Thesis ANÁLISIS DEL USO DE HIDRÓGENO VERDE EN CAMIONES DE EXTRACCIÓN EN LA MINERÍA PARA CONTRIBUIR A LA REDUCCIÓN DE EMISIONES DE GASES DE EFECTO INVERNADERO.
Loading...
Date
2020-11
Authors
GUERRERO GÓMEZ, FRANCISCA ALEJANDRA
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Ante la actual crisis climática en la que el mundo se encuentra, se hace indispensable encontrar alternativas que contribuyan a contrarrestar las consecuencias en el medio ambiente de las excesivas emisiones de gases de efecto invernadero. El hidrógeno verde se posiciona como una importante solución que aportará al objetivo de carbono – neutralidad de Chile al 2050.
En la minería del cobre, el combustible más usado es el diésel, abarcando un 83% del consumo total de combustibles en el 2018. Así mismo, en cuanto al uso de diésel por procesos, un 75% se atribuye sólo a Mina Rajo, debido a las actividades de carguío y extracción de minerales a través de camiones de gran tonelaje conocidos como CAEX. Cada uno de estos equipos anualmente consume 1.204.500 litros de diésel y genera 3.320 toneladas de CO2 eq. Es por esto, que se determina que el uso de hidrógeno como combustible en CAEX con motores duales (que operen con una mezcla de 60% hidrógeno y 40% diésel) se presenta como una medida fundamental para mitigar los efectos de las emisiones de GEI.
Para determinar la potencial demanda de hidrógeno, se trabaja con la Línea Base y Proyección de Demanda de Energía, del Ministerio de Energía. Primero se fija un escenario de referencia, en donde sólo se considera diésel como combustible y luego se establece el escenario propuesto, en donde se sugiere que la tasa de participación del hidrógeno para cubrir la demanda energética en Mina Rajo sea del 1% para el 2022, 10% para el 2030 y 37% para el 2050. Con esto es posible obtener la proyección de la demanda de hidrógeno, cuyo crecimiento se comporta de manera potencial. Así, en el 2022 se estiman casi 5 kton, en el 2030, 51 kton y para el 2050, 290 kton de H2.
Posteriormente, usado el factor de emisión de CO2 eq. del diésel se calcula la proyección de emisiones de GEI para el periodo 2022 – 2050 tanto en el escenario de referencia como en el propuesto, con la finalidad de obtener el ahorro de emisiones, es decir, la cantidad de CO2 eq. que no se generaría con el uso de hidrógeno como combustible en los CAEX. Dicho ahorro llega a 43 kton, 460 kton y 2.583 kton para los años 2022, 2030 y 2050 respectivamente. En cuanto al ahorro acumulado, en el 2050 esta cifra asciende a 31,2 Mton de CO2 eq. que se dejan de emitir.
Adicionalmente, con el propósito de identificar las ventajas y limitantes que tiene Chile para la producción local de hidrógeno verde en el norte del país, se realiza un análisis a nivel perfil de los aspectos técnicos y económicos, recorriendo la cadena de vida del hidrógeno, pero poniendo énfasis en los insumos y en la producción. El H2 se obtendría mediante el proceso de electrólisis en el cual se requiere agua y electricidad. Para este último insumo, se consideran tres escenarios, el primero off – grid con una planta fotovoltaica in situ, el segundo on – grid, conectando el electrolizador a la red eléctrica nacional y el tercero, un mix de suministro, donde el 43% de la demanda energética la cubre una planta FV y el 57% restante se obtiene por la conexión a la red, esto con el objetivo de aumentar el factor de planta.
Por último se calcula el costo nivelado del hidrógeno (LCOH) para los tres casos. La opción off – grid arroja el menor valor, con 3,66 USD/kg H2 y lo que más influye es el costo del electrolizador. En cambio, en las opciones on – grid y mix es el costo de la electricidad lo que más incide en el resultado del LCOH. Al compararlo con el precio del diésel, el costo nivelado del hidrógeno verde actualmente no es competitivo, pero al calcular su valor para el 2030 da como resultado 2,07 USD/kg H2, el cual logra estar dentro del rango de competitividad.
