
UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Repositorio Digital USM https://repositorio.usm.cl

Departamento de Arquitectura Arq_paso

2021-06

CONVOLUTIONAL NEURAL

NETWORK FEATURE EXTRACTION

USING COVARIANCE TENSOR DECOMPOSITION

FONSECA ROMERO, RICARDO ESTEBAN

https://hdl.handle.net/11673/50687

Repositorio Digital USM, UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA
Departamento de Electrónica

Convolutional Neural Network Feature Extraction using
Covariance Tensor Decomposition

Ricardo Esteban Fonseca Romero

TESIS DE TITULACIÓN PARA OPTAR AL GRADO DE
DOCTOR EN INGENIERÍA ELECTRÓNICA

PROFESOR GUÍA : Dr. Werner Creixell

JUNIO 2021

TÍTULO DE LA TESIS:

Convolutional Neural Network Feature Extraction using Covariance Tensor
Decomposition

AUTOR:

Ricardo Esteban Fonseca Romero

Trabajo de tesis presentado en cumplimiento parcial de los requisitos para el t́ıtulo de Doctor
en Ingenieŕıa Electrónica de la Universidad Técnica Federico Santa Maŕıa.

Dr. Werner Creixell

Dr. Cesar Caiafa

Dr. Moulay Akhloufi

Dr. Mauricio Araya

Valparáıso, Junio de 2021.

2

ACKNOWLEDGMENT

This work was supported by the Grant Comisión Nacional de Investigación Cient́ıfica y
Tecnológica (CONICYT) Programa Formación Capital Humano Avanzado (PCHA) Doc-
torado Nacional 2016, Chile, under Grant 21161259, in part by the Universidad Técnica
Federico Santa Maŕıa (UTFSM) Project, Chile, under Grant 116.23.3, and in part by
Digevo, Chile, Cloud computing by Nvidia Inception and Amazon Web Services (AWS)
Activate.

This work was published in IEEE Access journal [17].

1

Contents

1 Definition of Thesis Topic 8
1.1 Title . 8
1.2 Abstract . 8

2 Background 9
2.1 Problem identification . 11

3 Linear Subspace Learning 12
3.1 Principal Component Analysis . 12
3.2 Independent Component Analysis . 14

3.2.1 ICA Simulations . 17
3.3 Partial Least Squares . 20

3.3.1 PLS Model . 20
3.3.2 PLS simulation . 22

4 Multiway data analysis 24
4.1 Notation and Definitions . 24

4.1.1 Tucker decomposition . 25
4.1.2 Subspace approximation. 25

4.2 Parallel factor analysis . 26
4.2.1 Inner Product and Covariance tensor 26

4.3 Application of Tensor Decomposition . 28
4.3.1 Higher Order Statistics . 28
4.3.2 ICA by tensorial method . 29

4.4 High order Partial Least Squares . 31
4.4.1 Previous works on HOPLS . 32
4.4.2 Method . 32
4.4.3 Optimization criteria and Algorithm 33

4.5 HOPLS image classification . 36
4.5.1 Project Latent Space . 36
4.5.2 High Order Partial Least Squares 36
4.5.3 Results . 37

5 Solutions and approaches made by other authors 43

6 Proposal 46
6.1 Work Description and Hypothesis . 46

6.1.1 Hypothesis . 47
6.2 Objectives . 47
6.3 Approach . 47

6.3.1 Covariance Tensor Method . 47
6.3.2 Tensor operations . 48
6.3.3 Covariance Tensor decomposition 49

6.4 CovTen and CNN . 50

2

7 Experimental Results 53
7.1 Architecture . 54

7.1.1 Configuration . 54
7.1.2 Implementation details . 55

7.2 Hyperparameters Selection . 55
7.2.1 Kernel Size . 55
7.2.2 Training Samples Number . 56
7.2.3 Activation and Max Pooling . 56
7.2.4 Kernel and Feature Maps . 57

7.3 Classification Experiments . 58
7.3.1 Inference Capacity . 58
7.3.2 Covariance Method as Kernel Initializer 59

7.4 Architecture Comparison . 60
7.5 Additional Feature Maps . 62
7.6 Additional Inference Capacity Experiments 64

7.6.1 CIFAR 100 . 64
7.6.2 MNIST . 64

7.7 Additional Kernel Initializers Experiments 65
7.7.1 CIFAR 100 . 65
7.7.2 MNIST . 66

8 Conclusion 67
8.1 Future Work . 67

9 Appendix 68
9.1 Function of a scalar random variable . 68
9.2 Function of a vector random variable . 69
9.3 Tensor by matrix product (Mode n multiplication) 69

10 Bibliography 73

3

List of Figures

1 VGG 7 classification architecture and Covariance Tensor to generate image
features. 8

2 Different high order arrays examples with some fibers per mode. 9
3 Data points and principal components 12
4 PCA quadratic form (a), Lagrange function (b) 14
5 Linear transformations to recover independent sources by ICA 17
6 Recover uniform and exponential sources by ICA 19
7 Orthogonal transformation of whitened data 20
8 Partial Least Squares transformation . 23
9 Tensor fibers for different modes and orders. On a),b),c) a third order

tensor was depicted, on d) a fourth order and on e) an fifth order tensor.
Mode 1 fibers are columns, mode 2 are rows, and mode 3 fibers go across the
tensor. Mode 4 fibers, pick a single element from each third order tensor
moving across the fourth index. Mode 5 fibers, pick a single element from
each third order tensor moving across the fifth index. 24

10 Unfolding of tensor X on mode 1, 2 and 3, X(1), X(2), X(3) respectively. . 24
11 Tensor subspace approximation of X ∈ RI1×I2×I3 , by a multilineal rank-

(1, I2, I3) block Tucker approximation. 26
12 Tensor covariance for X ∈ R3×3×3. Samples are frontal frames (mode-3

frame) X(i) ∈ R3×3. Resulting covariance tensor has order four. 27
13 Parameters grid search. 38
14 Prediction of labels using PLS method. 38
15 Prediction of labels using the proposed method. 39
16 Features learned by the proposed method. 40
17 Test Datasets . 41
18 Gabor Filters real components . 42
19 Proposed architecture. For each convolutional layer kernels were gener-

ated. Kernel generation was highlighted by dashed lines Figure 27. . . . 47
20 Unfolding of an order three tensor. 48
21 Mode 1 product between a matrix and a third order tensor. 48
22 Tensor covariance for X ∈ R3×3×3 (left) and X ∈ R3×3 (right). Samples are

frontal frames (mode-3 frame) X(i) ∈ R3×3. Resulting covariance tensor
has order four and two order respectively. 49

23 Covariance tensor decomposition for X ∈ R3×3×3. Samples are frontal
frames (mode-3 frame) X(i) ∈ R3×3. Resulting covariance tensor has order
four. 49

24 Basic workflow of Covariance Tensor (CovTen) method implemented in a
VGG 7 architecture. 50

25 Training stage for a single channel image. The function mat is the unfold-
ing in mode 1 and 3 respectively. 52

26 Training tensor stage for a multichannel image. The function mat is the
unfolding mode 1, 3 and 5 respectively. 53

27 Convolution and kernel space generation. 53
28 Kernel Size: experiment results using different kernel sizes 3× 3 vs kernels

7 × 7, and different sub dataset sizes 1, 10, 100 images per class. The
experiments were executed over CIFAR 10 dataset. The continuous line
indicates the training behavior, whereas the dashed line shows the validation 56

4

29 Training Samples Number: experiment results with different amounts of
data per class (1, 10, 100, 200, 300 per class) using the CIFAR 10 dataset.
The continuous line indicates the training behavior, whereas the dashed
line shows the validation. 57

30 Correlation matrix example for a convolutional layer with the CovTen
method using different samples number. Each square indicates the corre-
lation between two experiments with its respective samples number. . . . 57

31 Activation and Max Pooling: experiment results with different setup com-
binations between no activaton, leaky ReLu, and max pooling using CIFAR
10 dataset. The continuous line indicates the training behavior, whereas
the dashed line shows the validation. 58

32 Kernels and Feature Maps: kernels produced by the CovTen method. They
are arranged descendingly by the convolutional layer number. Elements in
first row represent filters with 3 channels while elements in the following
rows are channels of a single filter. 58

33 Kernels and Feature Maps: feature maps generated by the CovTen method
using one CIFAR10 sample. They are arranged descendingly by the con-
volution layer number. We have to remark that the top-left element is the
original image, and the other elements are channels of the corresponding
feature map. 59

34 CovTen as Kernel Initializer: violin plots of weight distribution in each
convolution layer at epoch zero, using architecture B of classification ex-
periments. Different weights initialization methods are plotted along with
the results of the CovTen method. 60

35 Inference Capacity: experiment results with different kernel initializers and
samples per class, used in a model with frozen layers. The experiments
were executed over CIFAR 10 dataset. 60

36 CovTen Method as Kernel Initializer: experiment results with different
kernel initializer methods and different samples per class, performing a
full training over the complete network (without frozen model). The ex-
periments were executed over CIFAR 10 dataset. 61

37 Kernels and Feature Maps: feature maps generated by the CovTen method
using one CIFAR10 sample. They are arranged descendingly by the con-
volution layer number. We have to remark that the top-left element is the
original image, and the other elements are channels of the corresponding
feature map. 63

38 Kernels and Feature Maps: feature maps generated by the CovTen method
using one CIFAR10 sample. They are arranged descendingly by the con-
volution layer number. We have to remark that the top-left element is the
original image, and the other elements are channels of the corresponding
feature map. 63

39 Inference Capacity: experiment results with different kernel initializers and
samples per class, used in a a model with frozen layers. The experiments
were executed over CIFAR 100 dataset. 64

40 Inference Capacity: experiment results with different kernel initializers and
samples per class, used in a model with frozen layers. The experiments
were executed over the MNIST dataset. 64

5

41 Covariance Method as Kernel Initializer: experiment results with differ-
ent kernel initializer methods and different samples per class, performing
a full training over the complete network (without frozen model). The
experiments were executed over CIFAR 100 dataset. 65

42 Covariance Method as Kernel Initializer: experiment results with differ-
ent kernel initializer methods and different samples per class, performing
a full training over the complete network (without frozen model). The
experiments were executed over CIFAR 100 dataset. 65

43 CovTen Method as Kernel Initializer: experiment results with different
kernel initializer methods and different samples per class, performing a
full training over the complete network (without frozen model). The ex-
periments were executed over the MNIST dataset. 66

44 MNIST: train and validation loss for covariance method as kernel initializer 66
45 Transformation of a random variable. 68
46 Mode 1 product between a third order tensor and a matrix using unfolding

algorithm. 70
47 Mode 1 product between a third order tensor and a matrix using the linear

combination of frames algorithm. 70
48 Mode 2 product between a third order tensor and a matrix using unfolding

algorithm. 70
49 Mode 2 product between a third order tensor and a matrix using the linear

combination of frames algorithm. The case of a matrix multiplied on mode
2 by other matrix, we have X ×2 V = XV T 71

50 Mode 3 product between a third order tensor and a matrix using unfolding
algorithm. 71

51 Mode 3 product between a third order tensor and a matrix using the linear
combination of frames algorithm. 72

52 Mode 4 product between a fourth order tensor and a matrix using the
linear combination of cubes algorithm. 72

6

List of Tables

1 LFW, HOPLS, factor 40, loadings 8, 10.6 seg 39
3 Additional HOPLS classification results 41
2 Accuracy by method for LFW . 41
4 Network architecture outlines for CIFAR 10 are used for the configura-

tion and classification experiments (top row), where each network’s name
matches its respective sections. Their elements are in bold when they
indicate a frozen layer. Also, it is detailed when a layer use a Leaky
ReLU (+) or ReLU (*) activation, and when an architecture use or no
a maxpooling layer. 54

5 Comparison between different state-of-the-art methods and our method
under CIFAR 10 dataset. Our method is highlighted with a gray color. 61

7

1 Definition of Thesis Topic

1.1 Title

Convolutional Neural Network Feature Extraction using Covariance Tensor Decomposi-
tion

1.2 Abstract

Figure 1: VGG 7 classification architecture and Covariance Tensor to generate image features.

This work describes a new method to extract image features using tensor decomposition
to model data. Given a set of sample images, we extract patches from images, compute
the covariance tensor for all patches, decompose with the Tucker model, and obtain the
most critical features from a tensor core. To extract features, we factorize the covariance
tensor (CovTen) into its core and propose a new interpretation of the resultant tensor
structure, which holds relevant features in a block-wise arrangement (also named filters,
weights, or kernels). This tensorial representation allows preserving the spatial structure,
learning multichannel filters, and establishing linear dependence between dimensions, re-
ducing the dimensional complexity (the curse of dimensionality). Thus, the proposed
method generates filters by a single feed-forward step using a few samples per class as
low as 1. Besides, in kernel generation, labels are not needed. The obtained features
were extensively tested using a convolutional neural network for classification. All tests
were conducted under the VGG architecture conventions. The experiments helped us
identify the proposed method’s advantages versus traditional convolutional neural net-
works in inference capacity and kernels initialization. We also performed experiments
to select hyperparameters (nonLinearity, max pooling, samples, filter size) according to
their performance. The inference capacity results showed an increased classification ac-
curacy around 67% with CIFAR 10, 64% with CIFAR 100, and 98% with MNIST, using
10,100,1000 samples with a single feed-forward training. On the other hand, the initializa-
tion experiments showed the feature extraction capability versus available initializers (He
random, He uniform, Glorot, random), confirming linear tensor constraints’ usefulness
to generate features. Using the method as kernel initializer returns comparable findings
with state of the art around 91% with CIFAR 10, 72% with CIFAR 100, and 99% with
MNIST.

8

2 Background

This work introduces a new algorithm based on multilinear algebra for feature extraction,
which later is plugged into a Convolutional Neural Network to perform classification. We
seek to evaluate the discriminative capability of the generated features and the perfor-
mance as a kernel initializer. Besides, Multilinear methods have been studied since the
19th century by Kronecker, Gauss, Cayley, Weyl, and Hilbert’s contributions. A detailed
historical note can be found on [11]. Moreover, tensor decompositions for signal processing
have been applied since 1990 with the Tucker and PARAFAC decompositions [56], [20]. A
tensor is a higher-order array, where the order represents the dimension of the array and
the index number accordingly. A dimension might represent spatial location, channel,
time, frequency, samples, classes, or other features. Figure 2 shows some tensor examples
of three, four, and five order respectively subfigures show some fibers in each mode. Al-
though multilinear techniques are considered breakthrough advances in some areas, such
methods have not been widely studied for deep learning applications.

Figure 2: Different high order arrays examples with some fibers per mode.

Deep learning focuses on discovering multiple representation levels, hoping that fea-
tures represent more abstract semantics of the data [10]. The features could be cor-
ners, edges, lines, regions, and others [54]. In recent years, within this field, com-
puter vision has reached many advances, particularly with convolutional neural networks
(ConvNet) [34], [36]. ConvNets are among the most famous deep neural networks and
work with the mathematical matrix operation called convolution [34]. Its most common
architecture is composed of convolutional, non-linearity, pooling, and fully connected
layers. ConvNets are applied to classification, object detection, tracking by detection,
counting, and other tasks. These tasks have relevant importance by their applications in
several areas of knowledge. Besides, development in ConvNets is an active area, where the
ImageNet contest comprises the most relevant results in visual computing contemplating
classification and detection tasks [2].

Despite the outstanding research in this area, effective learning critically depends on
expertise and empirical observations for tuning parameters and architectures. In this
context, an attractive alternative to enhance conventional ConvNet is to understand the
effects of multilinear algebra methods to generate filters. The hypothesis is that mul-
tilinear algebra and its methods, such as Tensor Decompositions (TD), capture multiple
interactions and couplings on data. At the same time, TD assumes linear dependency
between dimensions. Thus, such decompositions can discover a hidden structure that
traditional matrix methods can not obtain. This hypothesis is supported by promis-
ing results obtained on several works on different areas, which include: audio, image,
and video processing, machine learning, and biomedical applications [11]. Well known

9

TD methods are Tucker and Canonical decomposition (CANDECOMP). Tucker decom-
position [56], [15], [31] minimizes the Frobenius norm of the error when a multilinear
subspace approximation is performed. On the other side, CANDECOMP [20], [9] [13]
applied over a High Order Statistics tensor, is able to recover independent sources similar
to the Independent Component Analysis [24], [25].

Unlike matrices, tensors are multiway arrays of data samples whose representations
are typically overdetermined. Therefore, it has fewer parameters in the decomposition
than the number of data entries. This approach gives us enormous flexibility in find-
ing hidden components in data and enhancing robustness to noise [11]. This multiway
data analysis lets us develop sophisticated models that capture multiple interactions and
couplings instead of standard pairwise interactions. In this way, we can take benefits
from high dimensional data using tensor structure. As an example, tensor representa-
tion by Tucker decomposition [11] benefits the data representation by fewer parameters,
the uniqueness of decompositions, the flexibility in the choice of constraints, and the
generality of components that can be identified.

