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ABSTRACT

Abstract— This thesis work presents an automated system capable of efficiently simulating,
translating, and analyzing high-energy physics (HEP) data generated by the simulated Baby-
Cal electromagnetic calorimeter. By leveraging HEP data simulation software, computer
clusters, and cutting-edge machine learning algorithms, such as convolutional neural net-
works (CNNs) and autoencoders, the system effectively manages a dataset of approximately
10.000 entries. Using the framework, we generated simulated data of muon and antimuon
particles and implemented CNNs and autoencoders to analyze it. The framework was tested
and evaluated with muon and antimuon particles. This led to an interesting challenge,
from the computational point of view, regarding the differentiation between the two. The
analysis showed that muons and antimuons exhibit a lot of behaviour similarities when
colliding with the simulated BabyCal with the used spatial representation. The experiment
results showed that autoencoders were able to reconstruct muons, achieving accuracies of
up to 98%. This work is a starting point that serves as a helpful data analysis tool, aiding
researchers in their investigations.

Keywords— Computer Clusters; High Energy Physics; Data Simulation; Data Analysis;
Machine Learning

RESUMEN

Resumen— Este trabajo de titulo presenta un sistema automatizado capaz de simular,
traducir y analizar eficientemente datos de fisica de alta energia (HEP) generados por el
calorimetro electromagnético simulado BabyCal. Mediante el uso de software de simulacion
de datos HEP, clisteres de computadoras y algoritmos de aprendizaje automatico, incluidas
redes neuronales convolucionales (CNN) y autoencoders, el sistema logra procesar con éxito
un dataset de aproximadamente 10.000 entradas. Usando el Framework, se generaron
datos simulados de particulas de muones y antimuones, ademas de implementarse CNNs
y autoencoders para analizar los datos. El Framework se probé y evalué con particulas
de muones y antimuones. Esto condujo a un desafio interesante, desde el punto de vista
computacional, con respecto a la diferenciacién entre los dos. El analisis mostré que los
muones y los antimuones exhiben muchas similitudes de comportamiento cuando chocan
con el BabyCal simulado usando en el caso de la representacioén utilizada. Los resultados
del experimento mostraron que los autoencoders pudieron reconstruir muones, logrando
precisiones de hasta un 98%. Este trabajo es un punto de partida que sirve como una
herramienta util de analisis de datos, ayudando a los investigadores en su labor.

Palabras Clave— Clusteres de computadores; Fisica de Alta Energia; Simulacién de datos;
Andlisis de datos; Aprendizaje automatico



GLOSSARY

Al: Artificial Intelligence

ATLAS: The Atlas Experiment

BCAL: Barrel Calorimeter
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CNN: Convolutional Neural Network

Docker: Containerization Framework

EVIO: Event 10
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GEMC: GEant 4 Monte Carlo

GPU: Graphics processing unit

HEP: High Energy Physics
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A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

INTRODUCTION

High energy physics researchers are constantly seeking innovative tools to efficiently handle,
analyze, and understand vast amounts of data [CCTVal, 2021]. This thesis work introduces
an automated system designed to simulate, translate, and analyze HEP data generated by
a simulated electromagnetic calorimeter named BabyCal. By combining HEP data simula-
tion software, computer clusters, and machine learning algorithms like convolutional neural
networks (CNNs) and autoencoders, this system manages to bring synergy, functionality and
scalability to a system that did not have that before, turning it to a framework.

This work focuses on leveraging the capabilities of the developed automated system, which
effectively manages a dataset of more than 10,000 entries. By utilizing HEP data simulation
software and harnessing the computational power of computer clusters, the system demon-
strates high efficiency in processing considerable amounts of data, a crucial aspect for HEP
data analysis.

In this work, the framework is tested and evaluated with muon and antimuon particles. This
led to an interesting challenge, from the computational point of view, regarding the differ-
entiation between the two. The analysis showed that muons and antimuons exhibit a lot
of behaviour similarities when colliding with the simulated BabyCal with the used spatial
representation.

To dive deeper into this observation, an autoencoder is trained exclusively on muon data and
used to reconstruct them. The system achieves significant accuracy, reaching up to 98%. This
finding suggests that, within the given dataset and data representation that was used, muons
and antimuons lacked distinct spatial features, posing challenges and significant difficulties
for their classification.

Despite this challenge, the development of the automated system holds significant impli-
cations for the rapidly advancing world of HEP data analysis. Researchers can now employ
this tool to expedite their investigations and gain new insights. The system'’s capabilities en-
able efficient data simulation, translation, and analysis with state-of-the-art machine learn-
ing algorithms. Moreover, this thesis work highlights the need for larger and more diverse
datasets to gain a deeper understanding of particle classification in HEP.

Pagina 1de 51



A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

CHAPTER 1
PROBLEM DEFINITION

1.1 WHAT IS A FRAMEWORK?

In programming, a software framework is usually a tool that provides a standard way to build
and deploy applications. They usually include support programs, compilers, code libraries,
toolsets, and application programming interfaces (APIs).

In this context, that is not the definition of Framework being referred to. Instead, this is the
one to be used throughout this thesis work:

“A framework is a real or conceptual structure intended to serve as a support or guide for
the building of something that expands the structure into something useful.”
[CODATA, 2020]

That being said, the purpose of the Framework being created in this thesis work, is to inte-
grate and automate a process that is currently not fully functioning as a system; because its
parts do not really communicate with each other and don’t have the required synergy.

1.2 THE STANDARD MODEL OF PARTICLE PHYSICS

The theories and discoveries of thousands of physicists since the 1930s have resulted in a
remarkable insight into the fundamental structure of matter:

All matter is made of elementary particles, specifically quarks and leptons, which are ar-
ranged in generations based on their stability and mass. There are four fundamental forces
in the universe: strong, weak, electromagnetic, and gravitational. Three of these forces are
carried by bosons, or force-carrier particles, while the graviton is believed to carry gravity,
though it has not yet been found. Our best understanding of how these particles and three
of the forces are related to each other is encapsulated in the Standard Model of particle
physics.

The Standard Model is the current best description of the subatomic world, but it only in-
cludes three of the four fundamental forces and does not explain dark matter or the anti-
matter mystery. Developed in the early 1970s, it has successfully explained almost all exper-
imental results and precisely predicted a wide variety of phenomena.

Over time and through many experiments, the Standard Model has become established as
a well-tested physics theory. The Higgs boson was discovered in 2012 [Aad et al., 2012],
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A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

[Chatrchyan et al., 2012], and although it is an essential part of the Standard Model, the the-
ory is still incomplete. The hope is that new experiments at the Large Hadron Collider will
reveal more about the subatomic world and the missing pieces of the puzzle [CERN, 2022].

All particles can be summarized as follows (Figure 1):

Standard Model of Elementary Particles

three generations of matter

interactions | force carriers

(fermions) (bosons)
| [l 1
mass =2.2 MeV/c? =1.28 GeV/c? =173.1 GeV/c2 =124.97 GeV/c2
charge | % % % 0 0
spin | % U Yo C Y5 t 1 9 0 H
up charm top gluon higgs
=4.7 MeV/c? =96 MeV/c? =4.18 GeV/c? 0
=14 =14 =14 0
Y d Y S Yy b 1 y
down strange bottom photon
=0.511 MeV/c2 ~105.66 MeV/c? =1.7768 GeV/c2 ~01.19 GeV/c2
-1 -1 -1 0
Y e Y I..l Y T 1 ;
electron muon tau Z boson
<1.0 eV/c? <0.17 MeV/c? <18.2 MeV/c? =80.360 GeV/c?
0 0 0 +1
L) Ve b Vl'l ) VT 1 W
electron muon tau_ W boson
neutrino neutrino neutrino L

Figure 1: Diagram of The Standard Model of Elementary Particles, Source:
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A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

1.3 BACKGROUND

The following section and subsections are, in its majority, directly extracted text out of the
scientific paper “Construction and performance of the barrel electromagnetic calorimeter for
the GlueX experiment” [Beattie et al., 2018], which describes in detail the further mentioned
investigation. The purpose of this section is to tell a bit of the story that led to the current use
of the BabyCal Electromagnetic Calorimeter at Universidad Técnica Federico Santa Maria.

The barrel calorimeter is part of the new spectrometer installed in Hall D at Jefferson Lab
for the GlueX experiment. The calorimeter was installed in 2013, commissioned in 2014
and has been operating routinely since early 2015. The detector configuration is described
herein. The calorimeter records the time and energy deposited by charged and neutral par-
ticles created by a multi-GeV photon beam. It is constructed as a lead and scintillating-fiber
calorimeter and read out with 3840 large-area silicon photomultiplier arrays. Particles im-
pinge on the detector over a wide range of angles, from normal incidence at 90 degrees
down to 11.5 degrees, which defines a geometry that is fairly unique among calorimeters
[Beattie et al., 2018].

