DISEÑO Y CONSTRUCCIÓN DE UN HELIÓSTATO CON SEGUIMIENTO SOLAR EN DOS EJES PARA RE-DIRECCIONAR RADIACIÓN INCIDENTE HACIA UN DISCO CONCENTRADOR PARABÓLICO

CARVAJAL CARRASCO, ESTEBAN RODRIGO (2018)

Catalogado desde la version PDF de la tesis.

Tesis Pregrado

El presente trabajo se centra en el desarrollo, implementación y puesta en marcha de un helióstato con sistema de redireccionamiento para radiación solar, que sirva para alimentar procesos que requieran de energía térmica de forma constante. Esta iniciativa nace a partir del proyecto FONDAP “Solar Energy Research Center 2 (SERC2-Chile)”, el cual se encuentra desarrollando un gasificador solar de combustibles sólidos en base carbonosa, que funcione a partir de energía solar concentrada. El papel que juega el helióstato en este sistema consiste en aportar un suministro constante de energía solar, a un disco parabólico, el cual ha de concentrarla sobre un reactor, de manera tal que este pueda efectuar las reacciones químicas necesarias para producir gas de síntesis. Es así como el problema al cual va dirigido esta investigación radica en la alta dependencia de combustibles fósiles que tienen muchos procesos térmicos en la actualidad, para lo cual se propone una nueva alternativa que vaya enfocada en el consumo ecológico de fuentes de energía renovable, como es el sol en este caso.El diseño del helióstato es abordado desde el modelo geocéntrico de heliotecnia solar, enfocándose en la obtención del vector que rige la trayectoria solar en función del tiempo y la ubicación geográfica. Las variables principales involucradas corresponden a la altitud y al azimut solar, que, en concordancia con la ley de reflexión óptica, permiten determinar la orientación que ha de tener el panel reflector del helióstato. El desarrollo del helióstato comienza con la propuesta de tres diseños distintos, los cuales sugieren diferentes mecanismos de movimiento y estructuras de soporte, y que fueron concebidos en base a una exhaustiva investigación del estado del arte de los helióstatos, siempre tomando en cuenta los parámetros y limitaciones del proyecto de gasificación. Luego de analizar dichas propuestas desde una perspectiva técnica y económica, se optó por un diseño estructural en T construido a partir de tubos de PVC y piezas hechas en impresora 3D con material PETG. Este diseño considera un panel liviano de plumavit recubierto con una película metálica reflectante, el cual es controlado por un sistema de seguimiento diseñado a partir de motores paso a paso de poca potencia y placas de desarrollo programadas en una plataforma de libre acceso llamada Arduino IDE. Se llevó a cabo la construcción de este sistema y se realizó un ensayo, durante el cual el helióstato sí fue capaz de reflejar la radiación incidente sobre un punto fijo de manera constante, cumpliendo satisfactoriamente con sus objetivos de diseño. Con dichos resultados queda comprobado que sí es posible la fabricación de mecanismos de redireccionamiento solar en zonas poco ventosas por un costo menor a 100 [USD/m2].Se espera que este estudio sirva como motivación para innovar en nuevas tecnologías que involucren la energía solar en sus procesos térmicos, y de esa manera encaminar la explotación de los recursos del planeta hacia un futuro más limpio y sustentable.

The following research is centered upon the development, implementation and star-up of a heliostat with a redirecting system for solar radiation, which will be used steadily to power up thermal processes. This initiative is framed within the project FONDAP “Solar Energy Research Center 2 (SERC2-Chile)” which is currently developing a solar gasifier fed by carbon-based fuels that works on concentrated solar power. The role that the heliostat plays on this project is to provide a steady energy supply into a parabolic dish reflector, which will concentrate it and redirect it towards a gasifier reactor, so that it can carry on the appropriate chemical reactions to generate SYNGAS. With that in mind, the problem to which this investigation addresses is the high reliance that current thermal processes have on fossil fuels, for which this study proposes a new alternative focused on the green consumption of renewable energy sources, like the sun in this case.The heliostat’s design is approached from a geocentric reference system employed by the solar geometry model, focusing on the calculation of the vector that governs the solar path as a function of time and geographic location. The main variables involved are the solar altitude and azimuth, which, in accordance with the optical reflection principle, will determine the direction where the heliostat’s reflector panel will be facing. Its development starts with the proposal of three designs, all of which suggest different motion mechanisms and structural supports, which were conceived based upon the heliostat technology’s state of the art, and by considering the parameters and restrictions of the gasification project. After reviewing all of these from a technical and financial point of view, it was decided to go for a T-type heliostat built from PVC pipes and 3D-printed components made with PETG. This design has a light-weight styrofoam panel covered with reflective film, which is controlled by a tracking system that employs low power stepper motors and microcontroller boards programmed on an open-source electronic prototyping platform called Arduino IDE. The system was constructed, and a test was carried out, during which the heliostat was capable of constantly reflecting incoming solar radiation onto a fixed point, and thus successfully accomplishing its design targets. Those results serve as a proof that it is in fact possible to manufacture solar redirecting mechanisms for light-wind areas, for a cost lower than 100 [USD/m2].It is hoped that the present study serves as a drive to innovate in new technologies so that they can start including solar energy into their thermal processes, and thereby guide our planet’s exploitation of resources towards a much more renewable and sustainable future.