It is common to preserve complex data structure such as multidimensional arrays by
using tensors. In practical applications, they are managed by modern GPU hardware [47].
The GPU advances are directed to optimize tensors’ computation through dedicated com-
puting units (tensor cores) inside their architectures. Therefore, these recent approaches
need multilinear-based algorithms that take the GPU hardware advantages, improving
the training stage, which is the most demanded in terms of resources [43].

In our proposal, features were extracted using Multilinear Subspace Learning (MSL).
Given a training set, Linear Subspace Learning (LSL) [38] attempts to find a vector
to project samples and capture the most relevant information, e.g., PCA, LDA, FDA,
PLS, etc. On the other hand, MSL finds a multilinear subspace to project data, i.e.,
project matrix samples on a linear subspace built with a matrix basis. Projection on
such subspaces generates a feature vector (latent variable) with a dimension given by the
basis number used.

Eigenspaces [28] is an initial work in LSL which attempts to model shape and ap-
pearance variation. They project grayscale images to a low dimensional subspace using
SVD. This approach relies on linear algebra and cannot model poses, variations, nor il-
lumination. In this process, the training images are vectorized (images to columns) and
grouped on a data matrix. Then, SVD over this assembled matrix is used to compute
the eigenfaces as the left singular vectors. On natural images exist spatial correlation on
a neighborhood, which is eliminated by the vectorization. Finally, the extracted features
are used to classify images [23].

On a dataset composed of images with size I1 × I2, feature extraction by eigenfaces [28]
leads to subspaces with I1I2 coefficients and at most the same number of basis vectors.
In general, such high dimensional sets are challenging to handle, so feature selection
and dimensionality reduction techniques should be considered to represent data using
fewer variables. Additionally, such estimation suffers from the curse of dimensionality:
a higher number of parameters than the number of samples. For example, for a QVGA
image 320 × 240 pixels, a subspace with 76800 coefficients should be estimated, while
the number of samples on the LFW dataset lies around a few thousands. Our method
was motivated by the advantages of multilinear decompositions in contrast to standard
matrix counterparts. Image datasets are high-order arrays; hence a traditional flattened
view will not represent data properly. This fact reflects the limitations of classical matrix
models and the necessity to move toward more versatile data analysis tools [11].

Most recent approaches seek to replace the standard kernel initialization of ConvNet
for a PCA-based method and propose a parametric equalization normalization to adjust

10

the scale among the neuron weights [10], [62]. This technique uses image samples per class
from the training dataset to get more relevant information; in other words, it extracts
the principal features in weighted kernels. In this way, the method effectively overcomes
the uncertainty caused by the standard kernel’s initialization and accelerates the training
process.

In our work, during a single feed-forward step, we generate the kernels for a ConvNet
architecture by computing the covariance tensor of the data and factorizing it by Tucker
decomposition [65], [56]. The method starts from the findings of Kirby and Sirovich [28],
who introduce the computation of eigenfaces. We also inspired our proposal in the cascade
convolutional architecture procedure of PCANet [10]. Additionally, our proposed method
works with a small sub dataset (which covers all the features spectrum of the classes),
similar to the work of Wang et al. [62]. However, to the kernel generation, labeled data
is not needed. Accordingly, the technique is applied to study two main tasks: inference
classification (capacity) and kernel initialization, compared with other already well-known
methods.

Moreover, to measure the performance, we employ a VGG ConvNet architecture [50].
This work essentially remarks on the feature extraction capabilities of our method. Nev-
ertheless, this work also pretends to be a good baseline for future research incorporating
this method during the training stage.

2.1 Problem identification

• How to extract features from a set of sample images preserving matrix and tensor
structure?

• Given information of class labels. How to find features that best relate image
samples to labels?

• Linear models able to relate features and labels fail if the relation is nonlinear. How
to exploit hidden non linearities and determine their utility?

• Eigenfaces and tensorfaces led to estimation of a high number of parameters per
feature. How to extract features with less number of parameters?

11

3 Linear Subspace Learning

In this section we discuss the principal tools and traditional approaches to represent data
through linear transformations. The goal is to exploit or extract latent information on
the data, principally exploiting data statistics, i.e. moments and cumulants. This task is
known as Linear Subspace Learning (LSL).

3.1 Principal Component Analysis

Consider the projection problem, where we are given a set of m points on a n-dimensional
space

[
x(1), · · · , x(m)

]
= X, x(i) ∈ Rn. The goal is to find a unitary vector v such that

maximize the magnitude of the projection
∑m

i=1 v
Tx(i) over the m samples. The projec-

tion vTx(i) =
〈
v, x(i)

〉
is the inner product between each sample (ith column from X) and

the vector v. This problem is also known as to find the vector v that the variance of the
projected data is maximized.

Graphically this problem was depicted on figure 3. Consider m samples of a two di-
mensional random vector x(i) ∈ R2 drawing according to a jointly probability distribution
function x ∼ N (0, diag [σ1, σ2]). Samples from this multivariate random variable were
plotted on figure 3.

Figure 3: Data points and principal components

Consider the projections of all samples on the vector v as vTX. As we are interested
on the magnitude, the square of the projection vTXXTv was used. The former quadratic
term is our objective function and our goal is to maximize it, subject to unitary vector
vTv = 1. Using Lagrange multipliers we have the optimization problem given in equation
1.

12

max vTXXTv
s.t. vTv = 1

L(v) = vTXXTv − α(vTv − 1)

∇L(v)
(a)
= ∇vTΣv − α∇vTv
(b)
= ∇vT (Σv) +∇

(
vTΣ

)
v − 2αvT

= (Σv)T + vTΣ− 2αvT

= vTΣT + vTΣ− 2αvT

= vT
(
ΣT + Σ

)
− 2αvT

0
(c)
= 2vTΣ− 2αvT

vTΣ = αvT

(1)

On statement (a) the matrix multiplication XXT was called Σ (covariance matrix),
on (b) gradient chain rule was applied, on (c) the Σ symmetry property was exploited
and the set the expression equal to zero in order to find a critical point.

The critical point found led us to the relation vT1 Σ = αvT1 , which is the well known
eigen problem [55], [38], [24]. The solution for our problem is the first left singular vector
v = u1 of X and its associated singular value λ1. By substitution of v = u1 on the
objective function of equation 1, we got the maximization function could be understood
as maximizing the singular value λ1 corresponding to the singular vector u1.

vT1XX
Tv1 = uT1 Σu1

= uT1 (λu1)

= λ1

(2)

We are maximizing a eigen value of the matrix XXT = Σ, the solution is the eigen
vector u1 related to the largest eigenvalue λ1. The projection uT1X guarantees to have
the maximum magnitude over Frobenius norm.

In addition is interesting to analyze the Hessian of L(v), the resulting matrix tell
information about the critical points found.

L(v) = vTXXTv − αvTv
L(v) = vT (Σ− αI) v

∇2L(v) = Σ− αI
(3)

The matrix Σ − αI is singular, and its quadratic form could be positive or negative
semidefinite. By construction the matrix Σ = XXT always have positive diagonal entries
σii ≥ 0,∀i ∈ {1, . . . , n}. Matrix Σ−αI is negative semidefinite because σ11− λ1 < 0 due
to the fact the largest eigenvalue is greater than any entry. The negative semidefinite
quadratic function has a hill at zero through the direction of u1 as depicted on figure 4.b.
This hill means that L(u) is maximum through u1 direction.

The projection problem is a quadratic form, its plot with the unitary vector constraint
is depicted on figure 4.a. The projection vector (eigen vector of Σ) u1 is showed as a blue

13

vector pointing the maximum of the quadratic function. On figure 4.b is depicted the
lagrange maximization function L(v), you can notice the hill on the function and the blue
eigen vector showing the maximum through that direction.

Figure 4: PCA quadratic form (a), Lagrange function (b)

The projection problem can be formulated in a similar way for higher dimensions,
projecting on two dimensions at a time. Its important to recall from figure 4 that the
principal components could be found rotated.

3.2 Independent Component Analysis

Consider the blind source separation problem where measurements of N sensors are
available, during a time of length M . Each sensor measurement is assumed to be a
linear combination of independent components. The goal is to find those independent
sources [24], [25].

Each sensor i ∈ {1, . . . , N} has a measurement vector xTi = [xi(1), . . . , xi(M)]T with
length M . Lets consider each entry xi(j) of the measurement vector xTi , as a scalar ran-
dom variable that distributes according to xi ∼ Pxi

(xi).

Each random variable xi(j) is a linear combination of independent sources {s1(j), . . . , sN(j)}
according to equation 4.

xi(j) =
N∑
n

a (i, n) s (n, j) = aTi s(j) (4)

Graphically this linear combination for every source is expressed using matrix notation

14

on equation 5. xi{j}

 =

−−−− aTi −−−−

 |
s(j)
|

−−−− xTi −−−−

 =

−−−− aTi −−−−

−−−− sT1 −−−−
...

−−−− sTN −−−−

XT = AST

(5)

The probability density function of the random variable xi(j) in terms of the densities
of the independent sources {s1(j), . . . , sN(j)} is given by the density of the linear com-
bination xi(j) = aTi s(j). Consider each independent component distributes according
Si ∼ fSi

(si) and the joint distribution is S ∼
∏n

i fSi
(si).

From the appendix about function of a vector random variable we know that the joint
distribution of vector X is the one on equation 6.

fX(x) = fS(A−1x)
∣∣det

(
J(A−1x)

)∣∣ (6)

In order to estimate the independent components we applied maximum likelihood
(ML) estimation. ML aims to find a set of parameters (matrix A) that maximize the
likelihood function (joint distribution or probability of our observations matrix X). The
likelihood is obtained as the product of the densities fX(x(j)) for the M vector samples
x(j). Let’s name A−1 as W , the likelihood on equation 7 is a function of W .

L(W) =
M∏
j=1

fS(Wx(j)) |det (W)| (7)

We used the natural logarithm on the likelihood to transform products to sums, main-
taining the function maximum at the same point Ŵ . The log likelihood is then given
by

logL(W) =
M∑
j=1

log
(
fs(Wx(j))

)
+M log |det (W)| (8)

In order to maximize the log likelihood a numerical maximization algorithm is needed.
We used the gradient method. The first step is to take the gradient from the likelihood
in order to compute the direction of maximum change.

∇W log (L(W)) = ∇W

M∑
j=1

log
(
fs(Wx(j))

)
+∇WMlog |det (W)| (9)

Let’s assume a cdf for each independent source to be FSi
(si) = g(si) = 1/(1 + e−si) and

the pdf to be g′(si). Applying gradient on the first term of equation 9 we got:

15

M∑
j=1

∇W log
(
fs(Wx(j))

) (a)
=

M∑
j=1

∂log
(
fs(Wx(j))

)
∂fs(Wx(j))

∂fs(Wx(j))

∂Wx(j)
∂Wx(i)

∂W

(b)
=

M∑
j=1

1

fs(Wx(j))

n∏
i=1

fsi(w
T
i x

(j))

1− 2g(wT
1 x

(j))
...

1− 2g(wT
nx

(j))

x(j)T

(c)
=

M∑
j=1

1− 2g(wT
1 x

(j))
...

1− 2g(wT
nx

(j))

x(j)T

(10)

The gradient of the first term of the likelihood was depicted on equation 10, where
we applied the chain rule for gradient for step (a). On (b) we applied the derivative of a
logarithm, gradient with respect to a vector Wx(i) according to equation 11 and gradient
of a vector with respect to a matrix W .

∂fs(Wx(j))

∂Wx(j)
(a)
=
∂
∏n

i=1 fsi(w
T
i x

(j))

∂Wx(j)

(b)
=

∂
∏n

i=1 fsi (w
T
i x(j))

∂wT
1 x(j)

...
∂
∏n

i=1 fsi (w
T
i x(j))

∂wT
n x(j)

=

f ′s1 (w

T
1 x(j))

∏n
i=1 fsi (w

T
i x(j))

fs1 (w
T
1 x(j))
...

f ′sn (w
T
1 x(j))

∏n
i=1 fsi (w

T
i x(j))

fsn (w
T
1 x(j))

(c)
=

n∏
i=1

fsi(w
T
i x

(j))

g′1(1−2g1)

g′1
...

g′n(1−2gn)
g′n

(11)

On (a) we applied the definition of joint distribution of independet variables. On (b)
we applied the definition of gradient of a scalar with respect to a vector. On (c) we used
the definition of derivative of sigmoid, g′′ = g′(1− 2g).

The gradient for the second term on equation 9 is the well known gradient of a
determinant.

∇WMlog |det (W)| = MW−T (12)

Replacing 10 and 12 on 9 we got.

∇W log (L(W)) =
M∑
j=1

1− 2g(wT
1 x

(j))
...

1− 2g(wT
nx

(j))

x(j)T +MW−T (13)

The gradient led us to the updating rule

Wnew = Wold + α
M∑
j=1

1− 2g(wT
1 x

(j))
...

1− 2g(wT
nx

(j))

x(j)T +MW−T (14)

16

A stochastic version of this rule could be used omitting the expectation
∑M

j=1 thus using

a single sample x(j) on each step.

Wnew = Wold + α

1− 2g(wT
1 x

(j))
...

1− 2g(wT
nx

(j))

x(j)T +W−T (15)

This algorithm provides an estimation of the mixing matrix W = A−1. Once it con-
verges, the independent sources are computed as S = WX.

It was assumed the entries of a sensor measurement vector xi = {xi(1), . . . , xi(M)}
were independent and identically distributed. This assumption let write the joint distri-
bution P (xi) =

∏M
j P (xi(j)). Such an assumption could be counter intuitive because of

the correlation between samples e.g. audio sources. Nevertheless this approach showed
good performance and there is the option to shuffle samples as a pre-process step.

3.2.1 ICA Simulations

In this section the objective was to illustrate the computation of independent compo-

nents from simulated data. Each sample (i) of the independent sources s(i) = [s
(i)
1 , s

(i)
2]T

was extracted from two independent uniform distributions on the [−0.5, 0.5] interval, i.e.
s ∼ U(−0.5, 0.5). Samples were plotted on figure 5.a, it can be seen them are uniformly
distributed over an square.

Figure 5: Linear transformations to recover independent sources by ICA

Mixed components x were computed by means of a random mixing matrix A, i.e.
x = As. The mixed samples were plotted on figure 5.b having a parallelogram structure.

17

The next step to recover the independent components was to apply whitening as prepro-
cessing.
Whitening of a random vector is an orthogonal linear transformation z = Fx such that
the components of the resulting vector z are uncorrelated and scaled to unitary variance.
The resulting covariance matrix is the identity E(zzT) = I.

There are several ways to whiten data, one of them is by the eigen value decomposition
of the covariance matrix E(xxT) = UΣUT . The orthogonal matrix U which contains the
eigen vectors of E(xxT) uncorrelate the variables and the inverse of the eigen values
matrix Σ−1/2 scale the variance to the unity. Lets compute the covariance matrix of the
transformed variable z = Fx, using F = Σ−1/2UT .

E(zzT) = E(FxxTF T) = FE(xxT)F T

= FUΣUTF T

= Σ−1/2UTUΣUTUΣ−1/2

= Σ−1/2ΣΣ−1/2

= I

(16)

The whitened data was plotted on figure .c, where its noted the square shape was
recovered from the parallelogram on figure 3.b. The eigen vectors from U were plotted
on figure 5.b as a red and green line.

The final step to recover the independent sources was to apply ICA on the whitened
data using the algorithm described on the previous section. Its worth to note that the
substitution of the mixing transformation x = As on the identity covariance matrix
E(zzT) = I we get Ã = FA orthogonal transformation.

E(zzT) = I = E(FxxTF T)

= (FA)E(ssT)(ATF T)

= (FA)I(ATF T)

= ÃÃT = I

(17)

This derivation tell us that the mixing matrix A is a factor of the orthogonal trans-
formation Ã = FA. The fact that Ã is orthogonal restrict the search for the mixing
matrix to the space of orthogonal matrices. Instead of estimating n2 parameters, an
orthogonal matrix only have n(n− 1)/2 degrees of freedom. This advantage increase the
performance of the numerical estimation algorithm in terms of computational time. The
estimated sources are plotted on figure 5.d and the projection vectors (columns of A) are
plotted as a red and a green line on figure 5.c. Another example for ICA is presented on
figure 6 using as independent sources a random variable with uniform distribution and
an exponential.

Whitening give Independent Components only up to an orthogonal transformation.
This means data could be rotated and also be uncorrelated with unit variance. For exam-
ple consider the whitening matrix F = Σ−1/2UT multiplied on the left by the orthogonal
matrix U . This orthogonal transformation again to un correlated variables with identity
covariance matrix. Lets name the new whitening matrix F̃ = UΣ−1/2UT , z = F̃ x

18

Figure 6: Recover uniform and exponential sources by ICA

E(zzT) = E(F̃ xxT F̃ T) = F̃E(xxT)F̃ T

= F̃UΣUT F̃ T

= UΣ−1/2UTUΣUTUΣ−1/2UT

= UΣ−1/2ΣΣ−1/2U

= UIUT = I

(18)

This behavior is represented on figure 7, where the orthogonal transformation of the
samples is represented by a rotation. The transformation led to the identify matrix as
showed on the right column of figure 7.