1.3.1 GLUEX DETECTOR

The primary motivation of the GlueX experiment is to search for and, ultimately, study the
pattern of gluonic excitations in the meson spectra produced in ~p collisions at 9 GeV.

Gamma-p (yp) collisions are a type of scattering process that occur in particle physics, where
a high-energy photon () interacts with a proton (p) target. In these collisions, the photon
transfers some of its energy and momentum to the proton, causing it to scatter at a particular
angle, which can be detected and measured.

Gamma-p collisions are of particular interest to particle physicists because they can provide
information about the structure of the proton at very small scales. By measuring the scat-
tering angles and energies of the particles produced in these collisions, physicists can probe
the internal structure of the proton and study the distribution of its constituent quarks and
gluons.

One important aspect of gamma-p collisions is that the photon has zero charge and is not
affected by the strong nuclear force, which makes it an ideal probe for studying the internal
structure of the proton without being influenced by its strong interactions. In addition, the
high energy of the photon allows for very precise measurements of the proton’s structure,
allowing physicists to study the proton in greater detail than was previously possible.

Gamma-p collisions are typically carried out at high-energy particle accelerators such as the
HERA (Hadron Elektron Ring Anlage) accelerator at DESY in Germany, where high-energy
electrons are used to produce high-energy photons through the process of synchrotron ra-
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diation. These photons are then collided with protons in the HERA storage ring, allowing
physicists to study the structure of the proton in great detail.

Specifically, GlueX aims to study the properties of hybrid mesons — particles where the glu-
onic field contributes directly to the J”¢ * quantum numbers of the mesons. The design of
the GlueX detector is based on a solenoidal magnet that surrounds all detectors in the cen-
tral region, providing a magnetic field of about 27" along the direction of the photon beam,
which impinges on a 30 cm-long liquid hydrogen target. A schematic of the detector includ-
ing its major sub-detectors is given in Figure 2. The goal of GlueX calorimetry is to detect
and to measure photons from the decays of 7%’s and n’s and other radiative decays of sec-
ondary hadrons. The detector measures the energies and positions of the showers made by
photons, as well as the timing of the hits. It also provides the timing of the hits caused by
charged hadrons, allowing for time-of-flight particle identification [Beattie et al., 2018].

Solenoid
FCAL
| BCAL
Start CDC

Counter | \

2 390 cm - TOF

Figure 2: Sketch of GlueX detector. The main systems of the detector are the Start Counter,
the Central Drift Chamber (CDC) the Forward Drift Chamber (FDC), a scintillator-based Time
of Flight (TOF) wall and a lead-glass Forward Calorimeter (FCAL). The Barrel Calorimeter
(BCAL) is sandwiched between the drift chambers and the inner radius of the solenoid
[Beattie et al., 2018]. Source: [Beattie et al., 2018]

1 7P Quantum numbers of elementary particles used for their classification.
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1.3.2 BCAL: OVERVIEW AND DESIGN

A practical solution to the requirements and constraints imposed by the experiment is a
calorimeter based on lead-scintillating fiber sandwich technology. The BCAL is modeled
closely after the electromagnetic calorimeter built for the KLOE experiment at DA®NE. The
BCAL detects photon showers with energies between 0.05 GeV and several GeV, 11— 126 in
polar angle, and 0" — 360" in azimuthal angle. Geometrically, the BCAL consists of 48 optically
isolated modules each with a trapezoidal cross section, forming a 390 cm-long cylindrical
shell having inner and outer radii of 65 cm and 90 cm, respectively. The fibers run parallel
to the cylindrical axis of the detector. Schematics showing the geometry of the BCAL and

readout segmentation are shown in Figure 3 [Beattie et al., 2018].

30-cm targe
BCAL top half cutaway

(b)

26 cm 22.2cm

single module

BCAL end view end
() (d)

Figure 3: Sketch of the Barrel Calorimeter and readout. (a) A three-dimensional ren-
dering of the BCAL; (b) top-half cutaway (partial side view) of a BCAL module show-
ing its polar angle coverage and location with respect to the GlueX LH2 target; (c) end
view of the BCAL depicting all 48 azimuthal modules and (d) wedge-shaped end view
of a single module showing the location of light guides and sensors [Beattie et al., 2018].

Source: [Beattie et al., 2018]
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Finally, as a way of picturing the BCAL the best way possible and to better understand the
way the BabyCal works, part of the assembly process of the whole detector, specifically the
BCAL, is shown in Figure 4. This is relevant and it relates to the BabyCal Electromagnetic
Calorimeter because the BabyCal is the prototype used for the BCAL in the Glue-X experiment
and is now located at the Physics Department of Universidad Técnica Federico Santa Maria.
The following section, will emphasize on the problem at hand regarding the BabyCal and the
Framework that needs to be designed and implemented.

Figure 4: BCAL assembly before insertion into the bore of the magnet (red yoke in the
top right corner). Most of the electronic packages (black) have been mounted on the
end of each module but cables are not yet connected. Also visible inside the BCAL is
a temporary fixture to support the upper modules during assembly [Beattie et al., 2018].
Source: [Beattie et al., 2018]
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1.4 CONTEXT

The Physics Department at Universidad Técnica Federico Santa Maria (UTFSM) currently has
a sampling electromagnetic calorimeter called BabyCal that was used as a prototype for the
Barrel Calorimeter of the Glue-X experiment at Jefferson Lab [Beattie et al., 2018] in Virginia,
USA. Currently, the device has the potential to be used for detecting multiple types of parti-
cles. The BabyCal Calorimeter is composed by a two-dimensional array of optical fibers that
are placed parallel on top of each other (like a matrix), with a specific geometrical configura-
tion (spacing) between them. At the same time, the fibers having a long, cylindrical shape,
generate a cubical structure for the calorimenter. Figure 5 shows a front view of the device,
showing the illuminated scintillating optical fibers and Figure 6 shows the complete look and
structure of the BabyCal.

Figure 5: Front view of the BabyCal Electromagnetic Calorimeter. Source: CCTVal UTFSM

Figure 6: Schematic representation of the BabyCal Electromagnetic Calorimeter: The circles
represent the faces of the optical fibers. They are stacked together parallel to each other.
Source: 0Own elaboration
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Even though the device could get prepared to be used in the generation of experimentally
tested HEP? data at UTFSM, the challenge is to make use of machine learning-based algo-
rithms to automatically analyze said data and isolate the information of interest from the
background signal. This cannot be achieved by simply executing one experiment after an-
other manually. Mainly, because there’s the need of very high volumes of HEP data to train
whatever machine learning tool is needed to complete such a task. Instead, a software tool
called GEMC® will be used to simulate the BabyCal’s interaction with the different types of
particles.

The computational resources required for processing and storing the expected high volume
of HEP data are hosted by the CCTVal* Data Center, which has been continuously providing
support for data analysis for over a decade. It is an operative node (a Tier-2) of the LHC>
grid [CERN, 2023a], providing computing services to the ATLAS® experiment at CERN’. The
CCTVal collaborated with the Jefferson Lab in Virginia at various experiments [CCTVal, 2021]
like the CLAS128 experiment [JLAB, 2021] and the GlueX experiment [Beattie et al., 2018].
The CCTVal Data Center currently has about 800 CPU cores of processing capability and a
storage capacity of 300 TB. They also provide Graphics Processing Units (GPU) support with
more than 10 GPU NVIDIA Graphics cards.

14.1 GEMC

GEMC allows the user to simulate the BabyCal in any environment by choosing certain pa-
rameters that will guide the simulation and generate the needed data. To be more precise,
GEMC is also a framework in itself, because it is a real software structure that is built on top
of the CERN’s GEant4 Simulation Toolkit [CERN, 2023b] and it uses it to simulate the pas-
sage of particles through matter (see Figure 7). Thus, giving the user a new useful tool with
which to analyze the data coming from a detector, in this case, the BabyCal Electromagnetic
Calorimeter [Ungaro, 2019].

GEMC provides:

e Application independent geometry description
e Easy interface to build / run experiments

e CAD/GDML imports (geometry formats) [CCIN2P3, 2012]

2High Energy Physics

3GEant4 Monte-Carlo

4Centro Cientifico Tecnologico de Valparaiso
>The Large Hadron Collider

S ATLAS Experiment

’European Council for Nuclear Research
8CEBAF La rge Acceptance Spectrometer
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[ Run options: tilts, displacement, calibration, inefficiencies J

/ Geometry and \

Physics Modeling

/ Results \

Rates in Layer: 3a  Edep > 0.02

[ Nuclear Physics Cross Sections J [ Electromagnetic Fields ]

The architecture of gemc

Figure 7: GEMC Architecture, Source: GEant4 Monte-Carlo

The advantage about GEMC, is that due to its modular usability, the simulation process can
be automated in order to generate the amount of data needed to train a machine learning
tool. Nevertheless, it is not possible to directly pass the simulated data to said tool, because
most modern machine learning tools use a typically standard format determined by the pro-
gramming language and the analysis toolkit intended for the process. In this case, the usual
target format are Python’s “numpy”’ matrices. Therefore, the data needs to be translated
first. For this obstacle to be overcome, a tool called Gruid Translator will be used. It is im-
portant to mention that “translating” in the context of this thesis work, means transforming
the output format of the simulated data to another that allows for easier handling for the
data analysis.

