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Outline

In this thesis we theoretically study a set of novel systems, known as pen-
tagonal materials. Physical properties of interest such as electronic structure,
optical response, electronic transport properties and the existence of topologi-
cal phases are analyzed. We have employed well-established techniques as well
as innovative approaches in order to get a detailed picture of all the mentioned
features. The structure of the work is described next.

In Part I we present the theoretical concepts that are used throughout the
entire thesis. Such topics are symmetry basics, with group theory generalities,
first-principles methods, the tight-binding approximation, optical response in
the tight-binding approximation, electronic transport in the ballistic regime
and topological properties of materials. The exposition is brief, highlighting
only the needed concepts for the subsequent parts.

Part II concerns with the electronic, optical and transport properties of
penta-graphene (PG) and its nanostructures. We show how penta-graphene
responds to an electromagnetic field perturbation analyzed within the tight-
binding approach. We also compute features of the electronic structure of
penta-graphene and its nanostructures by means of first-principles and tight-
binding methods. We obtain good accordance between these two approaches
in electronic and optical response. Also, a promising thermoelectric transport
performance is found for a particular device configuration.

Part III includes the theoretical study and numerical calculation of symmetry-
enforced and topological properties of pentagonal materials. We use several
examples of PG-derived systems by doping or adsorption. This allows us to
design different phases such as trivial metallic phases with nodal lines, Dirac
nodes in presence of spin-orbit coupling and time-reversal symmetry breaking
phases with a non-trivial Chern insulator character. Identification of additional
phases like Weyl nodes, weak and crystalline topological phases is also feasible.
Topological properties were studied by the calculation of topological invari-
ants with the Wannier charge center evolution method and also by a recent
theoretical framework called topological quantum chemistry.

Considering all the results obtained in this work, we can assert that pentag-
onal materials represent a promising family of low dimensional systems with
many interesting physical properties that deserve to be studied in more detail
in upcoming years.
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Chapter 1

Introduction

Condensed matter physics is nowadays a very active research field with an
immense range of applications both theoretical and applied. The main aspect
that concerns to this branch of physics is the collective behavior of microscopic
constituents of material systems as well as the physical phenomena that arise
from the associated particle interactions. One of the milestones of condensed
matter systems is that they are composed of a huge amount of particles. This
implies that it has to deal with many-body systems and as such, emergent
phenomena are preponderant, meaning that physical properties of systems arise
due to interaction effects and a free-particle description is not adequate in
general.

In addition to this particle number issue, another aspect is of remarkable
importance. Namely, the dimension of the system under study. Here we un-
derstand by dimension as the degrees of freedom which are not confined under
a spatial reduction of the system. Thus, we can have as possible configura-
tions the well-known three-dimensional solids and also two-dimensional layered
structures, one-dimensional ribbons or chain systems and zero-dimensional dot
structures. From two dimensions down to zero dimension the spatially con-
fined dimension is on the nanometer regime and thus these cases are denoted
generally as nanostructures. These low-dimensional systems are the focus of
intense research at the present time because of their great potential to achieve
new physical phenomena due to the preponderance that quantum mechanical
effects acquire in this reduced-dimension regime.

Another topic that had has a tremendous impact in recent years is the con-
sideration of the global features of solids that are universal to a particular class
of systems. Systems with properties that are robust to some degree against
symmetry-conserving perturbations are of high importance for future applica-
tions in quantum-based technologies. These materials are called topological
quantum materials, and comprise diverse kinds of systems such as insulators,
metal, semi-metals, superconductors among others.

Following these trends, this thesis aims to be a contribution to the study
of nanostructured systems and their related physical properties. We explore

10



CHAPTER 1. INTRODUCTION 11

phenomena concerning to electronic, optical, transport and topological prop-
erties of a recently proposed family of materials called pentagonal materials,
where the atomic distribution in the lattice structure resembles the Cairo tiling
with an additional buckled character. The general lattice structure for these
materials is presented in fig. 9.1. These systems are composed of a wide range
of elements and many stable and metastable configurations have been found
recently [2, 3, 4].

The most studied example up to now is penta-graphene (PG), a new 2D
carbon allotrope, that could be obtained from T12-carbon by breaking the co-
valent bonds between layers [4]. Although PG is a metastable carbon allotrope
compared to graphene, it is energetically more favorable than the icosahedral
fullerene C20 or the smallest nanotube, which have been synthesized. So despite
some claims regarding its instability [5, 6], it is reasonable to expect that PG
might be experimentally viable. Analogously to graphene, PG could be encap-
sulated by hexagonal boron nitride (hBN); this could help to achieve stability,
besides providing insulation from chemical agents [7].

Penta-graphene has been predicted to possess several unique characteristics.
It is not completely planar, and it does not have a hexagonal lattice; its 2D
projection resembles the Cairo tiling, being composed of fused pentagons. From
the electronic viewpoint, it is a semiconductor with a quasi-direct band gap [4],
being attractive for opto-electronic applications. For instance, it has been found
that PG has a reduced thermal conductivity compared to graphene [8, 9, 10]
and it is an auxetic material, i.e., it has a negative Poisson’s ratio [4, 11]. It has
been proposed for applications such as an anode material in alkaline batteries
[12], as a metal-free catalyst for CO oxidation [13] and for use in hydrogen
storage systems [2].

As in other 2D systems, the properties of nanostructures with lower di-
mensions based in PG have been also explored. For example, PG nanoribbons
[4, 6, 14] multilayer PG [6, 15] and PG nanotubes [4, 6, 14], which might be even
more stable than monolayer PG. Most of these works employ a first-principles
approach; recently, a tight-binding (TB) model has been put forward, allowing
for the obtention of the electronic bands and an analytical expression for the
optical absorption [16]. In fact, Zhang et al. also provided a minimal tight-
binding parameterization in their work, but with a limited agreement to the
ab-initio bands [4].

Other pentagonal materials have received less attention than PG. There
have been studies in new materials based on PG with substitutional doping or
atomic adsorption that can form new pentagonal materials with different elec-
tronic properties compared to PG [3, 17, 2]. Other non-carbon-based pentag-
onal materials have been also studied among which can be named penta-BN2,
penta-silicene and penta-germanene among others [18, 19].

