BED is done by traversing an ftp directory recursively and

matching by regular expresions, FTPDownloader is selected to perform the down-

load process.

 transformer: “it.polimi.genomics.importer.DefaultImporter.NULLTransformer” for

transformation of TCGA2BED data is needed just to copy the downloaded files,

therefore NULLTransformer is needed for transformation.

 loader: “it.polimi.genomics.importer.GMQLImporter.GMQLLoader” as the datasets

are meant to be loaded into GMQL repository, GMQLLoader is needed to achieve

this.

Creation of XML configuration file for GMQLImporter

82

 download_enabled: “true” if root download_enabled is true, this source is going to

be downloaded.

 transform_enabled: “true” if root transform_enabled is true, this source is going to

be transformed.

 load_enabled: “true” if root load_enabled is true, this source is going to be loaded

into GMQL.

 parameter_list: here specific parameters for TCGA2BED are listed

o metadata_replacement: “XML/metadataReplacementTcga.XML” used to

change the “|” character for metadata separator for “__”.

o gmql_user: “public” indicates which GMQL user are the files going to be

added when load.

o username: “anonymous” in the TCGA2BED FTP server the configuration is

done with an anonymous user and no password.

o password: this field is empty as no password is required.

 dataset_list for this source is explained in section 3.1.

G.4. HG19_ENCODE

Represents the ENCODE source for downloading files, in experiments using HG19 as refer-

ence genome, its details are:

 URL: “https://www.encodeproject.org/” this is the base URL for accessing ENCODE

files.

 source_working_directory: “HG19_ENCODE” this is the local folder to be used to

store all downloaded and transformed data from ENCODE source, this folder will be

inside the base_working_directory defined in the settings in the root node.

Creation of XML configuration file for GMQLImporter

83

 downloader: “it.polimi.genomics.importer.ENCODEImporter.ENCODEDownloader”

as the download for ENCODE is done by specific batch download, an specific down-

loader is needed to get the files.

 transformer: “it.polimi.genomics.importer.ENCODEImporter.ENCODETransformer”

for transformation of ENCODE a specific procedure is needed as explained in ap-

pendix C “ENCODE Metadata Explanation for GDM”.

 loader: “it.polimi.genomics.importer.GMQLImporter.GMQLLoader” as the datasets

are meant to be loaded into GMQL repository, GMQLLoader is needed to achieve

this.

 download_enabled: “true” if root download_enabled is true, this source is going to

be downloaded.

 transform_enabled: “true” if root transform_enabled is true, this source is going to

be transformed.

 load_enabled: “true” if root load_enabled is true, this source is going to be loaded

into GMQL.

o parameter_list: specific parameters for ENCODE source are the following

o gmql_user: “public” indicates which GMQL user are the files going to be

added when load.

o metadata_prefix: “metadata/” for generation of batch download URL is

needed this prefix to obtain the metadata.tsv file.

o metadata_suffix: “/metadata.tsv” for generation of batch download URL is

needed this suffix to obtain the metadata.tsv file.

Creation of XML configuration file for GMQLImporter

84

o json_prefix: “experiments/” for JSON download from ENCODE is needed this

prefix, as explained in “ENCODE metadata generation for experiment JSON”,

the metadata root file is the experiment entity.

o json_suffix: “/?frame=embedded&format=json/” for JSON download

embedded frame is used and format is JSON.

o metadata_name_separation_char: “__” specifies the double underscore as

separator for metadata.

o encode_metadata_exclusion: “^contributing_files.*$” this category is ex-

cluded as it was found as not useful metadata.

o encode_metadata_exclusion: “^original_files.*$” this category is excluded

as it was found as not useful metadata.

o encode_metadata_exclusion: “^.*analysis_step_version.*$” this category is

excluded as it was found as not useful metadata.

o encode_metadata_exclusion: “^.*derived_from.*$” this category is ex-

cluded as it was found as not useful metadata.

o encode_metadata_exclusion: “^.*revoked_files.*$” this category is ex-

cluded as it was found as not useful metadata.

o encode_metadata_exclusion: “^assembly$” this category is excluded as it

was found as not useful metadata.

o metadata_replacement: “XML/metadataReplacement.XML” reference to an

XML file containing the replacements for metadata names.

o metadata_extraction: “tsv” for Encode, json or tsv extraction method for

metadata can be specified.

Creation of XML configuration file for GMQLImporter

85

o assembly_exclude: “GRCh38” as some files with GRCh38 reference genome

are passed by Encode, this parameter is used to filter them out.

 dataset_list for this source is explained in section 3.2.

G.5. GRCh38_ENCODE

Represents the ENCODE source for downloading files, in experiments using GRCh38 as ref-

erence genome, its details are:

 url: “https://www.encodeproject.org/” this is the base URL for accessing ENCODE

files.

 source_working_directory: “GRCh38_ENCODE” this is the local folder to be used to

store all downloaded and transformed data from ENCODE source, this folder will be

inside the base_working_directory defined in the settings in the root node.

 downloader: “it.polimi.genomics.importer.ENCODEImporter.ENCODEDownloader”

as the download for ENCODE is done by specific batch download, a specific down-

loader is needed to get the files.

 transformer: “it.polimi.genomics.importer.ENCODEImporter.ENCODETransformer”

for transformation of ENCODE an specific procedure is needed as explained in “EN-

CODE Metadata Explanation for GDM”.

 loader: “it.polimi.genomics.importer.GMQLImporter.GMQLLoader” as the datasets

are meant to be loaded into GMQL repository, GMQLLoader is needed to achieve

this.

 download_enabled: “true” if root download_enabled is true, this source is going to

be downloaded.

 transform_enabled: “true” if root transform_enabled is true, this source is going to

be transformed.

Creation of XML configuration file for GMQLImporter

86

 load_enabled: “true” if root load_enabled is true, this source is going to be loaded

into GMQL.

 parameter_list: specific parameters for ENCODE source are the following

o gmql_user: “public” indicates which GMQL user are the files going to be

added when load.

o metadata_prefix: “metadata/” for generation of batch download URL is

needed this prefix to obtain the metadata.tsv file.

o metadata_suffix: “/metadata.tsv” for generation of batch download URL is

needed this suffix to obtain the metadata.tsv file.

o json_prefix: “experiments/” for JSON download from ENCODE is needed this

prefix, as explained in appendix I“ENCODE metadata generation for experi-

ment JSON”, the metadata root file is the experiment entity.

o json_suffix: “/?frame=embedded&format=json/” for JSON download

embedded frame is used and format is JSON.

o metadata_name_separation_char: “__” specifies the double underscore as

separator for metadata.

o encode_metadata_exclusion: “^contributing_files.*$” this category is ex-

cluded as it was found as not useful metadata.

o encode_metadata_exclusion: “^original_files.*$” this category is excluded

as it was found as not useful metadata.

o encode_metadata_exclusion: “^.*analysis_step_version.*$” this category is

excluded as it was found as not useful metadata.

o encode_metadata_exclusion: “^.*derived_from.*$” this category is ex-

cluded as it was found as not useful metadata.