?Numpy Python Library
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1.4.2 GRUID TRANSLATOR

The Gruid Translator is a small tool in Python that attempts to convert a GEMC simulation of a
generic calorimeter detector to a standard output format. Taking a text file (. txt) exported
by the GEMC simulation, this tool generates a time series of sparse matrices detailing the
location and energy deposited of hits in the scintillating fibers [Benkel, 2021]. As this is a
modular tool, it can, like GEMC’s simulation process, be automated as well. Later in this
work in Chapter 3 (The Framework), some units will be used to describe part of the Gruid
Translator’s I/0O mechanism (from now on referred as Gruid for short). They are the following:

e Energy is measured in MeV.
e Distance is measured in cm.

e Time is measured in ns.

1.5 ABOUT THE CURRENT DATA HANDLING PROCESS

The current HEP data treatment process goes like the following:

1. Generate simulated HEP data with GEMC'’s simulation functionality: A configuration
fileis filled with the desired parameters for the simulation and proceeds to be executed
on the CCTVal’s Cluster or in a local PC. GEMC runs the file and generates the simulated
HEP data like it would be if the BabyCal was used to detect particles.

2. Translate the simulated HEP data with the Gruid Translator to a “Pythonic” format
(Sparse matrix represented in a JSON format): The resulting HEP data of the simula-
tion is passed on to said tool, with which it gets translated to a much more compre-
hensible format. This allows an easier analysis and understanding of the data being
handled.

3. Analyze the HEP data with traditional Python programming: Analyze the data to un-
derstand its behavior and apply the desired metrics with user-available tools.
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1.6 IDENTIFIED PROBLEMS

The following problems are the ones identified in the before-mentioned data handling pro-
cess.

e Data generation and extraction

- The need to generate many simulations.

- Not having expert knowledge on the handling of GEMC.

- The need to generate a large volume of data from said simulations to train a
machine learning tool.

Data transformation

- The need to format data from many simulations to deliver to a machine learning
tool in order to train it.

Data analysis

- The need to analyze data from many simulations using a machine learning tool.

There is no automated integration of the simulations with the data analysis of the
experiments that want to be carried out with the BabyCal.

There is no Framework for data simulation and analysis.

- Impossibility to generate many simulations in an automated way.
- Insufficient HEP data volume to train a machine learning tool.

- Uselessness of a machine learning tool for HEP data analysis.

The identified problems can be structured and classified into a problem tree for an easier
understanding, making it simpler to address each one of them. The relevant classifications
will be:

e Causes (problem starters)
e The main problem

e Effects (consequences)

Figure 8 shows the identified problems structured into the problem tree.
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Figure 8: Problem Tree, Source: 0Own elaboration
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1.7 OBIJECTIVES

1.7.1 MAIN OBJECTIVE

The main objective of this thesis will be to design and implement a framework for integrating
the simulation and analysis of HEP particle data of the BabyCal Electromagnetic Calorimeter
in computer clusters.

1.7.2 SPECIFIC OBJECTIVES

e Automate data simulation using GEMC on a computational cluster.
e Transform the simulated data using the Gruid Translator.

e Analyze the simulated particle physics data using a machine learning-based method.

1.8 CONTRIBUTION

The main contribution of this work is the development of a framework to automate and
integrate the simulation and analysis of HEP data for the BabyCal electromagnetic calorime-
ter. This work will be focused on the creation of said framework and the analysis of BabyCal
events to successfully create a machine learning tool that allows for such a task. The machine
learning approach will be used to design, implement, and validate the proposed method. The
validation is a crucial step in this work, because the proposed algorithm will be tested on the
BabyCal framework also to be created.
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CHAPTER 2
CONCEPTUAL FRAMEWORK

2.1 AUTOMATION

The IBM site on automation refers to the concept as the use of technology to perform tasks
with where human input is minimized. This includes enterprise applications such as business
process automation (BPA), IT automation, network automation, automating integration be-
tween systems, industrial automation such as robotics, and consumer applications such as
home automation and more [IBM, 2023].

It involves the design, development, and deployment of systems that can operate and exe-
cute functions automatically, following predefined rules or instructions. It often involves as
well, the integration of hardware, software, and control systems to create automated work-
flows and processes. The benefits of automation include increased productivity, improved
accuracy, reduced operational costs, enhanced safety, and faster task completion.

2.2 COMPUTER CLUSTERS

Computer clusters are interconnected groups of computers or servers that work together as
a unified system. They are designed to enhance performance by distributing computational
tasks among multiple machines. Clusters are typically used for high-performance computing
(HPC) applications that require significant processing power, such as scientific simulations,
data analysis, and large-scale computing.

One of the main advantages of using clusters is their ability to handle large workloads by
dividing them into smaller tasks that can be executed in parallel across multiple nodes. This
parallel processing capability enables faster execution and improved performance on the
task being handled.

Additionally, clusters provide high availability and fault tolerance as they can continue func-
tioning even if some nodes fail, thanks to its redundant architecture. For this specific thesis
work, a high-performance cluster (HPC) is going to be used (CCTVal’s HPC Cluster). HPCs are
specifically designed for demanding computational tasks and rely on a lot of hardware, such
as powerful processors and large memory capacities.
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2.2.1 JOBS - SERIAL VS PARALLEL EXECUTION

Executing jobs in series means each task is performed one after another, sequentially. How-
ever, utilizing the cluster more efficiently involves running jobs in parallel rather than in se-
ries. By doing so, multiple tasks can be executed simultaneously, allowing for faster task
speed and faster overall results [NM State University, 2021].

TASK

Instructions

oooo anm

Processed data

Figure 9: Serial Job Execution, Source: [IM State University, 2021]

Figure 9 illustrates the sequential execution of a task by a single processor, which is suit-
able for basic applications with minimal computational requirements. However, when deal-
ing with complex and time-intensive programs that demand significant processing power
and speed, it becomes necessary to explore parallel computing. By transitioning to par-
allel processing, it is possible to accelerate the task completion and achieve faster results
[NM State University, 2021].

TASK Instructions

Processed data

Figure 10: Parallel Job Execution, Source: [NM State University, 2021]

Figure 10 illustrates the concurrent execution of multiple tasks by multiple CPUs. By in-
creasing the number of CPUs, the tasks can be completed more swiftly, as the work-
load is distributed among the processors, leading to enhanced efficiency and faster results
[NM State University, 2021].
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2.3 SINGULARITY CONTAINERS

Singularity containers are a type of lightweight, portable, and reproducible software pack-
aging technology used in high-performance computing (HPC) and scientific computing envi-
ronments. Singularity enables the creation and deployment of application containers that
encapsulate an entire software stack, including the operating system, libraries, and depen-
dencies, in a single, self-contained unit.

Unlike traditional containerization with Docker, Singularity containers are designed to pri-
oritize compatibility with scientific and HPC workloads. Singularity containers are primarily
intended for running applications in shared computing environments, such as clusters and
supercomputers, where users may not have administrative privileges or the ability to modify
the host system [Singularity Docs, 2019].

One of the key features of Singularity is its ability to provide a level of isolation between
the host system and the containerized application while allowing the application to interact
directly with the underlying system resources. This feature enables users to run applications
within Singularity containers as if they were running natively on the host system, without the
need for virtualization or root access [Gerber, 2018].

2.4 MACHINE LEARNING: STATE OF THE ART

Machine learning is a branch of artificial intelligence that involves using data and training
algorithms to recognize patterns in it. Machines are able to learn how to identify com-
mon elements on specialized datasets and use this knowledge to recognize them on new
ones. By analyzing patterns and information, machine learning systems enhance their under-
standing and decision-making abilities. This iterative process allows computers to learn and
make predictions without explicit programming. Thus enabling computers to acquire knowl-
edge and improve their performance over time. Instead of providing explicit instructions,
the computer system is trained on a dataset containing examples or patterns, and it learns
to identify and generalize patterns or relationships from the data. This training involves
using mathematical and statistical techniques to create models that can make predictions
or decisions based on new data. During the last few years, machine learning approaches
have become increasingly crucial for analyzing complex HEP data [Radovic et al., 2018]
[Albertsson et al., 2018] [Baldi et al., 2014] [Guest et al., 2018].