This considerable amount of pentagonal materials presents a great range
of interesting properties, from high performance in thermoelectric phenomena,
such as thermal conductivity in PG, to topological phases, presenting novel
symmetry-protected non-trivial behavior.

All pentagonal materials considered in this thesis are based in penta-graphene,
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which is the main system studied in this work. We doped penta-graphene with
metallic and non metallic elements in order to design some new phases based
on band filling constraints.

However, we give a detailed analysis of the general pentagonal lattice and
its associated symmetry properties to show how the general properties in the
behavior of energy bands in momentum space, such as connectivity and degen-
eracies, are equally valid for all pentagonal materials.



Chapter 2

Symmetry tools: group theory
basics

It is difficult to find a topic more omnipresent in science than symmetry in all
its facets. We encounter it from such diverse systems as atoms and molecules to
complex living and nonliving organisms, encompassing a huge range of length
scales [20, 21].

In passing across this wide plethora of examples, we find that symmetry
plays a crucial role in the understanding of inorganic crystalline structures,
where many manifestations of symmetry lie behind the general behavior of
electrons and ions in a periodic crystal [22]. In this context, symmetry allows
to predict deep results about how crystal quasiparticles will act inside the
material microscopic landscape.

These results come from a fundamental relation; symmetry in quantum
mechanics is directly linked to degeneracies in the spectrum of quantum me-
chanical operators [23]. As such, finding a degeneracy permits us to foretell
if the system we are studying is invariant under the action of a symmetry
operation and vice versa.1

Inquiring further about the former assertion, we find that symmetries can
be in general, represented by unitary or antiunitary operators [25]. Thus, if we
describe our system by a Hamiltonian operator in Hilbert space, the action of
a symmetry operator U , will be given formally by

UHU−1 = H. (2.1)

From this expression we can see straightforwardly that a symmetry oper-
ation is linked to a operator commuting with the Hamiltonian of the system.
The well-known consequences of this commuting situation, are that U and H
will share the same eigenvalues and will be diagonal with respect to the same
basis [26].

1An exception to this general rule is associated to the presence of accidental degeneracies,
which in principle are not rooted in any evident symmetry [24].

13



CHAPTER 2. SYMMETRY TOOLS: GROUP THEORY BASICS 14

In general, physical systems stay invariant under the action of more than
one symmetry operator, and therefore we can define a set G of operations that
commutes with the Hamiltonian. When this happens, we are able to endow
this operator set with a precise structure having the following rules

• There exists a multiplication rule E within this set as AEB, where A ∈ G
and B ∈ G.

• The identity operator E acting as EEH = E is part of the set.

• For every symmetry operation A there exists another operator A−1 ∈ G
such that AEA−1 = E.

• The set G is closed under multiplication. That is, if we have A ∈ G and
B ∈ G then AEB = C ∈ G.

• Multiplication rule E holds the following property for elements A, B, C ∈
G.

(AEB)EC = AE(BEC) (2.2)

A set fulfilling these formal rules is called a group [25]. The set of symmetry
operations for a physical system forms a group structure, and it is called the
symmetry group of the system. Equipped with this last result, we can apply all
the group theoretical machinery to extract conclusions related to symmetry.

To begin with, we can see that the multiplication rule is the source of
connection among group elements. This implies that we can build some table,
a multiplication table, that summarizes all the possible relations under this
operation within a group. For example, for an abstract group G composed of
{E,A,B,C,D, F} we can have the following multiplication table.

E A B C D F
E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D

Multiplication tables condense all the information of the group combination
rule and serves to classify the operations in the symmetry group.

As the amount of elements in a group grows considerably, it is necessary to
find other ways to express the essential information of the group. To accom-
plish that, we have to define some important concepts. First, a new form of
classification can be based on [27]

Definition ( conjugated elements). Two elements of a group, A and B are
said to be conjugate if there exists an arbitrary element X ∈ G
such that B = XAX−1.
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From this, a new classification arise using the following

Definition ( conjugation classes). A class is the totality of elements which
can be obtained from a given group by conjugation.

For example, from the above multiplication table, the associated group can be
divided in three conjugation classes; {(E); (A,B,C); (D,F )}. In loose manner
we can say that classes are subset of symmetry elements that are closed under
conjugation. These elements shares some geometrical and analytical properties
as we will see soon.

The other key definition is related to how we can give an operational use
to this group structure. This arises from the following [27]

Definition ( representation). A representation of a group is a substitution
group (in general a matrix group) such that this new group is ho-
momorphic or isomorphic to the abstract group. To every group
element A of G, a matrix D(A) is assigned, such that D(AB) =
D(A)D(B).

This last operation has to be understood as matrix multiplication.
Representations are in general not unique, but are related by canonical

transformations [26]. The dimension of a representation is equal to the dimen-
sion of each of its matrices (square matrices). The ambiguity of the represen-
tation definition can be reduced by [27]

Definition ( irreducible representation). If by one and the same canonical
transformation, all the matrices in the representation of a group can
be made to acquire the same block form, then the representation is
said to be reducible, otherwise it is irreducible. Thus, an irreducible
representation cannot be expressed in terms of representations of
lower dimension.

Therefore, irreducible representations (irreps) are the basic building blocks for
all representations of a group. If ΓR is a reducible representation then it can
always be expressed as a direct sum of irreducible representations Γi such that

ΓR =
∑
i

αiΓi , (2.3)

where αi represents multiplicity of the i-th irrep in the above sum.
An illustration of an irreducible representation for the example group pre-

sented before is given by

ΓE =

(
1 0
0 1

)
, ΓA =

(
−1 0
0 1

)
, ΓB =

(
1
2 −

√
3

2

−
√

3
2 − 1

2

)
, (2.4)

ΓC =

(
1
2

√
3

2√
3

2 − 1
2

)
, ΓD =

(
− 1

2

√
3

2

−
√

3
2 − 1

2

)
, ΓF =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
.
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As can be seen, it is a two-dimensional irreducible representation.
Now, an important consequence is that for the groups we are interested in

(groups with a finite number of elements), there is a finite number of irreducible
representations [26]. These irreps represent subspaces of the system for which
the eigenvectors transform in a closed way. Thus, they will have the same
eigenvalue, or equivalently, they comprise a degeneracy of the system. In this
way, it is possible to partition the Hamiltonian of the system in a block form,
where each block results from a unique irrep. If the system is under a perturba-
tion that changes the symmetry group, some irreps can be mapped to reducible
representation in the new group [25]. Group theory allows to clearly elucidate
how this degeneracy transition occurs, although no quantitative information
about the magnitude of the actual eigenvalues can be extracted.