19

Figure 7: Orthogonal transformation of whitened data

3.3 Partial Least Squares

This section discuss the Partial Least Squares also known as Projection to Latent Space
method for data representation.

3.3.1 PLS Model

Suppose two data sets available: X the predictors (regressors, independent variables) and
Y the responses (regressions, dependent variables). The task is to find a representation for
both data sets such that maximizes their correlation. The dataset contained in the matrix
X was arranged according graphical equation 19, where the rows represents variables or
dimensions {x1, · · · , xn} and columns represent different samples {x1, · · · , x(m)}.

variables

 | |
x(1) · · · x(m)

| |

︸ ︷︷ ︸

samples

= X (19)

Consider the singular value decomposition (SVD) of matrix X = UΣV T . A well

known representation for dimensionality reduction of matrix X is X̂ = UT
r X = ΣV T .

Where UT
r is the reduced singular vector matrix U to r column vectors. This representa-

tion use the magnitude of each sample projection into the Ui direction. Additionally the
representation X̂ = UT

r X has uncorrelated components.
The representation given by SVD, X = U(ΣV T) can be thought as two factors: the first
one is U which represents direction and the second (ΣV T) represents projections magni-
tudes.
The PLS literature work with the transpose of data matrix XT = (V Σ)UT = TP T ,

20

and define the score (projections) matrix T = (V Σ) and the loading (directions) matrix
P = U .

The PLS method seeks for a representation for both sets, the regressors X and re-
gression Y . SVD perform a representation for matrix X = TP T , PLS look after a
transformation W such that T = W TX have components maximally correlated with the
transformed components of Q = Y TC.

As illustration consider the inner product between the samples of xi and the regres-
sion samples yj. This product is related to the correlation between variables xi and yi.
The goal is to find transformations W and C such that maximize the product of the
transformed variables ti and qj. The product square wT

i XY
T cj = tiq

T
j is the function to

be maximized. Problem statement on equation 20.

max (wT
i XY

T cj)
2

s.t.

wTw = 1

cT c = 1

(20)

Using Lagrange multipliers the function to be maximized was stated on equation 21.
Then gradient with respect to vectors w and c was applied and equal to zero in order to
find critical points.

L(w, c) = (wTXY T c)2 − αwTw − βcT c
∇wL(w, c) = 2wTXY T c(XY T c)T − 2αwT

0 = wTXY T c(XY T c)T − αwT

0 = wT
(
XY T c(XY T c)T − αI

) (21)

Gradient equal to zero on equation 21 depicted the eigen problem for rank one sym-
metric matrix XY T c(XY T c)T . This matrix has only one eigenvalue different of zero and
its eigenvector is wT = (XY T c)T . The eigenvalue is computed as α = (XY T c)TXY T c.

Gradient with respect to c was computed on equation 22.

∇cL(w, c) = 2wTXY T c(wTXY T)− 2βcT

0 = wTXY T c(wTXY T)− βcT
(22)

Lets replace the vector wT = (XY T c)T on equation 22.

0 = (XY T c)TXY T c((XY T c)TXY T)− βcT

0 = cTY XTXY T ccTY XTXY T − βcT

0 = cT (Y XTXY T ccTY XTXY T − βI)

0 = cT
(
(Y XTXY T c)(Y XTXY T c)T − βI

) (23)

Equation 23 depicted the eigen value problem for rank one symmetric matrix (Y XTXY T c)(Y XTXY T c)T .
This relation lead us to the eigen value problem of the symmetric matrix Y XT (Y XT)T

βc = Y XTXY T c (24)

21

Where c is the eigen vector of Y XT (Y XT)T . The same derivation follow for vector
w, which is the eigen vector for symmetric matrix XY T (XY T)T .

αwT = wTXY T (XY T)T (25)

Results on equations 24 and 25 refer to the right and left singular vectors of matrix
XY T . The constants α and β refer to the corresponding singular values.

In order to tell the shape of L(w, x) lets examine its Hessian∇2
wL(w, x) and∇2

cL(w, x)
. The goal is to test for a maximum, minimum, saddle point or singular case.

∇2
wL(w, x) = ∇2

w(wT (XY T)c)2 − α∇2
ww

Tw − β∇2
wc

T c

= ∇w2wT (XY T c)(XY T c)T − α∇w2wT

∇2
wL(w, x) = (XY T c)(XY T c)T − αInx

(26)

The Hessian with respect to c was computed on equation 27.

∇2
cL(w, x) = (wTXY T)(wTXY T)T − βIny (27)

Where nx and ny are the number of predictor and prediction variables. The results for
both Hessians led singular matrices (XY T c)(XY T c)T −αInx and (wTXY T)(wTXY T)T −
βIny which are negative definite. This implies that L(w, c) has maximum at the eigen
vectors w and c. The negative definiteness could be explained similar to the used on PCA
section.

The question that naturally arises is: Why this representation is useful? Its useful
because the maximally correlated transformed variables could be used for regression and
the transformed variables with low correlation could be discarded. The transformed vari-
ables with low correlation could be understood as part of the data not related to the
regression, possibly noise.

3.3.2 PLS simulation

The vector wi computed on equation 25 transforms the variables of matrix X into a vari-
able zi which has the property of maximally correlation with the regression variable Y .

As example consider the PLS transformation of two regressors variables x1 and x2
which are samples or two independent uniform distributions. The regression variable
y is the sum of the regressors variables, for simplicity data follows a linear model, i.e.
y = x1 + x2.

On figure 8 a simulation was performed in order to find the correlated variables z.
On figure 8.a the original set up is showed by red points the regressors and blue the
regression. On figure 8.b and 8.c the relation between xi and y is plotted. It can be seen
that a linear regression is difficult for each variable xi. On figure 8.d the transformed
regressors zi were plotted, it’s noted that the transformation correspond to a rotation.
Finally on figure 8.e and 8.f the transformed variable were compared to the regression.
Figure 8.e reflected a quite notorious linear behavior between z1 and y. Figure 8.f re-
flected no correlation between z2 and y.

22

In fact the correlation matrix for [Z|Y] showed high correlation between z1 and y and
poor correlation for z2 and y. Further more the SVD used to compute w and c could be
used to tell how many transformed variables to pick. In this example the singular value
related to z1 was greater than z2 and z2 was near to zero, suggesting to use only z1 for
regression and reducing the dimensionality.

Figure 8: Partial Least Squares transformation

23

4 Multiway data analysis

4.1 Notation and Definitions

Nth-order tensors (multiway arrays) are denoted by underlined capital letters, matrices
(two-way arrays) by capital letters, and vectors by lower case letters. The ith entry of a
vector x is denoted by xi, element (i, j) of a matrix X is denoted by Xij, and element
(i1, i2, · · · , iN) of an Nth-order tensor X ∈ RI1×···×IN by X i1,i2,··· ,iN . Indexes typically
range from 1 to their capital version, for example, iN ∈ {1, · · · ; , IN}.

A fiber on mode n was obtained by fixing all indexes but the nth index, e.g. the fibers
on mode 1 of tensor X are the columns X(:, i2, . . . , iN). The fibers on each mode were
depicted on figure 9.

Figure 9: Tensor fibers for different modes and orders. On a),b),c) a third order tensor was
depicted, on d) a fourth order and on e) an fifth order tensor. Mode 1 fibers are columns, mode
2 are rows, and mode 3 fibers go across the tensor. Mode 4 fibers, pick a single element from
each third order tensor moving across the fourth index. Mode 5 fibers, pick a single element
from each third order tensor moving across the fifth index.

The mode-n unfolding of a tensor is denoted by X(n) ∈ RIn×I1···In−1In+1···IN . An un-
folding was build by arranging n-mode fibers as columns of the unfolding matrix X(n).
On figure 10 mode 1,2 and 3 unfoldings of a third order tensor were presented.

2 3

Figure 10: Unfolding of tensor X on mode 1, 2 and 3, X(1), X(2), X(3) respectively.

24

The n-mode product between a tensor X ∈ RI1×···×In×···×IN and a matrix A ∈ RJn×In

is denoted by Y = X ×n A ∈ RI1×···×Jn×···×IN . The product on mode n requires the
number of columns on matrix A be equal to the number of elements on the n-mode fiber
from X.

4.1.1 Tucker decomposition

Consider a real Nth order tensor X of size X ∈ RI1×···×IN . Tucker decomposition (TD)
factorize a tensor into a core tensor and a set of factor matrices U (n) according to 79.

X = G×1 U
(1) ×2 · · · ×N U (N)

= [[G,U (1), · · · , U (N)]]
(28)

The nth factor matrix U (n) was build by the left singular vectors of the tensor unfolded
on mode n, X(n) ∈ RIn×I1...In−1In+1...IN . The singular value decomposition of the mode n
unfolding has the form of equation 80 .

X(n) = U (n)Σ(n)V (n)T (29)

The matrix of left singular vectors of the nth unfolding is the factor matrix U (n). This
factor matrices U (n) are orthogonal and its transpose is used to compute the core tensor
G by equation 84.

X ×1 U
(1)T ×2 · · · ×N U (N)T = G (30)

Tucker decomposition can be computed according to algorithm 1.

Algoritmo 1: Tucker decomposition

Input : Nth order tensor X ∈ RI1×···×IN

Output: Core tensor G and factor matrices {U (1), . . . , U (N)}
for each unfolding X(n), n ∈ {1, . . . , N} do

X(n) = U (n)Σ(n)V (n)T

Compute core tensor G = X ×1 U
(1)T ×2 · · · ×N U (N)T

The nth factor matrix U (n) was composed by singular vectors which formed a basis
for the fibers on mode n. A subspace approximation for the tensor could be performed
by truncating the factor matrices up to r singular vector on each factor matrix. The

truncated factor matrix was denoted by Û
(n)
r . Truncation affected the core tensor Ĝ,

which also have to be truncated. Tensor approximation was computed using equation 79.

X̂ = Ĝ×1 Û
(1)
r ×2 · · · ×N Û (N)

r

= [[G; Û (1)
r , · · · , Û (N)

r]]
(31)

4.1.2 Subspace approximation.

The subspace approximation of an Nth order tensor X ∈ RI1,...,IN by a multilineal rank-
(J1, . . . , JN) comes from the tensor HOSVD according to equation 79. In order to perform
a subspace approximation, singular vectors from the factor matrices have to be removed.
The multilineal approximation on the nth mode eliminates columns of the nth factor ma-
trices U (n) and eliminates nth-frames from the core tensor G. The tensor approximation
has the same form as the tucker approximation.

25

X̂ = Ĝ×1 Û
(1)
J1
×2 · · · ×N Û

(N)
JN

(32)

Where core tensor was truncated as Ĝ ∈ RJ1,...,JN , Jn ≤ In, and factor matrices

Û
(n)
Jn
∈ RIn×Jn .

An example of the tensor subspace approximation was presented graphically on figure
11, using a third order tensor X ∈ RI1×I2×I3 and a multilineal rank-(1, I2, I3) approxima-
tion (block Tucker approximation [14]).

21

3

^

21

3

Figure 11: Tensor subspace approximation of X ∈ RI1×I2×I3 , by a multilineal rank-(1, I2, I3)
block Tucker approximation.

4.2 Parallel factor analysis

The tensor decomposition PARAFAC (Parallel factor analysis) also known as CANDE-
COMP (Canonical decomposition) or CP (Canonical Polyadic), define a N order tensor
X as a sum of rank-one tensors according equation ...

X =
R∑

r=1

λra
(1)
r ◦ a(2)r ◦ · · · ◦ a(N)

r (33)

Where each rank one tensor is composed by outer products of vectors ar(n) (Columns
of factor matrices A(n)) scaled by a scalar factor λr. PARAFAC model can be represented
by 79 when the core tensor is super diagonal.

4.2.1 Inner Product and Covariance tensor

The inner product of two tensors (same order and dimensions) X, Y ∈ RI1×···×IN is defined
as the sum of the product between elements with the same positions (equation 34). The
squared Frobenius norm is ||X||2F = 〈X,X〉.

〈X, Y 〉 =
∑
i1···iN

X i1···iNY i1···iN (34)

26

The n-mode cross covariance between an Nth-order tensor X ∈ RI1×···×In×···×IN and
an Mth-order tensor Y ∈ RJ1×···×In×···×JN with the same size In on the nth mode is defined
as equation 77.

C = COV{n;n} (X, Y) = 〈X, Y 〉{n;n}
COV{n;n} (X, Y) ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jn−1×Jn+1×···×JM

(35)

The symbol 〈•, •〉 represents an n-mode multiplication between two tensors. Its
element-wise computation was defined on equation 78 and its complete computation
using outer product was depicted on equation 37.

ci1,··· ,in−1,in+1,··· ,iN ,j1,··· ,,jn−1,jn+1,··· ,jM

=
In∑

in=1

xi1,··· ,in,··· ,iNyj1,··· ,in,··· ,jM
(36)

C =
In∑

in=1

R∑
r=1

λrX
(i) ◦ ur ◦ vr (37)

The computation of the covariance tensor (CT) is similar to the computation of sam-
ple covariance matrix Σ = XXT , where columns x(i) of matrix X are samples. In that
case the covariance matrix is computed as the sum of outer product x(i) ◦ x(i)T for each
sample vector, as depicted on figure 22.

For the covariance tensor, samples X(i) are multilinear arrays with order N ≥ 2. In
that case the covariance tensor is computed as the sum of outer product X(i) ◦X(i)T for
each sample, as depicted on figure 22.

X =

COV (X , X)={3;3}

+ +=

=

X =

COV (X , X)={2;2}

= + +

+ +=

=

Figure 12: Tensor covariance for X ∈ R3×3×3. Samples are frontal frames (mode-3 frame)
X(i) ∈ R3×3. Resulting covariance tensor has order four.

A special case for the cross covariance tensor between a multiway array X and a
matrix Y ∈ RJ1×In results in a mode-n product.

COV{n;2} (X, Y) = X ×n Y. (38)

For the computation of covariance tensor the n-mode column of X and columns of Y
should be centered.

27

4.3 Application of Tensor Decomposition

Numerous applications of multiway data analysis have been proposed along different dis-
ciplines. This section presents an interesting application where tensor decomposition is
applied on the estimated fourth order statistics from n mixed sources. The estimated
statistics build up according to a fourth order tensor. The goal is to find a linear transfor-
mation that makes the fourth order joint cumulants zero (find independent components).

4.3.1 Higher Order Statistics

First characteristic function. The first characteristic function ΦX(ω) of a random
variable X is defined as the expected value of ejωX , with ω ∈ R.

ΦX(ω) = E{ejωX} =

ˆ ∞
−∞

pX(x)ejωxdx (39)

Second characteristic function. The second characteristic function ΨX(ω) of a
random variable X is defined as the Neperian logarithm of the first characteristic function.

ΨX(ω) = lnΦX(ω) (40)

Moments. The Nth order moment mX
N of a random variable X is defined as the

expected value of the Nth power of X.

mX
N = E{XN} (41)

The Nth order moment of X can be obtained from the ωN coefficient from the Taylor
series expansion of the first characteristic (generating) function.

ΦX(ω) = E{ejωX} =

ˆ ∞
−∞

ejωxfX(x)dx =

ˆ ∞
−∞

(
∞∑
k=0

xk(jω)k

k!

)
fX(x)dx

=
∞∑
k=0

ˆ ∞
−∞

(
(jω)k

k!

)(
xkfX(x)

)
dx =

∞∑
k=0

(jω)k

k!
E(xk)

(42)

Additionally the Nth order moment of X can be obtained differentiating the moment
generating function N times and evaluating at zero.

mX
N =

1

jn
dNΦx(ω)

dωN

∣∣∣
ω=0

(43)

Multivariate Moment. The joint moment for a set of random variables {X1, · · · , XN}
is defined as the expected valued of their product:

Mom (X1, · · · , XN) = E{X1X2 · · ·XN} (44)

The second order joint moment of two different random variables is known as cross
correlation.

Nth order moment of random vector. The Nth order moment of a random vector
X is an Nth order tensor according to:

MX
N = E{X ◦X · · · ◦X} (45)

28

Cumulant The Nth order cumulant cXN of a random variable X could be obtained
from the Taylor series expansion of the second characteristic (generating) function.

cXN =
1

jn
dNΨx(ω)

dωN

∣∣∣
ω=0

(46)

Multivariate Cumulant The joint cumulant for a set of random variables {X1, . . . , XN}
with zero mean can be defined in terms of moments according to:

Cum(X1) = E{X1}
Cum(X1, X2) = Mom(X1, X2) = E{X1X2}

Cum(X1, X2, X3) = E{X1X2X3}
Cum(X1, X2, X3, X4) = E{X1X2X3X4} − E{X1X2}E{X3X4}

− E{X1X3}E{X2X4} − E{X1X4}E{X2X3}

(47)

It is important to state that the moments and cumulants for a scalar random variable
(univariate case) is a scalar. the moments and cumulants for a scalar random variable
(univariate) is a scalar. The moments and cumulants for a random vector (multivariate
case) are arranged as tensors.