There are different types of machine learning algorithms, the three main paradigms are su-
pervised learning, unsupervised learning, and reinforcement learning:
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2.4.1 SUPERVISED LEARNING

In supervised learning, the algorithm learns from a labeled dataset, where each example is
associated with a known output or target. The algorithm learns to map input data to the
correct output by finding patterns or relationships in the labeled data. It can then make
predictions or classifications on unseen data. A classic way of using supervised learning is
in the realm of image classification, where after being trained, the user can, for example,
give the model an image with various animals, and the model will be able to distinguish each
one (see Figure 14). This is achieved by previously training the machine with big amounts of
labeled images, so it knows what to expect later. See Figure 11.
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Figure 11: Supervised Learning, Source: [Peng et al., 2021]

2.4.2 UNSUPERVISED LEARNING

Unsupervised learning involves learning from an unlabeled dataset, where the algorithm
aims to find patterns, structures, or relationships within the data without any pre-existing
labels or targets. It can be used for tasks such as clustering similar data points or dimension-
ality reduction. See Figure 12.

Clustering

Figure 12: Unsupervised Learning, Source: [Peng et al., 2021]
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2.4.3 REINFORCEMENT LEARNING

Reinforcement learning involves an agent learning to make decisions and take actions in an
environment to maximize a reward signal. The agent learns through trial and error, receiving
feedback in the form of rewards or penalties based on its actions. Over time, it learns the
optimal strategy or policy for achieving its goal. A very good example are now-a-days’ adap-
tive level video games. They challenge the player according to how the player is performing

during playtime. See Figure 13.
"_I Agent J
state reward action
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. Environment - Physical world in which the agent operates

. State — Current situation of the agent

. Reward — Feedback from the environment

. Policy — Method to map agent’s state to actions

. Value —Future reward that an agent would receive by
taking an action in a particular state

Figure 13: Reinforcement Learning, Source: [Bhatt, 2018]

2.5 DEEP LEARNING

Deep learning is the current machine learning approach that is revolutionizing data anal-
ysis in many fields, improving the state-of-the-art performance on image and speech
recognition, genomics research, natural language processing, and many other domains
[Lecun et al., 2015]. Hosny et al., have described deep learning as follows: “Deep learn-
ing is a subset of machine learning that is based on a neural network structure loosely
inspired by the human brain. Such structures learn discriminative features from data au-
tomatically, giving them the ability to approximate very complex nonlinear relationships”
[Hosny et al., 2018].

Fully-connected networks and convolutional neural networks are two supervised deep learn-
ing techniques that have been successfully used in the analyzing of HEP data coming from
particle detectors. Thus, the application of deep learning methods to the analysis of the dig-
itized signals produced by the particles that will transverse the BabyCal has the potential to
be the right tool to dominate the task at hand.

Pagina 19 de 51



A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

2.5.1 CONVOLUTIONAL NEURAL NETWORKS

Convolutional Neural Networks (CNNs) are a type of deep learning architecture that have
been widely utilized in various fields, including computer vision and pattern recognition.
CNNs have shown remarkable performance in analyzing and extracting meaningful features
from complex data, making them particularly well-suited for image analysis tasks.

The key component of CNNs is the convolutional layer, which applies a set of learnable filters
to the input data. These filters, also known as kernels, slide across the input to detect differ-
ent patterns and spatial features. The convolution operation allows the network to capture
local correlations and hierarchies present in the data. By stacking multiple convolutional lay-
ers, pooling layers, and fully-connected layers, followed by non-linear activation functions
(commonly the Softmax function), CNNs can learn increasingly abstract representations of
the input data. See figure 14.

Convolution Neural Network (CNN)
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Figure 14: Convolutional Neural Network example. Source: [Swapna, 2020]

Pagina 20 de 51



A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

2.5.2 AUTOENCODERS

An autoencoder is a type of neural network architecture used for unsupervised learning
tasks. It is designed to reconstruct the input data from a compressed representation known
as the “latent space”. The size of the latent space in the autoencoder can significantly im-
pactits accuracy and performance. Its size determines how much information is retained and
how effectively the original features are reconstructed. A smaller latent space might force
the autoencoder to discard intricate details, leading to an oversimplified representation and
lower accuracy. So t’s important to not choose a size that is too small even though there’s
no theoretical limit for its size. In the same way, a larger latent vector can result in overfit-
ting, where the model merely memorizes the training data without generalizing well to new
data. Thus, finding the right balance in latent vector size is crucial, as it directly influences
the trade-off between model complexity and accuracy.

The autoencoder consists of an encoder network, which compresses the input data into a
lower-dimensional representation, and a decoder network, which reconstructs the original
data from the compressed representation. See Figure 15

The autoencoder’s training objective is to minimize reconstruction error, the difference be-
tween original input and reconstructed output. Accurate reconstruction means learning a
compressed representation that captures essential features of the input.
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Figure 15: General autoencoder architecture; “Code” represents the latent space.
Source: [Dertat, 2017]
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2.5.3 ACTIVATION FUNCTIONS

In this section, a couple of activation functions relevant to this work will be mentioned. Ac-
tivation functions play a crucial role in artificial neural networks, forming the backbone of
deep learning models. By introducing non-linearity, these functions enable neural networks
to learn complex patterns and make accurate predictions.

e RelU (Rectified Linear Unit):

RelU is the most popular activation function in modern deep learning models. It out-
puts the input if it is positive and zero otherwise, introducing simplicity and avoiding
vanishing gradient problems.

@) = {o if 2 <0

r ifz >0

= max(0,2) = 21,59

Figure 16: RelLU Activation Function, Source:Laughsinthestocks - Own work, CC
BY-SA 4.0, Wikipedia Series on Machine Learning

e Softmax:

Softmax is commonly used in the output layer of a classification model. It transforms
the final layer’s raw scores into a probability distribution, allowing the model to make
class predictions.

e’ ,
softmazx(x); = m fori=1,...,J
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2.5.4 PERFORMANCE METRICS

In this section, a couple of relevant performance metrics relevant to this work will be men-
tioned [Powers, 2020]. Performance metrics are essential tools for evaluating the effective-
ness and efficiency of machine learning models. They measure how well a model performs
its intended task. Most of them are calculated based on the Confusion Matrix (see 1, which
is a performance metric that summarizes the results of the predictions in a classification task
scenario.

Table 1: Confusion Matrix for binary classification instance. Source: 0Own Elaboration

Prediction | Prediction
0 1
Real
0 TN FP
Ria' EN TP

From here, a set of definitions ought to be considered:

True Positive (TP) : Result is positive, and was predicted positive.

False Negative (FN) : Result is positive, but was predicted negative.

True Negative (TN) : Result is negative, and was predicted negative.

False Positive (FP) : Result is negative, but was predicted positive.

To better understand the confusion matrix and the values, the following association can be
applied:

e Positive or Negative: refers to the prediction. If the model predicts 1, it will be positive,
and if it predicts O, it will be negative.
e True or False: refers to whether the prediction is correct or not.

The performance metrics that were most relevant for the development of this thesis work
are the following:

e Accuracy:

Accuracy is one of the most fundamental metrics used to evaluate the performance of
amodel. It measures the amount of correct predictions made by the model compared
to the total amount of predictions.
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While accuracy is a valuable metric, it might not be suitable for imbalanced datasets,
where one class dominates the others. In such cases, high accuracy can be mislead-
ing, and other metrics should be used to provide a more comprehensive view of the
model’s performance.

TP+TN
TP+TN+ FP+ FN

Accuracy =

e Precision and Recall:

Precision and recall are metrics commonly used in classification tasks. Precision rep-
resents the proportion of true positive predictions (correctly predicted positive in-
stances) to the total predicted positive instances.

TP

P . . _
recision TP+ FP

Recall, on the other hand, measures the proportion of true positive predictions to the
total actual positive instances. These metrics are especially important when dealing
with imbalanced datasets, as they provide insights into the model’s ability to identify
positive instances correctly while avoiding false positives.

TP

Recall = — +~
= TPIEN

e F1 Score: The F1 score is the harmonic mean of precision and recall, providing a bal-
anced evaluation metric for classification tasks. It is especially useful when precision
and recall need to be considered together, as it balances their importance and helps
to evaluate the overall performance of the model.

Precision - Recall
F1 Score = 2 -

Precision + Recall

e Mean Squared Error (MSE):

MSE, or Mean Squared Error, is a widely used performance metric in machine learning
prediction tasks. It measures the average squared difference between the predicted
values and the actual values in the dataset.

MSE quantifies the magnitude of prediction errors, and it provides a way to evaluate
how well a model fits the data. Smaller values of MSE indicate better model perfor-
mance, as they suggest that the model’s predictions are closer to the actual values.

One advantage of MSE is that it penalizes larger errors more significantly due to the
squaring operation, making it sensitive to outliers. However, this sensitivity can also be
a limitation when dealing with datasets that have extreme outliers, as it may overem-
phasize their impact on the overall error. This makes it convenient to use when dealing
with balanced dataset that lack extreme outliers, since it provides a reliable prediction.

