Thesis SIMULACIÓN NUMÉRICA DE PROCESO DE ENFRIAMIENTO DE UNA PLACA EMISORA POR HUMIDIFICACIÓN DE AIRE
Loading...
Date
2021-01
Authors
RAMÍREZ RIVEROS, RODRIGO ANDRÉS
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Debido a la importancia que tiene el recurso hÍdrico en nuestro dÍa a dÍa, es que la escasez de este es un tema preocupante en la época actual. Es por esto que, la ingeniería ha buscado diferentes maneras de resolver este problema. Dentro de las soluciones está la desalinización del agua de mar. Uno de los
métodos es por medio de la humidificación-deshumidificación. Por otro lado, estos sistemas generalmente son enérgicamente autosustentables; para ello usan paneles fotovoltaicos para impulsar ventiladores y bombas. Un problema que poseen estos paneles es que, mientras más alta es su temperatura, menor será su eficiencia.
En este trabajo se desarrolla una simulación de una nueva cámara de humidificación, que aprovecha el calor residual de un panel fotovoltaico. La simulación se realiza a través de la dinámica de fluidos computacionales usando el software ANSYS Fluent.
La metodología se valida con el artículo experimental realizado por Cheng et. al. [1], se simula un caso de los experimentos realizados que fuese similar respecto a la temperatura de placa y el desarrollo de la
película de agua en la superficie sólida. Entre la simulación y el caso experimental se obtiene un 5% de error, el cual es aceptable, ya que se encuentra dentro de los parámetros recomendados por la literatura.
Para evaluar el mejor rendimiento de la nueva cámara de humidificación se realizan un total de 13 simulaciones. Estos se separan en 5 casos, en cada caso solo se varía un parámetro, dejando los otros constantes. Además, se evalúa la geometr´ía preliminar y se propone una nueva para disminuir la vorticidad del flujo, concluyendo que el mejor rendimiento se obtiene con 4; 5 m=s de velocidad de
inyección, 600 kg=hr de flujo de aire, 0; 67 kg=min de flujo de agua, 120° de apertura de inyección, 30 cm de distancia y un total de dos inyectores para cubrir un panel estándar de 2x1 m2
Due to the importance of water resources in our day-to-day lives, the scarcity of this is a worrying issue at the present time. This is why engineering has looked for different ways to solve this problem. Among the solutions is the desalination of seawater. One of the methods is by means of humidification-dehumidification. On the other hand, these systems are generally energetically self-sustaining; for this they use photovoltaic panels to drive fans and pumps. One problem with these panels is that, the higher their temperature is, the lower their efficiency will be. In this work a simulation of a new humidification chamber is developed, which takes advantage of the residual heat of a photovoltaic panel. The simulation is performed through computational fluid dynamics using ANSYS Fluent software. The methodology is validated with the article by Cheng et.al. [?], a case of the experiments carried out is simulated that was similar with respect to the plate temperature and the development of the water film on the solid surface. Between the simulation and the experimental case, a 5% error is obtained, which is acceptable, since it is within the parameters recommended by the literature. To evaluate the best performance of the new humidification chamber, a total of 13 simulations are carried out. These are separated in 5 cases, in each case only one parameter is varied, leaving the other constant. In addition, the preliminary geometry is evaluated and a new one is proposed to reduce the vorticity of the flow, concluding that the best performance is obtained with 4; 5 m=s of injection speed, 600 kg=hr of flow of air, 0; 67 kg=min of water flow, 120° of injection opening, 30 cm of distance and a total of two injectors to cover a standard panel of 2x1 m2
Due to the importance of water resources in our day-to-day lives, the scarcity of this is a worrying issue at the present time. This is why engineering has looked for different ways to solve this problem. Among the solutions is the desalination of seawater. One of the methods is by means of humidification-dehumidification. On the other hand, these systems are generally energetically self-sustaining; for this they use photovoltaic panels to drive fans and pumps. One problem with these panels is that, the higher their temperature is, the lower their efficiency will be. In this work a simulation of a new humidification chamber is developed, which takes advantage of the residual heat of a photovoltaic panel. The simulation is performed through computational fluid dynamics using ANSYS Fluent software. The methodology is validated with the article by Cheng et.al. [?], a case of the experiments carried out is simulated that was similar with respect to the plate temperature and the development of the water film on the solid surface. Between the simulation and the experimental case, a 5% error is obtained, which is acceptable, since it is within the parameters recommended by the literature. To evaluate the best performance of the new humidification chamber, a total of 13 simulations are carried out. These are separated in 5 cases, in each case only one parameter is varied, leaving the other constant. In addition, the preliminary geometry is evaluated and a new one is proposed to reduce the vorticity of the flow, concluding that the best performance is obtained with 4; 5 m=s of injection speed, 600 kg=hr of flow of air, 0; 67 kg=min of water flow, 120° of injection opening, 30 cm of distance and a total of two injectors to cover a standard panel of 2x1 m2
Description
Keywords
ENERGIA SOLAR , ANSYS FLUENT , DESALINIZACIÓN , DESHUMIDIFICACIÓN , HUMIDIFICACIÓN