Sum of cumulants. Cumulants of a sum are the sum of the cumulants.

cum(X1 + Y1, X2, . . . , XN) = cum(X1, X2, . . . , XN) + cum(Y1, X2, . . . , XN) (48)

Scaling of cumulant. The joint cumulant of random variables X1, X2, . . . , XN mul-
tiplied by constants a1, a2, . . . , aN is the multiplication of the constants by the joint
cumulant of X1, X2, . . . , XN .

cum(a1X1, a2X2, . . . , aNXN) =

(
N∏
i=1

ai

)
cum(X1, X2, . . . , XN) (49)

cum(X1 + Y1, X2, . . . , XN) = cum(X1, X2, . . . , XN) + cum(Y1, X2, . . . , XN) (50)

4.3.2 ICA by tensorial method

Consider the case where data follows the ICA model. Whitening the data we have:

z = V As = W T s (51)

Where vector s ∈ Rn represented n independent sources, vector z represents the
whitened observed mixtures, A is the mixing matrix, V is the whitening matrix and W T

is an orthonormal matrix. W is the separating matrix.

Let the fourth order cumulant tensor of z be denoted by CZ4 = F . According to [], an

estimation of the Nth moment m̂Z
N and the fourth order cumulant F̂ using T independent

samples z(i), could be computed using:

m̂Z
N =

1

T

T∑
t=1

zNt (52)

29

F̂ = ĉZ4 =
T 2

(T − 1)(T − 2)(T − 3)

[
(T + 1)m̂Z

4 − 3(T − 1)(m̂Z
2)2
]

(53)

Any entry Fi,j,k,l of the cumulant tensor is given by the cross cumulant according to:

Fi,j,k,l = cum(zi, zj, zk, zl) (54)

The cumulant tensor is a symmetric linear operator, thus have an eigenvalue decom-
position. Let M be a eigen matrix of the tensor F . The eigenvalue decomposition is
denoted by:

F (M) = λM (55)

Let define the eigen matrix as M = wmw
T
m. The {i, j} element of the product F (M)

is computed as:

Fi,j(M) =
n∑

k=1

n∑
l=1

Mk,lcum(zi, zj, zk, zl)

Fi,j(wmw
T
m) =

n∑
k=1

n∑
l=1

wmkwmlcum(zi, zj, zk, zl)

(a)
=

n∑
k=1

n∑
l=1

wmkwmlcum(
n∑

q=1

wqisq,
n∑

q′=1

wq′jsq′ ,
n∑

r=1

wrksr,
n∑

r′=1

wr′lsr′)

(b)
=

n∑
klqq′rr′

wmkwmlcum(wqisq, wq′jsq′ , wrksr, wr′lsr′)

(c)
=

n∑
klqq′rr′

wmkwmlwqiwq′jwrkwr′lcum(sq, sq′ , sr, sr′)

(d)
=

n∑
klq

wmkwmlwqiwqjwqkwqlcum(sq, sq, sq, sq)

(e)
=

n∑
lq

wmlwqiwqjwqlkurt(sq)
∑
k

wmkwqk

(f)
=

n∑
q

wqiwqjkurt(sq)δmq

∑
l

wmlwql

=
n∑
q

wqiwqjkurt(sq)δmqδmq

Fi,j(wmw
T
m) = wmiwmjkurt(sm)

(56)

On equation 56, we computed the linear transformation of matrix M under the 4th
order cumulant CZ4 . On (a) we applied the linear relation of the ICA model z = W T s,
each row of W T mixed the independent components zi =

∑
q wqisq. On (b) we applied

the sum property of cumulants. On (c) we applied the scaling property of cumulants. On
(b) the independence of random variables sq, only joint cumulants with the same index
q = q′ = r = r′ are different than zero. On (e) we associated the coefficients with k index
and row orthogonality of W lead

∑
k wmkwqk =. On (f) we associated the coefficients

30

with l index which lead
∑

l wmkwqk = δmq.

The derivation on equation 56 showed that a matrix of the form M = wmw
T
m is an

eigen matrix of the tensor cumulant CZ4 , and the eigenvalue is the kurtosis of the mth
independent component.

The linear transformation F (M) showed that the separating matrix W could be com-
puted by means of the eigen matrices M = WMW

T
m of the cumulant tensor CZ4 . Each

eigen matrix wmw
T
m reveal a column of the separating matrix W .

Remark. The solution for the ICA model using tensor eigen decomposition of cu-
mulant was developed parallel by [13]. In that approach they exploited the same eigen
vector property inherited by the cumulant tensor.

We established a relation between the linear transformation F (M) and the n-mode
product proposed on [31], [15]. We can write the linear transformation on equation 56
as:

F (M) = F (w1w
T
1) = λM = F ×3 w

T
1 ×4 w

T
1 (57)

Note that the cumulant tensor is super symmetric (tensor elements are invariable
under index permutation). Exploiting the tensor symmetry left and right eigen matrices
M are the same. The linear transformation transposed F T (M) could be rewrite using
mode-n product.

F T (MT) = F T (w1w
T
1) = λMT = F ×1 w

T
1 ×2 w

T
1 (58)

Equations 57, 58 revealed the eigen vectors of cumulant tensor CZ4 are the wi (columns
of unmixing matrix W).

Cumulant tensor CZ4 can be expressed by a PARAFAC decomposition [31], [15] ac-
cording to:

F =
n∑

i=1

λiwi ◦ wi ◦ wi ◦ wi = Λ×1 W ×2 W ×3 W ×4 W (59)

On equation 59 we note multiplication of tensor F by W T on each mode will lead us
to a super diagonal tensor Λ. This result represents a cumulant tensor with fourth order
joint cumulants equal to zero, i.e. no dependency between variables.

4.4 High order Partial Least Squares

High order Partial Least Squares(HOPLS) [65] is a multilinear regression model. HOPLS
predicts a tensor (multiway array) Y from a tensor X through projecting the data onto
the latent space T and performing regression on the corresponding latent variables. HO-
PLS has two parameters to describe model complexity and fitness; the number of latent
variables tr ∈ RI1×1, r ∈ {1, . . . , R} (also called latent vectors, score vectors, components,
scores or data projection UTX in PCA) and the number of subspace basis vectors LN

inside each factor matrix P (n) ∈ RIn×Ln , n ∈ {1, . . . , N} (also called direction vectors,
loadings, matrix U in PCA).

The low-dimensional latent space is optimized sequentially via a deflation operation,
yielding the best joint subspace approximation for both X and Y.

The data is modeled as a sum of R orthogonal Tucker tensors. Compared to standard
PLS, HOPLS performs a higher order singular value decomposition on a generalized
cross-covariance tensor.

31

4.4.1 Previous works on HOPLS

The N-way PLS (N-PLS) decomposes the independent X and dependent Y data into
rank-one tensors, subject to maximum pairwise covariance of the latent vectors. This
promises enhanced stability, resilience to noise, and intuitive interpretation of the re-
sults [5], [6]. Due to these desirable properties, N-PLS has found applications in areas
ranging from chemometrics [21], [45], [68] to neuroscience [44], [1]. A modification of
the N-PLS and the multiway covariates regression was studied in [7], [52], [35], where
the weight vectors yielding the latent variables are optimized by the same strategy as in
N-PLS, resulting in better fitness to independent data X while maintaining no difference
in predictive performance. The tensor decomposition used within N-PLS is canonical
decomposition/parallel factor analysis (CANDECOMP/PARAFAC or CP) [20], which
makes N-PLS inherit both the advantages and limitations of CP [51]. These limita-
tions are related to poor fitness ability, computational complexity, and slow convergence
when handling multivariate dependent data and higher order (N > 3) independent data,
causing N-PLS to not be guaranteed to outperform standard PLS [23], [31].

4.4.2 Method

HOPLS is a generalized multilinear regression model, called higher order partial least
squares (HOPLS), which makes it possible to predict an Mth-order tensor Y (M ≥ 3) (or
a particular case of two-way matrix Y) from an Nth-order tensor X (N ≥ 3) by projecting
tensor X onto a low-dimensional common latent subspace. The latent subspaces are op-
timized sequentially through simultaneous rank-(1, L2, · · · , LN) approximation of X and
rank-(1, K2, · · · , KM) approximation of Y (or rank-one approximation in particular case
of two-way matrix Y). Due to the better fitness ability of the orthogonal Tucker model
as compared to CP [31] and the flexibility of the block Tucker model [14], the analysis
and simulations show that HOPLS proves to be a promising multilinear subspace regres-
sion framework that provides not only an optimal trade off between fitness and model
complexity but also enhanced predictive ability in general. HOPLS have a closed-form
solution by employing higher order singular value decomposition (HOSVD) [15], which
makes the computation more efficient than the classical iterative procedure.

Consider an Nth-order tensor X ∈ RI1,··· ,IN and an Mth-order tensor Y ∈ RJ1,··· ,JM ,
both tensors have the same size on the first mode I1 = J1 (same number of samples). The
objective of HOPLS is to find an optimal subspace approximation of X and Y , in which
latent vectors from X and Y have maximum pairwise covariance. The problem boils down
to find the common latent subspace which can approximate both X and Y simultaneously.

In order to find the common latent subspace a block-wise orthogonal Tucker decom-
position was employed. Tensor X was decomposed as a sum of rank-1, L2, · · · , LN Tucker
blocks, Y was decomposed as a sum of rank-1, K2, · · · , KM Tucker blocks which can be
expressed as

X =
R∑

r=1

Gr ×1 tr ×2 P
(2)
r ×3 · · · ×N P (N)

r + ER

Y =
R∑

r=1

Dr ×1 tr ×2 Q
(2)
r ×3 · · · ×N Q(N)

r + FR

(60)

32

where R is the number of latent vectors, tr ∈ RI1 is the rth latent vector, loading ma-

trices P
(n)
r ∈ RIn×Ln , with n ∈ {2, · · · , N}, and Q

(m)
r ∈ RJm×Km , with m ∈ {2, · · · ,M}.

Core tensors Gr ∈ R1×L2×···×LN and Dr ∈ R1×K2×···×KN .
Decomposition in 60 is not unique due to permutation, rotation and scaling issues [31].

To alleviate this problem, additional constraints should be imposed such that the core ten-
sors Gr and Dr are all-orthogonal (orthogonal sub tensors), loading matrices are column-

wise orthonormal P
(n)T
r P

(n)
r = ILn and Q

(m)T
r Q

(m)
r = IKn , latent vector is of length one.

||tr||F = 1. Thus each summation term in 60 is represented as an orthogonal Tucker
model, implying essentially uniqueness as it is subject only to trivial indeterminacies [14].

4.4.3 Optimization criteria and Algorithm

In order to extract latent components we used the sequential method according to [65],
which extracts one component at a time. Sequential method compute a latent vector
from the multiway array, then deflates the tensor and compute the next one from the
residual. The tensor decomposition used for X and Y was the orthogonal block Tucker
model having a common latent component on a specific mode.

The subspace approximation by block Tucker model on 60 aimed to find a set of or-

thogonal loadings P
(n)
r , Q

(m)
r , and latent vectors tr under certain constraints. Each term

can be optimized sequentially with the same criteria based on deflation, the problem
simplify to find the first latent vector t and two sequences of loading matrices P (n) and
Q(m).

To quantify the quality of the subspace approximation, we used the Frobenius norm
of the residuals E and F . Here we present some basic results about norm of core tensor
and residuals, necessary to find the latent vectors.

Optimum Core tensor for orthogonal tucker model approximation under
Frobenius norm. Given a tensor X ∈ RI1,··· ,IN and column orthonormal matrices
P (n) ∈ RIn×Ln , n = 2, · · · , N , a latent unit norm vector t ∈ RI1 , ||t||F = 1.

argmin
G

||X−G×1 t×2P
(2)×3 · · ·×N P

(N)||2F = X×1 t
T ×2P

(2)T ×3 · · ·×N P
(N)T (61)

Proof is widely used in the literature [31], [15].

Minimization of residual norm is equivalent to maximization of core tensor
norm. Given a tensor X ∈ RI1,··· ,IN , the following two constrained optimization problems
are equivalent:

min
{P (n),t,G}

||X −G×1 t×2 P
(2) ×3 · · · ×N P (N)||2F

s.t. P (n)TP (n) = ILn , ||t||F = 1
(62)

max
{P (n),t}

||X ×1 t
T ×2 P

(2)T ×3 · · · ×N P (N)T ||2F

s.t. P (n)TP (n) = ILn , ||t||F = 1
(63)

33

Proof is available at [31] pp. 477-478

Covariance tensor norm || 〈G,D〉{1;1} ||2F is equivalent to the product of each

tensor norm ||G||2F · ||D||2F . Let G ∈ R1,L2,··· ,LN and D ∈ R1,K2,··· ,KN , then the norm fo
the covariance tensor is

|| 〈G,D〉{1;1} ||
2
F

(a)
= ||vec(G)vec(D)T ||2F

(b)
= tr(vec(D)vec(G)Tvec(G)vec(D)T)

(c)
= ||vec(G)||2F · ||vec(D)||2F

(64)

Equality (a) by the definition of covariance tensor, (b) by transpose property ||A||2F =
tr(ATA). On (c) the cyclic permutation property of trace was applied tr(ABCD) =
tr(BCDA).

The goal is to compute a simultaneous block Tucker decomposition for X and Y such
that have minimum residuals E , F respectively under Frobenius norm. By Proposition
2, the minimum residuals are found when the core tensors norms G and D are maximized.
The parameters for the maximization problem are the factor matrices P (n), Q(m) and the
common latent vectors tr.

In order to compute the simultaneous decomposition, [65] proposed to maximize the
product of the core tensors norms.

max{||G||2F · ||D||2F}
s.t. P (n)TP (n) = ILn , t

T t = 1
(65)

This objective function, according to Proposition 3, is the norm of a mode-n tensor-
tensor product or the covariance tensor C = COV{1;1} (G,D) = 〈G,D〉{1;1}. By sub-

stitution of the core tensor (equation 61) on the objective function (equation 65), we
get

||G||2F · ||D||2F = || 〈G,D〉{1;1} ||
2
F

=

∣∣∣∣∣∣∣∣ 〈[[X; tT , P (2)T , · · · , P (N)T]], [[Y ; tT , Q(2)T , · · · , Q(M)T]]
〉
{1;1}

∣∣∣∣∣∣∣∣2
F

=

∣∣∣∣∣∣∣∣[[〈X, Y 〉{1;1} ;P (2)T , · · · , P (N)T , Q(2)T , · · · , Q(M)T]]

∣∣∣∣∣∣∣∣2
F

=

∣∣∣∣∣∣∣∣[[C;P (2)T , · · · , P (N)T , Q(2)T , · · · , Q(M)T]]

∣∣∣∣∣∣∣∣2
F

(66)

Note this form is similar to the optimization problem for two-way PLS in 21, where
the cross-covariance matrix XTY is replaced by 〈X, Y 〉{1;1}.

Finally the optimization problem is defined as

max
P (n),Q(m)

∣∣∣∣∣∣∣∣[[C;P (2)T , · · · , P (N)T , Q(2)T , · · · , Q(M)T]]

∣∣∣∣∣∣∣∣2
F

s.t. P (n)TP (n) = ILn , Q
(m)TQ(m) = IKn

(67)

34

where P (n), n = 2, · · · , N and Q(m), m = 2, · · · ,M are the parameters to optimize.
The optimization problem on 67, is equivalent to find the best subspace approximation
of C

C ≈ [[G(C);P (2), · · · , P (N), Q(2), · · · , Q(M)]] (68)

which can be obtained by rank-(L2, · · · , LN , K2, · · · , KM) HOSVD on tensor C. Ac-
cording to Proposition 1, the optimization term on 67 is equivalent to the norm of the
core G(C), in order to maximize it HOSVD should be performed.

Higher order orthogonal iteration (HOOI) algorithm [31], [16], which is known to
converge fast, is employed to find parameters P (n) and Q(m) by orthogonal Tucker de-
composition of C.

After loading matrices were found, we can compute the latent vector t. Given a set of
loading matrices {P (n)}, latent vector t should explain variance of X as much as possible,
that is

t = argmin
t
||X − [[G; t, P (2), · · · , P (N)]]||2F (69)

which is achieved by choosing t as the first leading singular vector of the unfolding
matrix (X ×2 P

(2)T ×3 · · · ×N P (N)T)(1) as used in the HOOI algorithm [31], [30]. Then,
G and D can be computed using 61.

The procedure should be repeated performing deflation and extracting one latent
vector and a set of factor matrices each time, until R components or a residual threshold.
HOPLS algorithm is outlined on algorithm 2.

Algoritmo 2: High Order Partial Least Squares

Input : X ∈ RI1×···×IN , Y ∈ RJ1×···×JM , N ≥ 3, M ≥ 3 and I1 = J1. Number of
latent vectors R and number of loading vectors Ln, Kn for loading
matrices P (n) and Q(m).