Pagina 24 de 51



A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

CHAPTER 3
THE FRAMEWORK

3.1 SYSTEM OVERVIEW

The provided diagram (Figure 17) depicts the complete framework (from now on also re-
ferred as “The Framework”) that will be implemented. The following sections will provide
explanations of each component, detailing their individual operations and functionalities.

CCTVal HPC Cluster

S

- Feedback (Repeat Process) ~N

Simulation Translation Analysis

[ Trained Model @ }

Y A A

Gruid
EVIO Format 3
GEMC Textfile Translator p
JSON
Sparse Matrix
N < Python . Numpy ML (CNN &
( . . Pre-Processing Matrix Autoencoder)
Muon & Antimuon hits
detection

Configurations: E> Reconstructing

e Flattening
- Cosmic ray beam GCARD energy & target matrix e Padding
- Event number (N) |(Start) e Reshaping
- GUI Usage e Normalizing

- Output format

Figure 17: Simplified Framework Diagram. The image depicts the whole process of the
framework, from the simulation with GEMC, through the translation with Gruid, till the
Python pre-processing and the analysis with Machine Learning Techniques. Source: 0Own
elaboration

3.2 SIMULATION

GEMC, being a third-party software tool and a comprehensive framework, will be incorpo-
rated into the system as a “black box” component. Due to its ongoing development, it is
essential to select a specific version that guarantees compatibility with other system com-
ponents and consistency in the output data.
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During the evaluation and familiarization process with the tool, two significant versions of
GEMC, namely GEMC v2 and GEMC v3, were considered for potential utilization in this
project.

3.2.1 GEMCv2vs. GEMCv3

In this section, a comparison table is provided to assess the different aspects, pros, and cons
of GEMC v2 and v3. This analysis aims to determine the most suitable GEMC version for
constructing the framework:

Table 2: Comparison between versions of GEMC 2 & GEMC 3. Source: 0Own elaboration

Considerations GEMC 2 GEMC 3
Geant 4 Version 10.6 4.10.06 11.0.3
Gruid Translator compatibility Partial to none Full None
Cluster compatibility Singularity version only | Native (Compilable) | Singularity version only
BabyCal Architecture compatibility Full Full None
GCARD input compatibility Full Full None
Output format EVIO EVIO ROOT
Architecture programming language Perl Perl Python 3
Installation, maintenance and deployment Very Hard Hard Normal

For this thesis work, the developer’s version of GEMC v2 has been chosen as the preferred
option. Despite utilizing the older Geant4 v4.10.06 engine, this version offers crucial com-
patibility with CCTVal’s Cluster and the simulated BabyCal’s architecture [Molina, 2021], al-
lowing for the complete automation of the system. Moreover, selecting GEMC v2 enables
smooth integration with the other components of the framework, ensuring a cohesive work-
flow. The decision to utilize this version aims to maximize the benefits provided by GEMC v2
while maintaining compatibility and integration within the overall system architecture.

GEMC'’s structure as a software tool can be summarized in four main files:

e bcal.pl: It's the main script. It calls all the other scripts for the whole simulation
execution.

e bcal geometry.pl: Contains the geometry specifications for the different compo-
nents of the detector

e bcal materials.pl: Contains all the custom materials definitions.

e bcal.gcard: (Shown in the diagram (see Figure 17) as GCARD) Can be defined as the
“initial input” script.
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3.2.2 GEMC INPUT HANDLING

GEMC's input handling looks fairly simple in the diagram, but in reality, it has two main stages.
The first one is more complex, while the second one refers to the actual input for GEMC,
which is the GCARD.

1. Compile the BabyCal architecture: This step requires the PERL code files mentioned
prior to this section that define the geometry and the materials for the detector that
GEMC will simulate. These are vital for tuning the parameters of the GCARD, since the
dimensions of the simulated detector are fixed for the rest of the process. If the user
wishes to simulate collisions with different detector dimensions, they must rebuild
the BabyCal regenerating the geometry and material files. For this thesis work, the
data set generated by the simulations used a BabyCal configuration of 15 rows and 15
columns of fibers.

2. Tune the simulation parameters with the GCARD: This corresponds to the actual in-
put for the simulation part of the process. Figure 18 shows one of the GCARDs used to
simulate the Muon particle (1) collisions for this thesis work. The language format
used by the GCARD is very similar to HTML. The parameters that were tuned in these
experiments were N (the number of events in one simulation; this is the number of cos-
mic rays that collide with the detector), BEAM_P (Beam particle, momentum, angles (in
respect of the z-axis), OUTPUT (to automate the creation of timestamp identifiers for
the generated files) and USE_GUI (to enable visual testing and in background execu-
tion for automation). The rest of the parameters were maintained fixed to ensure the
physical coherence of each experiment. Further insight on GEMC's different options
can be found at GEMC’s Legacy Documentation Page: GEMC Options.

1 <gcard>

2 <detector name="bcal" factory="TEXT" variation="original'"/>
3 <option name="INTEGRATEDRAW" value="flux"/>

4 <option name="SAVE_ALL_MOTHERS" value="1"/>

5 <option name="PHYSICS" value="STD + Optical + HP + QGSP_BERT"/>
6 <option name="RECORD_OPTICALPHOTONS" value="1"/>

7 <option name="RECORD_PASSBY" value="1"/>

8 <option name="BEAM_P" value="mu-,10%GeV,-90*deg,-90*deg"/>
9 <option name="BEAM_V" value="(0,5,0)cm"/>

10 <option name="SPREAD_P" value="0*GeV,b3*xdeg,63*deg"/>

11 <option name="N" value="1"/>

12 <option name="USE_GUI" value="0"/>

13 <option name="QUTPUT" value="txt, ../out/output.txt"/>

1 </gcard>

Figure 18: GCARD example for muon particle collisions. Source: 0Own elaboration
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It is important to note that this whole part of the process is executed in a parallel fashion.
Jobs are sent to the CCTVal Cluster’s queue to generate simulations and are automatically
distributed across the available nodes. This allowed for an approximate generating rate of
917 simulations per hour, for a data set the size of about 10.000 entries.

3.2.3 GEMC OUTPUT HANDLING

GEMC'’s output handling is straightforward. The generated output files are grouped into a
particle-specific folder. Then, they are processed individually using the Gruid Translator to
convert them from EVIO to a Python sparse matrix format. Figure 19 displays a snapshot of
the EVIO-formatted output from a very small simulation.

integrated true infos bank (51, 0) --

(51, pid: 2112 2112 2112 2112 2112 2112 2112 2112 2112 |
(51, mpid: © 0 0 0 @ 0 0 @ 000000000000 (
(51, tid: 11111111 111111111111
(51, mtid: @ 0 0 0 0 0 0 O 000000000000 (
(51, otid: 11111111 111111111111
(51, trackE: 10044.0421677 44.0421677 10044.0421677 10044.0421(
(51, totEdep: 0 0 0 0 0 0 000000000000 00O00O0 (
(51, avg_x: 0.460143459705 0.370010828744 ©.370019679057 0.37:
(51, avg_y: -0.303021075395 9.5503051844 9.54933766556 9.292106.
(51, avg_z: 0.823906040237 0.66251980839 0.662535655244 0.6667:
(51, avg lx: 0.460143459705 0.370010828744 0.370019679057 G) ;
(51, avg ly: -0.303021075395 -0.0118726436029 -0.0128401624396
(51, avg lz: 0.823906040237 0.66251980839 0.662535655244 0.66(
(51, px: 91.4582264079 91.4582264079 91.4582264079 91.4582264

(51, py: -9998.24075185 -9998.24075185 -9998.24075185 -9998.:%
(51, pz: 163.759765737 163.759765737 163.759765737 163.75976573
(51, vx: 0000000000000 0O0O0O00OOOOOOO0O0OO0 (
(51, vy: 50 50 50 50 50 50 50 50 50 50 50 50 50 50
(51, vz: 0000000000000 0DOO0OOOOOO0O00O0 (
(51, mx: 000000000000000000000000000 ("
(51, my: 000 0000000000000 000O0OOO0O00O0 (
(51, mvz: 0000000000000 OOO00OOOOOOOO OO (
(51, avg t: 0.168561728167 0.135543955735 0.135547197819 0.13(,
(51, nsteps: 16 22122122122122122122122:
(51, procID: 999 999 999 999 999 999 999 999 999 999 999 999 99!
(51, hitn: 12345678910 11 12 13 14 15 16 17 18
end of integrated raw bank.

Figure 19: GEMC EVIO Output Format, Source: 0Own elaboration

The data set is built on the premise that every simulation file generated contains only one
event. This is for two reasons. First, the fact that the data is intended to be used to train a
machine learning based method, so as said data is passed to the machine, there’s the need
to capture the signal generated by only one cosmic ray collision, since the data is meant to
be as granular as possible. Second, future work on potential time-series analysis for e.g.
anomaly detection, will be simplified as every file will have it's own timestamp, allowing for
automated data labeling as well.
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3.3 TRANSLATION

An important limitation arises in this stage of the process. The Gruid Translator is capable of
translating simulated collisions involving muon and antimuon particles only. This is because
standard detectors, like the BabyCal, are usually expected to detect muon particles, since
they are commonly used for the study of the physical phenomena of time dilation and length
contraction which are demonstrations for the theory of general relativity [Bailey et al., 1979],
[Behroozi, 2014]. This narrows down the amount of particles for The Framework to process,
but it's a very good starting point since it’s the most “similar to real life” case to consider in
this thesis work.

