Ver ítem 
  •   Repositorio USM
  • Sistema de Bibliotecas USM
  • Tesis USM
  • TESIS de Postgrado de acceso ABIERTO
  • Ver ítem
  •   Repositorio USM
  • Sistema de Bibliotecas USM
  • Tesis USM
  • TESIS de Postgrado de acceso ABIERTO
  • Ver ítem
    • español
    • English
  • español 
    • español
    • English
JavaScript is disabled for your browser. Some features of this site may not work without it.

IDENTIFICATION AND CONTROL METHODS UTILIZING RANK AND CARDINALITY OPTIMIZATION APPROACH

Thumbnail
Ver/
3560900232229UTFSM.pdf (1.405Mb)
Fecha
2017
Autor
URRUTIA BUSTOS, GABRIEL ANDRÉS
Metadatos
Mostrar el registro completo del ítem
Resumen
This Thesis addresses a class of optimization problems that can be found in severalareas, such as system identi cation and control. Particularly, these problems are formulatedby using rank and cardinality constraints in order to obtain low rank matrices orinduce sparsity of the solution.Rank-constrained optimization problems are found in control and system identi cation.Low-order controller design problems are well known examples where the formulationutilizes Linear Matrix Inequalities (LMIs) and rank constraints over matrices forbounding the controller's order and closed loop stability degree.Promotion of sparsity in identi cation and control problems can bring many practicaladvantages in the nal solution. In model selection, by formulating the identi cationproblem with a cardinality (`0-norm) constraint over the parameter vector, a simpli edor speci c structure of the model can be obtained. In control applications sparsity canbe induced on the solution of an optimal control problem, thus limiting the number ofactive actuators at each time step.Although low-rank and sparsity are desirable characteristics in the solution of manyproblems of interest, solving these type of problems poses computational diculties.Many approaches that rely on approximations and speci c tailored solutions are availablein the literature in order to overcome the inherent complexity of the problem. However, in this work a novel rank-constraint representation is used which, aims to solve (not anapproximation but) a problem that is equivalent to the original in the sense that theyboth have the same global optimum. The resulting problem can also be solved usingstandard nonlinear programming tools.The work hereby presented is divided in three main parts. First, an overview of stateof-the art techniques for solving cardinality and rank-constrained problems is shown.The second part of the thesis presents optimization problems with cardinality constraintsin the eld of model selection, parameter estimation and optimal control.The third part of the thesis addresses a rank-constrained optimization problem whendesigning a low-order controller with prescribed degree of stability. The formulation ofthis problem includes LMI and rank constraints.
URI
http://hdl.handle.net/11673/23362
Colecciones
  • TESIS de Postgrado de acceso ABIERTO

© Universidad Técnica Federico Santa María
Avenida España 1680, Edificio U, Valparaíso· 56-32-2654147, Informaciones escribir a email repositorio@usm.cl Repositorio Digital administrado por el Área de Archivo Digital, Dirección de Información y Documentación Bibliográfica Institucional

DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
Theme by 
@mire NV


USM
 

 

Listar

Todo PeumoComunidades y Colecciones USMPor fecha de publicaciónAutoresTítulosMateriasProfesor/a GuíaPrograma AcadémicoProfesor CorreferenteEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasProfesor/a GuíaPrograma AcadémicoProfesor Correferente


© Universidad Técnica Federico Santa María
Avenida España 1680, Edificio U, Valparaíso· 56-32-2654147, Informaciones escribir a email repositorio@usm.cl Repositorio Digital administrado por el Área de Archivo Digital, Dirección de Información y Documentación Bibliográfica Institucional

DSpace software copyright © 2002-2015  DuraSpace
Contacto | Sugerencias
Theme by 
@mire NV


USM