Output: Loading matrices {P (n)
r }, {Q(m)

r }, {Gr}, {Dr}, T , r = 1, · · · , R;
n = 2, · · · , N ; m = 2, · · · ,M

Initialization: E1 ← X, F 1 ← Y
for r = 1 to R do do

if ||Er||F ≥ ε and ||F r||F ≥ ε then
Cr ← 〈Er, F r〉{1,1}
Orthogonal Tucker Decomposition of Cr with rank-L2,×, LN , K2, · · · , KM

by HOOI Cr ≈ [[G(Cr)
r ;P

(2)T
r , · · · , P (N)T

r , Q
(2)T
r , · · · , Q(M)T

r]]
tr ← first leading left singular vector by

SVD
[(
Er ×2 P

(2)T ×3 · · · ×N P (N)T
)
(1)

]
Gr ← [[Er; t

T
r , P

(2)T
r , · · · , P (N)T

r]]

Dr ← [[F r; t
T
r , Q

(2)T
r , · · · , Q(M)T

r]]
Deflation:
Er+1 ← Er − [[Gr; tr, P

(2)T
r , · · · , P (N)T

r]]

F r+1 ← F r − [[Dr; tr, Q
(2)T
r , · · · , Q(M)T

r]]
else

Break

35

4.5 HOPLS image classification

Design a image classifier based on features extracted from multilinear structure of input
data (image ensemble and labels). The method is based on tensor decomposition
which enables to preserve the inter pixel structure on sample images in contrast
to matrix decomposition. The algorithm uses the High Order Partial Least Squares
(HOPLS) in order to find a multilinear subspace approximation of input data.
HOPLS seeks for a representation of input data (image samples) which is maximally
correlated to a linear transformation of output data (class labels).

4.5.1 Project Latent Space

X = TP T + E =
R∑

r=1

trp
T
r + E

Y = UQT + F =
R∑

r=1

urq
T
r + F

U = TD + Z

Y = TDQT + (ZQT + F) = TDQT + F ∗

4.5.2 High Order Partial Least Squares

X =
R∑

r=1

Gr ×1 tr ×2 P
(2)
r ×3 · · · ×N P (N)

r + E

Y =
R∑

r=1

Dr ×1 tr ×2 Q
(2)
r ×3 · · · ×N Q(N)

r + F

(70)

Minimize error approximation

^

21

3

+ . . .

t1

G1
P2

P3

^Y
21

3

+ . . .

t1

D1
Q2

Q3

min
{P (n),t,G}

||X −G×1 t×2 P
(2) ×3 · · · ×N P (N)||2F = ||E||2F

s.t. P (n)TP (n) = ILn , ||t||F = 1
(71)

Equivalent to

max
{P (n),t}

||X ×1 t
T ×2 P

(2)T ×3 · · · ×N P (N)T ||2F = ||G||2F

s.t. P (n)TP (n) = ILn , ||t||F = 1
(72)

36

Minimize both errors ||E||2F and ||F ||2F is equivalent to maximize the product of each
tensor norm.

||G||2F · ||D||2F = || 〈G,D〉{1;1} ||
2
F = ||G(C)||2F (73)

||G||2F · ||D||2F = || 〈G,D〉{1;1} ||
2
F (74)∣∣∣∣∣∣∣∣[[〈X, Y 〉{1;1} ;P (2)T , · · · , P (N)T , Q(2)T , · · · , Q(M)T]]

∣∣∣∣∣∣∣∣2
F

=

∣∣∣∣∣∣∣∣[[C;P (2)T , · · · , P (N)T , Q(2)T , · · · , Q(M)T]]

∣∣∣∣∣∣∣∣2
F

(75)

max
P (n),Q(m)

∣∣∣∣∣∣∣∣[[C;P (2)T , · · · , P (N)T , Q(2)T , · · · , Q(M)T]]

∣∣∣∣∣∣∣∣2
F

s.t. P (n)TP (n) = ILn , Q
(m)TQ(m) = IKn

(76)

Under the orthogonal factor matrix constraint, the former maximization seeks to find the
best subspace approximation of C of rank (L2, · · · , Ln, K2, · · · , Lm)

4.5.3 Results

The proposed methodology was applied to classify images on two datasets. The Labeled
Faces in the Wild (LFW) and the Weizmann Face database, following the experimental
guidelines suggested on [23]. The experiment aimed to classify faces samples of three
people. The LFW data set consisted of 705 images with background for the three persons.
Cross validation partitions was performed to test the performance. The training set was
arranged as a third order tensor X, each sample image on rows. Its dimensions were
samples × pixels width × pixels height.A matrix Y of size samples × classes, was build
by assigning a 1 on the element corresponding to each class. The training set was used to

compute model parameters {P (n)
r },{Q(m)

r },{Gr}, {Dr}, T , r = 1, · · · , R; n = 2, · · · , N ;
m = 2, · · · ,M . Predictions Y of new samples were used to perform image classification.

A grid search map was build to find the best number of parameters. On figure 13 the
inverse of error prediction was presented. This figure showed the best parameters for the
decomposition are 8 loadings vectors on each mode matrix and 40 tucker blocks.

37

Figure 13: Parameters grid search.

On figure 14, was depicted the scatter plot for the predictions of images on the three
classes represented by red, green and blue dots. It can be noticed that points representing
images were overlapping, this reflected a poor separability performance. On figure 15,
was shown the predictions of images labels using the proposed algorithm. The scatter
plot pictures dots representing images forming clusters by color, representing a better
separability performance.

Figure 14: Prediction of labels using PLS method.

38

Figure 15: Prediction of labels using the proposed method.

The results for the proposed method on a 10-fold cross validation was depicted on
table 1.

Table 1: LFW, HOPLS, factor 40, loadings 8, 10.6 seg
Accuracy
Training Test
max max kNN Random Forest
0.85175 0.7875 0.8125 0.8375
0.84895 0.85 0.825 0.8375
0.84218 0.78481 0.81013 0.78481
0.8352 0.77215 0.79747 0.78481
0.86034 0.74684 0.77215 0.75949
0.84358 0.74684 0.75949 0.74684
0.8352 0.8481 0.83544 0.82278
0.84476 0.7 0.7625 0.7625
0.81958 0.7625 0.8 0.7875
0.84755 0.7625 0.725 0.7875

It can be noted that the extracted subspace has defined patterns able describe a face
and shoulders of a person. Additionally its seen that spatial relations are reflected on the
extracted subspace. This can be noted on the comparison between subspaces extracted
by matrix and tensorial method on figure 16.

39

Figure 16: Features learned by the proposed method.

The results on a benchmark comparison with similar linear subspace approximation
method was depicted on table 2. Input: Image ensemble. Output: Vector class labels
(One hot).

40

Table 3: Additional HOPLS classification results
Dataset Precision
LFW 84.81%
Tensor Faces 98.33%
BAD 60.03%
Sports Action 38.61%
Sports Action + Gabor Filter 47.22%
Silhouette 54.72%

Table 2: Accuracy by method for LFW
Method Accuracy
HOPLS 84.81
PCA 34.62
PCA class 31.68
PLS 54.76
DLDA (Direct LDA) [Yu and Yang, 2001]
PILDA (Pseudoinverse LDA) [Tian et al. 1986] 82.50
FPILDA (Fast PILDA) [Liu et al., 2007] 82.50
PCAplusLDA 75.95
NLDA (Null LDA) [Chen et al., 2000] 86.25
OLDA (Orthogonal LDA) [Ye 2005] 83.75
ULDA (Uncorrelated LDA) [Ye et al., 2004] 82.50
QRNLDA (QR based NLDA) [Chu and Thye, 2010] 83.75
FNLDA (Fast NLDA) [Sharma and Paliwal, 2012] 83.75
CLDA (Discriminant common vector LDA) [Cevikalp et al., 2005] 83.75
IPILDA (Improved PILDA) [Paliwal and Sharma, 2012] 83.75
ALDA (Approximate LDA) [Paliwal and Sharma, 2011] 66.25
EFR (Eigenfeature Regularization) [Jiang et al., 2008] 88.75
ELDA (Extrapolation LDA) [Sharma and Paliwal, 2010] 85.00
MLDA (Maximum Uncertainty LDA) [Li et al., 2003] 83.75
IDLDA (Improved DLDA) [Paliwal and Sharma, 2010] 66.25
TSLDA (Two-stage LDA) [Sharma and Paliwal, 2012a]
Range Sw (Range space of within-class scatter matrix) 61.25
Null Sw (Null space of within-class scatter matrix) 83.75
Range Sb (Range space of between-class scatter matrix) 58.75
Null Sb (Null space of between-class scatter matrix) 58.75

Figure 17: Test Datasets

41

Figure 18: Gabor Filters real components

42

5 Solutions and approaches made by other authors

On computer vision research area, several approaches exist to perform feature extraction
and classification. This proposal focuses on multilinear algebra approaches to accomplish
such tasks, specifically on subspace approximation. The most relevant approaches in-
clude: linear and multilinear subspace approximation for feature generation (SVD [46],
Tucker decomposition [56]), joint subspace approximation (PLS [56], HOPLS [65]), im-
age classification (eigenfaces [28]), non-linear relationship extraction (alpha-beta diver-
gence [42]), and t-SVD tensor completion for image inpainting [53] [64].

In this context, Kembhavi et al. [27] attempted to identify vehicles on aerial images
using three types of features, such as Color Probability Maps, Histograms of Oriented
Gradients, and Pairs of Pixels. They applied dimensional reduction by Partial Least
Squares (PLS) and classification by a linear classifier. The concatenation of the three
features leads to a very high-dimensional feature vector (approximately 70,000 elements).
In this way, they used PLS analysis to extract a low-dimensional feature subspace, in
contrast, with our proposal based on MSL to find features between samples.

Consequently, Zhao et al. [65] introduced a new regression model, termed the Higher-
Order Partial Least Squares (HOPLS). It aimed to predict a tensor (multiway array) Y
from a tensor X through data projection onto a latent space and performing regression
on the corresponding latent variables. HOPLS explains the data by a sum of Tucker
tensors, which differentiates it substantially from other regression models. In order to
decompose X and Y simultaneously, a higher-order singular value decomposition (HOSVD)
[56], [31] was also applied on a cross-covariance tensor to optimize the orthogonal loadings.
From this work, we take the concept of covariance tensor, and we built it from samples.
This tensor preserves the spatial structure. We also assume linear dependency between
dimensions, width, height, channels. This constraint was established using the Tucker
model.

Vasilescu et al. [58] introduced a multilinear modeling technique to extract factors
called Tensor Faces from an ensemble of facial images. They hypothesized that natural
images were the composite of multiple factors related to scene structure, illumination,
and imaging. The combination of factors was assumed to be linear. The assembled tensor
dataset was built by facial images on various modes, including different facial geometries
(people), expressions, head poses, and lighting conditions. N-mode SVD was applied
to the image ensemble, and the Tensor Faces were extracted. They generated tensor
data by arranging images as vectors, losing spatial structure. The tensor spaces were
extracted from a core tensor product by a single factor matrix, which yields low-rank
images. Additionally, they analyze images as a whole in contrast to our method, where
we understand features from patches to obtain more specialized features.

In the Jian Yang et al. work [26], they decompose an image A in its mode 1, i.e.

A =
∑M

i AT
i × Ai, and factors are the eigenvectors, similar to decompose the unfolding

on mode 2. They projected all the samples with the factors and built a feature matrix.
To classify the test sample, they projected the sample with the factors and applied the
nearest neighbor classifier using the distances between the feature matrices on training
and test.

For image classification, Fu et al. [18] built a discriminant subspace learning algo-
rithm, called Correlation Tensor Analysis (CTA), which incorporate graph-embedded cor-
relational mapping, discriminant analysis, and tensor feature extraction. For the last one,
they decompose a tensor built as an array of images using the Tucker model and use the
core tensor as features.

On Multilinear Principal Component Analysis (MPCA) of Tensor Objects for Recogni-

43

tion [39], they decompose a tensor built as an array of images using the tucker model to
find factor matrices. Then, they project new samples using the factor matrices to find
a core tensor Y. In order to perform classification, they computed the distance between
training projections and test projection.

On Multilinear Principal Component Analysis Network (MPCANet) for Tensor Object
Classification [63], from a third order training data tensor, they extracted I1 × I2 × I3
overlaping tensor patches. Arrange them to build a fourth order tensor A. The resulting
tensor A is decomposed with a Tucker model to find factor matrices V1, V2, V3. Each
tensor patch is projected with the factor matrices resulting in I1 × I2 × I3 tensors S1

m,q.

The projected tensors S are vectorized and truncated building a matrix Z ∈ RI1I2I3×L1.
The columns of Z are arranged as tensor to build F l, l = 1, ..., L1 ∈ RI1×I2×I3 , third-
order tensors. The L1 tensors F l are the tensor feature output of Xm for each stage.
This construction loses the spatial information, which differs from our implementation
because we retain spatial information through the network.

On the other hand, the image classification problem introduces a challenging task due
to the large data’s intrinsic intra-class variability. This variability arises from differences
in lightning, misalignment, non-rigid deformations, occlusion, and corruptions [10]. A
relevant effort to counter this issue is the Wavelet Scattering Network (ScatNet), which
prefixes the convolutional filters [8], [49]. They are simply wavelet operators; hence no
learning is needed at all [10]. Inspired by these results, Tsung-Han Chan et al. [10] pro-
poses the PCA Network (PCANet). This network uses PCA to generate data-adapting
convolutional filter banks, which are prefixed in each convolutional layer. The process
to generate filters is patch extraction, vectorization, covariance matrix, eigenvectors cal-
culation, normalization, and conversion to two-dimensional kernels. This architecture
adds non-linear layers as binary quantization (hasting) and the feature pooling layer as
block-wise histograms. Finally, the author suggests that this method could be applied in
cascade style, using many layers in a deeper structure.

In contrast, our method preserves the spatial structure on patches by computing the
covariance tensor and Tucker’s decomposition. Another difference is that our kernels
(filters) are multichannel tensors (third-order tensors), and our experiments suggest our
proposed architecture handles multilayer deeper network configurations. Another con-
trast is that we require a small data subset to cover the spectrum of all the classes
coming from the global dataset. This approach compensates for the intra-class vari-
ability. Our proposal also uses the well-known ConvNet VGG architecture with Leaky
ReLU activation and max pooling, although the patch extraction, prefixed kernels, and
normalization steps remain.

Another computer vision task solved by tensor decomposition is image in-painting.
Song et al. [53] aimed to recover missing values in images. In their work, their input
was a degraded image with random missing pixels. First, they estimate the image using
a triangulation-based linear interpolation. Then, they find the most similar candidate
patches for each center missing pixel patch according to their Euclidean distance and
group them as a tensor. Finally, they painted patches using t-SVD decomposition. An-
other recent work [64] relies on the painting by a low-rank regularization which minimizes
the nuclear tensor norm (TTN) of the patch tensor to alleviate the Patch Mismatch prob-
lem. This approach reveals the advantages of representing images as tensors. Such as
preserve spatial structure, allow multichannel representation, establish linear dependen-
cies between dimensions and establish representations.

On Hybrid Networks (HybridNet) [61], they propose a tensor-factorization (TFNet)
to alleviate the image vectorization present in PCANet, which destroys spatial image
structure. They propose a HybridNet, which is based on both tensor and matrix decom-

44

positions to obtain feature maps. Like PCANet, they extract image patches and build
a third-order tensor, but now they decompose it using Tucker. Then, they compute the
filters as the outer product of factor matrices U1, U2 columns. They repeat the proce-
dure by inputting the convolved images and using filters from the previous layer for later
layers. In this model, they take into account filters extracted using PCA and Tucker
decompositions. A drawback is their filters are rank one image and are not able to repre-
sent image complexity correctly. In contrast, our proposal computes tensor spaces using
a covariance tensor and its factorization, which allows us to generate higher rank filters.

Kossaifi et al. [32] attack the problem generated by flattening at fully-connected lay-
ers, which discards multilinear structure in the activations and requires many param-
eters. They introduce Tensor Contraction Layers (TCLs), reducing input layer dimen-
sionality while preserving their multilinear structure. Additionally, Tensor Regression
Layers (TRLs) transform the regression weights through the factors of a low-rank tensor
decomposition. The work presents an end-to-end trainable architecture that retains the
multi-modal tensor structure throughout the network.

About tensor operations libraries, [33], [29], [3] proposed software frameworks for
tensor computation. Also, they survived the available software for tensor operations.
Frameworks include tensor manipulation, products, decompositions, and tensor regression
learning [19]. Our work’s code was based on the one proposed at [3] wrote in C++.