3.3.1 GRUID TRANSLATOR INPUT HANDLING

Like the previous part of the process, Gruid’s input handling is also a straightforward process.
The whole particle-specific folder with the simulated EVIO output textfiles is taken and is
passed on to Gruid obtaining a folder with the translations of every simulated file.

Gruid’s positional arguments are four:

1. filename: Path of the gemc file to be processed.
2. dt: The length of each time step for the generated time series in ns.
3. dx: The length of each row for each of the time series’ matrices in cm.

4. dy: The length of each column for each of the time series’ matrices in cm.

The arguments dt, dx and dy will get a more detailed explanation:

As described previously, the BabyCal'’s scintillating fibers will light up creating a “shower im-
age”, in this case a matrix, on both faces of the detector (one in each side). Considering the
total time of the simulation, dt allows the user to get a time series of different matrices with
the progression of how the final showers were generated in each face of the detector. For
this thesis work, the emphasis will be put on analyzing the final shower image, since the
objective is to determine conclusions on the spatial behaviour of the data. For that to be
achieved, a high enough dt value will be chosen to omit the time series and get a matrix
with two sides. This can be also seen as a 2-dimensional image with two channels (side 1
and side 2).

For dx and dy, an imaginary pair of grids can be placed on each face of the detector. In other
words as the ones that describe the meaning of each value, they can also be seen as the
height and width of each coordinate of the matrix. When taking this to a more graphical
level for understanding, they represent the dimensions of each pixel of the image that will
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be generated in each side of the detector, meaning, they define the resolution of the image.
For the simulated BabyCal’s specific case, one fiber of the detector has 0.1 centimeters of
diameter; so the base resolution (the highest possible), that makes sense to consider would
be values of 0.1 cm for both dx and dy. As that would allow to capture one fiber per pixel.
For a definitive understanding of this concept, Figure 20 shows an example for one side of a
simulated BabyCal with Gruid’s grid on it and the values of dx and dy presented graphically.
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Figure 20: BabyCal vs Gruid Translator’s Grid. Source: 0Own elaboration

For its use, Gruid has an OUTTYPE input option (see Table 3), which let’s the user choose
the format of the output, allowing for a better and easier use of the generated data. If the
user wants to choose the data output format, the use of that flag in the input for Gruid’s
execution is mandatory.

The Value of OUTTYPE must be a number and can vary from 1 to 5:

1. Print the generated . json to stdout, mainly for testing. This option can generate a
very extensive amount of output data, so it should be used with caution.

2. A . json file containing the time series is stored in out/. This is the default option.

3. The massive particle hits are added to the exported file. These are the targets for
reconstruction.

4. The photon hits used to generate the time series are added to the exported file. This
can aid in debugging.

5. The metadata taken from the GEMC input file is added to the . json file. This can be
useful if the user wants to destroy that file or extract some information from it.
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Table 3: Gruid Translator Arguments Table, Source: Gruid Translator Docs

Argument - Description

filename - Path of the gemc file to be processed.

dt - Length of each time step for the generated
time series in ns.

dx - Length of each row for each of the time series’
matrices in cm.

dy - Length of each column for each of the time se-

ries’ matrices in cm.

Optional Arguments
-h, --help

-z DZ, —--dz DZ
-—-pvx PVX

--pvy PVY

-—-pvz PVZ

-—-pnx PNX

--pny PNY

-—-pnz PNZ

-f FEVENT, --fevent FEVENT

-n NEVENTS, —--nevents NEVENTS

-o OUTTYPE, --outtype OUTTYPE

-r NROWS, --nrows NROWS

-c¢ NCOLS, —--ncols NCOLS

Show this help message and exit.

Length of each depth column for each of the
detector’s body time series’ matrices in cm.

X position of the vertex for the detecting plane
inside the detector’s body.

y position of the vertex for the detecting plane
inside the detector’s body.

z position of the vertex for the detecting plane
inside the detector’s body.

x direction of the normal vector to the detect-
ing plane inside the detector’s body.

y direction of the normal vector to the detect-
ing plane inside the detector’s body.

z direction of the normal vector to the detect-
ing plane inside the detector’s body.

Event number of the first event in the gemc
file that should be read. Note that events are
counted from 1 onward. Default is 1.

Number of events to read, counting from the
file set with FEVENT. Set to O to read until the
end of file. Default is O.

Type of output to be generated. Can be any in-
teger from 1 to 5. Check the README for a de-
tailed description of each alternative. Default
is 2.

Number of rows set in the gemc simulation. By
default this is read from the filename, but this
argument can be set to override this behaviour.
Number of columns set in the gemc simulation.
By default this is read from the filename, but
this argument can be set to override this be-
haviour.

Pagina 31de 51



10

11

12

13

14

A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

An example Python script of how to program a batch translation with Gruid is shown in Figure
21. The example shows the use of all mandatory positional arguments, being dt = 5 ns,
dx = 0.1 cmanddy = 0.1 cm, omitting the —o OUTTYPE option, since all is heeded for
this case is the default Gruid output format.

import os

# Access the script's directory (cd /user/d/dhebel/babycal/gruid-
translator/)
os.chdir("/user/d/dhebel/babycal/gruid-translator/")

# Iterate over all files in "sims/mu-" and translate them applying
the gruid-translator
for FNAME in os.listdir("/user/d/dhebel/babycal/sims/mu-"):
os.system('bash run.sh /user/d/dhebel/babycal/sims/mu-/{} 5 0.1
0.1'.format (FNAME))
os.system('echo "Gruid translation finished for {}"'.format(
FNAME) )

# Now for mu+:
for FNAME in os.listdir("/user/d/dhebel/babycal/sims/mu+"):
os.system('bash run.sh /user/d/dhebel/babycal/sims/mu+/{} 5 0.1
0.1'.format (FNAME))
os.system('echo "Gruid translation finished for {}"'.format(
FNAME) )

Figure 21: Gruid Translation Script, Source: Own elaboration

3.4 DATA PRE-PROCESSING

Gruid’s output for this use case is a dictionary of 2-dimensional sparse matrices. Each matrix
is defined as a dictionary where a key is a tuple-like string with the position coordinates in the
matrix and their respective value is the energy deposited in MeV. The code snippet shown in
Figure 22 is an example of Gruid’s default output format.
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"output.txt event 1": {

"gruid hits - side 1": {
"0.0": {
||4,0n: {
"# of hits": 7,
"energy deposited": 4.5034438176719995e-05

s
"4,1": |
"# of hits": 2,
"energy deposited": 1.635993026225e-05
3,
"4,2": {
"# of hits": 6,
"energy deposited": 3.519082653253e-05
T,
}
T,
"gruid hits - side 2": {
"0.0": {
"4,0": {
"# of hits": 5,
"energy deposited": 3.747209241649e-05
T,
}
3,
"gruid metadata": {
"# of columns (x)": 5,
"# of rows (y)": 7,
"dt": 5.0,
"dx": 0.3,
"dy": 0.3,
"pid": 13
b

Figure 22: Gruid output example (OUTTYPE: 2). Source: 0Own elaboration
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The whole folder is processed and the information of each file is appended to a numpy matrix
(the matrix gets reconstructed into the earlier mentioned pythonic format). Two matrices
(X and y) are generated for each resolution chosen for experimentation and testing of the
output data. Matrix X will represent the dataset with the energy in MeV for every sparse
coordinate of the matrix and y will represent the target vector for every simulated event.
Since the intention is now to analyze muons and antimuons only due to Gruid’s limitation to
process those particles exclusively, the target vectors’ values will be defined as the following:

e 1: muons
e 0: antimuons
It is important to remember that in the context of this thesis work, events and simulations

mean the same, since every simulation has only one event. From now on, they will also be
referred as the same indistinctly.