For a complete characterization of the degeneracy features of a system, we
need information about how the elements in the group behave within each
irrep. It is not necessary to deal with all elements of the group but only with
conjugation classes, since all share same practical interpretation in terms of
symmetry. Thus, we need a means to describe a whole class with respect to a
given irrep. For this we need a class invariant quantity. The most commonly
used entity for this purpose is the character of a matrix representation which
can be defined as [27]

Definition (Character). The character χΓj (R) of the matrix representation
Γj(R) for a symmetry operator R, is the trace (sum over diagonal)
of the matrix associated with R in Γj(R). That is

χΓj (R) =

lj∑
µ=1

D(Γj)(R)µµ. (2.5)

Where lj is the irrep dimension and j is the irrep index.

From this definition, and taking into account that a similarity transformation
leaves the trace invariant, we obtain that the character is invariant across the
entire class.

We are in possession of a relation between conjugation classes and irreps
through characters χ. This allows to condensate the behavior of the symmetry
elements for all the irreps of a given group, which is done in the so-called
character tables. These tables are constructed with the row index running
along irreps and the column index going over conjugation classes. Entries for
the table are the character corresponding to a class for a particular irrep. As
an example, we give here the character table for the group of the previous
examples

C1 3C2 2C3

Γ1 1 1 1
Γ′1 1 -1 1
Γ2 2 0 -1

,
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where C1 = {E}, C2 = {A,B,C} and C3 = {D,F}.
Some comments are in order. Clearly, the identity class has characters (first

column) which are related to the dimension of each irrep. Also we see that one-
dimensional representations are actually represented by its characters, and the
trivial representation, with all characters equal to one, is always present in a
character table [27].

Character tables for all the groups of interest in crystalline solids are tab-
ulated in several places [25, 28]. Thus, we refer to this sources when the
information for the symmetry group is required.

With the information of a character table we can decompose every repre-
sentation of a group in terms of its irreps. This is a very powerful result, since
it gives the maximal number of degeneracies that can be present in a given
system.

Also, character tables contain information about how a given operator
transforms under the symmetry group [27]. In more detail, perturbations or in-
ternal properties of the system are represented in general by some n-rank tensor
quantity [23]. This tensor will transform in a definite way under the symmetry
operations of the group. Analyzing the action of the operations, it allows us to
identify under which irrep(s) the tensor transforms. This decomposition gives
valuable information about the possible outcomes for the perturbation.

2In summary, the use of group theory on practical grounds is used to char-
acterize the degeneracy landscape for the eigenvalue spectra of some operators,
the most interesting being energy spectra from the Hamiltonian. Degeneracies
are related to the dimension of the irreps which compose the most fundamental
representation for a given group. Additionally we can decompose any tensorial
product operator acting on the system in terms of these irreps, in order to
find how the associated spectrum separates in disjoint classes. We will be us-
ing these group theoretical tools intensively along this thesis, and accordingly,
more details of the actual application of these methods will be given later.2



Chapter 3

First-principles methods: Density
Functional Theory

We have seen in the previous section that symmetry plays a central role in
the qualitative description of a condensed matter system. However, group
theoretical tools alone are not sufficient for a successful study; we have to obtain
quantitative information about the energy spectrum and related properties.

For this study the focus is to obtain the energy eigenstates of the system.
This is accomplished by solving the associated wave equation. In the cases of
interest we start by solving the Schrödinger equation [22]1

i~∂t |ψj(t)〉 = Ĥ |ψj(t)〉 , (3.1)

where i is the imaginary unit, ~ is the reduced Planck’s constant, Ĥ is the
Hamiltonian operator and |ψi(t)〉 is the time-dependent eigenstate of the sys-
tem, labeled by some set j of quantum numbers.

Temporal dependence can be expressed in the usual way as |ψj(t)〉 =

e−i
Ej t

~ |ψj〉, where |ψj〉 is an eigenstate of the time-independent Schrödinger
equation

Ĥ |ψj〉 = En |ψj〉 . (3.2)

Here Ej represents the energy eigenvalues for the Hamiltonian Ĥ.
Now in the systems of interest, we will be dealing with a many-body prob-

lem, since a prodigious number of electrons and ions is present composing the
crystal structure (about the order of ∼ 1026particles) [27]. In this context the
eigenstate |ψj〉 is called a many-body wavefunction and the Hamiltonian Ĥ is
an interacting operator expressed in general terms by [30]

Ĥ = T̂ + V̂ee + V̂ext, (3.3)

where T̂ is the kinetic energy operator, V̂ee is the interaction potential and V̂ext
is an external potential applied to the system.

1It is possible that also a relativistic wave equation arises related to effective models [29].
Nevertheless, the fundamental description continues being the Schrödinger equation.

18
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The Schrödinger equation for a many-body system is not currently solvable
in analytical closed form [31]. Even having a solution, useful information could
not be extracted directly from it, due to the intricacies that a wavefunction with
this character might contain [32]. Because of this, decades ago general methods
to find energy eigenvalues for many-body systems were developed [33, 34].

In fact, a group of the most powerful electronic structure calculation meth-
ods is based on two theorems due to Hohenberg and Kohn [33], which assert
the following

Theorem For a given many body system with external potential V̂ext, the as-
sociated electron density n(r) is uniquely defined, being this map-
ping one to one and with an inverse.