Creation of XML configuration file for GMQLImporter

87

o encode_metadata_exclusion: “^.*revoked_files.*$” this category is ex-

cluded as it was found as not useful metadata.

o encode_metadata_exclusion: “^assembly$” this category is excluded as it

was found as not useful metadata.

o metadata_replacement: “XML/metadataReplacement.XML” references to

an XML file containing the replacements for metadata names.

o metadata_extraction: “tsv” for ENCODE, json or tsv extraction method for

metadata can be specified.

o assembly_exclude: “hg19” as some files with hg19 reference genome are

passed by ENCODE, this parameter is used to filter them out.

 dataset_list for this source is explained in section 3.3.

G.6. Datasets by source

G.7. HG19_TCGA datasets

TCGA2BED dataset generation is explained in “Preparation of configuration.XML file for

downloading TCGA2BED datasets” its implementation is the following:

G.8. cnv

Contains cnv experiments in GDM format for region data and metadata.

 dataset_working_directory: “cnv” this is the local folder to store downloaded and

transformed files for the dataset, this folder will be under its source folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method, “ftp://bioinf.iasi.cnr.it/bed/acc/cnv/header.schema” indicates the full URL

to download the schema file.

Creation of XML configuration file for GMQLImporter

88

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for cnv dataset

o folder_regex: “^/bed/.*/cnv” is the regular expression to access all cnv fold-

ers in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every cnv folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each cnv folder has

details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side cnv folder to download.

G.9. dnamethylation

Contains dnamethylation (27 and 450) experiments in GDM format for region data and me-

tadata.

 dataset_working_directory: “dnamethylation” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

Creation of XML configuration file for GMQLImporter

89

 schema_url: “location=http” means the schema file has to be downloaded with http

method, “ftp://bioinf.iasi.cnr.it/bed/lusc/dnamethylation27/header.schema” indi-

cates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for dnamethylation dataset

o folder_regex: “^/bed/.*/dnamethylation.*” is the regular expression to

access all dnamethylation folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every dnamethylation folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each dnamethylation

folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side dnamethylation folder to download.

G.10. dnaseq

Contains dnaseq experiments in GDM format for region data and metadata.

 dataset_working_directory: “dnaseq” this is the local folder to store downloaded

and transformed files for the dataset, this folder will be under its source folder.

Creation of XML configuration file for GMQLImporter

90

 schema_url: “location=http” means the schema file has to be downloaded with http

method, “ftp://bioinf.iasi.cnr.it/bed/lusc/dnaseq/header.schema” indicates the full

URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for dnaseq dataset

o folder_regex: “^/bed/.*/dnaseq” is the regular expression to access all dna-

seq folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every dnaseq folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each dnaseq folder

has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side dnaseq folder to download.

G.11. mirnaseq_isoform

Contains mirnaseq_isoform experiments in GDM format for region data and metadata.

 dataset_working_directory: “mirnaseq_isoform” this is the local folder to store

downloaded and transformed files for the dataset, this folder will be under its

source folder.

Creation of XML configuration file for GMQLImporter

91

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/mirnaseq/isoform.quantification/header.schema”

indicates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for mirnaseq_isoform dataset

o folder_regex: “^/bed/.*/mirnaseq/isoform.quantification” is the regular ex-

pression to access all mirnaseq_isoform folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every mirnaseq_isoform folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each mirna-

seq_isoform folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side mirnaseq_isoform folder to download.

G.12. mirnaseq_mirna

Contains mirnaseq_mirna experiments in GDM format for region data and metadata.

Creation of XML configuration file for GMQLImporter

92

 dataset_working_directory: “mirnaseq_mirna” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/mirnaseq/mirna.quantification/header.schema” in-

dicates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for mirnaseq_mirna dataset

o folder_regex: “^/bed/.*/mirnaseq/mirna.quantification” is the regular ex-

pression to access all mirnaseq_mirna folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every mirnaseq_mirna folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each mirnaseq_mirna

folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side mirnaseq_mirna folder to download.

G.13. rnaseq_exon

Creation of XML configuration file for GMQLImporter

93

Contains rnaseq_exon experiments in GDM format for region data and metadata.

 dataset_working_directory: “rnaseq_exon” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/rnaseq/exon.quantification/header.schema” indi-

cates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for rnaseq_exon dataset

o folder_regex: “^/bed/.*/rnaseq/exon.quantification” is the regular expres-

sion to access all rnaseq_exon folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every rnaseq_exon folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each rnaseq_exon

folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side rnaseq_exon folder to download.

Creation of XML configuration file for GMQLImporter

94

G.14. rnaseq_gene

Contains rnaseq_gene experiments in GDM format for region data and metadata.

 dataset_working_directory: “rnaseq_gene” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/rnaseq/gene.quantification/header.schema” indi-

cates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for rnaseq_gene dataset

o folder_regex: “^/bed/.*/rnaseq/gene.quantification” is the regular expres-

sion to access all rnaseq_gene folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every rnaseq_gene folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each rnaseq_gene

folder has details for md5 hash of all files in the folder.

Creation of XML configuration file for GMQLImporter

95

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side rnaseq_gene folder to download.

G.15. rnaseq_spljxn

Contains rnaseq_spljxn experiments in GDM format for region data and metadata.

 dataset_working_directory: “rnaseq_spljxn” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/rnaseq/spljxn.quantification/header.schema” indi-

cates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for rnaseq_spljxn dataset

o folder_regex: “^/bed/.*/rnaseq/spljxn.quantification” is the regular expres-

sion to access all rnaseq_spljxn folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every rnaseq_spljxn folder.

Creation of XML configuration file for GMQLImporter

96

o md5_checksum_tcga2bed: “md5table.txt” this file on each rnaseq_spljxn

folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side rnaseq_spljxn folder to download.