To clarify this concept in a graphical way, Figure 23 shows the output structure of the recon-
structed matrices.

y
X (target
(one entry) vector)
Dimensions (numpy notation):
X: (n_events, rows, columns, sides) y: (n_events,)
e.g.: (10233, 21,15, 2) e.g.: (10233,)

Figure 23: Example of Gruid’s output numpy matrix dimensions for a dx=dy=0.1 resolution
after reconstruction. The number of rows and columns will be 21 and 15 respectively since
the considered resolution is the size of each fiber. Gruid adds 6 (in this case) extra rows for
spacing purposes. Source: 0Own elaboration

The following code snippet (Figure 24) is the function that receives a list of json files (the
default output format shown earlier), and builds the exampled dataset (10.233 entries) re-
constructing every json file into the numpy matrix format and appending it to the X matrix.
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def reconstruct matrix(filelist):

X =[]

for file in filelist:
with open(file) as f:
data = json.load(f)

for event, event _data in data.items():
side_1 = event_datal['gruid hits - side 1']
side_2 = event_datal'gruid hits - side 2']
gruid_metadata = event_datal['gruid metadata'l]

matrix = np.zeros((gruid_metadatal'# of rows (y)'],
gruid_metadatal'# of columns (x)']l, 2))

# IMPORTANT: Coordinates are inverted in the matrix because
of matrix notation in GRUID.

# Side 1
for timestamp, timestamp_data in side_1.items():
for pixel, pixel_data in timestamp_data.items():
X, y = pixel.split(",")
matrix[ int(y), int(x), O ] = pixel_datal'energy
deposited']

# Side 2
for timestamp, timestamp_data in side_2.items():
for pixel, pixel_data in timestamp_data.items():
X, y = pixel.split(",")
matrix[ int(y), int(x), 1 ] = pixel_datal'energy
deposited']

X.append(matrix)
return np.array(X)

muon_labels = np.ones(len(files_MUM_01))
antimuon_labels = np.zeros(len(files_MUP_01))

y_01 = np.concatenate ((muon_labels, antimuon_labels))
muons = reconstruct matrix(files MUM _01)

antimuons = reconstruct matrix(files MUP_01)

X_01 = np.concatenate ((muons, antimuons))

Figure 24: Matrix reconstruction script for the Gruid default output format. Source: Own
elaboration
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CHAPTER 4
MACHINE LEARNING FOR DATA ANALYSIS

4.1 CNN FOR CLASSIFICATION: SVGG-21Net

At this point, we have generated simulated data using GEMC and Gruid, which is labeled
and has the proper format to be used by neural network Python modules. Thus, making
the format ideal for using Convolutional Neuronal Networks (CNNs), a supervised machine
learning method, to classify and distinguish muons from antimuons. That makes the task of
classifying particles a very interesting one to execute, so it was the first automatic analysis
approach added to The Framework.

Prior to feeding the data to the CNN, the matrices were pre-processed and padded with zeros
into squared images, so the dimensions are a better fit with the kernel size and its strides, see
Figure 25. Various kernel sizes and strides where tested, but the parameters given in Table 4
were the perfect fit, they were the only sizes that worked with the matrices dimensions.

The exampled dataset used in the Gruid’s output matrix dimensions diagram are the same
ones used for the experimentation. The matrices dimensions are brought from (21, 15, 2) to
(21, 21, 2); see Figure 25.

Muon Muon
8 10 12 14 0 2 4 6

2222222

17.51 17.517.5 4 17.5
. 17.517.5 17.5 - .

20.0 20.020.0 q 20.0

0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0 0.0 2.5 5.0 75 10.0 125 15.0 17.5 20.0
Side 1 Side 2

Figure 25: Particle Plots: Pre-Padding Vs Post-Padding (Muon Example)

The proposed CNN architecture is a simplified variant for the standard VGGNet architecture
type. It consists of several layers, including convolutional layers, max-pooling layers, and fully
connected layers [Simonyan and Zisserman, 2015].

The following table (see Table 4) describes the result for the experiment alongside the CNN'’s
architecture. The plots correspond to the performance metrics progressions throughout the
epochs (see Figure 26 and 27).

Pagina 36 de 51



A FRAMEWORK FOR DATA SIMULATION AND ANALYSIS OF THE BABYCAL ELECTROMAGNETIC CALORIMETER

Table 4: SVGG-21Net Architecture Detail and Results

Layer Configuration

Input (Batch Size, Width, Height, Channels)

Conv2D (32 filters) Kernel Size: (3, 3), Strides: (1, 1), Activation: RelLU
Conv2D (64 filters) Kernel Size: (3, 3), Strides: (1, 1), Activation: ReLU
MaxPooling2D Pool Size: (2, 2), Strides: (2, 2)

Conv2D (128 filters) Kernel Size: (3, 3), Strides: (1, 1), Activation: ReLU
MaxPooling2D Pool Size: (2, 2), Strides: (2, 2)

Flatten

Dense (128 units) Activation: RelLU

Dense (2 units) Activation: Softmax

Training Details Values

Batch Size Default

Number of Epochs 30

Optimizer Adam

Learning Rate Default

Loss Function Categorical Cross-entropy

Dataset Details Values

Dataset Name mump_0.1

Number of Classes 2

Dataset Size 10.233

Data Preprocessing Normalized with keras.utils.normalize ()
Target Encoding One-Hot Encoding

Used Performance Metrics

Accuracy Recall

Precision F1-Score

Results Scores Results Scores
Training Loss 0.0281 Training Accuracy 0.9916
Validation Loss 3.3435 Validation Accuracy 0.5366
Testing Loss 3.6665 Testing Accuracy 0.5164
Training Precision 0.9916 Training Recall 0.9916
Validation Precision 0.5366 Validation Recall 0.5366
Testing Precision 0.5164 Testing Recall 0.5164
Training F1-Score 0.4941

Validation F1-Score 0.2822 Training Time 135.71 seconds
Testing F1-Score 0.2718
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Figure 26: SVGG-21Net: Loss & Accuracy Behaviour
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Figure 27: SVGG-21Net: Precision, Recall & F1-Score Behaviour

The CNN’s training performance demonstrated high accuracy and recall. However, discrep-
ancies arise when evaluating on the validation and testing sets. The elevated loss and re-
duced accuracy on the validation set indicate potential overfitting, where the model’s per-
formance on unseen data is deficient.
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To illustrate the summary of the performance metrics, we'll visualize the confusion matrix
on the testing set, see Figure 28.

Confusion Matrix

540
530
520
510
-500
-490

Antimuons

True Labels

Muons

-480

-470

Antimuons Muons
Predicted Labels

Figure 28: SVGG-21Net: Confusion matrix

Its behaviour shows a distinctive type of overfitting, where the model mistakenly believes it is
learning, specially in the beginning of the training stage. However, during validation with loss,
accuracy and the rest of the performance metrics (see Section 2.5.4), it diverges significantly
from the expected curves. This strongly suggests that the classes in the dataset lack clear
separability from one another. The testing results confirm the deficient performance of the
CNN when trying to classify the particles.
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4.2 AUTOENCODER FOR DATA RECONSTRUCTION: AE-21RecNet

Due to the suggested lack of separability of the classes when trying to classify with the SVGG-
21Net CNN, an autoencoder (AE-21RecNet) was trained exclusively with muon data to test
reconstruction with muons. The proposed architecture corresponds to Table 5. The plots
correspond to the performance metrics progressions throughout the epochs; see Figure 29.

Table 5: AE-21RecNet Architecture and Training Details (dx=dy=0.1)

Layer Configuration

Input (Batch Size, Width, Height, Channels)

Flatten

Dense (630 units) Units: Width x Height x Channels, Activation: ReLU
Dense (315 units) Units: Width x Height, Activation: RelLU
Dense (21 units) Units: Width, Activation: ReLU

Dense (21 units) Units: Width, Activation: RelLU

Dense (315 units) Units: Width x Height, Activation: ReLU
Dense (630 units) Units: Width x Height x Channels, Activation: ReLU
Reshape Shape: (Width, Height, Channels)

Training Details Values

Optimizer Adam

Loss Function Mean Squared Error (MSE)

Number of Epochs 30

Batch Size Default

Dataset Details Values

Dataset Name mum_0.1

Number of Samples 5.214

Data Preprocessing Normalized with keras.utils.normalize ()
Used Performance Metrics

AE Accuracy

Results Scores

Training Loss 0.0022

Validation Loss 0.0033

Testing Loss 0.0035

Training AE Accuracy 0.9803

Validation AE Accuracy 0.9756

Testing AE Accuracy 0.9743

Training Time 36.48 seconds
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Figure 29: AE-21RecNet: Loss & Accuracy Behaviour

In the context of autoencoders, accuracy is not interpreted the same way it's done in con-
volutional neural networks, because it’s strictly meaningless to ask for the accuracy from
an autoencoder. Instead, autoencoders usually use the loss function to describe the per-
formance of the model. Nevertheless, it is important to note that, since the autoencoder
trained for this reconstruction task used the Keras Python library®, it allowed an accuracy
function to be used for further analysis and, mainly, visualization purposes. Which in this
case, since the model is meant for reconstruction, is calculated by dividing the number of
correctly reconstructed events by the number of total events [Keras Team, 2023] meaning,
it is calculated just like regular accuracy in a CNN, but it is to be interpreted in a different
way.

Correctly Reconstructed Events

AE Accuracy (AutoEncoder Accuracy) =
Total Number of Events

Since autoencoders aim to learn an efficient representation of the input data, the accuracy
metric can provide a measure of how accurately the model can reconstruct the input sam-
ples. Higher accuracy values indicate better reconstruction performance.

