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ABSTRACT

This Thesis addresses a class of optimization problems that can be found in several

areas, such as system identification and control. Particularly, these problems are formu-

lated by using rank and cardinality constraints in order to obtain low rank matrices or

induce sparsity of the solution.

Rank-constrained optimization problems are found in control and system identifica-

tion. Low-order controller design problems are well known examples where the formu-

lation utilizes Linear Matrix Inequalities (LMIs) and rank constraints over matrices for

bounding the controller’s order and closed loop stability degree.

Promotion of sparsity in identification and control problems can bring many practical

advantages in the final solution. In model selection, by formulating the identification

problem with a cardinality (`0-norm) constraint over the parameter vector, a simplified

or specific structure of the model can be obtained. In control applications sparsity can

be induced on the solution of an optimal control problem, thus limiting the number of

active actuators at each time step.

Although low-rank and sparsity are desirable characteristics in the solution of many

problems of interest, solving these type of problems poses computational difficulties.

Many approaches that rely on approximations and specific tailored solutions are available

in the literature in order to overcome the inherent complexity of the problem. However,
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in this work a novel rank-constraint representation is used which, aims to solve (not an

approximation but) a problem that is equivalent to the original in the sense that they

both have the same global optimum. The resulting problem can also be solved using

standard nonlinear programming tools.

The work hereby presented is divided in three main parts. First, an overview of state-

of-the art techniques for solving cardinality and rank-constrained problems is shown.

The second part of the thesis presents optimization problems with cardinality con-

straints in the field of model selection, parameter estimation and optimal control.

The third part of the thesis addresses a rank-constrained optimization problem when

designing a low-order controller with prescribed degree of stability. The formulation of

this problem includes LMI and rank constraints.

Keywords – Rank-constrained optimization, cardinality-constrained optimization, spar-

sity, system identification, optimal control, low-order controller design.
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Chapter 1

INTRODUCTION

The study and solution of optimization problems that induce sparsity (solution vector

with many entries equal to zero) and have rank constraints on matrices has recently

attracted huge attention. The main reason of this interest is their inherent practical

application, which can found in the formulations of problems in many fields, such as

control theory, signal processing, machine learning, computer vision, among others [1].

A problem inducing sparsity can be formulated by using the `0-(pseudo)-norm (de-

fined as the number of non-zero entries of a vector) as a constraint on the solution vector,

or as a penalization term in the cost function. In addition, the `0-(pseudo)-norm greatly

increases the complexity of the problem due to the `0-(pseudo)-norm being nonconvex

and nonlinear. Moreover, it also adds a combinatorial behavior to the problem.

Due to the high complexity of these type of problems, alternative forms of solution

have been developed in order to avoid the direct treatment of the `0-(pseudo)-norm. One

of the most used techniques is the convex relaxation of the problem, which is achieved

through the use of the `1-norm (LASSO method) [2,3]. Although fast in giving a solution,

this approach does not solve the original problem. Thus the solution, in general, can be

suboptimal. Another issue related to these type of approximations of the `0-(pseudo)-

norm is that they often add additional variables to the problem in order to regulate

the trade-off between sparsity and other desirable features, such as the goodness of

the approximation of the `0-(pseudo)-norm. The correct choice of the value of this

variables has the difficulty of requiring additional knowledge of the solution. Other

approximations of the `0-(pseudo)-norm include the use of the `q-(pseudo)-norm and the

use of exponential approximations [4], which aim to improve the approximation given by

the `1-norm while compromising computational complexity.

When dealing with rank constraints on matrices, iterative algorithms have been de-

veloped in order to find a matrix whose rank complies with a certain bound [5, 6]. The

problem with these algorithms is that in general they treat the problem locally, which

leads to local optima. Approximation of rank constraints are also found in the literature,

such as the use of the nuclear norm instead of the rank constraint [7]. This heuristic

1
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method poses a convex relaxation to the rank constraint, just as the `1-norm is to the

`0-(pseudo)-norm, turning the original problem into a semidefinite optimization problem.

The use of approximations of the `0-(pseudo)-norm and rank constraints often leads

to unsatisfactory results, which has motivated the study of alternative forms of repre-

sentation of the constraints [1, 8–11]. In this work an equivalent representation of the

rank constraint [8] is used to reformulate rank constrained and cardinality constrained

problems. The alternative formulation has the same global optimum as the original

problem.

As stated before, optimization problems involving rank or cardinality constraints

appear in many areas of interest. In system identification, the use of information criteria

such as Akaike’s Information Criterion (AIC) or Bayesian Information Criterion (BIC)

are commonly used when measuring the goodness of fit and complexity of a set of models.

The `0-(pseudo)-norm can be used to state a more general problem by addressing the

cardinality of the parameter vector, and thus the complexity of the selected model.

In the field of optimal control, cardinality constraints can be imposed over the input

vector in a Model Predictive Control (MPC) optimization scheme. By restricting the

cardinality of the input vector at each time step, the number of active inputs of the

control scheme is limited to a certain bound. Finally, rank-constrained optimization

schemes are found in controller design problems. A particular case of this problem is

the low-order controller design with a prescribed order of closed loop stability degree,

which states a feasibility problem involving Linear Matrix Inequalities (LMI) and rank

constraints over matrices.
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1.1 Overview of Thesis Content

A short description of the topics treated in each chapter of the Thesis is given below.

Chapter 2 gives a short introduction on the state of the art methods used for sparsity

and rank-constrained problems.

Chapter 3 addresses the problem of sparse logistic regression using cardinality con-

straints and information criteria, such as AIC. The cardinality of the parameter vector is

accounted by using the `0-(pseudo)-norm. In this problem, an equivalent representation

for rank constraints on matrices [8] is used to reformulate the problem.

Chapter 4 studies the problem of model selection by approximating the `0-(pseudo)-

norm with exponential terms in order to reduce the numerical complexity of the problem.

A problem involving hidden variables in system identification is also studied and solved

using the Expectation-Maximization (EM) algorithm with the exponential approxima-

tion of the cardinality constraint.

Chapter 5 investigates the stability of an optimal feedback control problem with

cardinality constraints on the input vector. Sufficient conditions are provided for guar-

anteeing practical stability of the closed-loop. Solution of the formulated problem is

done by addressing the combinatorial nature of the problem through a differnt frame-

work. The reformulation is carried out by using an equivalent representation of the

cardinality constraint.

Chapter 6 addresses the problem of low-order controller design with prescribed or-

der of stability. An optimization problem stated using linear matrix inequalities with

rank constraint is formulated and solved using an equivalent representation for rank

constraints. Comparison with state of the art methods is also shown.

Chapter 7 summarizes the conclusions of the thesis and proposes possible future

research work.

1.2 Summary of the Contributions of the Thesis

The main contribution of the thesis are the following:

1. The thesis provides an introduction into the field of optimization problems with

cardinality and rank constraints. State of the art approximating methods are pre-

sented together with their benefits and drawbacks. Equivalent representations of

rank constraints proposed by different authors are also studied, and their applica-

tion in problems of interest is analyzed.

2. A classification problem using logistic regression with cardinality constraint over

the number of parameters is presented. Treatment of the `0-(pseudo)-norm as a
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constraint and a penalization term is done using and equivalent representation.

A comparison among standard Maximum Likelihood (ML) estimation, cardinality

constrained ML and the use of Information Criteria, such as AIC, is performed.

This type of problem is of great interest in different areas such as gene selection,

machine learning, among others.

3. Study of an optimization approach for model selection using AIC by treating the `0-

(pseudo)-norm formulation through an approximation utilizing exponential terms.

This approximation reduces, in general, the computational load. Performance of

the proposal is tested through simulation, which gives similar results when utilizing

the original AIC scheme (testing all possible models and then selecting the best

based on AIC). A similar procedure is performed in the case of hidden variables,

where model selection is done using the EM algorithm. In this case, the proposed

method outperforms the original AIC scheme.

4. A problem of feedback control with constrained number of active inputs is inves-

tigated. A novel quadratic model predictive control strategy is presented, where

sparsity and stability of the solution is assured. Sparsity of the solution is treated

by constraining the `0-(pseudo)-norm of the solution vector at each control horizon

instant. Additional bounding constraints are also imposed over the system state

and control input. Alternative solutions are provided for the case of convex and

non-convex bounding, by using a mixed integer linear programming tool (CPLEX)

and non-linear programming tool (BARON) respectively. The computational com-

plexity corresponding to the inherent combinatorial behavior of the resulting opti-

mization problem is reduced, in general, by using an equivalent representation of

the `0-(pseudo)-norm, and solved using standard nonlinear programming tools.

5. A low-order control design with a given closed loop stability degree is studied.

Formulation of the problem includes the use of Linear Matrix Inequalities (LMI)

and rank constraints in order to limit the controller’s order. Solution is carried

out utilizing an equivalent representation, and comparison with state of the art

algorithms is carried out through simulations. The proposed approach outperforms

two algorithms available in the literature, obtaining faster closed loop systems. The

proposed approach makes the formulation and solution of similar control design

problems possible.
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1.3 Publications by the Author

1. Referred journal

(a) R.P. Aguilera, G. Urrutia, R.A. Delgado, J.C. Agüero and D. Dolz, “Stability

Analysis of Quadratic Model Predictive Control with `0-input constraint”,

Submitted to journal.

2. Referred conferences

(a) G. Urrutia, R.A. Delgado, R. Carvajal, D. Katselis and J.C. Agüero, “Sparse

Logistic Regression Utilizing Cardinality Constraints and Information Crite-

ria”, In 2016 IEEE Conference on Control Applications (CCA).

(b) G. Urrutia, R.A. Delgado and J.C. Agüero, “Low-order Control Design Us-

ing a Novel Rank-constrained Optimization Approach”, In 2016 Australian

Control Conference (AUCC).

(c) R. Carvajal, G. Urrutia, and J.C. Agüero, “An Optimization-based Algo-

rithm for Model Selection using an approximation of Akaike’s Information

Criterion”, In 2016 Australian Control Conference (AUCC).

1.4 Notation

Let R and R≥0 denote the real and non-negative real number sets. Uppercase letters

matrices and bold lowercase letters denote vectors. Calligraphic letters denote sets.

rank(A) denotes the rank of a matrix and trace(A) denotes its trace. I denotes an

identity matrix of appropriate dimension. For a vector x, diag(x) denotes the diagonal

matrix with diagonal entries the elements of vector x and |x| denotes the vector with

entries the absolute values of the entries of x. Rn is the set of n × 1 real vectors and

Rm×n is the set of m×n real matrices. Sn stands for the set of n×n symmetric matrices

and Sn+ denotes the set of n × n positive-semidefinite matrices. For the n × n matrices

A, B ∈ Sn, A ≥ B denotes the Löwner partial ordering, i.e., A−B ∈ Sn+. We represent

the transpose of a given matrix A and a vector x via (Ax)′ = x′A′.

Special notation is used in chapter 5 due to additional definitions that help to better

illustrate the problem studied.
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Chapter 2

OVERVIEW ON

RANK-CONSTRAINED

OPTIMIZATION METHODS

2.1 Introduction

In this chapter, a short introduction to state of the art methods for solving optimiza-

tion problems with rank constraints and cardinality constraints is given. These methods

mainly consist of tailored algorithms, approximations or alternative forms of represent-

ing a rank-constraint, all of which aim to reduce the computational complexity of the

problem and improve the goodness of the solution. A small discussion on the benefits

and drawbacks of each method is also presented.

This chapter begins with a short description of the general rank-constrained opti-

mization problem with the special case of cardinality constrained optimization. In order

to contextualize the general problem approach, some applications of these formulations

are mentioned.

In the second part of the chapter, methods for solving rank constrained optimization

problems are shown. A distinction is made between approximations and equivalent

representations. Methods for the particular case of cardinality constrained problems are

also shown.

Finally, a novel representation of rank constraints is shown [8]. This representation

was used for solving system identification and control problems presented in the following

chapters of the thesis.

2.2 Problem Description

Several problems involving rank constraints can be found in a very wide variety of fields.

Some applications of these type of problems include model reduction, controller design,

7
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matrix completion, factor analysis and machine learning, among others.

A general formulation of a Rank constrained optimization problem is as follows

Prco : min
x∈Rp

f(x) (2.1)

s.t. x ∈ Ω

rank(G(x)) ≤ r

where r ∈ R, Ω ⊂ Rn and G(x) ∈ Rm×l are given.

Similarly, another class of problems where the rank of a matrix is to be minimized

can be formulated as

Prco : min
x∈Rp,r∈R

r (2.2)

s.t. x ∈ Ω

rank(G(x)) ≤ r

Rank-constrained optimization problems face the difficulties of being non-linear, non-

convex and having a highly combinatorial nature. These drawbacks tend to increase the

computational load of the problem, specially the fact of having a combinatorial behavior,

which can make a problem with a high number of variables practically unsolvable. Rank-

constrained optimization problems are classified as NP-hard problems, which means there

isn’t a known polynomial time algorithm that would solve all instances of the problem.

Rank-minimization problems may encounter extra difficulties when discerning if a

solution is optimal or not. This drawback of the formulation is due to a wide range

of solutions complying with a certain rank. To help avoiding this behavior, additional

stopping criteria can be added to the solution algorithm together with the addition of

extra terms to the cost functional.

A particular case of rank constrained optimization is cardinality constrained opti-

mization, see (2.3). Cardinality constrained problems can be written in this form by

utilizing a function G(x) with diagonal form. Note that the cardinality constrained

problems tend to promote sparsity over the entries of the solution vector. Cardinal-

ity of a vector is usually represented through the use of the `0-(pseudo)-norm, which

corresponds to the number of non-zero valued entries of a given vector.

Pcco : min
x∈Rp

f(x) (2.3)

s.t. ||x||0 ≤ r

where r is a given constant.
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2.3 Previous Work on Rank-constrained Optimization and rank-minimization

Several attempts on reducing the complexity of rank-constrained problems have been

done in the past.