G.16. rnaseqv2_exon

Contains rnaseqv2_exon experiments in GDM format for region data and metadata.

 dataset_working_directory: “rnaseqv2_exon” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/rnaseqv2/exon.quantification/header.schema” in-

dicates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for rnaseqv2_exon dataset

o folder_regex: “^/bed/.*/rnaseqv2/exon.quantification” is the regular ex-

pression to access all rnaseqv2_exon folders in TCGA2BED FTP server.

Creation of XML configuration file for GMQLImporter

97

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every rnaseqv2_exon folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each rnaseqv2_exon

folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side rnaseqv2_exon folder to download.

G.17. rnaseqv2_gene

Contains rnaseqv2_gene experiments in GDM format for region data and metadata.

 dataset_working_directory: “rnaseqv2_gene” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/rnaseqv2/gene.quantification/header.schema” in-

dicates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for rnaseqv2_gene dataset

Creation of XML configuration file for GMQLImporter

98

o folder_regex: “^/bed/.*/rnaseqv2/gene.quantification” is the regular ex-

pression to access all rnaseqv2_gene folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every rnaseqv2_gene folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each rnaseqv2_gene

folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side rnaseqv2_gene folder to download.

G.18. rnaseqv2_isoform

Contains rnaseqv2_isoform experiments in GDM format for region data and metadata.

 dataset_working_directory: “rnaseqv2_isoform” this is the local folder to store

downloaded and transformed files for the dataset, this folder will be under its

source folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/rnaseqv2/isoform.quantification/header.schema”

indicates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download; it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

Creation of XML configuration file for GMQLImporter

99

 parameter_list: specific parameters for rnaseqv2_isoform dataset

o folder_regex: “^/bed/.*/rnaseqv2/isoform.quantification” is the regular ex-

pression to access all rnaseqv2_isoform folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every rnaseqv2_isoform folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each rna-

seqv2_isoform folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side rnaseqv2_isoform folder to download.

G.19. rnaseqv2_spljxn

Contains rnaseqv2_spljxn experiments in GDM format for region data and metadata.

 dataset_working_directory: “rnaseqv2_spljxn” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

 schema_url: “location=http” means the schema file has to be downloaded with http

method,

“ftp://bioinf.iasi.cnr.it/bed/lusc/rnaseqv2/spljxn.quantification/header.schema” in-

dicates the full URL to download the schema file.

 download_enabled: “true” lowest level activator for download; it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

Creation of XML configuration file for GMQLImporter

100

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for rnaseqv2_spljxn dataset

o folder_regex: “^/bed/.*/rnaseqv2/spljxn.quantification” is the regular ex-

pression to access all rnaseqv2_spljxn folders in TCGA2BED FTP server.

o files_regex: “.*\.bed(\.meta)?$” regular expression to download .bed and

.bed.meta from every rnaseqv2_spljxn folder.

o md5_checksum_tcga2bed: “md5table.txt” this file on each rnaseqv2_spljxn

folder has details for md5 hash of all files in the folder.

o exp_info_tcga2bed: “exp_info.tsv” this file contains the number of files in-

side rnaseqv2_spljxn folder to download.

G.20. HG19_ENCODE datasets

Datasets for HG19_ENCODE include broadPeak and narrowPeak.

G.21. broadPeak

Contains broadPeak data for HG19 reference genome stored in the ENCODE project

 dataset_working_directory: “broadPeak” this is the local folder to store downloaded

and transformed files for the dataset, this folder will be under its source folder.

 schema_url: “location=local” means the schema file is stored in local media relative

to root node base_working_directory; “schemas/broadPeak.schema” indicates the

relative path for the broadPeak schema.

 download_enabled: “true” lowest level activator for download, it will only be down-

loaded if its source and root nodes are active.

Creation of XML configuration file for GMQLImporter

101

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for HG19_ENCODE broadPeak dataset

o loading_name: “HG19_ENCODE_BROAD_MAY_2017” indicates the name

that will be given to the dataset in the loading process. By default it joins

source name and dataset name with an underscore between them.

o type: “Experiment” used in the creation of the batch download URL, defines

the experiment entity as the base to search for.

o files.file_type: “bed+broadPeak” used in the creation of the batch download

URL, filters experiments with bed broadPeak files.

o award.project: “ENCODE” used in the creation of the batch download URL,

defines only the files from project ENCODE to be downloaded.

o files.assembly: “hg19” used in the creation of the batch download URL, de-

fines only hg19 assembly files to be downloaded.

G.22. narrowPeak

Contains narrowPeak data for HG19 reference genome stored in the ENCODE project

 dataset_working_directory: “narrowPeak” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

Creation of XML configuration file for GMQLImporter

102

 schema_url: “location=local” means the schema file is stored in local media relative

to root node base_working_directory; “schemas/narrowPeak.schema” indicates the

relative path for the broadPeak schema.

 download_enabled: “true” lowest level activator for download; it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for HG19_ENCODE narrowPeak dataset

o loading_name: “HG19_ENCODE_NARROW_MAY_2017” indicates the name

that will be given to the dataset in the loading process. By default it joins

source name and dataset name with an underscore between them.

o type: “Experiment” used in the creation of the batch download URL, defines

the experiment entity as the base to search for.

o files.file_type: “bed+narrowPeak” used in the creation of the batch down-

load URL, filters experiments with bed narrowPeak files.

o award.project: “ENCODE” used in the creation of the batch download URL,

defines only the files from project ENCODE to be downloaded.

o files.assembly: “hg19” used in the creation of the batch download URL, de-

fines only hg19 assembly files to be downloaded.

G.23. GRCh38_ENCODE datasets

Datasets for GRCh38_ENCODE include broadPeak and narrowPeak.

Creation of XML configuration file for GMQLImporter

103

G.24. broadPeak

Contains broadPeak data for GRCh38 reference genome stored in the ENCODE project

 dataset_working_directory: “broadPeak” this is the local folder to store downloaded

and transformed files for the dataset, this folder will be under its source folder.

 schema_url: “location=local” means the schema file is stored in local media relative

to root node base_working_directory; “schemas/broadPeak.schema” indicates the

relative path for the broadPeak schema.

 download_enabled: “true” lowest level activator for download; it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for GRCh38_ENCODE broadPeak dataset

o loading_name: “GRCh38_ENCODE_BROAD_MAY_2017” indicates the name

that will be given to the dataset in the loading process. By default it joins

source name and dataset name with an underscore between them.

o type: “Experiment” used in the creation of the batch download URL, defines

the experiment entity as the base to search for.

o files.file_type: “bed+broadPeak” used in the creation of the batch download

URL, filters experiments with bed broadPeak files.

o award.project: “ENCODE” used in the creation of the batch download URL,

defines only the files from project ENCODE to be downloaded.