This behaviour (see Figure 29) indicates a nice fit for the learning curves. The loss function
(MSE) plot shows a consistent decrease in the loss value during training, indicating that the
autoencoder is effectively learning to reconstruct the data. A decreasing loss value is a pos-
itive sign, indicating improved performance and convergence throughout the epochs. The
Accuracy plot shows a stable or gradually improving trend. While not a traditional accuracy
measure, an increasing trend in the accuracy plot means that the autoencoder successfully
reconstructs the data with greater fidelity. If the loss has stabilized at a low value and the
accuracy shows improvement, it suggests that the autoencoder has reached a satisfactory
reconstruction capability.

Keras Python Library
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The MSE Error Reconstruction is usually the “go-to” loss function when performing recon-
struction tasks with autoencoders. It can be visualized trough the MSE error reconstruction
plot to see the behaviour of the loss function troughout the events. This plot was generated
to visualize muon reconstruction. After promising results, antimuon reconstruction was also
added to the plot in order to compare with the muon reconstruction results. (see Figure 30).
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Figure 30: MSE Error Reconstruction

The MSE plot exhibits the MSE values for reconstruction with both muons and antimuons.
The plot demonstrates minimal differences between the MSE values of these particle’s re-
constructions. Essentially, the AE-21RecNet autoencoder performs similarly for muons and
antimuons.

A lower MSE value indicates better reconstruction performance. A threshold was set at 0.005
to identify when data deviates from the main cluster of MSE behavior. However, the number
of events exceeding this threshold is very limited compared to the rest.

It shows there’s no noticeable clustered outliers when it comes to the MSE loss function. No
anomalies were observed in the MSE plot, but the similarity in the results between muons
and antimuons suggests the need for further analysis.
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When testing graphical reconstruction with the AE-21RecNet autoencoder, it's clear to see
that antimuons can be reconstructed just as accurately as muons even when the autoencoder
is trained exclusively on muon data, see Figure 31 and 32. This finding suggests that, within
the given dataset and representation, muons and antimuons lack distinct spatial features,

posing challenges for their classification. In other words, the autoencoder sees both particles
like they are the same.
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Figure 31: AE-21RecNet: Muon vs Muon Reconstructions. Top row shows the actual muon,
and bottom row shows the reconstructed muon using the autoencoder.
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Figure 32: AE-21RecNet: Antimuon vs Antimuon Reconstructions. Top row shows the actual
antimuon, and bottom row shows the reconstructed antimuon using the autoencoder.
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CHAPTER 5
CONCLUSIONS

5.1 GENERAL CONCLUSIONS

This thesis work presented an automated system capable of efficiently simulating, trans-
lating, and analyzing high-energy physics (HEP) data generated by the simulated BabyCal
electromagnetic calorimeter. By leveraging HEP data simulation software, computer clus-
ters, and cutting-edge machine learning algorithms, such as convolutional neural networks
(CNNs) and autoencoders, the system effectively manages a dataset of approximately 10,000
entries.

The identified problems for this work were able to be resolved through various approaches.
To address data generation and extraction, automated simulation processes were devel-
oped, mitigating the need for extensive expert knowledge in handling GEMC. The process
for massive data generation is much more straight forward now, with scripts that use more
standard technologies for easier understanding. Consequently, a large volume of data was
successfully generated to train the machine learning tool. For data transformation, efficient
formatting methods were developed to conduct data delivery to the machine learning tool.
Additionally, cutting-edge machine learning algorithms facilitated data analysis for multiple
simulations.

The development of The Framework manages to accelerate the research in high-energy
physics. Its capabilities already have the potential to aid in investigations that require a lot
of analysis from large amounts of data and don’t always have the resources to fully achieve
their potential.

The Framework is expected to be used by professionals of the areas of Physics and Computer
Science. With this framework at their disposal, researchers can tackle complex investigations
reducing the time spent in preparing the data and instead focus on understanding it.

With that, the model is expected to increase it’s capabilities, allowing for more diverse and
larger datasets for the study of HEP particles. This way, The Framework can include more
machine learning algorithms for a wide variety of tasks.

In conclusion, the main objective of this thesis work was successfully achieved through the
development of The Framework, which consists in the integration of a diverse set of tools,
that allow for an efficient data workflow and an easy-to-use set of commands. Through
this integration, the previously independent components come together to form a cohesive
system where data simulation, transformation and analysis are effortlessly streamlined.
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5.2 SPECIFIC CONCLUSIONS

The integration of data simulation software, computer clusters, and machine learning algo-
rithms has allowed the system to handle scalable datasets, expediting research and accel-
erating the analysis of particles and phenomena. The specific objectives of this thesis work
were successfully achieved by developing each one and integrating the tools to work as one
cohesive system:

Massive amounts of data were generated by leveraging the computational power of the CCT-
Val's computer cluster and GEMC, allowing for automated data simulation on the cluster.
GEMC offers a wide variety of very precise ways of simulating an infinity of physical scenar-
ios. The ones developed in this work were barely 3. The potential for using GEMC to expand
the Framework capabilities from now on is unlimited.

The data was transformed using Gruid and processed to be delivered to various machine
learning algorithms. Gruid offers a very specific fit for the BabyCal, it is a very easy-to-use
tool that allows for fast data handling and translating. It's modular nature, design and com-
patibility with state-of-the-art technologies, make it essential for The Framework to work

properly.

The data was analyzed with CNNs and autoencoders which were able to process the vast
amount of data generated by the automated process. It’s capabilities are already fit for pro-
cessing even higher amounts of data.

The encountered challenge of distinguishing between muons and antimuons within the
dataset has shed light on the complexity of particle classification, highlighting the need for
larger and more diverse datasets to achieve more accurate distinctions.

To improve the CNN'’s generalization capabilities, regularization techniques such as dropout
(blocking neurons o whole layers) or early stopping can be employed during training. Addi-
tionally, data augmentation (generating new synthetic data out of the already existing one)
and larger datasets may enhance the model’s ability to identify patterns and achieve better
separability between the classes.

The success of the autoencoder in reconstructing antimuon data underscores the potential
of alternative classification methodologies. To gain deeper insights, exploring the MSE error
with other particle types is recommended. Evaluating how the autoencoder behaves with
different particle data could tell whether the MSE error rises or remains consistent, provid-
ing a better understanding of the autoencoder’s performance and its ability to distinguish
between various particle types. In conclusion, the MSE plot reveals interesting findings in
computational terms, indicating that muons and antimuons exhibit very similar MSE values
during reconstruction. Further analysis with additional particle types could perhaps provide
valuable information and contribute to a more comprehensive understanding of the autoen-
coder’s capabilities in reconstructing particles.
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5.3 RECOMMENDATIONS

The code for the developed automated system, including the CNN and autoencoder imple-
mentations for high-energy physics data analysis, can be found on this thesis work’s publicly
accessible repository [Hebel, 2023]. | have made the code available for the scientific commu-
nity of the CCTVal, my teachers and myself, to promote and facilitate collaboration within the
field. This will allow fellow students and researchers to explore, reproduce, and build upon
the work, aiming for expandig The Framework’s capabilities and for further advancements
in particle physics data analysis with the BabyCal.

5.4 FUTURE WORK

This thesis work had promising results and opens up a lot of potential future work. This in-
cludes testing the models with new particles to see if a machine learning tool can manage to
classify particles based only on their spatial behaviour, getting more diverse and extensive
training data for improving the generalization capabilities of the models, trying new model
settings with hyper-parameter tuning, updating the system components to improve compat-
ibility with new technologies, trying different optimizers and collaborating with physicists to
ensure coherence in the purpose of the analysis and the goals of the work to come.

Adding control scripts for job execution in the cluster is also an important consideration. It
will help to optimize the generating rate of simulations, since The Framework doesn’t cur-
rently control the loss of jobs due to user limitations when the cluster’s queue is overloaded.

Containerizing future versions of The Framework with Singularity offers great potential for
enhancing its overall scalability. By encapsulating the framework and its components in a
portable and isolated container, users could ensure seamless deployment across different
HPC environments. As the framework evolves with better components, this containerized
approach could allow for upgrades and ensure compatibility with future needs.

5.5 AUTHORS’ FINAL WORDS

In these final words, | express my immense gratitude to my academic mentors and all those
who supported me throughout this thesis work journey. Achieving the objective of devel-
oping an automated system for HEP data analysis fills me with great pride and satisfaction.
The challenges encountered along the way have provided me with invaluable insights and
learning experiences. | appreciate the opportunities for growth and collaboration that this
thesis work has offered. Looking ahead, | am excited about the potential impact of the au-
tomated system on high-energy physics investigations with the BabyCal, and | hope its role
in inspiring further advancements in this fascinating field gets to be an interesting one.
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