A result worth mentioning is the one published by Eckart and Young in 1936 [12]. In

that paper, they showed an analytic solution to the problem of approximating a given

matrix by one of lower rank. The problem in question is the following

min
X∈Rm×n

||X − Z||2F (2.4)

s.t. rank(X) ≤ r

for a given Z ∈ Rm×n, where || · ||F is the frobenius norm, which is defined as

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =

√√√√min{m,n}∑
i=1

σi(A)2 (2.5)

where σi(A) denotes de ith singular value of A.

Problem (2.4) has analytic solution (shown in [12]), which corresponds to be a trun-

cated version of the Singular Value Decomposition (SVD) of matrix Z. If Z has the

SVD Z = U [diag(σ(Z))]V ′, then the solution corresponds to only consider the r singu-

lar values with highest absolute value, i.e. X̂ = U1:r[diag(σ1:r(Z))]V ′1:r. The solution is

unique, unless σr(Z) = σr+1(Z) (here σ denotes singular values order in nonincreasingly

order).

Note that the minimum value of (2.4) corresponds to the sum of the squares of the

singular values that were not taken into account when constructing the approximating

matrix. This fact can be also used to solve the following rank minimization problem

min
X∈Rm×n

rank(X) (2.6)

s.t. ||X − Z||2F ≤ ε

where ε is a certain bound for the approximation error.

The result presented in [12], although useful for the case with no additional con-

straints on the solution, represents a motivation for other solution methods.

As shown, rank-constrained optimization is closely related to rank minimization prob-

lems. Rank minimization problems with a convex set as constraint are usually solved by

utilizing the trace heuristic or the nuclear norm and Log-det heuristics. An important

result in this matter is given in [7] where it is proven that the nuclear norm (sum of
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Fig. 2.1: Convex envelope given by g(x) of a function f(x).

the singular values, denoted by || · ||∗) corresponds to the convex envelope of the rank

function, and therefore it is a convex relaxation of the rank constraint.

The convex envelope of a certain set X corresponds to the smallest convex set that

contains the set X (an illustration of this matter can be found in Fig 2.1, which is

available in [7]). The biggest advantage of doing a convex-relaxation is the decrease

in computational load of the problem, which often allows the use of algorithms that

found a solution in polynomial time for its solution. On the down side, the relaxed

problem doesn’t have (in general) the same optimal solution as the original problem.

Nevertheless, the solution obtained from relaxed formulations can be used as a starting

points or as additional information for more complex algorithms. As an example, the

use of the nuclear norm heuristic will give a solution that corresponds to a lower bound

for the true solution.

On the other hand, a solution to the relaxation of a rank minimization problem

over symmetric and positive semidefinite matrices was previously given where by using

the trace heuristic, which although efficient, was constrained to a particular type of

matrices. The use of the nuclear norm generalizes the trace heuristic, which allows for

the attainment of the solution of a much wider class of problems. The general problem

is as follows (for more details see [7]):

min
X∈Rm×n,t∈R

t (2.7)

s.t. rank(X) ≤ t

X ∈ C

By introducing the nuclear norm, a convex relaxation of the problem is achieved:

min
X∈Rm×n

t (2.8)

s.t. ||X||∗ ≤ t

X ∈ C
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Following [7, Lemma 2]), (2.8) can be rewritten as follows

min
X∈Rm×n,Y ∈Rm×mandZ∈Rn×n

trace(Y ) + trace(Z) (2.9)

s.t.

[
Y X

X ′ Z

]
≥ 0

X ∈ C

where C denotes a convex set, matrices Y = Y ′ and Z = Z ′ are slack variables. If the

convex set C can be written as an LMI, problem (2.9) can be solved utilizing standard

semi-definite programming (SDP) tools.

Problems regarding LMI are of great interest in engineering and science. Solution to

this type of problems have been studied using several approaches, including alternating

projection methods [13, 14], Newton-like algorithms [5] and iterative rank minimiza-

tion [6] among others.

Another generalization of the trace heuristic for solving rank constrained optimization

problems can be found in [9]. In this latter, an iteration of convex problems sequence is

defined in order to find low-rank matrices solutions.

The problem of finding low-rank matrices on a convex set can be defined as a feasi-

bility problem as follows

find
G∈Sn

G

s.t. G ∈ C

G ≥ 0

rank(G) ≤ r

where n is a given positive constant, and C ⊆ Rn

As shown in [9] this problem can be equivalently expressed as an iterative convex

procedure, which will have the same global optimum:

min
G∈Sn

〈G,W 〉 (2.10)

s.t. G ∈ C

G ≥ 0

where the slack matrix W corresponds to a direction vector, which is the solution of the

following semidefinte program (SDP) for 0 ≤ r ≤ n− 1
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n∑
i=r+1

λ(G?)i = min
W∈Sn

〈G?,W 〉 (2.11)

s.t. 0 ≤W ≤ I

trace(W ) = N − r

where G? is the solution matrix of problem (2.10) for a given direction matrix W . The

idea of this algorithm is to iteratively solve problems (2.10) and (2.11) until global

convergence is achieved, which is reached when the sum of the n − r non-increasingly

ordered eigenvalues λ of G? are zero (
∑n

i=r+1 λ(G?)i = 0).

Although a condition for optimality is defined, the attainment of the global optimum

is not assured, while local convergence is not guaranteed. This is mainly due to the

additional local minima that the iterative algorithm adds to the resulting problem.

2.4 Previous Work on Cardinality-constrained Optimization

In cardinality constrained (or penalized) optimization problems, the goal is to promote

sparsity on the solution vector, which translates into setting a certain number of entries

from the solution vector to zero. A direct application of this approach is model fitting,

where by reducing the size of the model (number of variables used in the model), better

and more accurate models can be obtained (avoiding overfitting).

As it was noted before, formulating the problem utilizing the `0-(pseudo)-norm in-

troduces a very high computational load because of its combinatorial behavior. In order

to avoid this and reduce runtimes, several authors have replaced the `0-(pseudo)-norm

with other regularization terms of the form shown below in (2.12). The idea of the reg-

ularization term is to approximate in some sense the `0-(pseudo)-norm, simplifying the

problem and reducing its complexity.

Prp : min
θ∈Rp

f(θ) + βR(θ) (2.12)

s.t. θ ∈ Ω

where Ω ⊆ Rp

In the general expression shown in (2.12), f(θ) corresponds to the cost function, β is

a trade-off term between the cost function and the regularization term R(θ).

Setting the value of the regularization parameter is a key part of this type of methods.

The value of the trade-off directly affects the performance of these methods when ad-

justing the number of variables used in the final solution. In the cardinality constrained

version of these approximations (2.13), this issue is present when choosing the constant

bounding the constraint, t:
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Prc : min
θ∈Rp

f(θ) (2.13)

s.t. R(θ) ≤ t

θ ∈ Ω

Some common regularization terms include the use of the `1-norm (LASSO), approx-

imation by the `q-(pseudo)-norm (with 0 < q < 1) or the use of exponential terms [4].

2.4.1 The LASSO

One of the most used techniques for avoiding the use of `0-(pseudo)-norm on the formula-

tion of these problems is the LASSO (Least Absolute Shrinkage and Selection Operator)

method. The LASSO consists of a convex relaxation of the cardinality constrained prob-

lem by utilizing the `1-norm as the regularization term (R(θ) := ||θ||1). The use of the

`1-norm is based on the fact that it is considered the best convex approximation of the

`0-(pseudo)-norm [2, 3, 15]. Although the regularization term introduced in the LASSO

is not strictly convex nor differentiable, several techniques from convex analysis can

be used to solve the resulting optimization problem. Such techniques include proximal

methods [16], subgradient methods [17], semi-smooth Newton [18], among others.

The LASSO technique is used in many research areas when tackling sparsity inducing

problems. As an example, optimal control schemes promoting sparsity by using the `1-

norm can be found in [19–22].

Although by using the `1-norm a convexified version of the original problem is ob-

tained, and thus reducing computation times, in general, the solution will differ from

the solution obtained when solving the original cardinality-constrained problem. This is

due to the `1-norm being just an approximation of the `0-(pseudo)-norm. Another dif-

ficulty of the LASSO can be found when using it in a cardinality constrained problems,

where the bounding constant of the constraint must be set although it does not represent

cardinality. Nevertheless, the benefits of using LASSO are widely known and have mo-

tivated the development of variants which aim to solve some limitation and to improve

results of the technique. These variants are the elastic net [23], group lasso [24–26] and

fused-lasso [27].

2.4.2 Approximation using the `q-(pseudo)-norm

Another popular regularization term used in reducing the complexity of the cardinality

constrained problem is the use of `q-(pseudo)-norm, which is defined as R(θ) := ||θ||q
with 0 < q < 1 [28–32]. Note that this penalty term is non-convex, thus increases
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the computational complexity of the resulting optimization problem in comparison to

the LASSO. However, the advantage of this approach is the possibility of selecting the

“quality” of approximation of the `0-(pseudo)-norm: by choosing q → 0 a much better

approximation of the original problem is achieved, on the cost of increasing the com-

plexity of the problem. On the other hand, while selecting q → 1, the quality of the

approximation worsens while decreasing the computational load. Sparsity of the solution

is improved and the bias related to the use `1-norm as a regularization term is reduced.

The `q-(pseudo)-norm with q = 1
2 is considered the best choice between quality of

the approximation of the `0-(pseudo)-norm and computational load [29,33,34].

Because the resulting problem is non-convex, the attainment of the global optimum

of the optimization problem is a relatively hard task. A particular class of algorithms

developed to provide a solution to problems having non-convex penalty terms are coor-

dinate descend methods [28, 32]. The drawback of this algorithms is that convergence

to the global optimum is not guaranteed and only a special kind of local convergence is

proven.

2.4.3 Approximation using exponential terms

Another approximation of the `0-(pseudo)-norm used in optimization is the use of smooth

non-convex exponential terms [4].

‖θ‖0 ≈ L−
L∑
l=1

e−a|θl|, (2.14)

where L corresponds to the length of the solution vector, and a is a parameter that

adjust the accuracy of the approximation (as the value of a increases, the quality of the

approximation also increases).

From (2.14) it can be seen that the concave exponential term will penalize large

entries from the solution vector θ. This penalization term however, will not exceed the

value L which is the length of the vector, thus being of great interest for cardinality

constraint problems because of the direct relation between the bounding constant and

cardinality.

Solution of this type of problems can be achieved by linear programming iterative

methods [4], which have fast solving times but local convergence.

2.5 Main Result on Rank-Constrained Optimization

In this section we include the following results [8] for clarity and completeness of the

thesis work.
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2.5.1 Rank-Constrained Optimization

The following theorem presents an equivalent representation of rank constraints.

Theorem 1. Let G ∈ Rm×n then the following expressions are equivalent:

1. rank(G) ≤ r

2. ∃WR ∈ Φn,r, such that GWR = 0m×n

3. ∃WL ∈ Φm,r, such that WLG = 0m×n

where

Φn,r = {W ∈ Sn, 0 ≤W ≤ I, trace(W ) = n− r} (2.15)

Proof: For a detailed proof see [8].

Consider the following general rank-constrained optimization problem over a convex

set

Prco : min
x∈Rp

f(x) (2.16)

s.t. x ∈ Ω

rank(G(x)) ≤ r

Now consider the following optimization problem that incorporates bilinear con-

straints

Prco,equiv : min
x∈Rp,W∈Sn

f(x) (2.17)

s.t. x ∈ Ω

G(x)W = 0m×n

0 ≤W ≤ In
trace(W ) = n− r

where Ω ⊂ Rp is a constraining set, the cost function f : Rp → R is the objective function

and G : Rp → Rm×n.

Considering Theorem 1, the two optimization problems Prco and Prco,equiv stated

before are equivalent in the sense that both have the same global optimum.

Theorem 2. A vector x? ∈ Rp is a global solution of Prco if and only if there exists a

W ? such that the pair (x?,W ?) is a global solution of Prco,equiv.

Proof: For a detailed proof, see [8].

A difference with other approaches [1,9] lies in the possibility of this equivalent repre-

sentation to be used in a wider class of rank constrained and rank penalized optimization

problems (it is not limited to positive semidefinite matrices).
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2.5.2 Cardinality-Constrained Optimization

The problem Prco can also be used to solve `0-(pseudo)-norm constrained problems (i.e

cardinality-constrained optimization problems) instead of those involving the rank of a

matrix. The cardinality problem can be stated from Prco by considering G(x) = diag(x).

By this definition, the cardinality of x is expressed by means of the rank of a matrix,

||x||0 = rank(G(x)).

This particular case arises the following corollary:

Corollary 1. [8] Let x ∈ Rn, then the cardinality of x is ||x||0 ≤ r if and only if there

exist a w ∈ {w ∈ Rn|0 ≤ wi ≤ 1, i = 1, ..., n;
∑n

i=1wi = n − r}, such that xiwi = 0,

∀i = 1, .., n.

Next we consider the following `0-(pseudo)-norm constrained optimization problem

P`0co : min
x∈Rn

f(x) (2.18)

s.t. x ∈ Ω

||x||0 ≤ r

From Corollary 1, problem P`0co can be reformulated as an optimization problem

subject to bilinear constraints as follows

P`0co,equiv : min
x∈Rn,w∈Rn

f(x) (2.19)

s.t. wixi = 0, i = 1, ..., n

0 ≤ wi ≤ 1 i = 1, ..., n
n∑
i=1

wi = n− r

x ∈ Ω

2.5.3 Cost function involving `0-(pseudo)-norm

Theorem 1 can also be used in problems that incorporate the `0-(pseudo)-norm in its

cost functional. This is done by using the epigraph notation [35] as follows

Prm : min
θ∈Rp

r (2.20)

s.t. θ ∈ Ω

rank(G(θ)) ≤ r
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where G(x) = diag(x). Problem Prm is equivalent to Prm,eq

Prm,eq : min
θ∈Rp,W∈Sn

n− trace(W ) (2.21)

s.t. θ ∈ Ω

G(θ)W = 0m×n

0 ≤W ≤ I
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Chapter 3

SPARSE LOGISTIC REGRESSION

UTILIZING CARDINALITY

CONSTRAINTS AND

INFORMATION CRITERIA

In this chapter we address the problem of estimating a sparse parameter vector that de-

fines a logistic regression. The problem is then solved using two approaches: i) inequal-

ity constrained Maximum Likelihood estimation and ii) penalized Maximum Likelihood

which is closely related to Information Criteria such as AIC. For the promotion of spar-

sity, we utilize a nonlinear constraint based on the `0-(pseudo)-norm of the parameter

vector. The corresponding optimization problem is solved using an equivalent represen-

tation of the problem that is simpler to solve. We illustrate the benefits of our proposal

with an example that is inspired by a gene selection problem in DNA microarrays.