Creation of XML configuration file for GMQLImporter

104

o files.assembly: “GRCh38” used in the creation of the batch download URL,

defines only GRCh38 assembly files to be downloaded.

G.25. narrowPeak

Contains narrowPeak data for GRCh38 reference genome stored in the ENCODE project

 dataset_working_directory: “narrowPeak” this is the local folder to store down-

loaded and transformed files for the dataset, this folder will be under its source

folder.

 schema_url: “location=local” means the schema file is stored in local media relative

to root node base_working_directory; “schemas/narrowPeak.schema” indicates the

relative path for the broadPeak schema.

 download_enabled: “true” lowest level activator for download; it will only be down-

loaded if its source and root nodes are active.

 transform_enabled: “true” lowest level activator for transformation, it will only be

transformed if its source and root nodes have transform_enabled set to true.

 load_enabled: “true” lowest level activator for load, it will only be loaded if root and

source nodes are active also.

 parameter_list: specific parameters for GRCh38_ENCODE narrowPeak dataset

o loading_name: “GRCh38_ENCODE_NARROW_MAY_2017” indicates the

name that will be given to the dataset in the loading process. By default it

joins source name and dataset name with an underscore between them.

o type: “Experiment” used in the creation of the batch download URL, defines

the experiment entity as the base to search for.

Creation of XML configuration file for GMQLImporter

105

o files.file_type: “bed+narrowPeak” used in the creation of the batch down-

load URL, filters experiments with bed narrowPeak files.

o award.project: “ENCODE” used in the creation of the batch download URL,

defines only the files from project ENCODE to be downloaded.

o files.assembly: “GRCh38” used in the creation of the batch download URL,

defines only GRCh38 assembly files to be downloaded.

106

Appendix H. TCGA2BED datasets organ-

ization

Folders available inside TCGA2BED ftp (ftp://bioinf.iasi.cnr.it/) in bed format are:

Where inside any one of these folders we find the following structure:

TCGA2BED datasets organization

107

Also inside the mirnaseq folder the inner structure is:

Order for the rnaseq folder:

And for the rnaseqv2 folder follows this order:

Inside any folder in the following list (* meaning any subfolder):

TCGA2BED datasets organization

108

 /bed/*/cnv/

 /bed/*/dnamethylation27/

 /bed/*/dnamethylation450/

 /bed/*/dnaseq

 /bed/*/mirnaseq/isoform.quantification/

 /bed/*/mirnaseq/mirna.quantification/

 /bed/*/rnaseqv2/exon.quantification/

 /bed/*/rnaseqv2/gene.quantification/

 /bed/*/rnaseqv2/isoform.quantification/

 /bed/*/rnaseqv2/spljxn.quantification/

Every folder inside contains:

 exp_info.tsv: contains nº of experiment files in the folder.

 header.schema: region data file schema.

 md5table.txt: contains md5 checksum for every file inside the folder.

 File1.bed (data file)

 File1.bed.meta (metadata file)

 (...more files .bed and .bed.meta)

109

Appendix I. ENCODE metadata genera-

tion for experiment JSON

For the ENCODE project, the metadata of every experiment is distributed in a tree structure

of items (item is the base object for every entity in ENCODE, so any object inherits from it),

the root node item is the experiment. Experiment inherits from dataset that is another item

in the ENCODE project and also implements other properties. Metadata generation is done

in 3 sections, first section is ENCODE’s“Shared calculated properties1 and mixin properties2”,

this section explains which general attributes (mixin and shared calculated properties are

used among many items in ENCODE) are contained inside every experiment. Second section

is dataset specific properties that contain the experiment. Third section comprehends the

experiment specific information. The 4th section in this appendix summarizes the usage of

ENCODE JSON metadata and its possibilities. The final section explains the substructures

used in the first 3 sections described in this appendix.

I.1. Shared Calculated and Mixin Properties

These properties are common ENCODE utilities used by many items, 2 files are used to ex-

plain this in the ENCODE documentation: shared_calculated_properties.py and mixins.json.

And the information that could be added by these utilities is the following:

 submitted_by: id of the user who created the item, is auto assigned by the server

and it is also a link to the same user.

 date_created: date and time for the creation of the item, is auto assigned by the

server.

1
https://github.com/ENCODE-

DCC/encoded/blob/master/src/encoded/types/shared_calculated_properties.py
2
https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/schemas/mixins.json

https://github.com/ENCODE-DCC/encoded/blob/963c43257dcf3ea5b56f25899e536c065a01eb06/src/encoded/types/shared_calculated_properties.py
https://github.com/ENCODE-DCC/encoded/blob/963c43257dcf3ea5b56f25899e536c065a01eb06/src/encoded/types/shared_calculated_properties.py
https://github.com/ENCODE-DCC/encoded/blob/3dc8a18aea7dade77d18c8aedaafad66b8808bf6/src/encoded/schemas/mixins.json

ENCODE metadata generation for experiment JSON

110

 submitter_comment: additional information specified by the submitter to be dis-

played as a comment on the portal.

 biosample_term_id: ontology id describing the biosample.

 biosample_term_name: ontology term describing biosample.

 biosample_synonyms: set of other terms in the ontology that describe the biosam-

ple.

 biosample_type: categorization of the biosample, is a value from the following

enumeration ("primary cell", "immortalized cell line", "tissue", "in vitro differen-

tiated cells", "induced pluripotent stem cell line", "whole organisms", "stem cell").

 developmental_slims: set of ontology terms referring to the category “developmen-

tal” associated to the biosample_term_id.

 organ_slims: set of terms in the ontology that refer to the organ associated with the

biosample_term_id.

 accession: unique identifier to be used to reference the object.

 alternate_accessions: set of accessions previously assigned to objects that have

been merged with this object.

 accessioned_status: status of the accession, value in the enum “in progress”, “de-

leted”, “replaced”, “released”, “revoked”.

 notes: DCC (Data Coordinating Center) internal notes.

 lab: laboratory associated with the submission.

 award: grant associated with the submission.