45

6 Proposal

6.1 Work Description and Hypothesis

This work describes a new method to extract image features using tensor decomposition
to model data. Given a set of sample images, we extract patches from images, compute
the covariance tensor for all patches, decompose with the Tucker model, and obtain the
most critical features from a tensor core. To extract features, we factorize the covariance
tensor (CovTen) into its core and propose a new interpretation of the resultant tensor
structure, which holds relevant features in a block-wise arrangement (also named filters,
weights, or kernels). This tensorial representation allows preserving the spatial structure,
learning multichannel filters, and establishing linear dependence between dimensions, re-
ducing the dimensional complexity (the curse of dimensionality). Thus, the proposed
method generates filters by a single feed-forward step using a few samples per class as
low as 1. Besides, in kernel generation, labels are not needed. The obtained features
were extensively tested using a convolutional neural network for classification. All tests
were conducted under the VGG architecture conventions. The experiments helped us
identify the proposed method’s advantages versus traditional convolutional neural net-
works in inference capacity and kernels initialization. We also performed experiments
to select hyperparameters (nonLinearity, max pooling, samples, filter size) according to
their performance. The inference capacity results showed an increased classification ac-
curacy around 67% with CIFAR 10, 64% with CIFAR 100, and 98% with MNIST, using
10,100,1000 samples with a single feed-forward training. On the other hand, the initializa-
tion experiments showed the feature extraction capability versus available initializers (He
random, He uniform, Glorot, random), confirming linear tensor constraints’ usefulness
to generate features. Using the method as kernel initializer returns comparable findings
with state of the art around 91% with CIFAR 10, 72% with CIFAR 100, and 99% with
MNIST.

The backbone of this research relies on well known and widely developed hypothesis
about image representation as linear combination of basis vectors [28], [57], [58], [59], [60].
This hypothesis considers there are families of patterns for which it is possible to obtain
a useful systematic characterization. It follows that certain family could be low dimen-
sional i.e. any given member might be represented by a small number of parameters [28].
An example of such a family is the human face.

By its nature, data captured by multi sensory technology has a multiway structure,
e.g. the dimensions for an RGB image data set are: spatial × spatial × color channel ×
samples. Such data sets could be naturally represented by multiway arrays (tensors) [11].

The hypothesis is that multilinear algebra and its methods, such as tensor decompo-
sitions, capture multiple interactions and couplings on data. Such decompositions are
able to discover hidden structure which can not be obtained by traditional matrix meth-
ods. This hypothesis is supported by promising results obtained on several works on
different areas which include: audio, image and video processing, machine learning, and
biomedical applications [11]. Tensor decompositions has well defined applications and
benefits, for example: Tucker decomposition [56], [15], [31] minimize the Frobenius norm
of the error when a multilinear subspace approximation is performed. On the other side,
Canonical decomposition (CANDECOMP) [20], [9] [13] applied over a High Order Statis-
tics tensor, is able to recover independent sources similar to the Independent Component
Analysis [24], [25].

Unlike matrices, tensors are multiway arrays of data samples whose representations

46

are typically overdetermined, therefore fewer parameters in the decomposition than the
number of data entries. This gives us an enormous flexibility in finding hidden compo-
nents in data and the ability to enhance robustness to noise [11].

6.1.1 Hypothesis

• Tensor representation allows to capture hidden structure on data.

• Tensor decomposition generates relevant features for image classification.

6.2 Objectives

• Develop a multilinear subspace approximation method for tensor input data.

– Develop an algorithm to extract features exploiting inter pixel spatial structure.

– Develop an algorithm to extract features exploiting class labels.

• Develop an algorithm to classify images using extracted features.

• Develop an algorithm to use generated features under a CNN architecture to perform
classification.

• Perform extensive simulations to justify the approach.

6.3 Approach

6.3.1 Covariance Tensor Method

Max Pool

Fully Connected

1x128
Classes

0

Filter Extraction Classification

Dataset

Feature map

x3 Fully

Connected

Figure 19: Proposed architecture. For each convolutional layer kernels were generated. Kernel
generation was highlighted by dashed lines Figure 27.

The backbone of this research relies on well known and widely developed hypothesis
about image representation as linear combination of basis vectors [28], [57], [58], [59], [60].
This hypothesis considers families of patterns for which it is possible to obtain a useful
systematic characterization. It follows that certain families could be low dimensional,
i.e., any given member might be represented by a small number of parameters [28].

In this regard, our work presents an algorithm to compute kernels from an unlabeled
image dataset. We propose to build a covariance tensor and decompose it using the
tucker model to find factor matrices. Then, we factorize the covariance tensor and finally
extract kernels from the resulting tensor space.

47

6.3.2 Tensor operations

Starting from a matrix X ∈ RI1×I2 , which is a two order or two index array, and an
Nth-order tensor X ∈ RI1×···×IN is a higher-dimensional array. The dimensions for an
RGB image dataset could be: width × height × color channels × samples. In this regard,
such datasets could be naturally represented by multiway arrays (tensors) [11].

The n-mode unfolding of a tensor is a matrix denoted by X(n) ∈ RIn×I1···In−1In+1···IN .
An unfolding is built by rearranging n-mode fibers as columns of the unfolding matrix
X(n).

2 3

Figure 20: Unfolding of an order three tensor.

The n-mode product between a tensorX ∈ RI1×···×In×···×IN and a matrix U ∈ RJn×In

is denoted by Y = X×nU ∈ RI1×···×Jn×···×IN . The product on mode n requires the number
of columns on matrix U be equal to the number of elements on the n-mode fiber from X.

Figure 21: Mode 1 product between a matrix and a third order tensor.

The n-mode cross covariance between an Nth-order tensor X ∈ RI1×···×In×···×IN

and an Mth-order tensor Y ∈ RJ1×···×In×···×JN with the same size In on the nth mode is
defined as Equation 77. For further explanations, we called it covariance tensor.

C = COV{n;n}(X, Y) = 〈X, Y 〉{n;n}
COV{n;n}(X, Y) ∈ RI1···In−1,In+1···IN ,J1···Jn−1,Jn+1···JM

(77)

The symbol 〈•, •〉 represents an n-mode multiplication between two tensors. Its
element-wise computation was defined on Equation 78.

ci1,··· ,in−1,in+1,··· ,iN ,j1,··· ,,jn−1,jn+1,··· ,jM

=
In∑

in=1

xi1,··· ,in,··· ,iNyj1,··· ,in,··· ,jM
(78)

The computation of the covariance tensor is similar to the computation of sample co-
variance matrix Σ = XXT , where columns x(i) of the matrix X are samples. In that case,
the covariance matrix is computed as the sum of outer product x(i) ◦x(i)T for each sample
vector, as shown in Figure 22. On the other hand, for the covariance tensor, samples X(i)

are multilinear arrays with order N ≥ 2. In that case, the covariance tensor is computed

48

as the sum of outer product X(i) ◦X(i)T for each sample, as depicted in Figure 22.

X =

COV (X , X)={3;3}

+ +=

=

X =

COV (X , X)={2;2}

= + +

+ +=

=

Figure 22: Tensor covariance for X ∈ R3×3×3 (left) and X ∈ R3×3 (right). Samples are frontal
frames (mode-3 frame) X(i) ∈ R3×3. Resulting covariance tensor has order four and two order
respectively.

6.3.3 Covariance Tensor decomposition

Consider a real N -th order tensor X ∈ RI1×···×IN . Tucker decomposition [56] factorizes
an input tensor X into a core tensor G and a set of factor matrices U (n).

X = G×1 U
(1) ×2 · · · ×N U (N)

= [[G,U (1), · · · , U (N)]]
(79)

The n-th factor matrix U (n) was build by the left singular vectors of the tensor unfolded
on mode n, X(n) ∈ RIn×I1...In−1In+1...IN .

X(n) = U (n)Σ(n)V (n)T (80)

The factor matrices U (n) are orthogonal, and their transposes are used to compute
the core tensor G.

X ×1 U
(1)T ×2 · · · ×N U (N)T = G (81)

Tucker decomposition [56], [15], [31] seeks to minimize the error, using Frobenius norm,
between the original tensor and Tucker approximation. An example of covariance tensor
from a third-order tensor and its decomposition under the Tucker model is depicted in
Figure 23

X =

COV (X , X)={3;3}

I1

I2

I3

+ +=

=
{I1

{ I1

I2

I2

Figure 23: Covariance tensor decomposition for X ∈ R3×3×3. Samples are frontal frames
(mode-3 frame) X(i) ∈ R3×3. Resulting covariance tensor has order four.

49

6.4 CovTen and CNN

Convolutional Neural Networks are composed of convolutional filters which perform fea-
ture extraction followed by fully connected filters in charge to infer the image class.
Complete system diagram of a ConvNet was depicted on Figures 19, 24. Our method
generates convolutional filters for feature extraction, and the fully connected filters were
generated by backpropagation.

Input

CovTen

Extract Patches = X

COV(,) = C

mat(C,1) = U1 1V1
T

mat(C,2) = U2 2V2
T

mat(C,3) = U3 3V3
T

Kernel Space

C x1 U1 x2 U2 x3 U3

X X

Conv 7x7

Conv 3x3

Max Pool 2x2

CovTen

CovTen

V
G

G
 B

LO
C

K

Conv 3x3

Conv 3x3

Max Pool 2x2

CovTen

CovTen

V
G

G
 B

LO
C

K

Conv 3x3

Conv 3x3

Max Pool 2x2

CovTen

CovTen

V
G

G
 B

LO
C

K

Conv 3x3

Input 100x100x3

FC 128

FC 10

Soft Max

Figure 24: Basic workflow of Covariance Tensor (CovTen) method implemented in a VGG 7
architecture.

As a classification problem, we start from a dataset composed of images of different
classes. The design of our method allows us to generate filters without using labels. The
goal is to find kernels set Y to initialize convolutional layers. Dimensions for a dataset
composed by multichannel images are width, height, channels, samples, represented by
T ∈ Rw,h,c,s. For each sample, we extracted tensor patches using a given size and stride.
Patches dimensions are patch-height, patch-width, channels. We subtracted the mean
from each one. Tensor X was composed using all patches, the first and second dimensions
(I1, I2) were patch-height and patch-width depicted as rectangles. The third dimension
(I3) represented channels arranged as depth, the fourth dimension (I4) arranged as rows
represented different multichannel patches. We computed the outer product COV (X,X)
along the fourth dimension in order to build a sixth-order covariance tensor, following
Equation 82. We repeated the whole process for every image, accumulated the covariance
tensor, and normalized it by the number of samples.

X ∈ RI1×I2×I3×I4

C = COV (X,X) ∈ RI1×I1×I2×I2×I3×I3
(82)

The resulting covariance tensor is supersymmetric, so we find the odd unfoldings, i.e.,
modes 1, 3, and 5. For each unfolding, we compute its Singular Value Decomposition
(SVD) to find factor matrices U1, U3, U5 following the Tucker model. Finally, we factorize
the covariance tensor using the factor matrices yielding tensor G. We propose to extract
covariance filters from the result.

50

C(1) = U (1)Σ(1)V (1)T

C(3) = U (3)Σ(3)V (3)T

C(5) = U (5)Σ(5)V (5)T

UT
1 ∈ RJ1×I1

UT
3 ∈ RJ3×I3

UT
5 ∈ RJ5×I5

(83)

C ×1 U
T
1 ×3 U

T
3 ×5 U

T
5 = G (84)

Algoritmo 3: CovTensor to Generate Kernels Space

FuncName: CovTensorMethod
Inputs : Multichannel tensor Tw,h,c,s, kernel size ks, stride st
Output : Kernel tensor spaces Y k,k,c,n

Ccum = zero tensor

for (image I in T) do
X = GetPatches(I,ks, st)

Ccum = Ccum + COV (X,XT)
end

C = Ccum

NumImg(T)

U1Σ1V
T
1 = SVD(mat(C, 1))

U3Σ3V
T
3 = SVD(mat(C, 3))

U5Σ5V
T
5 = SVD(mat(C, 5))

Y = C ×1 U
T
1 ×3 U

T
3 ×5 U

T
5

The factorized tensor is G ∈ RJ1,I1,J2,I2,J3,I3 . Factor matrices U1, U3, U5 has J1, J3, J5
columns respectively. Factor matrices used for covariance tensor factorization, allow us
to choose the amount of filters to generate by selecting the amount of columns J1, J2, J3
from matrices U1, U2, U3. Analyzing the dimensions of the resulting tensor G, we proposed
to rearrange J1, I1, J2, I2, J3, I3 as I1 × I2 × I3 × J1J2J3. Resulting into a fourth order
tensor Y ∈ RI1×I2×I3×J1J2J3 , where each multichannel array I1× I2× I3 is an image space
and there are J1J2J3 spaces. Experiments showed us the spatial structure was retained
by this reconstruction. Figures 25, 26 reveal a graphical process from patch extraction
to kernel generation. Figure 25 depicts the process when the inputs are single channel
images. Figure 26 shows the process when the inputs are multiple channel images. In
order to generate first layer filters we followed the procedure described in Algorithm 3. In
order to generate a convolutional neural network architecture, we have to generate filters
for each convolutional layer, see Figure 27. The filter generation procedure Algorithm 3
have to be sequentially repeated for each layer as described on Algorithm 4.

Algoritmo 4: CovTensor in a Convolutional Network

Inputs : ConvNet architecture, Dataset tensor Tw,h,c,s, kernel size ks, stride

st
Output : ConvNet with initialized kernels

T (input) = T
for (layer in ConvNet) do

Y = CovTensorMethod(T (input),ks,st)
InsertKernelsToLayer(layer,Y)

T (input) = convolution(layer, T (input))

end

51

Single channel image Image patches

Image spaces

+... +COV (X , X)={3;3}
X=

mat(COV (X , X) , 1)={3;3}

mat(COV (X , X) , 3)={3;3}

...

= =

Figure 25: Training stage for a single channel image. The function mat is the unfolding in mode
1 and 3 respectively.

As depicted in Figure 27, the first layer’s input is a tensor composed of images (un-
labeled data set). We sequentially extract patches, build a patch tensor, generate filters,
convolve filters with layer input, generate filter maps and build the following layer patch
tensor. Finally, using the feature map from the last layer, fully connected layers were
trained to perform classification, as depicted in Figure 19. During inference, we feed-
forward all the convolutional layers using a VGG architecture and compute image labels.

52

Multiple channel image

Image patches

X= COV (X , X)={3;3} = +...

mat(COV (X , X) , 1)={3;3}

mat(COV (X , X) , 3)={3;3}

...

mat(COV (X , X) , 5)={3;3}

5 5

Tensor spaces

=
=

Figure 26: Training tensor stage for a multichannel image. The function mat is the unfolding
mode 1, 3 and 5 respectively.

X= =

=

Convolution

Feature MapsFilters

Extract Patches

Tensor from

Patches

Kernel

Space

Figure 27: Convolution and kernel space generation.

7 Experimental Results

In this section, we describe the configuration of the experiments and discuss these choices.

53

Table 4: Network architecture outlines for CIFAR 10 are used for the configuration and
classification experiments (top row), where each network’s name matches its respective sections.
Their elements are in bold when they indicate a frozen layer. Also, it is detailed when a layer
use a Leaky ReLU (+) or ReLU (*) activation, and when an architecture use or no a
maxpooling layer.

Hyperparameters Selection Classification Experiments

Kernel Size
Training Samples

Number
Activation and Max Pooling

Kernel and
Feature Maps

Inference
Capacity

Kernel
Initializer

A.1 A.2 B C.1 C.2 C.3 D A B

7 weight
layers

7 weight
layers

9weight
layers

9 weight
layers

9 weight
layers

9 weight
layers

9 weight
layers

9 weight
layers

9 weight
layers

input (32 x 32 RGB image)

conv3-32
conv3-32

conv7-32
conv7-32

conv7-32
conv3-32

conv7-32
conv3-32

conv7-32+
conv3-32+

conv7-32
conv3-32

conv7-32
conv3-32

conv7-32
conv3-32

conv7-32+
conv3-32+

maxpool no maxpool maxpool

conv3-64
conv3-64

conv7-64
conv7-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64+
conv3-64+

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64
conv3-64

conv3-64+
conv3-64+

maxpool no maxpool maxpool

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128+
conv3-128+

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128
conv3-128

conv3-128+
conv3-128+

conv3-64* conv7-64* conv3-128* conv3-128* conv3-128* conv3-128* conv3-128* conv3-128* conv3-128*

maxpool

FC-128*

FC-10*

soft-max

7.1 Architecture

ConvNets are well-known robust approaches for extracting features from images. Our
method generates relevant, multichannel patches from a given dataset. We propose to
evaluate the performance of the generated filters using a convolutional network. The VGG
architecture was used as the reference network for all the experiments performed. VGG
was presented in the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) in
2014 [50]. This architecture increases convolutional layers’ depth sequentially and applies
pooling after a certain number of layers, whereby VGG16 and VGG19 are well known.
Many modifications were applied to the reference model throughout our experiments to
reach better behavior with our method. Figure 24 shows a basic workflow of our method
in VGG architecture.

The tested framework is a ConvNet with layers that follow a VGG block convention. In
a VGG block, two or more convolutional layers are stacked with fixed padding that keeps
the input dimensions after the convolution [50]. Also, we can add or not an activation
function after each convolution. Besides, a max-pooling with a stride of 2 reduces these
dimensions to half. Thus, this model adds these blocks one after another, reducing the
dimensionality slowly and extracting features in the process. Finally, the results are
flattened to a single dimension vector and fed into two fully connected dense layers to
classify the input into the corresponding classes. Based on this architecture, we used
a simplified VGG at most seven convolutional layers. We performed experiments to
evaluate the accuracy achieved by the generated filters. Besides, we include experiments
for kernel initialization using the CovTen method.