Theorem If there exists a density function n(r) for which the total energy
of the system is a minimum, then this density is the ground state
density.

It is not our intention to prove this two theorems here, since they are extensively
revised in literature (see [35, 36] for example). Instead, we will apply them to
the formulation of the method we use to calculate electronic structure, namely,
density functional theory.

From the above results, one can deduce that all the electronic properties of
the system in its ground state will depend on the density function n(r) [37].
Then we can formulate an energy function that depends on density, which in
turn is also a function. Thereby energy becomes an energy functional E[n(r)]
defined by [30]

E[n(r)] = T [n(r)] + Vee[n(r)] +

ˆ
vext(r)n(r)dr, (3.4)

where Vext =
´
vext(r)δ(r−r′)dr.

It can be noted that we have a universal functional F [n(r)] = T [n(r)] +
Vee[n(r)] which is system-independent (the explicit form of F is until now
unknown [31]). Minimization of this functional with respect to n(r) will in
principle yield the ground state solution [35].

Albeit powerful and far-reaching, the above theorems are only existence
results, giving no algorithmic procedure to actually obtain the ground state
electron density. However, they gave the starting point for a computational
procedure, such that soon afterwards, a practical way to calculate n(r) was
put forward by Kohn and Sham [34].

This procedure is based on a simple idea, namely, to map the original inter-
acting electron system into a non-interacting fictitious system, which shares the
same energy electron density [37]. The advantage is that in this non-interacting
system the electron density can be expressed as

n(r) =
∑
i

φ∗i (r)φi(r), (3.5)
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where {φi(r)} are orthonormal orbitals, called Kohn-Sham (K-S) eigenfunc-
tions [30]. These eigenfunctions are solutions of a non-interacting Schrödinger
equation HNI = φi(r) = εiφi(r), where εi are the so-called Kohn-Sham ener-
gies.

To obtain the explicit form for the target non-interacting Hamiltonian, we
first rewrite the energy functional as

E[n] = T0[n] + VH [n] +

ˆ
vext(r)n(r)dr + Exc[n], (3.6)

where T0 is the non-interacting part of the kinetic energy, VH [n] is the Hartree
potential given by

VH [n] =
1

2

ˆ
n(r)

e²n(r′)drdr′

|r − r′|
(3.7)

and Exc[n] is defined as the exchange-correlation functional defined as

Exc[n] = T [n]− T0[n] + Vee[n]− VH [n]. (3.8)

Expressing the energy functional in the Kohn-Sham basis we obtain

E[n] =
∑
i

〈φi| −
~2∇2

2m
+ vext |φi〉+

1

2

∑
ij

〈φiφj |
e²
r12
|φiφj〉+ Exc[n]. (3.9)

Searching for a variational solution for this functional, that is, varying with
respect to K-S orbitals {φi(r)}, an effective wave equation is encountered such
that [

−~2∇2

2m
+ vext + VH + Vxc

]
φi = εiφi, (3.10)

where Vxc = δExc
δn(r) is the exchange-correlation potential [37].

Equations (3.10) are the so-called Kohn-Sham equations. They have to be
solved for the φi to calculate the electron density associated to a given external
potential vext.

In order to solve the equations, a previous explicit form of the exchange-
correlation functional must be fixed. This is where approximations enter in
the process. The most used exchange-correlation functionals and the implied
approximations are described in the literature [36, 35].

It has to be pointed out that the calculation of φi orbitals depends on
the electron density itself. Thus, the K-S equations must be solved under a
self-consistent procedure. This means that one must [31]

• Define an initial, trial electron density, n(r).

• Solve the Kohn-Sham equations defined using the trial electron density
and find the orbitals φi.

• Calculate the electron density defined by eq. (3.5).
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system input data

Define a trial
 electron density, n(r). -Solve the Kohn-Sham equations with the initial n(r)

then  find the orbitals

Calculate the electron density
n(r)= ∑ ϕ

¿
(r) ϕ(r )

• Compare the calculated electron density 
from K-S equations to the initial density

Update your 
Initial guess 
With some 

method

Are they equal ? 
To some accuracy You have found the

Ground state 
Density function

NO YES

Figure 3.1: DFT flow diagram for electron density self-consistent calculation.

• Compare the calculated electron density from K-S equations to the initial
density. If both are the same to some defined accuracy, this can be chosen
as the ground state density. If they are different beyond the required
precision, the trial electron density must be updated in some way. Once
this is done, the process restarts.

This algorithm is depicted in a diagrammatic way in fig.3.1.
On the practical side, we must mention that there are very powerful compu-

tational codes implementing the K-S procedure to find total energies and other
related properties of crystals [38, 39]. These packages resort to an approxi-
mate solution of this self-consistent set of equations, with a minimum input
from the user. This is mostly related to the range for when self-consistency
is reached, and criteria for the electron density mixing at restarting the loop
[35, 31]. Additional technical details are also important to achieve successful,
accurate calculations that correspond to experiments. These intricacies will be
discussed accordingly as we move forward in this work.
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Tight-binding method

First-principles methods presented in the last section, are based in very gen-
eral results combined with some approximations that group all the unknown
information of the system, exchange-correlation in particular, and treats it in a
numerical fashion, hiding direct physical meaning of the process until an output
is obtained [40]. Although very powerful in their results, it is always desirable
to have some physical intuition of what is happening in a phenomenological
sense from the microscopic viewpoint of the system. This vision was present
before first-principles methods entered the scene, and is based on the appeal-
ing result that microscopic constituents of solids, that is atoms, are the best
initial basis set to describe an extended condensed matter system [22]. This
approach, based on the combination of atomic orbitals is known widely as the
tight-binding method [30].

The basic idea to implement a tight-binding approach is that we can solve
time-independent Schrödinger equation (3.2) expanding the states using an
atomic basis. This basis is formed by localized orbitals coming from atomic
physics, we denote them as ϕα(r − t), where α is an index for the orbital
type (s, p, d, f) and t is the center position of the orbital. If we apply Bloch’s
theorem for the periodic crystal structure [22], we can construct an extended
state over the entire lattice as

χkαl(r) =
1√
N

∑
R

eik·Rϕα(r − tl −R), (4.1)

where l in a index for atoms, R is the position vector connecting to other
atoms, N is the number of unit cells in the system and k is the reciprocal
lattice vector.

