View Item 
  •   DSpace Home
  • Sistema de Bibliotecas USM
  • Tesis USM
  • TESIS de Postgrado de acceso ABIERTO
  • View Item
  •   DSpace Home
  • Sistema de Bibliotecas USM
  • Tesis USM
  • TESIS de Postgrado de acceso ABIERTO
  • View Item
    • español
    • English
  • English 
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Apoyo a la comparación de múltiples corpus a través de la exploración visual de modelado de tópicos

Thumbnail
View/Open
m18295364-4.pdf (2.196Mb)
Date
2021-09
Author
González Pizarro, Felipe Andrés
Metadata
Show full item record
Abstract
El constante aumento en el volumen de datos de tipo texto ha llevado al desarrollo de varios algoritmos destinados a resumir y comprender este tipo de datos. Una solución prometedora este problema es el modelado de temas (en inglés conocido como topic modeling), un enfoque estadístico para extraer temas de alto volúmenes de datos. Humanos que interactúan e interpretan directamente el resultado de estos algoritmos pueden usar herramientas de visualización para interpretar mejor los resultados, sin embargo, estas herramientas todavía tienen una limitación significativa. Las representaciones visuales actuales permiten refinar y comparar temas basados solo en sus palabras claves, lo que genera un rendimiento deficiente cuando estas son demasiado genéricas, están mal conectadas o no proporcionan suficiente información. Para abordar este problema, propongo TopicVisExplorer, un conjunto de visualizaciones interactivas que soporta Latent Dirichlet Allocation (LDA). Esta propuesta tiene por objetivo ayudar a los usuarios durante el refinamiento y comparación de temas. Tres innovaciones claves de este trabajo buscan apoyar refinamiento del modelo de tema e identificar temas similares de uno o dos corpus. (1) Propongo un algoritmo de fusión de temas que considera tanto términos como documentos de los tópicos, (2) un nuevo algoritmo de división de temas basado en sus documentos, (3) y una métrica que estima la similitud entre temas en base a sus palabras y documentos más relevantes. Realice un estudio de usuarios con 95 usuarios no expertos para evaluar las funcionalidades de TopicVisExplorer. Los resultados muestran que los participantes pudieron identificar los temas que necesitan mejorar su calidad. Aproximadamente la mitad de los participantes mejoraron la coherencia de su modelo después de aplicar operaciones de división y fusión de temas. Además, los participantes pudieron identificar temas similares entre dos corpus. Aquellos que utilizaron la métrica de similitud propuesta cometieron menos errores que aquellos que usaron una métrica base.
URI
https://hdl.handle.net/11673/54283
Collections
  • TESIS de Postgrado de acceso ABIERTO

© Universidad Técnica Federico Santa María
Avenida España 1680, Edificio U, Valparaíso· 56-32-2654147, Informaciones escribir a email repositorio@usm.cl Repositorio Digital administrado por el Área de Archivo Digital, Dirección de Información y Documentación Bibliográfica Institucional

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV


USM
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorProgramOther AdvisorThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorProgramOther Advisor

My Account

Login

© Universidad Técnica Federico Santa María
Avenida España 1680, Edificio U, Valparaíso· 56-32-2654147, Informaciones escribir a email repositorio@usm.cl Repositorio Digital administrado por el Área de Archivo Digital, Dirección de Información y Documentación Bibliográfica Institucional

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV


USM