7.1.1 Configuration

The ConvNets configurations evaluated in this paper are outlined in Table 4 where the
column names match their respective experiment, and the bold letters represent frozen

54

layers. We performed experiments in order to select parameters for our network. Then,
classification experiments tested two hypotheses on our method’s performance, such as
the inference and the kernel initialization capacity. Some generalities across all the ex-
periments are

1. The main experiments were executed using the CIFAR 10 dataset with 50000 train-
ing and 10000 validation images. Nevertheless, the kernels were generated with fewer
samples. Other datasets were tested too and included in Supplementary Material.

2. The networks receive normalized RGB images as input, where its interval is [0-1].

3. We trained the convolution network with batches equal to 32, Adam optimizer, and
a learning rate of 0.001.

4. In most cases, the activation function of each convolutional layer was ReLu, and
only the C experiment replaces these functions. Indeed, C architecture changes the
activation and max-pooling during the generation of covariance kernels.

7.1.2 Implementation details

The experiments were executed using the Tensorflow 2 framework. This version provides
many tools, such as Keras API, to simplify all the experiments. The training of the
CustomConvNets was performed on a Tesla V100 GPU with 16 GB of RAM. The training
took between 30 minutes and 1 hour per experiment. Besides, source code to generate
the kernels (our method) was programmed in C++, and then it was compiled as a library
for its use in Tensorflow. This workflow is intended to accelerate kernel generation. The
source code is available at https://gitlab.com/ricciclope/tensor.git.

7.2 Hyperparameters Selection

The following experiments intend to figure out the best setting for the CovTen method
in a ConvNet by adding some variants.

7.2.1 Kernel Size

We tried to choose the right kernel size for our method in a ConvNet. To do that, we
implemented two architectures, A.1 and A.2 (see Table 4). They were tested on the
CIFAR 10 database, and the results are showed in Figure 28. The observed accuracy
indicates a remarkable explicit difference between the kernel size 7 × 7 and 3 × 3 after
training and validation. The highest accuracy and faster decay of the loss function came
from the kernels 3× 3, getting the highest performance around 80 epochs (the overfitting
point). These results were expected to the findings of Simonyan and Zisserman [50], who
denotes the importance of choosing small kernels over big ones in VGG models.

Nevertheless, we decided to use a configuration of kernels 7 × 7 in the first layer
and 3× 3 in the other layers. During training, we noted CovTen kernels in the first layer
represent the color space and other high-level features accurately. In contrast, the deepest
layers extract more complex and abstract features. Thus, this architecture proposal aims
to extract all possible information on the first layer and specialized features in the next
ones (see Figure 33). This setting convention was used in the following experiments.

55

https://gitlab.com/ricciclope/tensor.git

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 28: Kernel Size: experiment results using different kernel sizes 3 × 3 vs kernels 7 × 7,
and different sub dataset sizes 1, 10, 100 images per class. The experiments were executed over
CIFAR 10 dataset. The continuous line indicates the training behavior, whereas the dashed
line shows the validation

7.2.2 Training Samples Number

We noted that the kernels generation with the CovTen method achieved a suitable per-
formance with small sub-datasets and a homogeneous number of images per class. This
approach was an expected result similar to the findings of Yifeng Wang et al. [62], who
takes the data in the same way. Thus, this experiment intended to measure the per-
formance with different data subsets when using our method to generate the kernels.
This experiment implements architecture B in Table 4 and the CIFAR10 dataset. In this
manner, Figure 29 shows the comparison between different data subsets, such as 1, 10,
100, 200, and 300 samples per class, covering the entire spectrum of characteristics of all
the classes. In these results, we observe that the best accuracy and loss of training and
validation data is the variant with 200 samples per class or 2000 for CIFAR 10. However,
the other versions do not represent substantial changes, only around 1% to 2%. The re-
sults with 100, 200, and 300 samples per class seem to converge to equal behavior, which
indicates a kind of correlation. Furthermore, we studied this possible similarity checking
the correlation between kernels of the different variants. Figure 30 shows a matrix corre-
lation example according to the number of samples per class. The results state that the
correlation is low with the first sample sizes, but this keeps values close to 1 with larger
sizes. It is a clear indicator that as we increase the samples per class, the filter has fewer
changes. Thus, in further experiments, we decided to use a CovTen method with few
samples per class.

7.2.3 Activation and Max Pooling

In the following experiment, we aim to measure the impact of activation function and
max-pooling layers to generate the kernels. In this way, Figure 31 shows a comparison of
combinations between no activation, leaky ReLU, and max pooling. In practice, we also
tested our method with ReLU, but it returned underperforming results. Then, only the
more relevant results were shown. We use the architectures C.1, C.2 and C.3 denoted
in Table 4 for training each variant. Finally, we decided to follow an approach with
max-pooling and no activation as our best variant so far because this model obtained the
highest performance.

56

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 29: Training Samples Number: experiment results with different amounts of data per
class (1, 10, 100, 200, 300 per class) using the CIFAR 10 dataset. The continuous line indicates
the training behavior, whereas the dashed line shows the validation.

Figure 30: Correlation matrix example for a convolutional layer with the CovTen method using
different samples number. Each square indicates the correlation between two experiments with
its respective samples number.

7.2.4 Kernel and Feature Maps

In this section, we use our best variant so far detailed in architecture D in Table 4. In
this way, Figure 32 shows some generated kernels per layer from the first to the sixth
convolutional layer in each row. We can see that the first convolutional layer’s kernels
represent the color space and other high-level features. As we go down in the rows, we can
observe that the filters extract specialized features. Besides, it is important to notice that
the first row represents kernels with three channels each. Then, the next rows represent
channels of just one kernel.

Figure 33 shows how the kernels filter the input in each layer, extracting different
feature maps as we advance in the rows. The feature maps are arranged to describe a
convolutional layer per row, beginning at the top with the first layer. Both kernels and
feature maps are just a few examples of all the kernels that composed the network.

To test the feasibility of initializing weights in a neural network, we checked our
method’s weight distribution at epoch 0 (see Figure 34). A comparison with other initial-
ization methods for kernels values also was added. These results show certain similarities
to standard initializer methods. As we can see, kernels and features maps indicate that
our method extracts features from images acceptably. For all these reasons, it seems

57

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Figure 31: Activation and Max Pooling: experiment results with different setup combinations
between no activaton, leaky ReLu, and max pooling using CIFAR 10 dataset. The continuous
line indicates the training behavior, whereas the dashed line shows the validation.

1

2

3

4

5

6

L
a
y
e
rs

Figure 32: Kernels and Feature Maps: kernels produced by the CovTen method. They are
arranged descendingly by the convolutional layer number. Elements in first row represent filters
with 3 channels while elements in the following rows are channels of a single filter.

reasonable to test our method’s effectiveness as a kernels initializer (see Section 7.3.2).

7.3 Classification Experiments

After different experiments, many results were obtained and analyzed to conclude the
best setup. In the following section, we took the best variant to study two approaches to
our method, such as Inference Capacity and Kernel Initialization.

7.3.1 Inference Capacity

As shown in previous experiments, the covariance method has an intrinsic capacity to
extract the dataset’s features in a single step-forward. In each experiment, we generated
kernels using CovTen, and then the corresponding layers were frozen. In practical terms,
our method only needs one step-forward to compute filters. A fair comparison would be
to evaluate the performance versus traditional initializers at epoch 0, see Figure 35.

After filter generation, the fully connected layers were trained with the complete
dataset for class inference. Because layers were frozen from the feature extraction section,
this experiment aims to show inference capacity provided by the generated filters.

58

1

2

3

4

5

6

L
a
y
e
rs

Figure 33: Kernels and Feature Maps: feature maps generated by the CovTen method using one
CIFAR10 sample. They are arranged descendingly by the convolution layer number. We have
to remark that the top-left element is the original image, and the other elements are channels
of the corresponding feature map.

In this way, the conventional kernel initializers evaluated in this experiment were:
He uniform, He normal, Glorot normal, and random normal. The different models were
tested under the same conditions and architecture A (see Table 4). We also tested our
method with 1, 10, 100 images per class. Note that in architecture A. in Table 4 we
maintained a non-frozen ConvLayer before the fully connected step. In practice, we note
that this decision increases the performance of our network.

Although our method does not update the convolutional weights, its training stage
achieves to extract enough features to classify the CIFAR 10 dataset with an accuracy
of around 67% (see Figure 35). Our method demonstrates an inherent and reasonable
discriminative capacity because it generates kernels and uses them to classify images
employing frozen-based architecture. Besides, we deployed the same experiment with
CIFAR 100 (64%) and MNIST (98%) dataset, and the results showed similar behaviors
(see Supplementary Material 7.6).

7.3.2 Covariance Method as Kernel Initializer

The kernel initialization is one of the main setups that a network architecture needs to
perform suitable training. The CovTen method has demonstrated a sufficient feature
extraction capacity, which can be used in several ways. Thus, in Figure 36, we took
advantage of this quality to initialize the kernel weights and train the network. For this
experiment, The models were trained under similar setups, and the unique variant was the
kernel initialization. Our model was compared with well-known kernel initializer methods
such as uniform, normal, Glorot normal, and random normal. Besides, we evaluated the
covariance method with different samples number: 1, 10, 100 per class.

The results show that our method is comparable and proportional to conventional
kernel initializer methods using the CIFAR 10 dataset, returning an accuracy of around
91%. The covariance method got close results to the traditional methods in training as
well as validation. Moreover, we tested the same experiment with other datasets such
as CIFAR100 (72%) and MNIST (99%) (See Supplementary Material 7.7). These results
showed similar behavior, and, just with MNIST, we got a light improvement of accuracy
with our method.

59

Figure 34: CovTen as Kernel Initializer: violin plots of weight distribution in each convolu-
tion layer at epoch zero, using architecture B of classification experiments. Different weights
initialization methods are plotted along with the results of the CovTen method.

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Figure 35: Inference Capacity: experiment results with different kernel initializers and samples
per class, used in a model with frozen layers. The experiments were executed over CIFAR 10
dataset.

7.4 Architecture Comparison

In this section, we aim to compare our method with state-of-the-art methods. We review
the literature to check common architectures tested under the CIFAR 10 dataset. Table

60

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 36: CovTen Method as Kernel Initializer: experiment results with different kernel ini-
tializer methods and different samples per class, performing a full training over the complete
network (without frozen model). The experiments were executed over CIFAR 10 dataset.

5 shows the accuracy, flops, and params per method.

Table 5: Comparison between different state-of-the-art methods and our method under CIFAR
10 dataset. Our method is highlighted with a gray color.

Methods Accuracy (%) MFLOPS Params (M)

PCA Net
without pyramidal pooling
(5000 samples in total)

46.21 – –

VGG 7 + CovTensor
with frozen layers
(1, 10, 100 samples per class)

56.02,
56.34,
56.46

105 0.412

PCA Net [10]
(50000 samples)

78.67 – –

AlexNet-tf [48] 82 – –

Random Features
256k-aug [12] [48]

85.6 – –

CudaConvNet [48] 88.5 – –

VGG 7 + CovTensor
as kernel initializer
(1, 10, 100 samples per class)

86.6,
86.9,
87.07

105 0.703

VGG16 [4] [37] 93.25, 93.6 313 15

VGG16 prunned [4] 93.4 206 5.4

ResNet-110 Basic [22] 93.5 – 1.7

VGG-19 with GradInit [67] 94.71 – 20.03

NAT-M1 [41] 97.4 232 4.3

MUXNet-m [40] 98 200 2.1

NAT-M4 [41] 98.4 468 6.9

PyramidNet-272 [66] 98.71 6330 32.6

The most explicit comparison is between our method and PCA Net. Table 5 shows
that our method with frozen layers effectively achieves better accuracy than PCA Net
without pyramidal pooling but struggles compared with the complete PCA Net. We
hypothesize that the addition of spatial pyramidal pooling (SPP) is crucial to deal with
the invariant poses and complex background, mainly found in CIFAR 10 dataset. We

61

suggest in future work include an SPP according to our method needs. Despite this ac-
curacy drawback, we can note that our method with frozen layers achieves a promising
result with fewer samples than the PCA Net and less kernel generation time. Compared
to PCANet, our method uses a tensor decomposition which establishes linear depen-
dency between dimensions and reduces the curse of dimensionality. These features allow
capturing spatial information with fewer samples. Additionally, we can generalize the de-
pendency between dimensions, i.e., height, width, and channels, to generate multichannel
filters.

On the other hand, our method as kernel initializer overcomes accuracy achieved by
Alex Net, Random Features, and Cuda Conv Net. However, our method accuracy under-
performs compared with more recent architectures. We expected these results because we
are using a simple VGG architecture with no more than seven convolutional layers, but
even so, it achieves results nearly to VGG16 and ResNet 110. This fact is clear evidence of
why we also get fewer flops and parameters compared with modern architectures. These
results (in terms of accuracy, flops, and parameters) indicate our method’s effectiveness
in retaining spatial information. In future works, we suggest experimenting with other
deeper and modern architectures.

Despite our results, we consider that this comparison is not entirely fair because
we are not using all the capabilities we expected from our method. In general, our
method presents some promising results compared with other architectures, but it needs
to exploit more features to achieve its best capability. Suggested improvements are related
to the number of samples during training and including a more profound (or complex)
architecture.

7.5 Additional Feature Maps

Figure 37 shows some feature maps examples of other tested images, which was not
included during kernel generation. The feature maps are downward arranged, starting at
the top with the first layer and ending with the sixth layer.

62

1

2

3

4

5

6

L
a
y
e
rs

Figure 37: Kernels and Feature Maps: feature maps generated by the CovTen method using one
CIFAR10 sample. They are arranged descendingly by the convolution layer number. We have
to remark that the top-left element is the original image, and the other elements are channels
of the corresponding feature map.

1

2

3

4

5

6

L
a
y
e
rs

Figure 38: Kernels and Feature Maps: feature maps generated by the CovTen method using one
CIFAR10 sample. They are arranged descendingly by the convolution layer number. We have
to remark that the top-left element is the original image, and the other elements are channels
of the corresponding feature map.

63

7.6 Additional Inference Capacity Experiments

7.6.1 CIFAR 100

These experiments were tested under similar conditions and the convention of freezing
layers. The fully-connected layers were updated according to the needs of the dataset.
Thus, in this case, we introduce shallow, dense layers to classify 100 classes (see Figure
39). In this way, the training stage achieves enough features to classify with an accuracy
of around 64%.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 39: Inference Capacity: experiment results with different kernel initializers and samples
per class, used in a a model with frozen layers. The experiments were executed over CIFAR
100 dataset.

7.6.2 MNIST

These experiments were tested under similar conditions and the convention of freezing
layers. The fully-connected layers were updated according to the needs of the dataset.
Thus, in this case, we introduce shallow, dense layers to classify ten classes (see Figure
39). In this way, the training stage achieves enough features to classify with an accuracy
of around 98%.

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Figure 40: Inference Capacity: experiment results with different kernel initializers and samples
per class, used in a model with frozen layers. The experiments were executed over the MNIST
dataset.

64

7.7 Additional Kernel Initializers Experiments

7.7.1 CIFAR 100

These results were obtained under the same conditions. The fully-connected layers were
updated according to the needs of the dataset. Thus, in this case, we introduce shallow,
dense layers to classify 100 classes (see Figure 41). In this way, the training stage returns
an accuracy of around 72%.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 41: Covariance Method as Kernel Initializer: experiment results with different kernel
initializer methods and different samples per class, performing a full training over the complete
network (without frozen model). The experiments were executed over CIFAR 100 dataset.

-0.5

0

0.5

1

1.5

2

2.5

3

Figure 42: Covariance Method as Kernel Initializer: experiment results with different kernel
initializer methods and different samples per class, performing a full training over the complete
network (without frozen model). The experiments were executed over CIFAR 100 dataset.

65

7.7.2 MNIST

We used the same parameters for these tests. The fully-connected layers were updated
according to the needs of the dataset. Thus, in this case, we introduce shallow, dense
layers to classify ten classes and small input size condition 28. These experiments also
present a light improvement of performance to the conventional methods (see Figure 43).
In this way, the training stage returns an accuracy of around 99%.

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Figure 43: CovTen Method as Kernel Initializer: experiment results with different kernel ini-
tializer methods and different samples per class, performing a full training over the complete
network (without frozen model). The experiments were executed over the MNIST dataset.

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 44: MNIST: train and validation loss for covariance method as kernel initializer

66

8 Conclusion

In this work, we have shown the feature extraction capability of the CovTen method when
it is attached to a ConvNet, demonstrating that our technique learns multichannel filters
from the dataset samples. We tested our method against available initializers (He random,
He uniform, Glorot normal, random normal), confirming linear tensor constraints’ useful-
ness to generate features kernels. Our method proposed establishing linear dependency
between width, height, and channel dimensions by generating a covariance tensor and
decomposing it with a Tucker Model. Experiments were able to confirm the reduction in
samples required to generate filters. On figure 30 showed the filter correlation generated
by different amounts of samples. This result showed that filters generated using above
200 samples were highly correlated, thus, indicating the number of samples was enough.
This behavior strengthens the hypothesis that linear dependency between dimensions re-
duces the dimensional complexity. We were able to achieve better performance versus
available initializers using at least 1 sample per class in CIFAR 100.

