View Item 
  •   DSpace Home
  • Bibliotecas USM
  • Tesis USM
  • TESIS de Postgrado de acceso ABIERTO
  • View Item
  •   DSpace Home
  • Bibliotecas USM
  • Tesis USM
  • TESIS de Postgrado de acceso ABIERTO
  • View Item
    • Login
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    IDENTIFICACION DE SISTEMAS DINAMICOS LINEALES MEDIANTE MAXIMA VEROSIMILITUD CON MEZCLA FINITA DE DISTRIBUCIONES NORMALES

    Thumbnail
    View/Open
    m16238065-6.pdf (26.95Mb)
    Date
    2020
    Author
    BITTNER HOFFMANN, GUSTAVO JUAN ESTEBAN
    Metadata
    Show full item record
    Abstract
    This Thesis addresses the identification problem of output-error systems with nonGaussian measurement noise. Initially the problem is restricted to minimum phase noise zeros, i.e. the roots of the numerator associated with the noise transfer function lies within the unit circle. The noise distribution is approximated by a finite Gaussian mixture, whilst the parameters of the system and the parameters that approximate the noise distribution are simultaneously estimated using the principle of Maximum Likelihood. To this end, a global optimization algorithm is utilized to solve the resulting nonconvex optimization problem. It is shown that our approach improves the accuracy of the estimates, when compared with classic estimation techniques such as the Prediction Error Method (PEM), in terms of covariance of the estimation error, while also obtaining an approximation of the noise distribution. The benefits of the proposed technique are illustrated by numerical simulations. Later, a Maximum Likelihood estimation algorithm for a non-minimum-phase linear dynamic system with Gaussian mixture noise distribution is developed. Based on the Expectation-Maximization algorithm, we propose an identification technique to estimate the system model parameters and the Gaussian mixture parameters. We show that the estimates obtained by using this approach exhibit good accuracy. The benefits of our proposal are illustrated via numerical simulations. The work hereby presented is divided in three main parts. First, an overview of classical system identification and the state of the art technique, given by the Method of Moments, for solving the problem of interest is discussed. The second part of the thesis presents a solution based on a global optimization method, given by the Pattern Search algorithm, to solve the Maximum Likelihood estimation problem. A Gaussian Mixture Model is considered to approximate the noise distribution and its parameters are simultaneously estimated with the system parameters. The third part of the thesis addresses an extension by considering non-minimum phase noise zeros. An ExpectationMaximization based algorithm is proposed to estimate the system model arameters and the Gaussian mixture parameters.
    URI
    https://hdl.handle.net/11673/49513
    Collections
    • TESIS de Postgrado de acceso ABIERTO
    • TESIS de Pregrado de acceso ABIERTO

    © Universidad Técnica Federico Santa María
    Avenida España 1680, Edificio U, Valparaíso· 56-32-2654147, Informaciones escribir a email repositorio@usm.cl Repositorio Digital administrado por el Área de Archivo Digital, Dirección de Información y Documentación Bibliográfica Institucional

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV


    USM
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_programxmlui.ArtifactBrowser.Navigation.browse_otherThis CollectionBy Issue DateAuthorsTitlesSubjectsxmlui.ArtifactBrowser.Navigation.browse_advisorxmlui.ArtifactBrowser.Navigation.browse_programxmlui.ArtifactBrowser.Navigation.browse_other

    My Account

    Login

    © Universidad Técnica Federico Santa María
    Avenida España 1680, Edificio U, Valparaíso· 56-32-2654147, Informaciones escribir a email repositorio@usm.cl Repositorio Digital administrado por el Área de Archivo Digital, Dirección de Información y Documentación Bibliográfica Institucional

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV


    USM