ENCODE metadata generation for experiment JSON

111

 uuid: universally unique identifier (UUID) is a 128-bit number used to identify infor-

mation in computer systems.

 references: publications that provide more information about the object. It is an set

of links to the references.

 system_slims: preferred name on the ontology for the system which the biosam-

ple_term_id belongs.

 schema_version: the version of the JSON schema that the server uses to validate the

object.

 aliases: set of lab specific identifiers to reference an object. Current convention is

colon separated lab name and lab identifier.

 assay_term_name: OBI (Ontology for Biomedical Investigations) ontology term for

the assay. It’s possible values are in the following enumeration: "ChIP-seq", RNA-

seq", DNase-seq", “eCLIP", “shRNA knockdown followed by RNA-seq", “RNA Bind-n-

Seq", “transcription profiling by array assay", "DNA methylation profiling by array

assay", “whole-genome shotgun bisulfite sequencing", “RRBS", “siRNA knockdown

followed by RNA-seq", “RAMPAGE", “comparative genomic hybridization by array",

“CAGE", “single cell isolation followed by RNA-seq", “Repli-seq", “microRNA-seq",

“microRNA counts", “MRE-seq", “RIP-seq", “Repli-chip", “MeDIP-seq", “ChIA-PET",

“FAIRE-seq", “ATAC-seq", “PAS-seq", “RIP-chip", “RNA-PET", “genotyping by high

throughput sequencing assay", “CRISPR genome editing followed by RNA-seq",

“protein sequencing by tandem mass spectrometry assay", “5C", “HiC", “TAB-seq",

“iCLIP", “DNA-PET", “Switchgear", “5' RLM RACE", “MNase-seq", “5' RACE", “3'

RACE", “small RNA-seq", “Bru-seq", “BruChase-seq", “genetic modification followed

by DNase-seq", “CRISPRi followed by RNA-seq"

I.2. Dataset Properties

ENCODE metadata generation for experiment JSON

112

Properties of dataset item in ENCODE. The metadata generation is done mainly with 2 files:

the schema dataset.json3 and the python script dataset.py4. The information that could be

added by this section are (shared calculated and mixin properties are not shown in the list):

 description: plain text description of the dataset.

 dbxrefs: set of unique identifiers from external resources.

 internal_tags: some datasets are part of particular data collections. Those collec-

tions are the following tags: “DREAM”, “ENCORE”, “ENTEx”, “SESCC”, “dbGaP”, “EN-

CYCLOPEDIAv3”, “ENCYCLOPEDIAv4”, “cre_inputv10”, “cre_inputv11”. This property

is a set.

 status: State of the accession, value in the enum “proposed”, “started”, “submit-

ted”, “ready for review”, “deleted”, “released”, “revoked”, “archived”, “replaced”.

 date_released: autogenerated date and time assigned when the object is released.

 contributing_files: set of files used to create the dataset. Includes “released” and

excludes “revoked”, “deleted” and “replaced” files.

 original_files: set of files used to create the dataset. Includes every file status.

 hub: section of the lab where the dataset was created.

 annotations: set of annotation files produced by ENCODE.

 superseded_by: set of datasets that replace this dataset.

 assembly: GRC genome assembly to which the target coordinates relate. E.g.

GRCh38. It is an set created from all the assemblies referred in every file in the data-

set’s files.

3
https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/schemas/dataset.json

4
https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/types/dataset.py

https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/schemas/dataset.json
https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/types/dataset.py

ENCODE metadata generation for experiment JSON

113

 month_released: calculated month extracted from date_released.

When embedded JSON is requested extra metadata is added, this dataset properties in-

clude:

(Dots indicate the right term is contained inside the left one and plurals denote set of items)

 files: set of files used to create the dataset. Includes “released” and “archived” files

and excludes “revoked”, “deleted” and “replaced”. For every file, also contains the

following properties:

o replicate

o replicate.experiment

o replicate.experiment.lab

o replicate.experiment.target

o submitted_by

o lab

 revoked_files: set of files used in the creation of the dataset but have been re-

placed. Includes “revoked” only files. For every file also contains the following prop-

erties:

o replicate

o replicate.experiment

o replicate.experiment.lab

o replicate.experiment.target

o submitted_by

ENCODE metadata generation for experiment JSON

114

o lab

 award.pi.lab: lab associated with the principle Investigator (pi) of the grant (award).

 lab: lab where the experiment comes from.

 documents.lab: lab where each document used in the experiment come from.

 documents.award: grant associated to each document used in the dataset.

 documents.submitted_by: user who submitted each document.

 references: publications that provide more information about the dataset.

I.3. Experiment Properties

Properties of experiment item in ENCODE. The metadata generation is done mainly by 2

files: the schema experiment.json5 and the python script experiment.py6. An experiment is a

special case of dataset. It includes assay metadata, replicate information and data files. It

could add the following properties (shared calculated, mixin and dataset properties are not

shown):

 target: for assays, such as ChIP-seq or RIP-seq, the name of the gene whose expres-

sion or product is under investigation for the experiment.

 biosample_type: categorization of the biosample.

 documents: protocols or other documents that describe the assay or the results.

 supersedes: experiment(s) that this experiment supersedes by virtue of being new-

er, better etc. than the one(s) it supersedes.

5
https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/schemas/experiment.json

6
https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/types/experiment.py

https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/schemas/dataset.json
https://github.com/ENCODE-DCC/encoded/blob/master/src/encoded/types/dataset.py

ENCODE metadata generation for experiment JSON

115

 internal_status: status of an experiment in the DCC process.

 pipeline_error_detail: explanation of why the experiment failed pipeline analysis.

 possible_controls: set of experiments that contain files that can serve as scientific

controls for this experiment.

 assay_title: gets the preferred term in the ontology for the assay title based in as-

say_term_id.

 replication_type: indicates the replication type used for the assay.

 assay_slims: preferred term for the assay in the ontology.

 category_slims: preferred term for the category in the ontology.

 objective_slims: preferred name for the objective in the ontology.

 assay_term_id: ENCODE id referring to assay_term_name.

 type_slims: preferred term for the type in the ontology.

 related_files: to be removed in a future release after data cleanup.

When embedded JSON is requested extra metadata is added, experiment properties include

all the properties of the dataset plus:

(Dots indicate the right term is contained inside the left one and plurals denote set of items)

 files (appends to the files subcategory in dataset):

o platform: measurement device used to collect data

o analysis_step_version.analysis_step

ENCODE metadata generation for experiment JSON

116

o analysis_step_version.analysis_step.documents

o analysis_step_version.analysis_step.documents.award

o analysis_step_version.analysis_step.documents.lab

o Analysis_step_version.analysis_step.documents.submitted_by

 replicates (appends to the replicates subcategory in dataset):

o library

o library.documents.lab

o library.documents.submitted_by

o library.documents.award

o library.biosample.submitted_by

o library.biosample.source

o library.biosample.documents

o library.biosample.organism

o library.biosample.donor

o library.biosample.donor.organism

o library.biosample.genetic_modifications

o library.biosample.genetic_modifications.target

o library.biosample.genetic_modifications.modification_techniques

o library.biosample.genetic_modifications.treatments

o library.treatments

ENCODE metadata generation for experiment JSON

117

o And many more attributes of lab, award and submitted by for the li-

brary.biosample

I.4. Extracting the metadata

The acquisition of the metadata is done by downloading the JSON of an experiment pro-

vided by the ENCODE API and is requested with the frame “embedded” which is explained

before. For the useful extraction of the metadata the experiment JSON has to be filtered as

it contains much more information that is not related to the file being examined. Therefore

sections that summarize data from multiple files together have to be consistent with the file

being downloaded by filtering out the information related to other files. Also information as

the legal documents for the laboratories or the different grants that were won for the de-

velopment of the project are meaningless when referring to a file’s metadata.