With this Bloch basis it is possible to expand the eigenstates of the system
as a linear combination given by

|ψk(r)〉 =
∑
α,l

Ckαlχkαl(r), (4.2)

where the Ckαl are the expansion coefficients.

22
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Now using the projected Schrödinger equation

〈ψ′k(r)|H |ψk(r)〉 = 〈ψ′k(r)|E |ψk(r)〉 ,

with the previous expansion in eq. (4.2) we get∑
α,β,l,j

[〈χkαl (r)|H |χkβj (r)〉 − Ek 〈χkαl (r) |χkβj〉 (r)] CkαlCkβj = 0. (4.3)

This is the most general form of the wave equation in a tight-binding basis.
It implies a general sum over all atoms in the lattice and in principle could
contain an arbitrary number of orbitals as N grows. In order to make the
method practical, approximations have to be implemented. The most widely
used, also chosen herein, is the Slater-Koster parameterization [41].

4.1 Slater-Koster parameterization

Solving the secular equation for tight-binding method requires the computation
of two matrices

• 〈χkαl (r) |χkβj〉 : the overlap matrix,

• 〈χkαl (r)|H |χkβj (r)〉 : Hamiltonian matrix in the TB basis.

To make practical use of the method, both matrices have to be constrained in
some sense; this set of contraints is called the Slater-Koster (S-K) parameter-
ization [41]. But before that, the first important approximation is to restrict
us only to a finite number of orbitals for the basis, where in general just most
representative s, p, d and f orbitals for each atom are picked [40]. With this
finite basis, both matrices above become finite-dimensional.

There exist two forms to treat the overlap matrix. In the most direct way
we consider that atomic orbitals are non-orthogonal to each other and then
matrix elements are considered as unknown parameters of the system. As it
is foreseeable, this is the non-orthogonal S-K parameterization [30]. In the
opposite case, we consider that the atomic orbitals are orthonormal to each
other or that the overlap between them can be neglected altogether, such that

〈ϕα (r− ti) |ϕβ (r− tj−R)〉 = δαβδij . (4.4)

In this case we have the orthogonal S-K parameterization [30], which reduces
the number of free parameters in the process.

Next, we analyze the Hamiltonian matrix. We make patent one of the
central approximations of the procedure. Note that, in principle, the sum over
R is defined over all atoms in the crystal. This is factually impracticable, thus
an educated restriction over this sum must be put forward. In general terms,
truncation of this sum must be settled by some geometrical judgment. The
most used criterion is to restrict it only to a finite and very small number of
nearest neighbors for each atom in the primitive unit cell [40]. This cutoff is
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very convenient and is justified by the localized character of the orbital basis
we are using [22].

Another issue to consider arises relative to the explicit form for the Hamil-
tonian matrix, which is

〈χkαi (r)|H |χkβj (r)〉 =
∑
〈R〉

eik·R 〈ϕα (r− ti)|H |ϕβ (r− tj−R)〉 ,

where now 〈R〉 denotes the sum restricted to nearest neighbors. In this expres-
sion the matrix elements in the orbital basis 〈ϕα (r− ti)|H |ϕβ (r− tj−R)〉
have to be explicitly calculated. This computation is hardly feasible due to
technical limitations [40]. The central theme in S-K approach is how to ap-
proximate these integrals.

For this end, we take the Hamiltonian operator to be of the form [30]

H = −1

2
∇2 +

∑
k,l,j

V k [r− (tl + Rj)] . (4.5)

In calculating the matrix elements for this operator we encounter three
possible cases for the integrals involved depending on the location of the orbitals
in the basis and the crystalline potential V . We describe them as [41]

• 1-center integrals: In this case the integral between the Hamiltonian and
orbitals have both, orbitals and potential V , located at the same spatial
place.

• 2-center integrals: In these integrals, either both orbitals are located at
the same place and the potential is at a different location, or one orbital
and the potential V coincide in location, while the other orbital is in a
distinct position.

• 3-center integral : In this situation all the factors, both orbitals and po-
tential V are located at different positions in space.

What Slater and Koster showed was that 2-center integrals are the most im-
portant contribution for a wide range of systems, and 3-center integrals can be
safely neglected in many cases [40]. This type of integrals requires only one
free parameter per case, reducing the amount of unknowns in the system.

Therefore, integrals 〈ϕα (r− ti)|H |ϕβ (r− tj−R)〉 , difficult to compute
directly, are defined now as adjustable parameters of the model, such that we
must assign them a reduced label Kαβ,ij implying that

〈χkαi (r)|H |χkβj (r)〉 =
∑
〈R〉

eik·RKαβ,ij . (4.6)

This is the S-K form for the TB Hamiltonian [42]. Slater and Koster, us-
ing 2-center integrals give a more explicit form for these integrals in terms of
the orientability in real space related to the R vector, which is expressed as
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Kαβ,ij = Kαβ(Rij), where Rij = (Rx, Ry, Rz) = d(l,m, n). Here d is the dis-
tance modulus between two neighbors and l, m and n are the direction cosines
for the R vector [22]. Starting with this prescription, along with an explicit
form for orbitals in terms of spherical harmonics, S-K obtained a general form
for the orbital integrals [41]. An adapted table for the most used expressions
is given here

Kss = Vssσ
Ksx = lVspσ
Ksy = mVspσ
Ksz = nVspσ

Kxx = l2Vppσ + (1− l2)Vppπ
Kyy = m2Vppσ + (1−m2)Vppπ
Kzz = n2Vppσ + (1− n2)Vppπ
Kxy = lm(Vppσ − Vppπ)
Kxz = ln(Vppσ − Vppπ)
Kyz = mn(Vppσ − Vppπ)

In this table the expressions Vαβζ are the well known S-K tight-binding
parameters. These are the free parameters to be adjusted in modeling the
electronic band structure of a particular material.