In this way, we could discriminate classes by a single feed-forward with increased
accuracy over available initializers, around 67% and 64% for CIFAR10 and CIFAR100
datasets. It is important to remark that labels were not used in kernels generation. The
generated filters were tested as kernel initializers and achieved similar performance to
state-of-the-art, around 91% CIFAR10, 72% CIFAR100, and 99% MNIST. Finally, our
method was compared with some state-of-the-art architectures to check the performance
in terms of accuracy, flops, and parameter number. This comparison demonstrated the
effectiveness of our method and some possible drawbacks and paths to take to avoid them.

8.1 Future Work

A promising path is to establish linear dependency constraints during back propagation
training. Filter selection was performed according its norm, a different filter selection
algorithm could improve performance.

The filter generation method accepts as input a third-order tensor, so it has to iterate
in a loop over all the batch images. To gain access to all the images, we have to load
them in memory. This loading takes high hardware capacity limiting our method to the
memory size. However, this method can be enhanced by changing the function’s input to
a fourth-order tensor with the batch as a fourth dimension. The advantage of using the
fourth dimension in the input is that data does not have to be loaded directly in memory.
In contrast, we can use a place holder for it and map our function aside from all the
other operations in the ConvLayer. A small change that can take advantage of all the
optimizations currently available in machine learning frameworks improves computation
time.

Another aspect to include for future work is our method’s inclusion in other well-known
state-of-the-art architectures. With this addition, we can compare the CovTen method’s
performance across frameworks. Besides, it is possible to analyze the extracted features as
the network increases its depth, as in our experiments, where the first layers extract more
heterogeneous features than the deeper layers. After that, we could better understand
our method’s performance and develop a specific architecture that takes advantage of our
tested features.

67

9 Appendix

9.1 Function of a scalar random variable

Suppose a scalar random variable X ∼ fX(x), and define an invertible and differentiable
transformation g(X) = Y : R→ R. The distribution of the transformed random variable
Y ∼ fY (y) can be computed using the change of variable method. Derivation start with
the definition of cumulative distribution function for Y as stated on equation 1.

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) (85)

At this point the relation to be made is to compare the cumulative distributions of Y
and X. The idea behind this comparison is the cumulative probability FY (y) at a point
y should be the same that the cumulative probability FX(g−1(y)) at a point g−1(y). In
fact the function of a random variable modifies the pdf domain e.g. the horizontal axis
when looking at a pdf graph. On figure 3 is depicted the transformation of a normal
random variable given by Y = X/2. The parameters used were µ = 0, σ2 = 4. Figure 3
depicts the change of shape due to the transformation, furthermore show the cumulative
distributions compared. In particular this transformation shrinks the random variable
space.

Figure 45: Transformation of a random variable.

The comparison of the cumulative distributions are stated at equation 2.

FY (y) = P (Y ≤ y) = P (g(X) ≤ y)

=(a) P (X ≤ g−1(y))

=

ˆ g−1(y)

−∞
fX(x)dx

=(b)

ˆ y

−∞
fX(g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣ dy
(86)

On (a) its considered a growing function g(x), in the case we have a decreasing one
the inequality change its side and the probability complement should be used. On (b)

the change of variable is performed using the differential dx =
∣∣∣dg−1(y)

dy

∣∣∣ dy. The absolute

value appears do to the fact g−1(y) could be growing or decaying but we are interested
on its rate change rather than its direction.

By definition the pdf is the derivative of the cdf. Finally the probability distribution
function of the transformation of a scalar random variable is stated in equation 4.

68

fY (y) = F ′Y (u) =
d

dy

ˆ y

−∞
fX(g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣ dy
= fX(g−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣ (87)

9.2 Function of a vector random variable

Let S ∈ Rn be a vector random variable and g(S) = Ax, g(S) : Rn → Rn be an invertible
transformation. We are interested on the ”joint” distribution of the vector random vari-
able X ∈ Rn. The joint distribution of vector random variable is S ∼ fS(s), and assume
each component si is independent of the others, i.e. PS(s1, . . . , sn) =

∏n
i PSi

(si).

We used the generalization of the change of variables technique for vector random
variables. We followed the same procedure as in the previous section for scalar random
variable. Let’s start with the definition of cumulative distribution for X and compare to
the cumulative of S. This process is stated at equation 4.

FX(x) = PX(X ≤ x) = PX(As ≤ x)

= PS(s ≤ A−1x)

=

ˆ A−1x

−∞
fS(s)ds

=(a)

ˆ x

−∞
fS(A−1x)

∣∣det (J(A−1x)
)∣∣ dx

(88)

On (a) the change of variable performed was given by the differential of s = A−1x,

i.e. ds = |det (J(A−1x))| dx. Where J()̇ is the Jacobian matrix of all first order partial
derivatives of the vector valued function A−1x . Using the definition of cumulative dis-
tribution, we derived the joint distribution of the vector random variable X in equation
5.

fX(x) = F
′

X(x) = fS(A−1x)
∣∣det (J(A−1x)

)∣∣ (89)

It’s important to state the change of variable for vector variables include the de-
terminant of a Jacobian, this term represents the change of volume produced by the
transformation. The absolute value on the determinant indicates we are interested only
on the change rate rather than the direction.

Note that if you want to compute the distribution of a single Xi instead of the joint
distribution, the path is to use the definition of marginal distribution.

9.3 Tensor by matrix product (Mode n multiplication)

Beyond the n-mode multiplication proposed on [15], [13], [31], we used a n-frame linear
combination approach to perform tensor-matrix product. Each n-mode product can be
understood as a linear combination of n-frames.

There are two steps to perform the n-frame product X ×n U
(n); first identify the

frame of X on the corresponding mode (figure 47), then perform linear combination of
the frames according to a row of the multiplying matrix U (n). Each row of the multiplying
matrix create a new n-frame.

69

Figure 46: Mode 1 product between a third order tensor and a matrix using unfolding algorithm.

Figure 47: Mode 1 product between a third order tensor and a matrix using the linear combi-
nation of frames algorithm.

Figure 48: Mode 2 product between a third order tensor and a matrix using unfolding algorithm.

70

2
2

Figure 49: Mode 2 product between a third order tensor and a matrix using the linear com-
bination of frames algorithm. The case of a matrix multiplied on mode 2 by other matrix, we
have X ×2 V = XV T

Figure 50: Mode 3 product between a third order tensor and a matrix using unfolding algorithm.

71

3
3

Figure 51: Mode 3 product between a third order tensor and a matrix using the linear combi-
nation of frames algorithm.

4
4

4

Figure 52: Mode 4 product between a fourth order tensor and a matrix using the linear combi-
nation of cubes algorithm.

72

10 Bibliography

References

[1] E. Acar, C. A. Bingol, H. Bingol, R. Bro, and B. Yener. Seizure recognition on epilepsy feature ten-
sor. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International
Conference of the IEEE, pages 4273–4276. IEEE, 2007.

[2] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a convolutional neural network. In
2017 International Conference on Engineering and Technology (ICET), pages 1–6. IEEE, 2017.

[3] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola. Tthresh: Tensor compression for multidimen-
sional visual data. IEEE transactions on visualization and computer graphics, 2019.

[4] F. Bordes, S. Honari, and P. Vincent. Learning to generate samples from noise through infusion
training. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[5] R. Bro. Multiway calibration. multilinear pls. Journal of chemometrics, 10(1):47–61, 1996.

[6] R. Bro. Review on multiway analysis in chemistry—2000–2005. Critical reviews in analytical chem-
istry, 36(3-4):279–293, 2006.

[7] R. Bro, A. K. Smilde, and S. de Jong. On the difference between low-rank and subspace approxi-
mation: improved model for multi-linear pls regression. Chemometrics and Intelligent Laboratory
Systems, 58(1):3–13, 2001.

[8] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1872–1886, 2013.

[9] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional scaling via an
n-way generalization of eckart-young decomposition. Psychometrika, 35(3):283–319, 1970.

[10] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma. Pcanet: A simple deep learning baseline
for image classification? IEEE transactions on image processing, 24(12):5017–5032, 2015.

[11] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan. Tensor
decompositions for signal processing applications: From two-way to multiway component analysis.
IEEE Signal Processing Magazine, 32(2):145–163, 2015.

[12] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning.
In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

[13] L. De Lathauwer. Signal processing based on multilinear algebra. Katholieke Universiteit Leuven,
1997.

[14] L. De Lathauwer. Decompositions of a higher-order tensor in block terms—part ii: Definitions and
uniqueness. SIAM Journal on Matrix Analysis and Applications, 30(3):1033–1066, 2008.

[15] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition.
SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[16] L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-(r 1, r 2,...,
rn) approximation of higher-order tensors. SIAM Journal on Matrix Analysis and Applications,
21(4):1324–1342, 2000.

[17] R. Fonseca, O. Guarnizo, D. Suntaxi, A. Cadiz, and W. Creixell. Convolutional neural network
feature extraction using covariance tensor decomposition. IEEE Access, 9:66646–66660, 2021.

[18] Y. Fu and T. S. Huang. Image classification using correlation tensor analysis. IEEE Transactions
on Image Processing, 17(2):226–234, 2008.

[19] W. Guo, I. Kotsia, and I. Patras. Tensor learning for regression. IEEE Transactions on Image
Processing, 21(2):816–827, 2011.

[20] R. A. Harshman. Foundations of the parafac procedure: Models and conditions for an” explanatory”
multi-modal factor analysis. UCLA Working Papers in Phonetics, 1970.

[21] K. Hasegawa, M. Arakawa, and K. Funatsu. Rational choice of bioactive conformations through use
of conformation analysis and 3-way partial least squares modeling. Chemometrics and Intelligent
Laboratory Systems, 50(2):253–261, 2000.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

73

[23] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained environments. Technical report, Technical Report
07-49, University of Massachusetts, Amherst, 2007.

[24] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis, volume 46. John Wiley
& Sons, 2004.

[25] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neural
networks, 13(4):411–430, 2000.

[26] Jian Yang, D. Zhang, A. F. Frangi, and Jing-yu Yang. Two-dimensional pca: a new approach to
appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(1):131–137, 2004.

[27] A. Kembhavi, D. Harwood, and L. S. Davis. Vehicle detection using partial least squares. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(6):1250–1265, 2011.

[28] M. Kirby and L. Sirovich. Application of the karhunen-loeve procedure for the characterization
of human faces. IEEE Transactions on Pattern analysis and Machine intelligence, 12(1):103–108,
1990.

[29] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. The tensor algebra compiler.
Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–29, 2017.

[30] T. G. Kolda. Multilinear operators for higher-order decompositions. United States. Department of
Energy, 2006.

[31] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455–
500, 2009.

[32] J. Kossaifi, Z. C. Lipton, A. Kolbeinsson, A. Khanna, T. Furlanello, and A. Anandkumar. Tensor
regression networks. Journal of Machine Learning Research, 21:1–21, 2020.

[33] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic. Tensorly: Tensor learning in python.
The Journal of Machine Learning Research, 20(1):925–930, 2019.

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

[35] R. Leardi. Multi-way analysis with applications in the chemical sciences, age smilde, rasmus bro
and paul geladi, wiley, chichester, 2004, isbn 0-471-98691-7, 381 pp. Journal of Chemometrics,
19(2):119–120, 2005.

[36] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[37] S. Liu and W. Deng. Very deep convolutional neural network based image classification using small
training sample size. In 2015 3rd IAPR Asian conference on pattern recognition (ACPR), pages
730–734. IEEE, 2015.

[38] H. Lu, K. N. Plataniotis, and A. Venetsanopoulos. Multilinear Subspace Learning: Dimensionality
Reduction of Multidimensional Data. CRC press, 2013.

[39] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos. Multilinear principal component analysis of
tensor objects for recognition. In 18th International Conference on Pattern Recognition (ICPR’06),
volume 2, pages 776–779. IEEE, 2006.

[40] Z. Lu, K. Deb, and V. N. Boddeti. Muxconv: Information multiplexing in convolutional neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12044–12053, 2020.

[41] Z. Lu, G. Sreekumar, E. Goodman, W. Banzhaf, K. Deb, and V. N. Boddeti. Neural architecture
transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[42] A. Mandal and A. Cichocki. Non-linear canonical correlation analysis using alpha-beta divergence.
Entropy, 15(7):2788–2804, 2013.

[43] S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter. Nvidia tensor core programma-
bility, performance & precision. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 522–531. IEEE, 2018.

[44] E. Martınez-Montes, P. A. Valdés-Sosa, F. Miwakeichi, R. I. Goldman, and M. S. Cohen. Concurrent
eeg/fmri analysis by multiway partial least squares. NeuroImage, 22(3):1023–1034, 2004.

[45] J. Nilsson, S. d. Jong, A. K. Smilde, et al. Multiway calibration in 3d qsar. Journal of chemometrics,
11(6):511–524, 1997.

74

[46] K. Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

[47] M. A. Raihan, N. Goli, and T. M. Aamodt. Modeling deep learning accelerator enabled gpus. In
2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 79–92. IEEE, 2019.

[48] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do cifar-10 classifiers generalize to cifar-10?
arXiv preprint arXiv:1806.00451, 2018.

[49] L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering for texture discrim-
ination. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1233–1240, 2013.

[50] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[51] A. K. Smilde. Comments on multilinear pls. Journal of Chemometrics, 11(5):367–377, 1997.

[52] A. K. Smilde, H. A. Kiers, et al. Multiway covariates regression models. Journal of Chemometrics,
13(1):31–48, 1999.

[53] L. Song, B. Du, L. Zhang, L. Zhang, J. Wu, and X. Li. Nonlocal patch based t-svd for image
inpainting: Algorithm and error analysis. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[54] R. Szeliski. Computer vision: algorithms and applications. Springer Science & Business Media,
2010.

[55] S. Theodoridis and K. Koutroumbas. Chapter 6 - feature generation i. In S. Theodoridis and
K. Koutroumbas, editors, Pattern Recognition (Fourth Edition), pages 91–150. Academic Press,
Boston, fourth edition edition, 2009.

[56] L. R. Tucker. The extension of factor analysis to three-dimensional matrices. Contributions to
mathematical psychology, 110119, 1964.

[57] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of cognitive neuroscience, 3(1):71–86,
1991.

[58] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces. In
European Conference on Computer Vision, pages 447–460. Springer, 2002.

[59] M. A. O. Vasilescu and D. Terzopoulos. Multilinear image analysis for facial recognition. In Pattern
Recognition, 2002. Proceedings. 16th International Conference on, volume 2, pages 511–514. IEEE,
2002.

[60] M. A. O. Vasilescu and D. Terzopoulos. Multilinear subspace analysis of image ensembles. In Com-
puter Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference
on, volume 2, pages II–93. IEEE, 2003.

[61] S. Verma, W. Liu, C. Wang, and L. Zhu. Hybrid networks: Improving deep learning networks via
integrating two views of images. In International Conference on Neural Information Processing,
pages 46–58. Springer, 2018.

[62] Y. Wang, Y. Rong, H. Pan, K. Liu, Y. Hu, F. Wu, W. Peng, X. Xue, and J. Chen. Pca based
kernel initialization for convolutional neural networks. In Y. Tan, Y. Shi, and M. Tuba, editors,
Data Mining and Big Data, pages 71–82, Singapore, 2020. Springer Singapore.

[63] J. Wu, S. Qiu, R. Zeng, Y. Kong, L. Senhadji, and H. Shu. Multilinear principal component analysis
network for tensor object classification. IEEE Access, 5:3322–3331, 2017.

[64] L. Zhang, L. Song, B. Du, and Y. Zhang. Nonlocal low-rank tensor completion for visual data.
IEEE transactions on cybernetics, 2019.

[65] Q. Zhao, C. F. Caiafa, D. P. Mandic, Z. C. Chao, Y. Nagasaka, N. Fujii, L. Zhang, and A. Cichocki.
Higher order partial least squares (hopls): a generalized multilinear regression method. IEEE
transactions on pattern analysis and machine intelligence, 35(7):1660–1673, 2013.

[66] S. Zhao, L. Zhou, W. Wang, D. Cai, T. L. Lam, and Y. Xu. Splitnet: Divide and co-training. arXiv
preprint arXiv:2011.14660, 2020.

[67] C. Zhu, R. Ni, Z. Xu, K. Kong, W. R. Huang, and T. Goldstein. Gradinit: Learning to initialize
neural networks for stable and efficient training. arXiv preprint arXiv:2102.08098, 2021.

[68] K. D. Zissis, R. G. Brereton, S. Dunkerley, and R. E. Escott. Two-way, unfolded three-way and
three-mode partial least squares calibration of diode array hplc chromatograms for the quantitation
of low-level pharmaceutical impurities. Analytica chimica acta, 384(1):71–81, 1999.

75