3.1 Introduction

Sparse estimation problems are of great interest in the scientific community. Several

applications that consider sparse estimation are approached by incorporating a regular-

ization/penalty term as a mean of inducing sparsity, such as the `1-norm in the classical

Lasso [3] and an `1− `2 norm combination in the Elastic Net [23]. However, it is usually

difficult to give those penalties a physical meaning. On the other hand, the `0-(pseudo)-

norm can also be used to promote (induce) sparsity, see e.g [8, 36, 37], and its inter-

pretation is based on understanding that the `0-(pseudo)-norm is a cardinality function

that outputs the number of active elements, i.e. the non-zero ones. Additionally, sparse

estimation problems can be defined as an inequality constrained optimization problem,

see e.g. [38]. A traditional approach to solve `0-constrained optimization problems is to

19
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utilize the so-called Greedy Algorithms [39], which provide a suboptimal solution to the

optimization problem. The solution is computed in several iterations, where, on each

iteration, the element of the parameter vector that has the most impact on the objective

function is included in the solution. The iterations are repeated until the `0-(pseudo)-

norm constraint is satisfied.

Classification algorithms such as logistic regression and support vector machine are

tools to perform fault detection (see e.g. [40, 41]). Logistic regression is applied when

the output is discrete valued and can only take a finite number of values, such as {1, 0}
or “on–off” [42]. Logistic regressions are based on the logistic function, which is defined

by a parameter vector that, in turn, defines the boundaries of the regions in the space

associated with the discrete output values [42,43].

In this chapter we focus on the estimation of sparse parameter vector using an in-

equality constrained Maximum Likelihood (ML) approach based on the `0-(pseudo)-norm

in a logistic regression, in contrast to the more common practice of inducing sparsity by

introducing a penalty term. In [28], a sparse logistic regression problem is solved by

the use of `1/2-norm penalization. The `1/2-norm can be thought as a balance between

the `1-norm and the `q-(pseudo)-norm with q close to 0. In that sense, the `1/2-norm

solution is better than the `1-norm solution in terms of sparseness, while it is also better

than the `q-(pseudo)norm (q close to 0) in terms of convergence [29]. A similar approach

was considered in [44], where a Group Lasso penalized logistic regression model was con-

sidered. The Group Lasso [24] has the advantage of doing variable selection on grouped

variables in linear regression models. This approach is capable to induce sparsity in the

solution of high dimensional problems. In order to obtain sparse estimates, it is common

to choose a bound or threshold to turn into zero the elements of vector θ whose estimates

exhibit an absolute value that is less than the bound. On the other hand, for 0 < q ≤ 1,

it is common to express the `q-(pseudo)-norm of the parameter θ as λ||θ||qq. However,

the choice of the hyperparameter λ and q are of great importance, since they define the

maximum number of zero entries of θ that can be identified [45].

Here, we consider the recently published approach for solving a general class of prob-

lems [8], where `0 inequality constrained optimization problems lie in. The approach

in [8] accounts for a reinterpretation of the original problem, obtaining an equivalent

optimization that is simpler to solve than the original problem. The main goal of our

proposal is the attainment of low complexity models, which can be achieved utilizing

the `0-(pseudo)-norm. On the other hand, a popular method model slection is Akaike’s

information Criterion (AIC) [46], which we also consider for comparison purposes in our

numerical examples.
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3.2 Maximum Likelihood Estimation of Logistic Regression Models

3.2.1 Logistic Regression

Logistic regression is a classification algorithm that models the output of a categorical

dependent variable, that is, the output is discrete valued (taking, in general, a limited

and fixed number of possible values) and can express the presence or absence of a given

attribute or characteristic (known as class). The model considered in logistic regressions

is based on the sigmoid or logistic function

c(z) =
1

1 + e−z
, (3.1)

where z ∈ R is the independent variable used for predictions in the logistic regression

model [42]. Notice that ∀z ∈ R, 0 < c(z) < 1, which allows for the logistic function to be

interpreted as an estimation of the probability that a given attribute is present or not.

In general, the variable z is defined in terms of a regression and a parameter vector θ.

In turn, training data (measurements, surveys, etc.) is used to estimate θ. In particular,

for a linear classifier, the variable z is modelled as

z(x) = a′x+ b, (3.2)

where a ∈ RM , x ∈ RM , b ∈ R. Thus, θ = [a′ b]′. The definition of z(x) in (3.2) maps

an M dimensional space to the probability of a given class or feature [47].

The resulting model that describes the probability of a given set of attributes be-

longing to a certain class is given by

p(Y = yi|X = xi) = c(xi;θ) =
1

1 + e−(x
′
ia+b)

, (3.3)

whereX is the set of characteristics or attributes that are related to a given class through

the probability of Y for a given xi. For example, if the model considers an “on-off” (or

“present-absent”) characteristic, then Y = {y1, y2} represents the set of classes and X

is the set of grouped attributes. Then p(Y = y1|X = xi) = 1− p(Y = y2|X = xi).

3.2.2 Logistic Regression ML Estimation

For a logistic regression, the likelihood function is defined in terms of the individual

probabilities of each possible value of the output variable. Thus, for a collection of N

samples, we have

p(y|θ) =

N∏
i=1

p(Y = yi|X = xi), (3.4)
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where y = [y1, ..., yN ]′. Hence, the log-likelihood function is defined as

`(θ) =
N∑
i=1

log p(Y = yi|X = xi). (3.5)

For a binomial logistic regression, with data set {zi, yi}N1 , where yi ∈ {0, 1} and

zi = z(xi), the likelihood function is defined as [47]

p(y|θ) =
N∏
i=1

κzii (1− κi)1−zi , (3.6)

with

κi = p(Y = yi|X = xi) =
1

1 + e−(x
′
ia+b)

.

In case of indexing the classes as yi ∈ {−1, 1}, after a mathematical arrangement,

the probability of the pair (xi, yi) can be written in the following general form

P (Y = yi|X = xi) =
1

1 + e−yi(x′a+b)
(3.7)

Using (3.5), the negative log-likelihood can be written as follows

`(a, b|S) =

N∑
i=1

lse(0,−yi(x′ia+ b) (3.8)

where lse(w) = log(
∑n

i=1 e
wi) is the LogSumExp function.

3.3 Sparse Parameter Estimation in Logistic Regression Systems

3.3.1 Constrained ML Estimation in Logistic Regressions

A sparse estimate for the parameter vector θ can be obtained by solving the following

cardinality-constrained optimization problem:

P : min
θ

`(y|θ) (3.9)

s.t. ||θ||0 ≤ r

where the cardinality of θ is constrained by ||θ||0 ≤ r, limiting the complexity of the

model. In general, the optimization problem (3.9) involves a high computational cost.

On the other hand, the wrong choice of r might result in an increase of the bias in the

estimator (3.9). To avoid this problem, we consider the alternative and equivalent (has
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Fig. 3.1: Parameter estimation via Maximum Likelihood.

the same global optimum) optimization problem (see Apendix B, Corollary 1)

Peq : min
θ,w

`(y|θ) (3.10)

s.t. θiwi = 0 i = 1, ...,M + 1

0 ≤ wi ≤ 1, i = 1, ...,M + 1

M+1∑
i=1

wi = M + 1− r

where w = [w1, ..., wM+1]
′ is a latent variable that allows for this representation of (3.9)

based on the incorporation of a linear and a bilinear constraint. Here, `(y|θ) denotes a

negative log-likelihood function.

3.3.2 AIC Applied to Logistic Regressions

Another way to induce sparsity in a model description is by considering the complexity

and the goodness of a model (i.e. the number of elements) in the cost function, as

in Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC)

[46, 48]. In particular, AIC considers the number of parameters and the likelihood of

these parameters fitting the model, and gives a measure of balance between them. The

smaller the AIC number, the better the choice of parameters. For a system model defined

by a parameter vector θ, AIC is given by

AIC(θ) = 2r − 2`(y|θ) (3.11)
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where r is the number of parameters used and `(y|θ) is the log-likelihood function of

the model. For different model structures, the selection of the best model is carried out

simultaneously by the following minimization problem [49]

PAIC : arg min
θ

2(||(θ)||0) + 2`(y|θ) (3.12)

where the cardinality of θ is expressed in terms of its `0-(pseudo) norm. Remark: Note

that problems (3.9) and (3.12) are similar. However in (3.9) cardinality of the parameter

vector is imposed as a hard constraint, whereas in (3.12) the penalty term promotes

sparsity. In the same way, traditional sparsity problems can be rewritten as in (3.9).

In a similar way to Peq in (3.10), PAIC can be reformulated as (see Apendix C):

PAIC,eq : min
θ,w∈RM+1

2(M + 1−
M+1∑
i=1

wi) + 2`(θ|S) (3.13)

s.t. θiwi = 0 i = 1, ...,M + 1

0 ≤ wi ≤ 1, i = 1, ...,M + 1,

where the term M + 1−
∑M+1

i=1 wi is an upper bound of ||θ||0.
The optimization problems Peq and PAIC,eq defined in (3.10) and (3.13) are equivalent

to the problems P and PAIC in (3.9) and (3.12) respectively in the sense that they have

the same global optima. However, the equivalent problems in (3.10) and (3.13) have

more local minima than the original ones [8, 50,51].

The main benefit of these equivalent representations is that they might help to re-

duce the computational load corresponding to the combinatorial nature of the original

problems and have recently been analyzed in [52]. In addition, these problems can be

solved by a standard nonlinear programming software, such as BARON [53,54].

Note that the problems (3.9) and (3.12) have non-convex functionals, which implies

that traditional optimization toolboxes such as CPLEX and CVX cannot be directly

applied.

3.4 Numerical Example

In this section we investigate the performance of the proposed strategy to the solution

of the sparse logistic regression. Our motivation comes from a specific application that

has attracted a lot of interest in recent years in the Bioinformatics community, namely

the gene selection based on DNA microarrays for the diagnosis of cancer. The main goal

is to identify the gene biomarkers so that different types of cancer are easily classified

and predicted with high accuracy. The corresponding mathematical problem for gene

selection involves an appropriate regularization step to adequately deal with the high
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Fig. 3.2: Parameter estimation via `0-(pseudo)-norm constrained Maximum Likelihood.

dimensionality and ill-conditioning of the selection process. This is due to the fact that

from a biological perspective, only a small subset of genes is strongly indicative of a

targeted disease and most of the genes are irrelevant to the classification of different

types of cancer [28]. Irrelevant selected genes may reduce the accuracy and distort the

process of classification.

For our problem, let us suppose that we have N samples S = {(x1, y1), (x2, y2), ...,

(xN , yN )}, where xi = [xi1, xi2, ..., xiM ]′ is the ith input pattern, denoting the M fea-

tures/genes and yi ∈ {−1, 1} indicates the class of the corresponding sample with respect

to a specific cancer type.

The classifier for any input/output pair (xi, yi) is selected to be the logistic regression

model shown in (3.3). Therefore, for any gene set xi, the classifier c(xi;θ) predicts the

corresponding class of cancer type yi. Thus the probability of cancer type Y = 1 for a

given set of attributes can be written as:

P (Y = 1|X = xi) = c(xi;a, b). (3.14)

which corresponds to the probability that a given gene pattern belongs to a class of

a specific cancer type, given a certain linear combination of the predictors (genes).

The simulation setup is as follows:

i) a set of vectors f i0,f i1, ...,f ip, i = 1, 2, ..., N is drawn according to the standard

normal distribution N (0, I),

ii) given a correlation coefficient ρ ∈ [0, 1], the entries of the regressors are generated
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according to the relationship xij = fij
√

1− ρ+ fi0
√
ρ, j = 1, 2, ...,M [55],

iii) the simulated data is generated according to the logistic model z(x) = x′a+ b,

iv) additive noise is included in order to account for unobserved differences that may

correspond to modelling error or measurement noise, obtaining

c̃(xi;θ) =
1

1 + e−(a′xi+b+νi)
, (3.15)

with νi ∼ N (0, σ2), σ = 0.2.

For the simulations, M = 10, N = 200, b = 0, a = [1 1 − 1 − 1 1 0 0 0 0 0]′, and the

cardinality of the solution (r) is set to be equal to the number of parameters used in

(3.15), that is ||a||0 = 5 (since b = 0). We also consider 30 Monte Carlo simulations.

Note that θ = (a, b).

In order to compare the results, we calculate the average error and standard deviation

of the estimates for each coefficient. The average error ε̄i for an estimated coefficient is

taken as follows

ε̄i =
1

Nexp

Nexp∑
j=1

θ0i − θ
[j]
i (3.16)

where Nexp is the number of Monte Carlo simulations, θ0i is the true parameter and θ
[j]
i

is the i-th parameter estimate corresponding to the j-th experiment.

The standard deviation σi for each estimate is calculated as follows

σi =

√√√√ 1

Nexp

Nexp∑
j=1

(θ
[j]
i − ε̄i)2 (3.17)

The results of the numerical examples are shown in Figs. 3.1, 3.2, and 3.3, where the

average error and standard deviation of the estimates are plotted. In Fig. 3.1 we show

the estimation error and standard deviation for ML estimation. The average number of

non-zero elements used in the solutions is 11, thus the estimates are clearly not sparse. In

Fig. 3.2 the estimation error and deviation of the estimates of problem Peq are shown.