2In summary, we set a microscopic model for the system we are interested
in by picking the most important orbital contribution for each atom in the
lattice structure. We then build an atomic basis for the entire primitive unit
cell and fix the dimension of the Hamiltonian to a (#atoms × #orbitals) by
(#atoms × #orbitals) matrix. Based on geometrical or localization criteria
we restrict the R sum up to some amount of nearest neighbors. With this we
formulate the Hamiltonian matrix in terms of S-K parameters.

The free parameters of the system must be fixed by some referential band
structure obtained from experimental results (ARPES measurements for exam-
ple) or by some first-principles computation [37]. This process fits the energy
bands in the best possible way with respect to the finite set of S-K parameters
over the entire Brillouin zone. Once this procedure is completed, the TB model
for the chosen range of energy is successfully implemented. This model could
be used to calculate additional physical properties of the system, such as the
optical and transport responses, as we will show in following sections.2



Chapter 5

Optical response in the
tight-binding approximation

One of the most direct forms to study the internal properties of a system, being
a bulk material or a case of reduced dimension is by means of external pertur-
bations. These external perturbations induce some excitation in the system,
which later cause a relaxation response with a definite change of the associ-
ated physical property. In particular, one of the preponderant perturbations
in any experimental study is the interaction of the system with an external
electromagnetic (EM) field.

Within this setting, optical response is a very important branch and the
linear regime of the optical spectrum of materials is a very interesting piece of
data to design new technologies and applications [43].

Linear optical response is related to the study of electronic quantum transi-
tions induced by an external EM field. In a perturbative regime, using Fermi’s
golden rule, band to band transitions from an initial state |i〉 to a final state
|f〉 has a probability per unit time given by [44]

℘i→f =
2π

~
| 〈f |Hext |i〉 |²δ(Ef − Ei ± ~ω), (5.1)

where Hext is the external perturbation Hamiltonian, ω is the external pertur-
bation characteristic frequency and Ef/i is the energy of the final/initial state.
The matrix element 〈f |Hext |i〉 is called the transition matrix element and will
be denoted by Pcv(k).

In order to obtain the number of transitions per unit time per unit volume
W , induced by some external frequency ω, we have to sum all probabilities over
reciprocal space, spin and conduction and valence band indices. This gives us
[30]

W (ω) =
2π

~
∑
c,v,k

|Pcv(k)|2δ (Ec(k)− Ev(k)− ~ω) . (5.2)

Where Ec and Ev correspond to the energy of the valence and conduction
band, respectively.

26
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Now we define the absorption coefficient α(ω) as the energy absorbed in the
unit time and the unit volume per energy flux ξ(c/n), where ξ is the energy
density, which is given by [44]

ξ =
n2E2

0ω
2

2πc2
. (5.3)

Here, n is the refraction index, c is the speed of light and E0 is the amplitude
of the electric field magnitude. Thus

α(ω) =
~ωW (ω)

ξ(c/n)
, (5.4)

and using the former definitions, the optical absorption takes the form

α (ω) =
4π2

ncωE2
0

∑
c,v,k

|Pcv(k)|2δ (Ec(k)− Ev(k)− ~ω) (5.5)

In particular, the transition matrix element Pcv depends on the pertur-
bation Hamiltonian Hext. In the dipolar approximation we can write this
Hamiltonian as [30]

Hext = Hdip = − e

m
E · r, (5.6)

where r is the position vector. From this we can express Pcv in the form

Pcv = −eE0

m
〈c, k|u · r|v, k〉 = −eE0

m
u · 〈c, k| r |v, k〉 (5.7)

where E = E0u and u is the polarization vector of the electric field. In this
form Pcv is called the dipolar matrix element [45].

Next, we manipulate the position operator matrix element a bit. First, note
a related identity [46]

〈c, k|p|v, k〉 =
m

~
〈c, k|[r, H]|v, k〉 . (5.8)

Then we use another relation given by

〈c, k|p|v, k〉 =
m

i~
(Evk − Eck) 〈c, k|r|v, k〉 . (5.9)

Combining these two expressions we obtain

〈c, k|r|v, k〉 =
i

Eck − Evk
〈c, k| [H, r] |v, k〉 (5.10)

Focusing on the band states |n, k〉, we can expand them in terms of a tight-
binding basis as

|n, k〉 =
∑
a

Cn (a) |a, k〉 , (5.11)

where a is the basis index that includes orbital and atom indices.
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Using the above expansion along with equation (5.7) we can rewrite the
dipolar matrix element in the form

Pcv = −eE0

m
u·

∑
a,b

C∗c (a)Cv (b) [H, r]a,b (Rab)

Eck − Evk

 , (5.12)

where ∇Ha,b is the gradient of the Hamiltonian matrix element between states
a and b.

Returning to the optical absorption expression, we insert this dipolar matrix
element and obtain

α (ω) =
4π2e2

ncm2ω

∑
c,v,k

∣∣∣∣∣∣u·
∑
a,b

C∗c (a)Cv (b) [H, r]ab (Rab)

Eck − Evk

∣∣∣∣∣∣
2

δ (Ecv(k)− ~ω) ,

(5.13)
where Ecv(k) = Ec(k)− Ev(k).

The only missing issue is to find [H, r]ab(Rab). We use here the explicit
form of the Hamiltonian in a tight-binding basis such that [47]

Hab (Rab) =
∑
Rab

eik·Rabtab (Rab) , (5.14)

where Rab are real lattice vectors and tab represent the Slater-Koster tight-
binding parameters. Finally, calculating the commutator we obtain

[H, r]a,b (Rab) = i
∑
Rab

Rabe
ik·Rabtab. (5.15)

Inserting this expression in equation (5.13) we obtain the final form for the
optical absorption that is used in numerical calculations.

This expression can be coded to calculate the optical response using a TB
parameterization obtained before. Also, and as we will comment in following
sections, this expression can be used to constraint the TB parameterization
with the aim to obtain fitting results that give a good description not only of
the electronic band structure but for the optical spectra as well.
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Electronic transport

Another form of physical response which takes place when an external EM field
is applied, is the electron transport through a sample [22]. In this case, a flux of
electrons is carried from one side of the system to the other due to a electronic
potential gradient, producing a net electronic current I, which is a measurable
quantity [48].

