View Item 
  •   DSpace Home
  • Sistema de Bibliotecas USM
  • Tesis USM
  • TESIS de Postgrado de acceso ABIERTO
  • View Item
  •   DSpace Home
  • Sistema de Bibliotecas USM
  • Tesis USM
  • TESIS de Postgrado de acceso ABIERTO
  • View Item
    • español
    • English
  • English 
    • español
    • English
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

CLUSTERING Y DIVERSIDAD EN SISTEMAS DE RECOMENDACIÓN TOP-N

Thumbnail
View/Open
3560900231825UTFSM.pdf (567.6Kb)
Date
2017
Author
TORRES RUDLOFF, NICOLÁS IGNACIO
Metadata
Show full item record
Abstract
Recommender Systems aim to help people dealing with information overload. Collaborativefiltering (CF) is one of the most successful techniques used in recommendersystems. It is based on the idea that people often get the best recommendationsfrom someone with similar tastes to themselves. Broadly, there are model-based andmemory-based CF techniques. The former, learn a model to make predictions. The latter,uses similarity measures to compute the proximity between users (User-based) oritems (Item-based) and build a neighborhood (Neighborhood-based CF). UBCF, whileeffective, suffers from scalability problems as the database grows. To address the scalabilityissue, clustering-based CF algorithms constraint the seek of users within smalluser clusters instead of the entire database. However, there is a trade-off between efficiencyand prediction accuracy.In this Msc. Thesis, we present a novel approach that combines the advantages ofUBCF and cluster-based CF methods by introducing a cluster-based distance functionused for neighborhood computation. To expand the search of relevant users/items weuse a novel measure that is able to exploit the global cluster structure to infer user’sdistances. Empirical studies on widely known benchmark datasets suggest that our proposalis feasible. Nevertheless, recommender systems are frequently evaluated usingindexes based on variants and extensions of precision-like measures. As these measuresare biased toward popular items, a list of recommendations just need to include a fewpopular items to perform well. To provide a more robust and realistic evaluation of ourproposed method, in the second part of this Thesis, new approaches for novelty anddiversity evaluation have been proposed. Experimental results show that our proposedmethod, based on cluster models, can promote diversity retrieval.
URI
http://hdl.handle.net/11673/22693
Collections
  • TESIS de Postgrado de acceso ABIERTO

© Universidad Técnica Federico Santa María
Avenida España 1680, Edificio U, Valparaíso· 56-32-2654147, Informaciones escribir a email repositorio@usm.cl Repositorio Digital administrado por el Área de Archivo Digital, Dirección de Información y Documentación Bibliográfica Institucional

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV


USM
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsAdvisorProgramOther AdvisorThis CollectionBy Issue DateAuthorsTitlesSubjectsAdvisorProgramOther Advisor

My Account

Login

© Universidad Técnica Federico Santa María
Avenida España 1680, Edificio U, Valparaíso· 56-32-2654147, Informaciones escribir a email repositorio@usm.cl Repositorio Digital administrado por el Área de Archivo Digital, Dirección de Información y Documentación Bibliográfica Institucional

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV


USM