Clearly, the estimation error is smaller than the one obtained by using ML, and the

standard deviation is even much smaller for the coefficients that are zero in the original

model. Finally, in Fig. 3.3 we show the corresponding error estimates and deviation

of the estimates for AIC. The estimation error is bigger compared to the ones obtained

from Peq, but smaller in comparison with the ML approach. The standard deviations of

the last six coefficients are also smaller than the ML approach, showing that the most

plausible model only included the first 5 nonzero elements of a and b = 0.
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Fig. 3.3: Parameter estimation via Akaike’s Information Criteria (AIC).

3.5 Conclusion

In this chapter we addressed a sparse logistic regression estimation problem. We have

studied two approaches: i) penalized Maximum Likelihood via AIC and ii) constrained

ML. The inequality constraint is obtained by utilizing the `0-(pseudo) norm of the pa-

rameter vector, which accounts for its cardinality. The corresponding optimization prob-

lem is then rewritten in an equivalent form, yielding a less computationally demanding

problem. We compared our solutions against standard Maximum Likelihood estimation

estimates. The simulations show that constrained ML performs better than AIC and

ML when the number of features is known.
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Chapter 4

AN OPTIMIZATION-BASED

ALGORITHM FOR MODEL

SELECTION USING AN

APPROXIMATION OF AKAIKE’S

INFORMATION CRITERIA

In this chapter, we consider an optimization approach for model selection using Akaike’s

Information Criterion (AIC) by incorporating the `0-(pseudo)-norm as a penalty func-

tion to the log-likelihood function. In order to reduce the numerical complexity of the

optimization problem, we propose to approximate the `0-(pseudo)-norm by an exponen-

tial term. We focus on problems with hidden variables— i.e. where there are random

variables that we cannot measure, and the Expectation-Maximization (EM) algorithm.

We illustrate the benefits of our proposal via numerical simulations.

4.1 Introduction

The utilization of Information Criteria is perhaps one of the most common ways to

solve model selection problems [56–58]. In particular, Akaike’s Information Criterion

(AIC) [59] and the (asymptotic) Bayesian Information Criterion (BIC) [48] are based

upon the formulation and the evaluation of the likelihood function and on a penalty

term that involves the number of parameters of the chosen system model. Thus, the

incorporation of the penalty promotes the attainment of low complexity models. How-

ever, the implementation of AIC and BIC usually involves high computational loads,

particularly when the candidate models are of high dimension. This is due to the fact

that AIC and BIC are usually solved in a combinatorial fashion, evaluating the corre-
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sponding cost function for every parameter combination. To overcome this difficulty, the

`0-(pseudo)-norm can be introduced as a penalty for the likelihood function, accounting

for the cardinality of the parameter vector. On the other hand, the `0-(pseudo)-norm

also introduces a high computational load, which is reduced by replacing it by one of

the less demanding, more “friendly” approximations. Those approximations include the

`q-(pseudo)-norm [30–32] (0 < q < 1) and the `1-norm [3,60], traditionally associated to

sparsity identification problems.

In this chapter, we consider the utilization of another approximation of the `0-

(pseudo)-norm [4]. This approximation has been considered for classification and cardi-

nality constrained problems, see e.g. [61, 62] and the references therein. Our departure

from the works mentioned here corresponds to the application of the `0-(pseudo)-norm

and its approximation (as in [4]) to perform model selection in dynamical systems with

hidden variables. Those hidden variables correspond to variables for which there are

no available measurements. However, if their behaviour can be modelled, they can be

estimated. In particular, a popular tool for system identification with hidden variables

is the Expectation-Maximization (EM) algorithm [60, 63, 64]. In this context, the `0-

(pseudo)-norm is applied to the corresponding E-step.

4.2 Akaike’s Information Criterion

Without loss of generality, and for simplicity of the presentation, as a mechnism for

performing parameter estimation we focus on AIC. However, our results directly apply

to (asymptotic) BIC as well.

Akaike’s information criterion establishes a relationship between Maximum Likeli-

hood (ML) estimation and the Kullback-Leibler information [57]. This relationship can

be expressed as:

AIC = − log p(y|θ) + L, (4.1)

where p(y|θ) is the likelihood function, y is the measurement data, θ the parameters to

be estimated, and L is the number of estimated parameters. In AIC, the goal is to obtain

a model that minimizes the expression in (4.1), not only providing a good fit but also

with the minimum of parameters possible, penalizing the dimension of the parameters.

4.2.1 AIC via the `0-(pseudo)-norm

The `0-(pseudo)-norm accounts for the cardinality of a vector. That is, if the dimen-

sion of a vector v is L, and there are no zero elements in v, then ‖v‖0 = L. In the

same way, ‖[v′, 0, 0, 0, 0, 0]′‖0 = L. This behaviour of the `0-(pseudo)-norm allows for a
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Fig. 4.1: Approximations of the `0-(pseudo)-norm.

reformulation of AIC as:

AIC = − log p(y|θ) + ‖θ‖0, (4.2)

and the model is selected as

θ̂ = arg min
θ
− log p(y|θ) + ‖θ‖0. (4.3)

The problem in (4.3) can be solved in different ways see e.g. [8, 65] and the references

therein. However, there is a high computational cost associated to those solutions.

Nevertheless, the computational load can be reduced by approximating ‖θ‖0 by a suitable

expression.

4.2.2 Approximations of the `0-(pseudo)-norm

Among others, the `q-(pseudo)-norm [30–32] (0 < q < 1), λ‖θ‖qq, and the `1-norm [3,60],

λ‖θ‖1, are common choices for approximating ‖θ‖0. Another approximation, that has

been utilized in the area of optimzation (and is not very popular in the areas of system

identification and signal processing) is [4]

‖θ‖0 ≈ L−
L∑
l=1

e−a|θl|, (4.4)

where a > 0. The behaviour of the approximation in (4.4) is illustrated in Fig. 4.1.

Clearly, from Fig. 4.1, the approximation that behaves the closest to ‖θ‖0 is given

by (4.4), with a >> 0. In fact, the greater a, the closer the approximation in (4.4) is to

the actual `0-(pseudo)-norm.
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Fig. 4.2: Boxplot of model selection for a linear regression system using AIC.

4.3 Numerical Examples

4.3.1 Linear regression system

To illustrate the performance of the proposed method, we first consider the following

linear system:

yk = u′k:k+L−1θ + wk, (4.5)

where θ = [0.54, 1.83,−2.26, 0, 0, 0, 0, 0, 0, 0.86, 0.32,−1.31] is the unknown parameter

vector, uk:k+L−1 = [uk, uk+1, ..., uk+L−1]
′ is a known input signal, and wk ∼ N (0, σ2w)

is the measurement noise. The estimation and model selection procedure is carried out

via AIC (4.1), evaluating all the possible combinations of parameters for θ, and via

the `0-(pseudo)-norm using (4.4), with a = 100. For this example, we have considered

N = 200 measurement points and 150 Monte Carlo simulations. The initialization of the

algorithm is given by the least squares estimate of θ. The results are shown in Fig. 4.2.

The behaviour that is obtained by applying the approximation ‖θ‖0 ≈ L−
∑L

l=1 e
−a|θl|
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Fig. 4.3: Boxplot of model selection for a linear regression system using the proposed `0 approx-

imation.
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is very similar to the one obtained by applying AIC directly. In fact, most of the zeros

(from every Monte Carlo simulation) were found by both AIC and our proposal, with

the approximation showing a nearly identical performance as AIC, as shown in Fig. 4.2.

4.3.2 Nonlinear system with hidden variables

Here we have considered the following nonlinear system:

zk+1 = 0.9zk + ξk,

yk = sin

(
ω(k − 1)

N
+ zk

)
u′k:k+p−1θ + ηk, (4.6)

where uk:k+L−1 = [uk, uk+1, ..., uk+L−1]
′ is a known input, θ = [−0.77,−1.55, 0, 0, 0, 0, 0.46]′

is the unknown parameter vector, N = 200 is the number of measurement points, ω = 5

is a known constant parameter, ξk ∼ N (0, 0.1), and ηk ∼ N (0, 0.1). For the estima-

tion of θ, the log-likelihood function in (4.3) is replaced by the corresponding auxiliary

function Q(θ, θ̂
(i)

) from the E-step in the EM algorithm. That is, the problem to solve

(iteratively) is given by:

E-step: Compute
Q
(
θ, θ̂

(i)
)

= E
[
log p(z,y|θ)|y, θ̂(i)

]
.

M-step: Solve
θ̂
(i+1)

= arg max
θ
Q
(
θ, θ̂

(i)
)
.

For more details on the EM algorithm see e.g. [30, 60, 63, 64, 66] and the references

therein. Notice that the attainment of the auxiliary function Q
(
θ, θ̂

(i)
)

depends upon

the attainment of p(z|y). In this example, we have considered the utilization of Particle

Filtering and Particle Smoothing [67] for that purpose. On the other hand, for the

attainment of the estimates utilizing AIC, the auxiliary cost function Q
(
θ, θ̂

(i)
)

must

be solved for every possible system model structure, i.e. every parameter combination.

As explained before, to overcome this difficulty, we utilize the approximation ‖θ‖0 in

(4.4), which implies that the auxiliary cost function Q
(
θ, θ̂

(i)
)

in E-step is modified as

follows:

Q
(
θ, θ̂

(i)
)

= E
[
log p(z,y|θ)|y, θ̂(i)

]
− L+

L∑
l=1

e−a|θl|. (4.7)

Note thatQ
(
θ, θ̂

(i)
)

in (7) is now non-convex. We compare the performance in obtaining

the correct model structure of two methods for applying AIC based on the EM algorithm:

i) when AIC is directly utilized (we optimize for all the models candidates). This is

an optimization problem that is combinatorial in nature.

ii) when replacing the `0-(pseudo)-norm with the approximation in (4.4). We pro-

pose to minimize the cost function by using BARON [54], a toolbox for global

optimization based on the optimization technique known as branch-and-cut [53].
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We have also considered 55 Monte Carlo simulations. The initialization of the algorithm

is given by least squares assuming that there is no hidden variable. The results are

shown in Fig. 4.4. In this figure, the estimates exhibit a similar behaviour as for the

linear example presented in the previous section. Here the zeros of θ were correctly

estimated in most of the Monte Carlo simulations. Additionally, the performance of the

estimator in (4.4) is better than directly applying AIC (4.1), which is shown in Fig.

4.5. This improved performance is due to the fact that the EM algorithm allows for the

attainment of a local optima. Thus, when evaluating all the parameter combinations, the

spaces in which the local optima are obtained are different to each other, and hence the

filtering processes as well, yielding in many situations an incorrect estimate. In contrast,

the incorporation of the regularization term (the approximation of the `0-(pseudo)-norm)

allows for performing the filtering and optimization processes in the correct space, and

thus the attainment of the correct model is more achievable.

4.4 CONCLUSIONS

In this chapter we have shown an optimization approach for model selection using AIC

based on an approximation of the `0-(pseudo)-norm. Our analysis has been performed

on a simulation basis, resulting in a good performance of our proposal, obtaining a

very similar result to what is obtained when using the original AIC cost function when

there are no hidden variables and with a considerable reduction of the computational

load. On the other hand, in the case with hidden variables, our approach not only re-

duced the computational load, but also outperformed the method of directly optimizing

the auxiliary function with an `0-(pseudo)-norm penalization term. The reason of the

attainment of a different solution is that the EM algorithm is a local optimization algo-

rithm. This implies that incorporating the penalization term in the optimization of the

auxiliary function improves the capacity of finding the global optima when utilizing the

EM algorithm.
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Chapter 5

STABILITY ANALYSIS OF

QUADRATIC MODEL

PREDICTIVE CONTROL WITH

`0-INPUT CONSTRAINT

We investigate feedback control with a constrained number of active inputs. This prob-

lem is known as sparse control. Specifically, we describe a novel quadratic model predic-

tive control strategy that guarantees sparsity by bounding directly the `0-(pseudo)-norm

of the control input vector at each control horizon instant. Besides this sparse constraint,

bounded constraints are also imposed to both control input and system state. Under

this scenario, we provide sufficient conditions for guaranteeing practical stability of the

closed-loop. Without introducing any relaxation in the sparsity constraints, we turn the

combinatorial optimization problem into an equivalent optimization problem that can

be solved utilizing standard non-linear programming toolboxes that returns the global

optimum input control sequence.

5.1 Introduction

Classical control theory considers the full control action vector to govern a process [68].

However, in the latest years the control community has been attracted to study the

so-called sparse control [69], where one intend to control a process employing a reduced

number of inputs, see e.g. [70, 71]. Decreasing the number of active control inputs can

benefit the operation of control systems. For instance, sparse control has been proposed

in [72] to alleviate the traffic information when dealing with limited communication

resources. This can also be useful to reduce the power budget when transmitting through

self-powered devices [73]. Considering the spacecraft rendezvous problem, sparse control
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was deployed in [20] to minimize propellant ejection and to accommodate the minimum

impulse constraint.

Other research fields have also incorporated sparse vectors, which have gained an

increasing number of interesting applications in system identification [60, 74], state es-

timation [75], compressive sampling [76, 77], power networks [78], and over-actuated

control systems [19] among others.

The inherent characterization of sparsity is through the `0-(pseudo)-norm (number

of non-zero elements of a vector). However, explicitly including `0-(pseudo)-norm con-

straints in the control decision problem leads to an NP-hard combinatorial problem [79].

Mainly, three approaches have been proposed in optimal control problems to avoid the

involved computational burden: i) a greedy algorithm known as Orthogonal Matching

Pursuit (OMP) algorithm [72], ii) a `1-norm relaxation [21,70] and more recently iii) an

algorithm based in coordinate descent type methods [80].

OMP algorithms [38] rely on computing suboptimal solutions satisfying `0 con-

straints. Even if it is computationally inexpensive, adding further constraints into the

optimization problem (as states and control inputs belonging to convex sets) is not a sim-

ple task. However, approaches based on a `1-norm relaxation do offer enough flexibility

to introduce these kind of constraints. Despite the fact that in [74] the authors proposed

an approach to choose the regularization parameter of a modified `1-norm regularization

algorithm, the `1-norm has no clear meaning in most application (as it just represent the

sum of the absolute values). On the other hand, coordinate descent type methods [81],

where one decision variable is update at each iteration by means of some selection rule,

handle the `0-(pseudo)-norm but provide only local minima [80].