Electronic transport implies that the system is out of equilibrium. Still
one can study the most simple cases assuming that the gradient producing the
current generates only a low bias situation [49]. We will present the formalism
for this regime, taking as an additional restriction a low temperature regime.

To start with, we define the general form of the device that will be used
from now on. The device could be divided in three zones. Two lateral regions,
denoted as the electrodes (left and right electrodes) and a central zone, the

Left electrode L Right electrode R
 Central region C

V1 V2

Figure 6.1: Schematic representation of a transport device.
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scattering region, through which the electric current has to be found. This
general setup is depicted in fig. (6.1).

What we want to quantify at the end, is the amount of electrons passing
through the sample, and relate it to the potential gradient (bias) present in the
system. We define the electronic current I as [50]

I =
e

h

ˆ
T (E)[fL(E)− fR(E)]dE, (6.1)

where fL/R is the Fermi-Dirac distribution for the left/right electrode fixing
the chemical potential on each side of the device. This is the Landauer formula
for the current [48].

In this expression T (E) is the so-called transmission function, which is
defined as the probability for a particle to tunnel across the scattering region
from one electrode to the other [51]. This is the entity to calculate in order to
find the transport features in the system. To compute T (E), we will define some
operator that serves as a general and powerful tool to find the transmission and
other quantities of interest, the well-known Green’s functions.

In a very formal way, a Green’s function (GF) G is defined as the inverse
for the operator [EI −H], that is [EI −H]G = 1, where 1 is the identity
operator [49]. As such, GFs comprise information of the energy spectra of a
system and have the advantage that can give response of the system to external
perturbations in a very direct way [52].

The starting point to calculate the transmission function, will be to find
the GF for the previously presented device in fig. (6.1). For this we need the
Hamiltonian of the complete system which is given by [53]

H =

HL VLC 0
VCL HC VCR

0 VRC HR

 , (6.2)

where HL, HC and HR are the matrix Hamiltonians of the left electrode,
the central region and the right electrode respectively. Off-diagonal terms
VCLand VRC (and conjugates) represent the coupling of the scattering zone to
the electrodes which hold

VCL = V †LC , VCR = V †RC . (6.3)

Now applying the GF definition

[EI −H]G = I, (6.4)

to the matrix Hamiltonian in eq. (6.2) we obtainE −HL −VLC 0

−V †LC E −HC −V †RC
0 −VRC E −HR

 GL GLC 0
GCL GC GCR

0 GRC GR

 = I. (6.5)
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The GF of interest is GC where the spectral information of the central
region is contained. We form the system of equations

(E −HL)GLC − VLCGC = 0,

−V †LCGLC + (E −HC)GC − V †RCGRC = I, (6.6)
−VRCGC + (E −HR)GRC = 0.

Solving for GC we obtain

(E −HC − Σ)GC = I,

where
Σ = V †LC(E −HL)−1VLC + V †RC(E −HR)−1VRC , (6.7)

is defined as the electrode self-energy [53]. Therefore

GC = [E −HC − Σ]−1. (6.8)

It is necessary to define a function, called a level width function Γ as [49]

Γ = i(ΣR − ΣA). (6.9)

Here ΣR, ΣA are the causal and anti-causal self-energies, called retarded and
advanced self-energies [48]. In these cases E is replaced by E → (E±iη), where
the plus sign is for the retarded case and the minus sign for the advanced case.

In terms of these functions we can define the transmission τ(E) for the
central region in the form (see [49] for a derivation of this formula)

τ(E) = Tr(ΓLG
A
CΓRG

R
C), (6.10)

where GA and GR are the advanced and retarded GFs defined in the same form
as the advanced and retarded self-energies (E is replaced by E → (E ± iη)).
This expression allows to find the transmission function in terms of GF and
self-energies of the system. In actual systems the central issue is to calculate
the central GFs in a computationally affordable manner [51]. This can be
accomplished by a discretization procedure combined with a recursive method,
in order to construct step by step the whole GF and self energies. This method
will be explained in appendix II.B and is based on refs. [54, 55, 53].

6.1 Thermoelectric transport

One of the manifestations of electronic transport is the production of an electric
current due to a temperature gradient present along the system. We name this
response as a thermal current IT and define it in within the Landauer formalism
as [56]

IT =

ˆ
(E − µ+ ∆V )τ(E)(fL(E)− fR(E))dE. (6.11)

Here µ is the chemical potential and ∆V is the potential bias.
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This thermal current is related to diverse magnitudes that quantify how
well a material is converting a thermal gradient into an electronic current flux.
One is the electronic conductance Ge, defined as [57]

Ge =
∆I

∆V
, (6.12)

in the limit ∆V → 0. Thermopower (Seebeck coefficient) S is defined as the
induced voltage drop by the temperature gradient as the current tends to zero,
such that

S = −∆V

∆T
∆I → 0. (6.13)

Also the thermal conductance κe is defined by

κe =
∆I

∆V
, ∆V → 0 (6.14)

All the above quantities can be expressed in an explicit form from the thermal
current definition in eq. (6.11). Using an integral function defined as [58]

Ln(µ, T ) =

ˆ ∞
−∞

xn
en

(ex + 1)2
τ(x, µ, T )dx. (6.15)

This function allows to define all previous thermoelectric magnitudes in a com-
pact form given by

Ge =
e

h
L0, (6.16)

S = −kB
e

L1

L0
,

κe =
k2
B

h
T

[
L2 −

(L1)2

L0

]
.

Additionally a figure of merit denoted as ZT, can also be defined to study the
efficiency of the material as [59]

ZT =
GeS

2T

κ
, (6.17)

where κ = κe + κphis the total thermal conductance composed of electronic
thermal conductance κe and the lattice thermal conductance κph.

We apply these definitions to study thermoelectric performance of penta-
graphene nanostructures, taking into account a particular geometry configu-
ration. We will present in the results section a study of all thermoelectric
magnitudes, numerically calculated by the recursive method.