Due to the current climate crisis in which the world finds itself, it is essential to find alternatives that contribute to counteracting the consequences on the environment of excessive greenhouse gas emissions. Green hydrogen is positioned as an important solution that will contribute to Chile's carbon neutrality goal by 2050. In copper mining, the most used fuel is diesel, accounting for 83% of total fuel consumption in 2018. Regarding the use of diesel by processes, 75% is attributed only to Mina Rajo, due to the activities of loading and extraction of minerals through large tonnage trucks known as CAEX. Each of these units annually consumes 1.204.500 liters of diesel and generates 3.320 tons of CO2 eq. For this reason, it is determined that the use of hydrogen as fuel in CAEX with dual motors (operating with a mixture of 60% hydrogen and 40% diesel) is presented as a fundamental measure to mitigate the effects of GHG emissions. To determine the potential demand of hydrogen, the Baseline and Energy Demand Projection of the Ministry of Energy is used. First, a reference scenario is established, where only diesel is considered as fuel and then the proposed scenario is presented, where it is proposed that the hydrogen participation rate to cover the energy demand in Mina Rajo is 1% by 2022, 10% for 2030 and 37% for 2050. With this it is possible to obtain the projection of the hydrogen demand, whose growth behaves in a potential way. Thus, in 2022 almost 5 ktons are estimated, in 2030, 51 ktons and for 2050, 290 ktons of H2 are projected. Subsequently, using the CO2 eq. emission factor of diesel, the projection of GHG emissions for the period 2022 - 2050 is calculated in the reference scenario and in the proposed scenario in order to obtain the emission savings, that is, the amount of CO2 eq. that would not be generated with the use of hydrogen as fuel in the CAEX. The savings are 43 kton, 460 kton and 2.583 kton for the years 2022, 2030 and 2050 respectively. Regarding accumulated savings, in 2050 this amounts to 31,2 Mton of CO2 eq. that are not emitted. Additionally, in order to identify the advantages and limitations that Chile has for the local production of green hydrogen in the north of the country, a profile-level analysis of the technical and economic aspects is carried out, covering the hydrogen life chain, but focusing on inputs and production. The hydrogen would be obtained through the electrolysis process in which water and electricity are required. For this last input, three scenarios are considered, the first off-grid with a photovoltaic plant in situ, the second on-grid, connecting the electrolyzer to the national electricity grid and the third, a supply mix, where 43% of energy demand is covered by a PV plant and the remaining 57% is obtained by connecting to the grid, this with the aim of increasing the plant factor. Finally, the level cost of hydrogen is calculated for the three cases. The off - grid option presents the lowest value, with 3,66 USD/kg H2 and the most influencing is the cost of the electrolyzer. In the on - grid and mix options, it is the cost of electricity that most influences the LCOH result. When compared to the price of diesel, the levelized cost of green hydrogen is currently not competitive, but calculating its value for 2030 results in 2,07 USD kg H2, a value that is within the competitive range.
Due to the current climate crisis in which the world finds itself, it is essential to find alternatives that contribute to counteracting the consequences on the environment of excessive greenhouse gas emissions. Green hydrogen is positioned as an important solution that will contribute to Chile's carbon neutrality goal by 2050. In copper mining, the most used fuel is diesel, accounting for 83% of total fuel consumption in 2018. Regarding the use of diesel by processes, 75% is attributed only to Mina Rajo, due to the activities of loading and extraction of minerals through large tonnage trucks known as CAEX. Each of these units annually consumes 1.204.500 liters of diesel and generates 3.320 tons of CO2 eq. For this reason, it is determined that the use of hydrogen as fuel in CAEX with dual motors (operating with a mixture of 60% hydrogen and 40% diesel) is presented as a fundamental measure to mitigate the effects of GHG emissions. To determine the potential demand of hydrogen, the Baseline and Energy Demand Projection of the Ministry of Energy is used. First, a reference scenario is established, where only diesel is considered as fuel and then the proposed scenario is presented, where it is proposed that the hydrogen participation rate to cover the energy demand in Mina Rajo is 1% by 2022, 10% for 2030 and 37% for 2050. With this it is possible to obtain the projection of the hydrogen demand, whose growth behaves in a potential way. Thus, in 2022 almost 5 ktons are estimated, in 2030, 51 ktons and for 2050, 290 ktons of H2 are projected. Subsequently, using the CO2 eq. emission factor of diesel, the projection of GHG emissions for the period 2022 - 2050 is calculated in the reference scenario and in the proposed scenario in order to obtain the emission savings, that is, the amount of CO2 eq. that would not be generated with the use of hydrogen as fuel in the CAEX. The savings are 43 kton, 460 kton and 2.583 kton for the years 2022, 2030 and 2050 respectively. Regarding accumulated savings, in 2050 this amounts to 31,2 Mton of CO2 eq. that are not emitted. Additionally, in order to identify the advantages and limitations that Chile has for the local production of green hydrogen in the north of the country, a profile-level analysis of the technical and economic aspects is carried out, covering the hydrogen life chain, but focusing on inputs and production. The hydrogen would be obtained through the electrolysis process in which water and electricity are required. For this last input, three scenarios are considered, the first off-grid with a photovoltaic plant in situ, the second on-grid, connecting the electrolyzer to the national electricity grid and the third, a supply mix, where 43% of energy demand is covered by a PV plant and the remaining 57% is obtained by connecting to the grid, this with the aim of increasing the plant factor. Finally, the level cost of hydrogen is calculated for the three cases. The off - grid option presents the lowest value, with 3,66 USD/kg H2 and the most influencing is the cost of the electrolyzer. In the on - grid and mix options, it is the cost of electricity that most influences the LCOH result. When compared to the price of diesel, the levelized cost of green hydrogen is currently not competitive, but calculating its value for 2030 results in 2,07 USD kg H2, a value that is within the competitive range.
Description
Keywords
HIDRÓGENO COMO COMBUSTIBLE , INDUSTRIA MINERA