Works such as [20,21,71] and [72] have introduced sparsity constraints on the control

inputs when dealing with model predictive control (MPC) problems. While in [20,21,71]

the authors also included extra convex constraints in the optimization procedure, in [72]

this issue is not clarified. Still, these approaches evade `0-(pseudo)-norm restrictions and

lack of limiting the number of active control actions at each control horizon instant.

In the current work, we develop a receding horizon technique for quadratic MPC con-

trollers with explicitly `0-constraints on each control horizon instant. The contribution

of the current work is twofold: i) we establish sufficient conditions to guarantee asymp-

totic and practical stability of the closed loop system considering that the input sequence

staisfies a combination of a non-convex (but closed) and a cardinality constraints, and ii)

we re-write the corresponding optimization problem into an equivalent form that, in the

simulation study in section 5.6 performs better than alternative formulations available

in the existent literature [62]. Also, as another novelty, we address the chattering phe-

nomenon (infinite frequency of switching of active control inputs [82]) when the system
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is close to the origin by using a dual-MPC strategy. This work extends the work in [36]

by: i) including extra bounded constraints (on the states and control actions) in the

optimization problem, ii) guaranteeing practical stability instead of exponential stability

(due to the additional constraints), iii) considering the problem of chattering and iv)

improving the `0 optimization algorithm to obtain a global optimum instead of a local

one.

The remainder of this chapter has the following structure. Section 5.2 introduces

some preliminary definitions on practical stability. In Section 5.3 we describe the MPC

control problem with `0 constraints. The `0 optimization algorithm is discussed in Sec-

tion 5.4 and in Section 5.5 we address the stability issues. Numerical studies are included

in Section 5.6 and Section 5.7 draws conclusions.

Special Notation for Chapter 5

The difference between two given sets A ⊆ Rn and B ⊆ Rn is denoted by A\B =

{x ∈ Rn : x ∈ A,x /∈ B}. The Euclidean norm is denoted via | · | while the weighted

Euclidean norm (squared) is denoted by |x|2P = x′Px. Additionally, the induced norm of

a given matrix A is its largest singular value. The maximum and minimum eigenvalues

of a given matrix A are represented via λmax(A) and λmin(A) respectively. ~0m, and ~1m

denote vectors with only zero or one entries respectively. Vector ei represents the i-th

column of the identity matrix, and it is used jointly with a given vector to represent its

i-th entry.

Definition 1. A function σ: R≥0 → R≥0 is said to be a K-function if it is continuous,

strictly increasing and σ(0) = 0

Definition 2. σ is a K∞ function if it is a K-function and unbounded (σ(s) → ∞ as

s→∞)

Definition 3. A function β: R≥0×R≥0 → R≥0 is a KL-function if it is continuous and

if, for each t ≥ 0, the function β(·, t) is a K-function and for each s ≥ 0 the function

β(s, ·) is non-increasing and satisfies β(s, t)→ 0 as t→∞.

5.2 Preliminaries: Practical Stability

In this section, the main aspects on practical stability for discrete-time systems are given.

These concepts are based on the regional input-to-state practical stability framework

presented in [83,84]. Here, the term regional is related to the fact that stability properties

hold only in a specific region, which is often the case when system constraints are present,
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see [85]. The term practical is used to emphasize that, in some cases, only stability of a

neighbourhood of the origin can be guaranteed, see e.g., [86].

Consider a discrete-time system described by:

xk+1 = f(xk), f(0) = 0, (5.1)

where xk ∈ Rn is the system state and f(·) is not necessarily continuous.

Definition 4 (Positively Invariant Set). A set A ⊆ Rn is said to be a positively invariant

(PI) set for the system (5.1) if f(x) ∈ A, for all x ∈ A.

Definition 5 (UpAS). The system (5.1) is said to be Uniformly practically Asymptoti-

cally Stable (UpAS) in A ⊆ Rn if A is a PI set for (5.1) and if there exist a KL-function

β, and a nonnegative constant δ ≥ 0 such that

|xk| ≤ β(|x0|, k) + δ, ∀x0 ∈ A, k ∈ N.

Particularly, if δ = 0 then, system (5.1) is said to be UAS. If A , Rn then, system (5.1)

is said to be globally UpAS.

Definition 6 (Practical-Lyapunov function). A (not necessarily continuous) function

V : Rn → R≥0 is said to be a practical-Lyapunov function in A for the system (5.1) if A
is a PI set and if there exist a compact set, Ω ⊆ A, neighbourhood of the origin, x = 0,

some K∞-functions α1, α2, and α3, and a constants d ≥ 0, such that

V (|x|) ≥ α1(|x|), ∀x ∈ A, (5.2)

V (|x|) ≤ α2(|x|), ∀x ∈ Ω, (5.3)

V (f(x))− V (x) ≤ −α3(|x|) + d, ∀x ∈ A. (5.4)

If A , Rn then, the function, V , is said to be a global practical-Lyapunov function.

Theorem 3 ( [84]). If (5.1) admits a practical-Lyapunov function in A, then it is UpAS

in A.

5.3 Problem Description

Consider the following discrete-time linear time-invariant system:

xk+1 = Axk +Buk, (5.5)

where xk ∈ X ⊆ Rn is the system state, uk ∈ U ⊆ Rm is the control input vector.

Here, both X and U are assumed to be compact sets which contain the origin in its
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interior. Moreover, convexity is only assumed for X. The pair (A,B) is assumed to be

stabilizable where the matrix A is not necessarily Schur stable. In this case we seek

to control system (5.5), if possible, by using an MPC with a reduced number of active

inputs γ, i.e., γ ∈ {0, . . . ,m}. To this end, one needs to design a controller which can

provide the best possible actuation considering only γ active inputs while the remaining

m− γ inactive inputs will take a null value. For this problem, we denote by σ ∈ Rm the

binary vector which indicates the active and inactive inputs, i.e., the i − th component

of σ is given by:

e′iσk =

{
1 if e′iuk is active,

0 otherwise (e′iuk = 0),

for all i ∈ {1, . . . ,m}, where ei is the i-th column of the identity matrix. Thus, the

number of non-zero elements of vector σk (`0-(pseudo)-norm) is |σk|0 = γ. To formulate

the MPC optimal problem, we first consider the following cost function

VN (x, ~u) =
N−1∑
j=0

`(x̂j , ûj) + Vf (x̂N ), (5.6)

where N is the prediction horizon, and `(x̂, û) = |x̂|2Q+ |û|2R is the stage cost with Q and

R positive definite matrices, while the term Vf (x̂) = |x̂|2P , in which P is positive definite,

represents the terminal cost. The vector ~u in (5.6) contains the tentative control actions

over the prediction horizon, i.e.,

~u =
[
û′0, . . . , û

′
N−1

]′ ∈ RNm.

The MPC optimization of interest for the current state, xk = x, is given as

PN (x) : V op
N (x) = min

~u
{VN (x, ~u)}, (5.7)

subject to: x̂j+1 =Ax̂j + ûj , (5.8)

ûj ∈U, (5.9)

x̂j ∈X, (5.10)

|ûj |0 ≤γ, (5.11)

x̂N ∈Xf ⊆ X, (5.12)

for all j ∈ {0, . . . , N − 1}, where x̂0 = xk and γ ≤ m.

Here, (5.9) and (5.10) take into account the system bounded constraints, where U
is not necessarily convex. Constraint (5.11) encompasses the number of active inputs

(sparse) constraint over the prediction horizon. Constraint (5.12) is the, so-called, ter-

minal constraint. Similarly to convex MPC formulations, the terminal region Xf and
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Fig. 5.1: Illustration of an optimal active input sequence, ~σop, for a prediction horizon N = 4.

matrix P can be designed to guaranty stability of the resulting closed-loop [87]. Their

design will be considered in the stability analysis presented in Section 5.5. We define

the set U(x) to represent all the input sequences sequences, ~u, which satisfy constraints

(5.9)-(5.12).

Consequently, the optimal input sequence, ~uop(x), is the one which minimizes the

cost function, i.e.,

~uop(x) , arg

{
min

~u∈U(x)
VN (x, ~u)

}
.

Thus, the resulting optimal solution is the, so-called, optimal input control sequence

~uop(x) =
[
(ûop0 )′, . . . , (ûopN−1)

′]′ , (5.13)

while the resulting optimal state sequence is:

~xop(x) =
[
x′, (x̂op1 )′, . . . , (x̂opN )′

]′
.

Additionally, for this particular problem, we also obtain the resulting optimal active

input sequence, given by:

~σop(x) =
[
(σop0 )′, . . . , (σopN−1)

′]′ .
Notice that the elements of ~σop(x) may differ from each other. However, |σopj | ≤ γ for

all j ∈ {0, . . . , N − 1}. For example, if N = 4, m = 3 and γ = 2 a possible ~σop(x) is

shown in Fig. 5.1.

We also denote the domain of attraction of the cost function, VN (x), via

XN , {x ∈ X : U(x) 6= ∅}.

Therefore, XN contains all x ∈ X such that there exists a control sequence ~u ∈ U(x)

satisfying conditions (5.9)-(5.12).
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Finally, we use a receding horizon technique, i.e., only the first element of ~uop(x)

is applied to the system at each sampling instant (see, e.g. [87]). The solution of the

optimal problem, PN (x) in (5.7), yields the sparse MPC law, κN (·) : XN → U,

κN (x) , ûop0 . (5.14)

Consequently, the resulting sparse MPC loop can be represented via

xk+1 = Axk +BκN (xk). (5.15)

In the following section, we will present a general method to solve an optimization

problem subject to `0−norm constraints. This solution is then used to solve the quadratic

MPC problem in (5.7)-(5.12).

5.4 `0-constrained based solution

Consider the following `0-constrained optimization problem

P0 : min
x∈Rp

f(x), (5.16)

subject to: x ∈ Ω

|xk|0 ≤ γ

A way of handling cardinality constraints is through the following mixed-integer

programming formulation [62]:

P0,MIP : min
x∈Rp,z∈{0,1}p

f(x), (5.17)

subject to: x ∈ Ω

−Le′iz ≤ e′ix ≤ Le′iz (5.18)

~1
′
mzk = γ (5.19)

where each entry of vector z is set to be binary, and ei is the i-th column of the identity

matrix. By means of constraint (5.18), a semi-continuous behavior is induced on variable

xi.

To solve the problem P0,MIP , standard Mixed-Integer Quadratic Programming (MIQP)

solvers such as CPLEX or BARON [53] can be used. However, in this work the input is

restricted to belong to a compact set that may be non-convex. Therefore, it cannot be

handled by CPLEX [62].
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Also, consider the following optimization problem involving bilinear constraints

P0equiv : min
x,w∈Rp

f(x), (5.20)

subject to: x ∈ Ω

(e′ix)(e′iw) = 0 (5.21)

~0p ≤ wk ≤ ~1p (5.22)

~1
′
mwk = p− γ (5.23)

where Ω ⊂ Rp is a constraining set, f : Rp → R is the objective function, and ei is

the i-th column of the identity matrix. The following result, that was independently

obtained in [8,50], shows that problems P0 in (5.16) and P0equiv in (5.20) are equivalent.

Theorem 4 ( [8, 37, 50, 52]). A vector x∗ ∈ Rp is a global solution of P0 if and only if

there exists a vector w∗ ∈ Rp such that the pair (x∗,w∗) is a global solution of P0equiv.

Results in [50] and [37] are similar. However, [37] have been obtained in a more

general framework where constraints on the rank of a matrix are utilized.

A key observation is that P0equiv can be solved by using standard tools of nonlin-

ear programming. In particular, we obtain a global solution of P0equiv by using the

optimization software BARON [53].

In problem P0equiv, the auxiliary variable w in (5.21)-(5.23), at the optimum is a

binary variable taking value 1 for those entries of the state with value 0. Additional

constraints over w can be included in the optimization problem to manage how the

zero and non-zero elements of x interact. These interactions are difficult to handle by

relaxation methods such as the `1-norm heuristic. In addition, our approach obtains a

solution in less time than the corresponding binary non-linear programming (i.e., wi ∈
{0, 1}) for the simulation study in Section 5.6.

Remark 1. The proposed approach can easily handle `0-(pseudo)-norm constraints over

a selection in the vector, i.e. |diagm(ai)~u|0 ≤ γ, where ai is a given vector with entries

{0, 1}. We use this approach latter in the chapter to solve problem (5.7)-(5.12), where `0-

(pseudo)-norm constraints are imposed on several selections of vector ~u. In addition, we

can also minimize the `0-(pseudo)-norm of the whole optimal input vector, i.e., |~u|0 ≤ γ.

Therefore, a comparison between both approaches is done using the optimization

software BARON.
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Application to Quadratic MPC

Next, we apply the ideas presented above to quadratic MPC. The quadratic MPC with `0-

input constraint described by (5.7)-(5.12) can be equivalently formulated as the following

optimization problem

Pequiv,N (x) : V op
equiv,N (x) = min

~u,~w
{VN (x, ~u)}, (5.24)

subject to: x̂j+1 =Ax̂j + ûj , (5.25)

ûj ∈U, (5.26)

x̂j ∈X, (5.27)

diagm(wj)uj =~0m, (5.28)

~0m ≤wj ≤ ~1m, (5.29)

w′j~1m =m− γ, (5.30)

x̂N ∈Xf ⊆ X, (5.31)

for all j ∈ {0, . . . , N − 1}, where x̂0 = xk and γ ≤ m. Note that in this case the set

U(x) represents all the input sequences, ~u, that satisfy constraints (5.26)-(5.31).

The `0-(pseudo)-norm constraint (5.11), in problem PN (x) in (5.7), is substituted

by (5.28)-(5.30) in problem Pequiv,N (x) as per (5.24). This substitution allows us to

obtain a global solution of PN (x) by using standard tools in nonlinear programming

over Pequiv,N (x). Note that the equivalence between PN (x) and Pequiv,N (x) holds in the

global optimum (see [8, 52]).