With the complete structure of the organization for the metadata is clearer which proper-

ties belongs to experiment, dataset or shared calculated and mixin properties.

The complete structure of the JSON attribute is known by now; but the usability of the me-

tadata to be extracted depends on the final purpose of the processing of those metadata.

More complex analysis of this source’s information should be performed to allow a better

integration of the ENCODE metadata with other sources’ metadata.

I.5. More child nodes in ENCODE metadata

The following is a list of encode items mentioned before with their nested properties ex-

plained, obtained from the encode GitHub7 directories schemas8 and types9. These items are

part of the ENCODE JSON metadata structure and these items are nested inside the struc-

tures explained before in this appendix:

7
https://github.com/ENCODE-DCC/encoded

8
https://github.com/ENCODE-DCC/encoded/tree/master/src/encoded/schemas

9
https://github.com/ENCODE-DCC/encoded/tree/master/src/encoded/types

https://github.com/ENCODE-DCC/encoded
https://github.com/ENCODE-DCC/encoded/tree/master/src/encoded/schemas
https://github.com/ENCODE-DCC/encoded/tree/master/src/encoded/types

ENCODE metadata generation for experiment JSON

118

(Plurals denote set of items, unexplained items are assumed to be auto explanatory)

 user

o email.

o first_name.

o last_name

o lab: lab user is primarily associated with.

o submits_for: labs user is authorized to submit data for.

o groups: additional access control groups.

o viewing_groups: the group that determines which set of data the user has

permission to view.

o other user info such as skype, telephone, etc.

 lab

o name: short unique name for the lab, current convention is lower cased and

.hyphen delimited of PI's first and last name (e.g. john-doe).

o title: unique name for affiliation identification, current convention is comma

separated PI's first & last name and institute label. (e.g. John Doe, UNI).

o pi: principle investigator (user) of the lab.

o awards: grants associated with the lab.

o institute_label

o other laboratory information such as address, institute_name, city, etc.

 award

ENCODE metadata generation for experiment JSON

119

o title: grant name from the NIH database, if applicable.

o name: official grant number from the NIH database, if applicable.

o description.

o start_date.

o end_date.

o url.

o other grant information such as viewing_group, project, url.

 reference

o reference_type: category that best describes the reference set.

o organism.

o software_used: list of software used to derive the reference file set.

 annotation

o annotation_type: category that best describes the annotation set.

o encyclopedia_version: version of the ENCODE encyclopedia to which this

annotation belongs.

o organism.

o relevant_timepoint: time point for which the annotation is relevant.

o relevant_timepoint_units.

o relevant_life_stage: life_stage for which the annotation is relevant.

ENCODE metadata generation for experiment JSON

120

o targets: for predictions of particular features (e.g. distribution of a histone

mark), specify the predicted feature(s).

o software_used: list of software used to derive the annotation calls.

o supersedes: annotation set(s) that this annotation set supersedes by virtue

of being newer, better etc. than the one(s) it supersedes.

 file

o accession.

o external_accession.

o read_count: number of reads in fastq file.

o fastq_signature: fastq file flowcell based unique signature to reference a

file.

o file_format.

o file_format_type: files of type bed and gff require further specification.

o file_format_specifications: text or .as files (document) the further explain

the file format.

o restricted: flag to indicate whether this file is subject to restricted access.

o md5sum: md5sum of the file being transferred.

o content_md5sum: MD5sum of the uncompressed file.

o file_size.

o platform: measurement device used to collect data.

ENCODE metadata generation for experiment JSON

121

o read_length: for high-throughput sequencing, the number of contiguous

nucleotides determined by sequencing.

o mapped_read_length: the length of the reads actually mapped, if the origi-

nal read length was clipped.

o mapped_run_type: mapped run type of the alignment file which may differ

from the fastqs it is derived from.

o flowcell_details: for high-throughput sequencing, the flowcells used for the

sequencing of the replicate.

o output_type: description of the file's purpose or contents.

o run_type: indicates if file is part of a single or paired run.

o paired_end: which pair the file belongs to (if paired end library).

o derived_from: files participating as inputs into software to produce this

output file.

o controlled_by: files that control this file.

o supersedes: files that this file replaces.

o paired_with: file that corresponds with this file.

o dataset: experiment or dataset the file belongs to.

o replicate: experimental replicate designation for the file.

o assembly: genome assembly that files were mapped to.

o genome_annotation: genome annotation that file was generated with.

o submitted_file_name: local file name used at time of submission.

ENCODE metadata generation for experiment JSON

122

o status: one among “uploading”, ”uploaded”, ”upload failed”, "format check

failed", ”in progress", ”deleted", ”replaced", ”revoked", ”archived", ”re-

leased" and ”content error".

o dbxrefs: unique identifiers from external resources.

o step_run: run instance of the step the file was generated from.

o content_error_detail: explanation of why the file failed the automated con-

tent checks.

 replicate

o antibody: for Immunoprecipitation assays, the antibody used.

o biological_replicate_number: data collection under the same methods using

a different biological source, measuring the variability in the biological

source.

o technical_replicate_number: data collection under the same methods using

the same biological source, measuring the variability in the method.

o experiment: experiment the replicate belongs to.

o library: nucleic acid library used in this replicate.

o rbns_protein_concentration: for use only with RNA Bind-n-Seq replicates to

indicate the protein concentration.

o rbns_protein_concentration_units: unit for the dependant

rbns_protein_concentration.

o status: one among "in progress", "deleted", "released", "preliminary", "pro-

posed", "archived", "revoked".

o target.

