Tobar Lomas, Carlos Ignacio2025-10-292025-10-292025-08https://repositorio.usm.cl/handle/123456789/76996La presente memoria aborda el diagnóstico de fallas en motores de inducción trifásicos mediante aprendizaje automático, considerando el desbalance de clases propio de datos reales. Se plantea e implementa un pipeline reproducible con SVM de núcleo RBF que opera sobre señales de vibración (en la carcasa del rodamiento fallado y en el propio motor) y corrientes trifásicas. El flujo de trabajo contempla estandarización, partición estratificada en entrenamiento y prueba, ajuste de hiperparámetros vía grid search con validación cruzada y ponderación por clase, empleando F1-macro como criterio de optimización para asegurar un desempeño equilibrado entre categorías. Los resultados evidencian que la información vibracional es clave para discriminar fallas mecánicas y condición sana. El mejor compromiso entre desempeño y complejidad se obtiene con vibraciones únicamente (F1-macro aproximado de 0,98 y AUC aproximado de 1,00). La combinación de todas las señales entrega un rendimiento ligeramente peor (F1-macro aproximado de 0,97 y AUC aproximado de 1,00), mientras que el uso exclusivo de corrientes experimenta una degradación apreciable. En conjunto, el esquema propuesto demuestra alta exactitud y robustez frente al desbalance, y ofrece una base metodológica replicable para su futura implementación en sistemas de monitoreo y mantenimiento predictivo.This thesis addresses the diagnosis of faults in three-phase induction motors using machine learning, explicitly considering the class imbalance typically present in real data. A reproducible pipeline based on an RBF-kernel SVM is proposed and implemented, operating on vibration signals (measured on the failed bearing housing and on the motor itself) and three-phase currents. The workflow includes standardization, stratified train/test splitting, hyperparameter tuning via grid search with cross-validation and class weighting, and uses F1-macro as the optimization criterion to ensure balanced performance across categories. The results show that vibrational information is essential to discriminate mechanical faults from the healthy condition. The best performance–complexity trade-off is obtained using vibration signals only (F1-macro approx. 0.98, AUC approx. 1.00). Combining all signals yields slightly lower performance (F1-macro approx. 0.97, AUC approx. 1.00), while using only current signals leads to a noticeable degradation. Overall, the proposed scheme demonstrates high accuracy and robustness to class imbalance, providing a replicable methodological basis for future deployment in monitoring and predictive maintenance systems.115 páginasesAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/Diagnóstico de fallasMotor de inducciónAprendizaje automáticoMonitoreo de condiciónSVM con núcleo RBFAprendizaje automáticoDesarrollo de un modelo de inteligencia artificial para el diagnóstico de fallas en motores de inducción trifásicos35609002887614 Educación de calidad8 Trabajo decente y crecimiento económico9 Industria, innovación e infraestructura