5.5 Stability Analysis

In this section, sufficient conditions to guarantee stability of the sparse MPC loop in

(5.15) are established.

Firstly, we define the predicted state sequence as

~x[1:N ] = [x̂′1, . . . , x̂
′
N ]′.

Considering an initial system state x̂0 = x, from (5.8), we obtain

~x[1:N ] = Λx+ Φ~u,

where

Λ ,


A

A2

...

AN

 , Φ ,


B 0 · · · 0 0

AB B · · · 0 0
...

...
. . .

...
...

AN−1B AN−2B · · · AB B

 .
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Thus, the cost function (5.6) can be re-written as

VN (x, ~u) = ν(x) + ~u′HN~u+ 2~u′FNx,

where the term ν(x) is independent of ~u and HN , Φ′QNΦ + RN ∈ RNm×Nm, FN ,

Φ′QNΛ ∈ RNm×n, with QN , diag {Q, . . . , Q, P} ∈ RNn×Nn, RN , diag {R, . . . , R} ∈
RNm×Nm. Notice that, since Q, R, and P are positive definite, so is HN . Based on

this representation, the following unconstrained optimal input, ~uopuc(x), can be defined,

see [87].

Lemma 1 (Unconstrained Solution). If for the optimal problem PN (x) in (5.7), con-

straints (5.9)-(5.12) are not taken into account, i.e., U , Rm, X = Xf , Rn, and γ = m,

then VN (x, ~u) is minimized when

~uopuc(x) , arg

{
min

~u∈RNm
VN (x, ~u)

}
, −H−1N FNx. (5.32)

for all x ∈ Rn.

5.5.1 Sparse Local Controller

We propose to prove stability of `0-input constrained MPC loop in (5.15) by examining

properties of a feasible local controller based on the optimal nominal solution presented

in (5.32) with prediction horizon N = 1; cf. [86]. To take into account the `o-input

constraint, for a given γ = |σ|, we consider the following sparse matrix

Lσ = diagm{σ} ∈ Rm×m.

Thus, the proposed feasible local controller is given by

κf (x) = Kσx = (K + ∆σ)x, (5.33)

where

∆σ = (Lσ − I)K,

with

K = −H−11 F1 = (B′PB +R)−1B′PA.

Thus, based on the nominal local controller, we chose the terminal region in (5.12)

as:

Xf ,
{
x′Px ≤ ϕx : x ∈ X,Kσx ∈ U

}
. (5.34)

Here, ϕx ∈ R≥0 is designed to obtain the largest ellipsoid which guarantees that for

all x ∈ X,Kσx ∈ U. Notice that since the origin belongs to X and U then, Xf 6= ∅.
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Fig. 5.2: Illustration of the terminal set Xf ⊂ X ⊂ R2 for the case when U ⊂ R2 is non-convex.

Therefore, both the proposed local controller and terminal region provide that for all

x ∈ Xf , κf (x) ∈ U. It is important to emphasize that in this work the compact set U is

not restricted to be convex. However, the local controller, κf (x), maps the states in Xf
to the convex set KσXf , which is contained by U, i.e., KσXf ⊆ U. This is illustrated in

Fig. 5.2.

On the other hand, the closed-loop expression for system (5.5) governed by the local

controller (5.33) is given by

xk+1 = AKσx = (AK +B∆σ)xk, ∀xk ∈ Xf , (5.35)

where AK = A + BK, and the term B∆σ represents the sparse control effect on the

“nominal system”, xk+1 = AKxk.

Theorem 5. Suppose that the terminal cost, Vf (x), in (5.6) is designed such that the

matrix P is chosen to be the solution to the algebraic Riccati equation

A′KPAK − P +Q∗ = 0, Q∗ , Q+K ′RK. (5.36)

If γ in (5.11) is chosen such that

Q∗ −Ψσ � 0, (5.37)

where

Ψσ = (2AK +B∆σ)′PB∆σ.

Then, κf in (5.33) is a uniformly exponentially stable sparse local controller in Xf for

the system (5.5).

Proof. We first consider the terminal cost, Vf (x) in (5.6), as a candidate Lyapunov

function. Therefore, we apply Theorem 3 with α1(s) = a1s
2 and α2(s) = a2s

2, where
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a1 , λmin(P ), a2 , λmax(P ). Direct calculations give that:

Vf (Ax+Bκf (x))− Vf (x)

=x′
(
A′KσPAKσ − P

)
x

=x′
(
A′KPAK − P + 2A′KPB∆σ +B′∆′σP∆σB

)
x.

Since matrix P is chosen according to (5.36), it follows that

Vf (Ax+Bκf (x))− Vf (x) = −x′(Q∗ − (2AK + ∆σ)′P∆σ)x.

Then, considering the proposed stabilizing condition (5.37), property (5.4) holds with

α3(s) = a3s
2, where a3 = λmin(Q∗ −Ψ) > 0. Therefore, it follows that

∆Vf (xk) = Vf (xk+1)− Vf (xk) ≤ −a3|xk|2, (5.38)

for all xk ∈ Xf . This allows us to establish the following relationship

Vf (xk+1) ≤ ρVf (xk), ∀xk ∈ Xf . (5.39)

Taking into account inequality (5.38), it follows that

0 ≤ Vf (xk+1) ≤ Vf (xk)− a3|xk|2 ≤ (a2 − a3)|xk|2.

Hence, 0 < a3 ≤ a2, which implies that ρ = 1− a3
a2
∈ [0, 1).

Therefore, considering (5.34) and (5.39), we have that Xf is a PI set for (5.35).

Moreover, for all x ∈ Xf , κf (x) ∈ U. By iterating (5.39), it is possible to exponentially

bound the system state evolution via:

|xk|2 ≤
a2
a1
ρk|x0|2, ∀k > 0,x0 ∈ Xf .

Thus, lim supk→∞ |xk| = 0, provided that x0 ∈ Xf .

Consequently, the proposed sparse local controller, κf (x) in (5.33), is a stabilizing

controller for (5.5) for all x ∈ Xf . More precisely, the local sparse MPC loop (5.35) is

uniformly exponentially stable.

Remark 2. Since Q,R � 0 and the pair (A,B) is stabilizable then, there exists a unique

solution of the discrete algebraic Ricatti equation (5.36), i.e., P > 0. Moreover, AK in

(5.35) is Schur stable; see [88].
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5.5.2 Multi-Step Sparse MPC Stability Analysis

Based on the proposed stabilizing sparse local controller, κf (x), we next establish suffi-

cient conditions for practical stability for the `0-input constrained multi-step MPC loop

in (5.15).

Theorem 6. Consider the positive constants c1 = λmin(P ), c2 = λmax(P + Wσ), and

c3 = λmin(Q), where

Wσ = F ′H−1N (Lσ − I)HN (Lσ − I)H−1N F ∈ Rn×n,

Lσ = diag{Lσ, . . . , Lσ} ∈ RNm×Nm.

Suppose that x0 ∈ XN and matrix P , in Vf (x), is designed as per (5.36). If the proposed

sparse local controller, κf (x), in (5.33) satisfies both (5.37) and

|Gσ| < a1

(
c3
c2

)
, (5.40)

where

Gσ = ∆′σH1∆σ.

Then, the MPC closed-loop system (5.15) is UpAS for all x ∈ XN , with

Dδ ,
{
x ∈ Xf : x′Px ≤ δ =

c3ϕx
c2a1

|Gσ|
}

(5.41)

as an ultimately invariant set.

Proof. To prove this theorem, we verify conditions presented in Definition 6. Since

matrix P in (5.6) satisfies (5.36), the unconstrained solution, ~uopuc(x) in (5.32) can be

expressed via:

~uopuc(x) =
[
(Kx̂)′ (Kx̂1)

′ . . . (Kx̂N−1)
′
]′

Now, the optimal cost function, V op
N (x), with xk = x, can be rewritten as:

V op
N (x) = V op

N (x, ~uop(x))

=x′Px+ (~uop(x)− ~uopuc(x))′HN (~uop(x)− ~uopuc(x)) .
(5.42)

Notice that when constraints (5.9)-(5.12) are not taken into account, i.e., X = Rn,

U = Rm, Xf = Rn, and γ = m, we have that ~uop(x) = ~uopuc(x). Hence, V op
uc (x) = x′Px.

Therefore, it follows that

V op
N (x) ≥ c1|x|2, ∀x ∈ XN ,
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Thus, property (5.2) holds with α1(s) = c1s
2.

Then, we obtain an upper bound for the cost function for the case when γ ≤ m. To

do this, we use the following suboptimal solution1 based on the proposed sparse local

controller, κf (x) in (5.33):

ũ = Lσ~uopuc(x) =
[
(LσKx̂)′ (LσKx̂1)

′ . . . (LσKx̂N−1)
′
]′
,

for all x ∈ Xf . Thus, the optimal cost function satisfies that:

V op
N (x) ≤ VN (x, ũ)

= x′Px+ ~uopuc(x)′(Lσ − I)′HN (Lσ − I)~uopuc(x)

Then, we obtain that

V op
N (x) ≤ c2|x|2, ∀x ∈ Xf . (5.43)

Thus, property (5.3) holds with a2(s) = c2s
2.

Taking into account the proposed stabilizing sparse local controller, κf (x), we adopt

the shifted sequence approach, based on (5.13) (see [87]), and use the following feasible

input sequence

ũ(xk+1) = [(ûop1 )′, . . . , (ûopN−1)
′, κf (x̂N )′]′.

This generates the following state sequence:

x̃(xk+1) = [(x̂op1 )′, . . . , (x̂opN )′, (x̂N+1)
′]′.

Notice that by constraint (5.12), x̂N ∈ Xf . Therefore, since κf (x) satisfies (5.37), we

have that x̂N+1 = AKσx̂N ∈ Xf .

By optimality, we obtain the bound

V op
N (xk+1) ≤ V op

N (xk+1, ũ(xk+1))

Comparing (5.42) with (5.43), we obtain that

∆V op
N (x) = V op

N (xk+1)− V op
N (xk)

≤− |x|2Q + |x̂N+1|2P − |x̂N |2P + |x̂N |2Q + |κf (x̂N )|2R
=− |x|2Q + |(AK +B∆σ)x̂N |2P − |x̂N |2P + |x̂N |2Q

+ |(K + ∆σ)x̂N |2R
=− |x|2Q + x̂′N∆′σ(B′PB +R)∆σx̂N

+ x̂′N
(
A′KPAK − P +Q∗ + 2(A′KPB +K ′R)∆σ

)
x̂N

1It is important to highlight that this suboptimal input sequence is only used to facilitate the stability

analysis. The actual optimal input sequence, ~uop(x), may present sparse elements which might differ

from each other, see e.g. Fig. 5.1.
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Since matrix P is chosen according to (5.36), we have that

A′KPB +K ′R = A′PB +K ′(B′PB +R) = 0.

Then, we obtain that

∆V op
N (x) ≤− |x|2Q + x̂′NGσx̂N .

Taking into account that x̂N ∈ Xf , and considering from (5.34) that

a1|x|2 ≤ x′Px ≤ ϕx, ∀x ∈ Xf ,

it follows that

∆V op
N (x) ≤− c3|x|2 + d, ∀x ∈ XN , (5.44)

Therefore, condition (5.4) holds with α3(s) = c3s
2 and d = ϕx

a1
|Gσ|.

Now, suppose that for an instant t > 0, x ∈ Xf . Then, using (5.43) and (5.44), it is

possible to establish that

V op
N (xk+1) ≤ V op

N (xk)− c3|xk|2 + d

≤ V op
N (xk)−

c3
c2
V op
N (xk) + d

≤ ρnV op
N (xk) + d

(5.45)

where ρn = 1− c3
c2
∈ [0, 1). Therefore, by iterating (5.45), the optimal cost function will

be exponentially bounded by

V op
N (xk) ≤ ρknV

op
N (xt) +

(
1− ρkn
1− ρn

)
d, ∀k ≥ t,x ∈ Xf .

From (5.42), we have that |x|2P = x′Px ≤ V op
N (x). Consequently, considering (5.43),

the system state evolution will be exponentially bounded via

|xk|2P ≤ c2ρk|xt|+
(

1− ρkn
1− ρn

)
d, ∀k ≥ t,x ∈ Xf ,

Finally, the system state will be ultimately bounded by

lim sup
k→∞

|xk|2P ≤
d

1− ρn
= δ.

By taking into account the condition (5.40), we obtain that δ < ϕx. Therefore,

comparing (5.34) with (5.41), we have that Dδ ⊂ Xf .

Consequently, by Theorem 3, the multi-step sparse MPC loop (5.15) is UpAS for all

x0 ∈ XN\Xf and practically exponentially stable for k > t.
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Theorem 6 establishes that for all x0 ∈ XN , the system state will be steered by

the multi-step sparse predictive controller, κN (x) in (5.14), towards the terminal region

Xf ⊂ XN and then (with the same controller) into the ultimately bounded set Dδ ⊂ Xf .

Remark 3. Notice that decay rate ρn in the previous Theorem depends on the binary

variable σ. Thus, one can use the results of this theorem to reduce the number of input

to guarantee stability of the closed-loop while obtaining a desired performance in terms

of the decay rate ρn.

Dual-Mode Sparse MPC Formulation

By using the local sparse controller in (5.33), it is possible to define a dual-mode sparse

MPC strategy as follows:

κDM (x) =

κN (x), x ∈ XN\Xf
κf (x), x ∈ Xf

Thus, the resulting dual-mode sparse MPC loop can be expressed via:

xk+1 = Axk +BκDM (xk), ∀xk ∈ XN . (5.46)

Theorem 7 (Stability of Dual-Mode Sparse MPC). Suppose that the matrix P in the

terminal cost, Vf (x), satisfies (5.36), and the proposed sparse local controller, κf (x) in

(5.33), satisfies both (5.37) and (5.40), then (5.46) is UAS, i.e., lim supk→∞ |xk| = 0 for

all x0 ∈ XN .

Proof. The proof can be derived based on the proofs of Lemma 1 and Theorem 6.