ENCODE metadata generation for experiment JSON

123

o dbxref: unique identifier from external resource.

o organism: organism bearing the target.

o gene_name: HGNC or MGI identifier for the target.

o label: common name for the target including post-translational modifica-

tions, if any.

o investigated_as: context(s) the target was investigated in.

o status: one among “proposed”, “current”, “deleted”, “replaced”.

 document

o document_type: category that best describes the document.

o description: plain text description of the document.

o urls: external resources with additional information to the document.

 platform

o term_id: OBI (Ontology for Biomedical Investigations) ontology identifier for

the measurement device.

o term_name: OBI (Ontology for Biomedical Investigations) ontology term for

the measurement device.

o dbxrefs: unique identifiers from external resources.

o url: external resource with additional information about the measurement

device.

 analysis_step

o name: unique name of the analysis step.

ENCODE metadata generation for experiment JSON

124

o title: preferred viewable name of the analysis step, likely the same as the

name.

o analysis_step_types: classification of the software.

o input_file_types: file types used as input for the analysis.

o output_file_types: file types generated as output for the analysis.

o qa_stats_generated: the QA statistics generated by the analysis.

o parents: the precursor steps.

 analysis_step_run

o analysis_step_version: reference to template step in pipeline

o dx_applet_details: metadata capture from DNA Nexus applets.

o status: one among “waiting”, “running”, “finished”, “error”, “virtual”.

 analysis_step_version

o version: version of the analysis step.

o analysis_step: reference to template step in pipeline.

o software_versions: software version used in the analysis.

 source

o description: plain text description of the source.

o title: complete name of the originating lab or vendor.

o name: auto generated from the title as lower cased and hyphen delimited.

o url: external resource with additional information about the source.

ENCODE metadata generation for experiment JSON

125

 library

o accession.

o spikeins_used: datasets containing the fasta and the concentrations of the

library spike-ins.

o biosample: the biosample that nucleic acid was isolated from to generate

the library.

o product_id: the product identifier provided by the vendor, for nucleic acids

or proteins purchased directly from a vendor (e.g. total RNA).

o lot_id: the lot identifier provided by the vendor, for nucleic acids or proteins

purchased directly from a vendor (e.g. total RNA).

o source: the vendor, for nucleic acids or proteins purchased directly from a

vendor (e.g. total RNA).

o nucleic_acid_term_name: SO (Sequence Ontology) term best matching the

molecule isolated to generate the library (e.g. 'RNA' for a total RNA library,

even if that library is subsequently reverse transcribed for DNA sequencing).

o dbxrefs: unique identifiers from external resources.

o nucleic_acid_starting_quantity: starting amount of nucleic acid before se-

lection and purification.

o nucleic_acid_starting_quantity_units: units used for starting amount of

nucleic acid.

o extraction_method: short description or reference of the nucleic acid ex-

traction protocol used in library preparation, if applicable.

ENCODE metadata generation for experiment JSON

126

o fragmentation_method: short description or reference of the nucleic acid

fragmentation protocol used in library preparation, if applicable.

o fragmentation_date: The date that the nucleic acid was fragmented.

o library_size_selection_method: short description or reference of the size se-

lection protocol used in library preparation, if applicable.

o lysis_method: short description or reference of the cell lysis protocol used in

library preparation, if applicable.

o crosslinking_method: short description or reference of the crosslinking pro-

tocol used in library preparation, if applicable.

o size_range: measured size range of the purified nucleic acid, in bp.

o strand_specificity: preparation of the library using a strand-specific proto-

col.

o treatments.

o depleted_in_term_name: SO (Sequence Ontology) term best matching the

nucleic acid that was diminished from the library.

 organism

o name: short unique name for the organism (e.g. 'mouse' or 'human').

o scientific_name: genus species for the organism (e.g. 'Mus musculus').

o taxon_id: NCBI taxon ID for the organism (e.g. 10090).

 biosample

o accession.

ENCODE metadata generation for experiment JSON

127

o description: plain text description of the biosample. Do not include experi-

ment details, constructs or treatments.

o constructs: expression or targeting vectors stably or transiently transfected

(not RNAi or TALEN).

o rnais: RNAi vectors stably or transiently transfected.

o talens: TALEN constructs used to modify the biosample

o treatments.

o dbxrefs: unique identifiers from external resources.

o documents: documents that describe the biosample preparation.

o donor.

o organism.

o passage_number: calculating passage number, include passages from the

source.

o depleted_in_term_name: UBERON (Uber Anatomy Ontology) term best

matching the tissue(s)/body part(s) that were removed from the biosample.

o model_organism_mating_status: mating status of the animal.

o internal_tags: some biosamples are part of particular data collections.

o derived_from: biosample that the sample derives from via a construct or

treatment.

o pooled_from: biosamples from which aliquots were pooled to form the bio-

sample.

ENCODE metadata generation for experiment JSON

128

o part_of: biosample from which a discrete component was taken. That com-

ponent is this biosample.

o host: biosample that was hosting this biosample.

o subcellular_fraction_term_name: GO (Gene Ontology) term name for cellu-

lar component that constitutes the biosample.

o phase: cell-cycle phase.

o transfection_type: persistence of the transfection construct.

o transfection_method: how the transfection was performed on the biosam-

ple to introduce the contruct or RNAi.

o culture_harvest_date: for cultured samples, the date the biosample was

taken.

o culture_start_date: for cultured samples, the date the culture was started.

For cell lines, the date this particular growth was started, not the date the

line was established.

o date_obtained: for tissue samples, the date the biosample was taken.

o starting_amount: initial quantity of cells or tissue obtained.

o starting_amount_units.

o url: external resource with additional information about the biosample.

o model_organism_sex: model_organism_sex is not valid for a human bio-

sample.

o mouse_life_stage: mouse_life_stage is not valid for a human biosample.

o fly_life_stage: ly_life_stage is not valid for a human biosample.

ENCODE metadata generation for experiment JSON

129

o fly_synchronization_stage: stage at which flies were synchronized.

o post_synchronization_time: use in conjunction with

fly_sychronization_stage or worm_synchronization_stage to specify time

elapsed post-synchronization.

o post_synchronization_time_units: use in conjunction with

post_synchronization_time to specify time elapsed post-synchronization.

o post_treatment_time: use in conjunction with treatment to specify time

elapsed post-treatment.

o post_treatment_time_units: use in conjunction with treatment to specify

time elapsed post-treatment.

o worm_life_stage: worm_life_stage is not valid for a human biosample.

o worm_synchronization_stage: stage at which worms were synchronized.

o model_organism_age: age or age range of the model donor organism when

biological material was sampled.

o model_organism_age_units: model_organism_age_units are not valid for a

human biosample.

o model_organism_health_status: model_organism_health_status is not valid

for a human biosample.

o status: one among "in progress", "deleted", "replaced", "released", "re-

voked", "preliminary", "proposed"

 donor

o accession.

o organism: organism of the donor.