The proposed dual-mode sparse MPC, κDM (x), allows the system state to achieve

the origin by relying on the local sparse controller, κf (x). Thus, infinite number of

switches of the control signal on a finite-time interval, i.e. chattering effects (see [82] for

further details), can be avoided. Note that chattering is a harmful phenomenon because

it leads to undesirable vibrations of mechanical elements and overheating of electronic

devices.
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5.6 Simulation study

Here, we illustrate the benefits of the proposed sparse MPC strategy. Consider the

system (5.5) with

A =


0.0721 0.6583 −0.4689 0.2238

−0.1881 0.5344 0.2543 −0.6755

0.6522 0.3096 0.5503 0.1500

−0.4926 0.1645 0.5091 1.0681

 (5.47)

B =


0.2138 0.3385 −0.1888

0.4112 −0.0666 −0.2024

0.6095 0.1967 0.2353

−0.2627 −0.0707 0.3762

 (5.48)

where xk ∈ R4, uk ∈ R3. Matrix A has 2 unstable eigenvalues, and the pair (A,B)

is controllable. The sparse constraint over the input is set as |uk|0 ≤ γ, with γ = 2.

Additionally, a convex constraint is imposed to the system as |xk| ≤ δx = 3.

The sparse MPC strategy (5.15) was implemented with parameters N = 4, Q = I4×4,
and R = diag([3 3 3]). The terminal cost, Vf = |x|2P , is chosen in order to satisfy

condition (5.36), yielding:

P =


2.5820 −0.2209 −0.3899 −0.8719

−0.2209 3.1023 1.2104 1.0563

−0.3899 1.2104 5.2290 2.7497

−0.8719 1.0563 2.7497 6.3644

 .

In order to illustrate the benefit of the proposed approach, we introduce a non-convex

constraint over each vector input ûj of the prediction horizon. These constraints are as

follows

û′jQ1ûj ≤ 1, (5.49)

û′jQ2ûj + f2ûj + ρ2 ≥ 1, (5.50)



54

CHAPTER 5. STABILITY ANALYSIS OF QUADRATIC MODEL PREDICTIVE CONTROL WITH `0-INPUT

CONSTRAINT

where

Q1 =


0.3472 0 0

0 0.3472 0

0 0 0.3472

 , (5.51)

Q2 =


3.1250 0 0

0 3.1250 0

0 0 3.1250

 , (5.52)

f2 =
[
−10.6066 0 0

]
, (5.53)

ρ2 = 9. (5.54)

Based on the proposed design, the terminal region is chosen as:

Xf ,
{
x′fPxf ≤ ϕx = 4.1223

}
.

This value of ϕx assures that the terminal region satisfies that Xf ⊂ X, and that Kσx ∈ U
(definition of terminal region in (5.34)).

For this example, a vector of active inputs σ =
[
1 0 1

]′
satisfies condition (5.37).

Therefore, by Theorem 5, system (5.5), with (5.47) and (5.48), governed by the proposed

sparse MPC is UpAS.

Starting from the initial state x0 =
[
1 −1.5 −1 2

]′
, the proposed sparse MPC

strategy implemented using the solver BARON [53].

An exhaustive search method (i.e., evaluating all possibilities and then selecting the

optimal one) was implemented using BARON by fixing zeros in the standard MPC

problem and solving the resulting quadratic programming (QP) problem. This approach

proved to be impractical for this particular example due to the big amount of time

required for some solutions. This is due to a resulting complex optimization problem

when forcing some variables to be zero valued.

Solution of the resulting MPC problem using the proposed approach (Pequiv,N ) is

obtained using BARON optimization software. For comparison purposes, the same `0-

input constrained MPC problem is formulated using a mixed-integer approach and solved

also by utilizing BARON.

We also apply the sparse local controller strategy shown in subsection 5.5.1. This

control strategy is applied after simulation step 13, once the state vector is near the

origin.

The results of the simulations of the two different approaches are shown in Figs. 5.3

and 5.4. Here, u bilinear and u mixed integer represent the optimal sparse input

obtained by the proposed sparse MPC strategy and the mixed-integer approach. These
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Fig. 5.3: System state trajectory at each time step.

inputs lead to the corresponding system state trajectories denoted by x bilinear and

x mixed integer respectively. From Figs. 5.3, 5.4 and 5.5, it can be noticed that the

system constraints are satisfied, and that the system is led to the origin by using only

2 active inputs. Moreover, in Figs. 5.4 and 5.5 we note that the optimal inputs applied

obtained with the two strategies are practically the same. Only a slightly differences

arises when the state is near the origin, which could be due to numerical problems.

Some chattering can be observed before we commute to the local controller (specially in

input u2).

Finally, an important matter to analyze is the execution time carried out for each

optimization approach. The computing time of the proposed approach was 46.2 seconds,

while the mixed-integer formulation took 83.6 seconds, thus being slower. However,

a more comprehensive study is needed for the general case, in order to derive further

conclusions.

5.7 Conclusion

In this chapter we have addressed the problem of sparse feedback control utilizing a

quadratic MPC technique for deterministic time-invariant linear systems written in state-

space form. The proposed control strategy considers only some of the available inputs

as “active” at each control horizon instant. This condition is imposed by utilizing an
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Fig. 5.4: Sparse optimal input at each time step.

Fig. 5.5: Optimal active input sequence ~σop for each simulation time k.

`0-(pseudo)-norm constraint. The resulting optimization problem was then rewritten

into an equivalent optimization problem which can be solved utilizing a non-linear pro-
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gramming optimization toolbox (e.g. BARON). Additional conditions were proposed in

order to assure stability of the feedback system. Finally, we proposed a solution for the

potential chattering effect that might happen when the state approaches the origin.
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Chapter 6

LOW-ORDER CONTROL DESIGN

USING A NOVEL

RANK-CONSTRAINED

OPTIMIZATION APPROACH

In this chapter, a recent equivalent representation of rank constraints is used to design a

low-order controller with prescribed degree of stability. We solve an optimization problem

involving linear matrix inequalities and rank constraints. We illustrate the potential of

the proposed approach by comparing with similar approaches available in the literature.

6.1 Introduction

Rank-constrained optimization has gained increased attention in the last decades. Re-

cent advances in convex optimization and the development of easy-to-use optimization

software have helped to increase the usage of such software within the systems and con-

trol community. The success of nuclear norm, log-det and trace heuristics, see e.g. [7,89],

in some problems have motivated several researchers to formulate a large number of en-

gineering problems in terms of optimization problems that include rank constraints. A

classic example of such engineering problems arises in system identification, where the

order of a rational system is equal to the rank of an infinite dimensional Hankel ma-

trix [90]. Another example is Factor Analysis (see e.g. [37]), where the number of latent

factors is equal to the rank of a covariance matrix.

Although heuristics such as the nuclear norm provide a convenient way to address

rank constraints in optimization problems, there is an inherent loss of performance in

the use of this heuristic [91]. Moreover, most heuristics consider the rank constraint

as a soft constraint, i.e the obtained solution may violate the rank constraint. This

59
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approach to deal with rank constraints may be unsatisfactory in some applications. This

has motivated the development of methods that consider the rank constraint as a hard

constraint, see e.g. [8, 92, 93]. These methods are based on the notion of equivalent

representations of a rank constraint. These equivalent representations are aimed at

overcoming some of the undesirable features of the rank function, namely, non-linearity,

non-smoothness and non-convexity of the rank function. In this chapter, we focus on

the rank-constraint representation described in [8] that allows to solve rank-constrained

optimization problems within the framework of nonlinear programming.

In the rank-constraint representation in [8] the value of the rank in the rank con-

straint, say r, is controlled by the value of the trace of an auxiliary matrix. These

presents a major advantage over other rank-constraints representations where the value

of r is controlled by the size of auxiliary matrices, see e.g. [94] or by including a constraint

that is non-convex on r, see e.g. [92], [93].This feature may be useful in problems where

the value of the rank to be constrained is unknown a priori.

In this chapter we apply the rank-constraint representation described in [8] to a

Reduced Order Output Feedback stabilization problem and address variants of the same

problem. We then perform a numerical comparison of the proposed approach against

state-of-the-art alternative methods.

6.2 Reduced Order Output Feedback

To illustrate the features of the rank-constraint representation in [8] we apply it to a rank-

constrained optimization problem. In particular, we focus in the problem of Reduced

order output feedback stabilization. In this section, we described the approach proposed

in [14] that uses Linear Matrix Inequalities (LMI) to find a reduced order controller for

the output feedback stabilization problem. The benefit of this formulation is that it

allows us to define an optimization framework to solve the problem of interest.

Consider a continuous time, linear time invariant (LTI) system

.
x(t) = Ax(t) +Bu(t) (6.1)

y(t) = Cx(t) (6.2)

where x ∈ Rn is the system state, u ∈ Rm is the control signal and y ∈ Rp is the

measured output. The controller is given by[ .
xc(t)

u(t)

]
= K

[
xc(t)

y(t)

]
(6.3)

where K ∈ R(nc+m)×(nc+p) and xc ∈ Rnc is the controller state.
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Define Ã =

[
A 0

0 0nc

]
, B̃ =

[
0 B

Inc 0

]
and C̃ =

[
0 Inc

C 0

]
. The following lemma

establishes necessary and sufficient conditions to make sure that the real part of the

closed loop system (
.
x̃ = Ax̃ = (Ã+ B̃KC̃)x̃) poles are on the left of s = −α.

Lemma 2. (see [14]) Let A be a given square matrix and α be a given positive scalar.

Then the following statements are equivalent:

1. The system ˙̃x = Ax̃ is α-stable (with prescribed degree of stability α).

2. There exists a matrix Y � 0 such that (A+ αI)′Y + Y(A+ αI) ≺ 0.

Note that statement 2 of Lemma 2 involves a bilinear form of the two unknown ma-

trices Y and K (since the closed loop matrix A depends on K). In [14], the unknown

controller terms are eliminated from the bilinear form and necessary and sufficient con-

ditions for the existence of an α-stabilizing controller of order nc are found. In [14] the

existence of a α-stabilizing controller of order nc for a given α > 0 can be tested by

solving a set of LMI subject to rank constraint as described below.

Consider a system defined as in (6.1)-(6.2) and a given scalar α > 0. Solving the

following feasibility problem for X � 0 and Y � 0 assures that an α-stabilizing controller

of order nc exists (see [14]).

P0 : Find X,Y ∈ Sn

s.t. −B⊥(AX +XA′ + 2αX)B⊥
′ � 0

− C ′⊥(Y A+A′Y + 2αY )C⊥ � 0[
X I

I Y

]
� 0

rank

[
X I

I Y

]
≤ n+ nc

where B′ is a matrix of maximal rank such that its rows are orthogonal and B′B = 0.

Similar conditions hold for C ′⊥.

Solution matrices X and Y of P0 are related in the following way to statement 2 of

Lemma 2 (see [14] for details):

Y =

[
Y Y12

Y ′12 Y22

]
and Y−1 =

[
X X12

X ′12 X22

]

where X22, Y22 ∈ Rnc×nc . Thus, by solving P0 the unknown α-stabilizing controller K

can be found by solving the LMI found in statement 2 of Lemma 2 as described below.
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Consider the Matrix Inversion Lemma, and take the eigenvalue decomposition X −
Y −1 = V ΛV ′, where Λ is a diagonal matrix whose entries are the eigenvalues ordered

in decreasing order. Define R = V (:, 1 : λnc)diag(λ
1/2
1 , ..., λ

1/2
nc ) and X̃ =

[
X R

R′ I

]
.

A controller K that fulfills statement 2 of Lemma 2 is found by solving the following

optimization problem:

PK : max
γ∈R,K

γ (6.4)

s.t. (Ã+ B̃KC̃)X̃ + X̃(Ã+ B̃KC̃)′ + 2γX̃ ≤ 0

Solution γ of problem PK represents a lower bound for the stability degree of the

closed loop system
.
x̃ = Ax̃ [5].

A Newton-like method to solve problems involving rank constrained linear matrix

inequalities (LMI) is presented in [5]. In particular they use it to solve problem P0. It

is important to note the cited approach locally solves the problem. The algorithm is

implemented in the LMIRank solver that is freely distributed by the authors.

Rank Minimization Approach

In this section we describe the method presented in [6] to solve a similar problem. This is

mentioned for comparison purposes only. In [6] an iterative rank minimization procedure

is presented and used for (locally) solving the similar problem of finding a stabilizing

controller of a certain order (stability degree is not a constraint). The algorithm in [6]

reduces the rank of a matrix constraint in a convex set. In [6], the problem of determining

the existence of a low order controller is treated (for a system described as in (6.1)-(6.2)).

Lemma 3. (see [6], [95]) There exists a stabilizing output feedback law of order k if and

only if the global minimum of the rank minimization problem is less than n+ k.

Prk : min
W1,W2,σ

rank

W1 I

I W2

 (6.5)

s.t. AW1 +W1A
′ ≺ σBB′

A′W2 +W2A ≺ σC ′CW1 I

I W2

 � 0

σ > 0 (6.6)

where W1,W2 ∈ Sn and σ ∈ R+.
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Note that problem Prk represents a particular case of P1. This can be seen by taking

limα→ 0+ and by considering that B⊥B = 0 (for further insight, see section 2.6 of [96]).

Note also that problem Prk must incorporate a stop condition. This is due to the

existence of an infinite class of controllers satisfying the stated conditions. In the iterative

rank minimization algorithm proposed in [6], the program is stopped once a desired order,

i.e. rank, is achieved.

In this chapter we implement the cited approach to solve problem P0 and compare

its performance with other methods.

6.3 Equivalence by Rank Constraint Representation

In this section we use the approach presented in [8] to find a equivalent representation

of problem P0. The need of equivalent representations for rank constraints arise because

the rank function has several features that are undesirable in optimization problems.

In particular, the rank function is non-smooth, non-linear and non-convex. In the op-

timization literature, smoothness and convexity are widely exploited, and the lack of

such features in the rank function limits the tools that can be used in the to solve the

optimization problem. Thus, equivalent representations aim at overcoming at least one

of these undesirables features of the rank function. Recently, equivalent representations

have been utilized to avoid the direct treatment of rank constraints ( [8, 94], page 241

of [9]).