ENCODE metadata generation for experiment JSON

130

o url: an external resource with additional information about the donor.

o internal_tags: some donors are part of particular data collections.

 genetic_modification

o url: external resource with additional information about the modification.

o target: name of the gene whose expression or product is modified by the

genetic modification.

o modified_site: genomic coordinates of the modification (assembly, chromo-

some, start, end).

o description: plain text description of the genetic modification.

o modification_type: type of the genetic modification.

o purpose: purpose of the genetic modification.

o zygosity: zygosity of the genetic modification.

o modification_techniques: genetic modification technique(s)/tool(s) used to

perform the modification.

o treatments: treatment(s) used to perform the genetic modification.

 modification_techniques

o dbxrefs: unique identifiers from external resources.

 antibody_lot

o accession.

o lot_id: lot identifier provided by the originating lab or vendor.

ENCODE metadata generation for experiment JSON

131

o lot_id_alias: lot identifiers for this lot deemed to be exactly the same by the

vendor.

o antigen_description: plain text description of the antigen used in raising the

antibody (e.g. amino acid residue locations of the antigen).

o antigen_sequence: amino acid sequence of the antigen.

o clonality: diversification of the immune cell lineage to make the antibody.

o dbxrefs: unique identifiers from external resources.

o host_organism: organism the antibody was grown in.

o isotype: class of antibody (e.g. IgA, IgD, IgE, IgG or IgM).

o purifications: purification protocols used to isolate the antibody.

o targets: name of the gene whose expression or product is the intended goal

of the antibody.

o url: external resource with additional information about the antibody.

 treatment

o lab: lab associated with the submission.

o documents: documents that describe the treatment protocol.

o dbxrefs: unique identifiers from external resources.

o amount: amount of treatment applied.

o amount_units.

o duration.

o duration_units.

ENCODE metadata generation for experiment JSON

132

o temperature.

o temperature_units.

o biosamples_used: biosamples used in this treatment.

o antibodies_used: antibodies used in this treatment.

 talen

o name: name of the TALEN construct.

o description: plain text description of the TALEN construct.

o url: external resource with additional information about the construct.

o vector_backbone_name: cloning vector used to make the construct. E.g.

PEGFP (delGFP-TAL2-truncNLS)

o RVD_sequence: The repeat variable diresidue sequence. E.g.

NI,NG,NI,HD,NG,NN,NG,NG,NN,HD,NI,NI,NI,NI,NM,HD,HD,NG.

o target_sequence: target genome sequence recognized by the TALE domain.

o talen_platform: TALEN platform used to make the construct. E.g. Golden

Gate.

o target_genomic_coordinates: genomic coordinates where the TALEN cuts.

o pairings: list of possible pairings with other TALENs.

 rnai

o rnai_type: classification of the interfering RNA (e.g. shRNA or siRNA).

o url: external resource with additional information about the RNAi construct.

ENCODE metadata generation for experiment JSON

133

o target: name of the gene whose expression or product is modified by the

RNAi construct.

o vector_backbone_name: name of the vector backbone used for the con-

struct.

o rnai_sequence: sequence of the inhibitory RNA.

o rnai_target_sequence: genomic sequence targeted by the RNA.

 construct

o construct_type: type of sequence expressed from the construct.

o description: plain text description of the construct. May include backbone

name, description of the insert or purpose of the construct.

o url: external resource with additional information about the construct.

o target: name of the gene whose expression or product is modified by the

construct.

o tags: recombinant tags in the construct.

o vector_backbone_name: name of the vector backbone used for the con-

struct.

o genomic_integration_site: genomic coordinates where construct is inte-

grated, if known.

o insert_sequence: DNA sequence inserted into the vector backbone.

o insert_genome_coordinates: genomic coordinates of the insert. e.g. GRCh38

or dm6.

o promoter_used: name of the gene that the promoter regulates natively.

ENCODE metadata generation for experiment JSON

134

o promoter_genome_coordinates: genomic coordinates of the promoter. Use

NCBI assembly version:chromosome number:nucleotide range (e.g.

WBcel235:III:1433720-1434340).

o promoter_position_relative_to_target: relative distance of promoter se-

quence in the construct upstream of the target gene TSS.

Console manual for GMQLImporter

135

Appendix J. Console manual for

GMQLImporter

To run GMQLImporter is done by command line by invoking the following line:

(Assuming the compiled Scala code is in GMQLImporter.jar)

java –jar GMQLImporter.jar configuration_xml_path gmql_conf_folder

where configuration_xml_path is the location for the configuration file and

gmql_conf_folder contains the path to the folder with corresponding variables to start

GMQLRepository service.

If log added at the end, it will show the number of executions already performed and stored

in the database.

If added log –n where n is the n-th past execution, the statistical summary for that run is

shown. Also multiple runs can be requested at the same time by separating them with

comma. As example log -1, 2, 3 will show (if they exist) the last execution’s statistics, plus

the statistics for the 2 executions done before, it notifies also if a number is not valid and

will not show that specific information if so (as example: if 5 executions are already run,

using log -6 will not show statistics but will tell the user that run does not exist).

If added –retry GMQLImporter tries to download the failed files on the local datasets.

Metadata replacement for ENCODE in GMQLImporter

136

Appendix K. Metadata replacement for

ENCODE in GMQLImporter

This is an example of metadata replacement, extract from the one used for ENCODE. This

file is referred from the main configuration XML to replace by using regular expressions me-

tadata field names in the transformation process:

<metadata_replace_list>
<metadata_replace>
<regex>^file\|accession$</regex>
<replace>File accession</replace>
</metadata_replace>
<metadata_replace>
<regex>^accession$</regex>
<replace>Experiment accession</replace>
</metadata_replace>
<metadata_replace>
<regex>^file\|file_type$</regex>
<replace>File format</replace>
</metadata_replace>
<metadata_replace>
<regex>^file\|output_type$</regex>
<replace>Output type</replace>
</metadata_replace>
<metadata_replace>
<regex>^assay_title$</regex>
<replace>Assay</replace>
</metadata_replace>
<metadata_replace>
<regex>^biosample_term_id$</regex>
<replace>Biosample term id</replace>
</metadata_replace>
<metadata_replace>
<regex>^biosample_term_name$</regex>
<replace>Biosample term name</replace>
</metadata_replace>
</metadata_replace_list>