The following result describes the equivalent representation of a rank constraint pre-

sented in [8].

Lemma 4. Let G ∈ Rm×n, then the following expressions are equivalent

(i) rank(G) ≤ r

(ii) ∃W ∈ Φn,r, such that GW = 0m×n

where

Φn,r = {W ∈ Sn, 0 �W � I, trace(W ) = n− r} (6.7)

Proof. See [8].

The result from Lemma 4 can be seen as a generalization of the one provided in

[9] (the former can be used on rank constraints over real matrices of all sizes). An

advantage of Lemma 4 is that it represents a rank-constraint in a form that can be

used for optimization purposes. The constraints imposed by the set Φn,r can be handled

by Semidefinite Programming. However, the bilinear condition, GW = 0, need to be
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addressed in the context of nonlinear programming. Optimization software as BARON

[54] [53] allows us to solve problems with this type of bilinear constraints and to obtain

a global solution.

This approach to deal with rank constraints has been applied in several framework

including: Model Predictive control [36], Factor Analysis [37] and to nonlinear system

identification [65].

The following result presents an equivalent representation of problem P0.

Theorem 8. Let W ∈ S2n, 0 � W � I, trace(W ) = n− nc, then feasibility problem P0
is equivalent (in the sense that has same global optimum) to the following problem

P1 : Find X,Y ∈ Sn,W ∈ S2n

s.t. −B⊥(AX +XA′ + 2αX)B⊥
′ � 0

− C ′⊥(Y A+A′Y + 2αY )C⊥ � 0X I

I Y

 � 0

X I

I Y

W = 0

trace(W ) = 2n− (n+ nc)

0 �W � I

Proof. Problems P0 and P1 both have the same feasible set with respect to X and

Y . Moreover, these consditions do not depend on W . Hence, to prove the equivalence

between P0 and P1 it suffices with using Lemma 4, which proves the validity of the

rank-constraint representation.

As stated in Theorem 8, problem P0 can be transformed into a problem, P1, that does

not explicitly include the rank constraint, but has same optimum as the original prob-

lem. This new formulation of the problem can be solved by standard tools of nonlinear

programming such as those provided by software BARON [53,54].

6.4 Further Extensions of the Approach

Similar to Theorem 8 we can also formulate other problems of interest.
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6.4.1 Minimization of Controller’s Order

Lemma 4 relates the upper bound of a rank constraint with the trace of an auxiliary

matrix W . This allows the formulation of a rank minimization problem by maximizing

the trace of W . Thus, the problem of finding the α-stabilizing controller with minimum

order can be formulated as follows (for a given α)

P2 : min
X,Y ∈Sn,W∈S2n

2n− trace(W )

s.t. −B⊥(AX +XA′ + 2αX)B⊥
′ � 0

− C ′⊥(Y A+A′Y + 2αY )C⊥ � 0[
X I

I Y

]
� 0

[
X I

I Y

]
W = 0

0 �W � I

Similar rank representations can be found in the literature. In [1], a representation

involving two auxiliary matrices whose dimensions depend on the rank constraint’s bound

r is proposed. Due to the dependence of the auxiliary matrices dimensions with the rank

bound, it is not plausible to use the representation in [1] to state problem P2.
In [6], the reduced order controller is obtained by an iterative approach that minimizes

the rank of a matrix. This approach however only assures local convergence, while the

representation applied in this work has the same global optimum as the original problem

and can be obtain utilizing nonlinear programming techniques.

Remark 4. It is important to note that when implementing problem P2 a stop mecha-

nism must be incorporated. Suppose that for a given system, the minimum order possible

for a stabilizing controller is nc. Problem P2 is defined as a minimization problem, thus

it will not stop once found a controller of order nc, in fact it will continue searching in

the infinite set of controllers, trying to find one of even smaller order. To fix this issue,

we add a time constraint while solving P2 with the global optimization software BARON.

Other authors such as [6] set a lower bound for the achieved controller’s order which can

be compared in each step of their iterative rank minimization approach.

6.4.2 Optimizing for controller order and α-stabilizing degree

Feasibility problem P0 stated before can be extended into a maximization problem, where

the biggest value for parameter α is to be found (α is treated as a variable). Thus by
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maximizing α and maintaining the rank constraint, the resulting pair of matrices (X,Y )

can be used to obtain the fastest stabilizing controller of order nc. This leads into the

following optimization problem

P3 : max
α∈R>0,X,Y ∈Sn,W∈S2n

α

s.t. −B⊥(AX +XA′ + 2αX)B⊥
′ � 0

− C ′⊥(Y A+A′Y + 2αY )C⊥ � 0[
X I

I Y

]
� 0

[
X I

I Y

]
W = 0

trace(W ) = 2n− (n+ nc)

0 �W � I

The flexibility of the approach presented can be also used to another where the

stability degree and controller order are optimize at the same time by imposing a trade-

off between them:

P4 : min
α∈R>0,X,Y ∈Sn,W∈S2n

trace(W )− α

s.t. −B⊥(AX +XA′ + 2αX)B⊥
′ � 0

− C ′⊥(Y A+A′Y + 2αY )C⊥ � 0[
X I

I Y

]
� 0

[
X I

I Y

]
W = 0

0 �W � I

This problems are currently been studied in order to understand their solution space.

6.5 Numerical Comparison

In this section we carry numerical examples in order to compare the performance and

effectiveness of the approach.

We consider the reduced order feedback control problem used in [13] and [5]. The
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system has the following state-space matrices

A =


0 0 1 0

0 0 0 1

−1 1 0 0

1 −1 0 0

 , B =


0

0

1

0

 , C =


0

1

0

0


′

6.5.1 α-stabilizing Controller

First, we search for α-stabilizing controllers of order nc = 2 for given values of α (which

imposes a lower bound for the stabilization degree). In Table 6.1, the resulting stability

degree α̂ of the closed loop system is shown. Note that that since we are solving a

feasibility problem it is possible to obtain a closed loop with greater stabilizing degree.

We use three different approaches to solve P0: i) the approach presented in Orsi et. al. [5],

ii) the approach in Sun et. al. [6] and iii) formulating an alternative problem utilizing an

equivalent representation of rank constraints. We constrain the computation-time and

maximum number of iterations to compare the different approaches. Orsi’s approach

was limited to 20000 iterations while Sun’s and our approach was limited to a 500[s]

computation time.

Table 6.1: Achieved Closed Loop α-stability solving P1

Orsi et. al. Sun et. al. Equivalent Representation

α α̂ T [s] α̂ T [s] α̂ T [s]

0.2 0.203 1.4 0.2 2.4 0.305 151.2

0.42 0.420 3.0 - - 0.506 440.8

0.46 0.467 172.2 - - 0.521 380.3

0.5 - - - - 0.500 125.4

0.502 - - - - 0.529 451.7

Although our approach takes more time than the one shown in [5], we are able of

finding controllers that result in a better closed loop stability degree α̂, or that others

could not find. This is due to the nonlinear programming technique that the solver

utilizes. Given that the goal is to find a static controller K, the solution time of the

approach is not of much relevance depending on the solver used, a suboptimal solution

could be obtain if time is a constraint. Note that the closed loop stability degree obtained

is not necessarily the same as the required, and in some cases is far greater. This shows
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that the solver doesn’t work in an iterative way (improving some parameter at each

step), which might lead to local minimum.

Although the equivalent representation for rank constraints allows us to use nonlinear

programming techniques, the problem is still computationally demanding. Complexity

and computational load might increase for some particular problems. This is seen for

example when solving P0 for higher closed loop stability degree (i.e. increasing α).

6.5.2 Reducing controller order

Next we solve problem P2, where the objective is to minimize the controller’s order for

a user specified stabilizing degree α. Considering Remark 4 we add a time constraint

into the solver of tmax = 300[s]. In Table 6.2 are shown the results such as achieved

controller order n̂c and correspondent closed loop stabilizing degree.

Table 6.2: Controller’s order nc for given stabilizing degree α, solution time tmax = 300[s]

α n̂c α̂

0.1 2 0.105

0.2 3 0.221

0.5 3 0.786

0.7 3 0.786

1 3 1.378

We note that in relatively the same time used for examples for problem P1 we have

achieved a better closed loop stabilizing degree.

6.6 Conclusions and future work

In this chapter we addressed the problem of designing a reduced order feedback control.

We incorporated rank constraints in order to restrict the order of the unknown controller

through an optimization problem. The resulting optimization framework gives us the

possibility of formulating additional rank constrained problems for control design. We

have applied an equivalent rank constraint representation to reformulate the problem into

another one that is equivalent in a global optimum sense. The resulting (global optimum-

equivalent) problem can be solved by using nonlinear programming techniques. We also

formulated two additional extensions of the original reduced order control problem: 1)

maximization of the stability degree, given a controller’s order, 2) given a certain stability
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degree, minimize the order of the controller. This shows the versatility of the rank

constraint representation to solve different control design problems. Finally numerical

examples were shown in order to illustrate the performance of the proposed method.
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Chapter 7

CONCLUSIONS

7.1 Overview

Rank constrained and rank penalized optimization problems are a class of optimization

formulations with great potential in the scientific world. Application of this type of

formulation can be seen and foreseen in a wide variety of areas of interest, including

system identification and control.

The handling of the rank constraint or penalization term is a very important step

when attempting to solve these type of problems. As it has been shown in the introduc-

ing chapter, several algorithms and approaches exist. These algorithm normally relay

on approximations (convex or non-convex) in order to formulate a similar easy-to-solve

problem with (in general) a different optimum. Other procedures formulate iterative

search algorithms where, although condition for identifying convergence to a global op-

timum are presented, only local convergence is assured.

Solving these problem by utilizing an equivalent representation that has the same

global optimum and allows the attainment of this solution by using standard non-linear

programming tools is thus a great breakthrough.

The thesis work here presented starts by introducing the general formulation of rank

constrained and rank penalized problems while also detailing their possible applications

and the difficulties that they pose. State of the art solution methods are shown with

their benefits and drawback, including a novel equivalent representation which is used

in the solution of the system identification and control problems presented.

The remaining chapters of the thesis present different problems of great interest for

the community of system identification and control. These problems include cardinal-

ity constrained problems (identification and optimal control) and one rank constrained

problem related to low-order controller design. Comparisons with existing methods have

been shown and a discussion of the solutions obtained was presented for each case.
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7.2 Summary of contributions by chapters

The main contribution of the thesis are the following:

• Chapter 2 introduces rank constrained optimization together with its promising

applications and algorithms commonly used for their solution.

• In chapter 3 a classification problem using logistic regression with cardinality con-

straint over the number of parameters is presented. Key features of model and sam-

ple set are identified by promoting sparsity in the solution vector. A comparison

between standard Maximum Likelihood (ML) estimation, cardinality constrained

ML and the use of Information Criteria such as AIC is performed, by identifying

a given model with a sparse parameter vector.

Simulation show that the formulation involving cardinality constrained ML per-

forms better than the other alternatives, but requires a prior knowledge or estima-

tion of the number of parameters to be estimated. On the other hand, penalized

ML or AIC give an excellent a very good estimate of the parameter values and of

the number of parameters by providing sparse solution vector for each experiment.

This type of problem has big interest in areas of gene selection, machine learning,

among others.

• Chapter 4 presents the study of an cardinality penalized optimization approach

for model selection. Solution of the problem is done by approximating the car-

dinality constraint with smooth non-convex exponential terms. The use of this

approximation intends to reduce the time spent in obtaining the solution while

also performing a good approximation over the `0-norm.

It is found that when estimating the parameters of a linear regression with AIC, the

result of the proposed “approximating” approach does not differ with the results

obtained when solving the original AIC scheme (testing all possible models and

then selecting the best based on AIC).

A similar procedure is performed in an identification scheme involving hidden

variables, where model selection is done using Expectation Maximization (EM).

Surprisingly, in this case by using EM with the proposed method (cardinality-

approximation penalty), better estimates of the model parameter are obtained

than when performing EM using the original AIC scheme (cardinality penalty). In

a simple way: performing an approximation gives better results than solving the

true problem. An explanation to this seemingly awkward behavior can reside on

the iterative nature of the EM algorithm, where iterative solution of the cardinality

penalized formulation (AIC) will result in a more erratic overall behavior.
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• In chapter 5 a problem of feedback control with constrained number of active inputs

is investigated. A novel quadratic model predictive control strategy is presented,

where sparsity and stability of the solution is assured. Sparsity of the solution is

treated by constraining the solution vector utilizing the `0-norm at each control

horizon instant. Additional bounding constraints are also imposed over the system

state and control input.

Although the formulated problem contains difficult constraints such as non-convex

closed sets and cardinality constraints, sufficient conditions are stated in order to

guarantee asymptotic and practical stability of the closed-loop control solution.

Alternative solutions are provided for the case of convex and non-convex bounding,

by respectively using a mixed integer linear programming tool (CPLEX) and non-

linear programming tool (BARON). The inherent combinatorial behavior of the

resulting optimization problem is addressed by using an equivalent representation

of the `0-norm, and solved using standard nonlinear programming tools.

In order to avoid a possible chattering behavior due to continuously changing

control input entries between active and non-active, a dual control strategy is

developed when the system’s state is near the origin.

• Finally in chapter 6, a low-order control design with given closed loop stability

degree is studied. Formulation of the problem includes the use of Linear Matrix

Inequalities (LMI) and rank constraints in order to limit the controller’s order.

Solution is carried out utilizing an equivalent representation, and comparison with

state of the art algorithms is done through simulations.

The proposed approach outperforms two algorithms available in the literature, by

obtaining faster closed loop systems.

Also, additional controller design formulation are possible to be defined and also

their solution is attempted by using the equivalent rank constraint representation.

Other possible problems are: minimization of controller’s order, maximization of

the stabilizing degree of the controller, and optimizing both parameter at the same

time. It is found that when optimizing the stabilizing degree of the controller,

additional stopping conditions must be added to the problem formulation.
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