Chapter 7

Topological phases

7.1 Introduction

Topological phases are nowadays the focus of great interest, both from the
fundamental and applied point of view due to the new physics that they entail,
which is changing paradigms in condensed matter physics. In this sense, the
discovery of topologically nontrivial phases have been a widely discussed topic
over the last decades, which started with the pioneering work of Thouless et
al. [60], and the quantum Hall effects -integer and fractional [61, 62, 63],
evolving in a robust branch of physics at present time. The research interest
got revitalized after the discovery of a new Hall phase, called the Quantum Spin
Hall Effect (QSHE) in 2005 [64, 65]. This new state of matter put spin-orbit
coupling (SOC) and symmetry-protected topological states at the spotlight as
a source of robust phenomena related to edge physics.

Hall effects are the most studied examples of non-trivial topology in a solid
state system. The first inkling of these states dates from 1980 where a quan-
tum version of the classical Hall effect was first observed by von Klitzing [66].
In this setting, a two-dimensional electron gas was exposed to a strong exter-
nal magnetic field producing a quantized transverse conductance due to the
formation of Landau levels at the sample’s bulk [62]. After this experimental
breakthrough, materials with intrinsic magnetism, such as ferromagnetism or
antiferromagnetism, were found to present a quantum response in transport
magnitudes, the so-called quantum anomalous Hall effect (QAHE) [67]. On
the theoretical side, Haldane in 1988 proposed a related model for a honey-
comb lattice where QAHE arises due to a built-in local magnetic flux in the
system, yielding no net magnetic flux [68].

After these initial stages, other approaches and states were studied, such
as intrinsic and extrinsic contributions to QAHE [69] and fractional quantum
Hall effect with composite fermions [61]. However, as previously said, it was
QSHE that propelled topology into the realm of mainstream solid state physics,
the most conspicuous being the Kane and Mele model for the QSH state for
graphene [70]. Subsequent theoretical works, such as Bernevig et al. [71]
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and Fu et al. [72], paved the road to the experimental realization of this
new phase at laboratory. This was accomplished in 2007 by Molenkamp’s
group [73] and afterwards by others [74, 75]. These corroborations attracted
the attention of the community and the QSHE became soon a main actor in
frontier condensed matter science. As such, a generalization of QSHE to three-
dimensional systems and also to arbitrary dimensions was settled [76, 77, 78],
giving birth to the concept of topological insulators (TI).

Topological insulators comprise a range of systems, in d dimensions, for
which we have an insulating bulk band structure with a full gap, but with a
gapless boundary, presenting surface or edge states [79]. These boundary states
are very robust against perturbations applied to the system [80], and present
a promising stage for exciting applications such as quantum computation [81],
and spintronics [82, 83] among others.

At the time of the first stage of exploration, it was believed that a full
gap in the energy band structure was a mandatory condition for a material
being topologically non-trivial [79]. It did not take long to understand that
this condition was too restrictive and indeed, gapless topological phases are
also possible and stable per se.

Murakami [84] and Volovik [29] were who figured out that at the critical
point in a normal-insulator-TI phase transition, non-trivial gapless phases could
arise, under some explicit symmetry constraints. After that, some generaliza-
tions of this seminal result complemented this vision and gapless topological
phases started to be a subject of study on their own [85]. Although gapless
phases are well understood in general, the presence of topological boundary
states open new lanes to explore how ubiquitous topology is within solid state
systems.

These phases are known today as nodal states or topological (semi)-metals,
and are the subject of intense research, both theoretically and experimentally
[86, 87, 88, 89, 90]. Together with topological insulators topological (semi)-
metals span a great group of non-trivial phases of matter. Nevertheless, despite
the great amount of synthesized compounds up to now, only a little fraction are
known to be topologically non-trivial [91]. It is believed that this percentage
is much more significant, and there is a immense current effort in mapping
all possible crystal structures and space groups, with the aim to find new
topological phases of matter in real materials. On the other hand, there have
been many proposals of non-trivial phases in new materials by means of first-
principles calculations [92, 93, 94], which guide experimental research and poses
new challenges in this field. A set of these new materials, which are composed
of functionalized forms of penta-graphene [4] (or other pentagonal lattices [95]),
are the so called pentagonal materials (or penta-materials), and are the subject
of this thesis. This new class of materials is attracting attention due to the non-
trivial behavior of their space group connectivity, being candidates for many
interesting future applications.
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7.2 General description of topological phases

7.2.1 Topological insulators

Insulating phases in crystals have varied properties depending on their gap
magnitude and local form of conduction and valence bands. Even while a bulk
band gap is present in all the systems in this material class, surface physics
can be very different from insulator to insulator. In this way a distinctive
subclass emerges in which surfaces states have some robust qualities against
external perturbations. Materials with this special boundary physics are named
as topological insulators [79].

Topological insulators come in different kinds and a comprehensive descrip-
tion of all of them is beyond our scope. We only describe very broad families
of TIs, focusing only on its main properties in order to be identified in the
systems we want to study.

As was mentioned above, TIs derive from QSH systems, and as such inherit
some of their properties, such as quantized response of conductivity [70, 82].
These phases can be divided according to the symmetries that protect the
non-trivial state. Among them it stands time-reversal symmetry (TRS). As
t → −t some systems stay invariant a others do not. This invariance splits
topological phases in two broad classes. If a system is time-reversal invariant,
then spin-orbit coupling can play an important role and we can describe it in
terms of time-reversal invariant points in momentum space [72]. These TIs
mainly present band inversion in their bulk band structure [96] and constitute
a direct generalization of the QSH state. A subdivision that arises within this
context is the distinction between strong and weak topological insulators [72].
This classification is valid in 3 dimensions and is related to the penetration
and features of surface states. No further details will be important for our
purposes, since we are only interested in the big class delineated by time reversal
symmetry. Both types of TIs are categorized by topological invariants, which
are indices that clearly differentiate between phases [64]. Topological invariants
will be addressed later on in a descriptive formal context.

On the other side we have systems with time reversal symmetry breaking.
In these cases a perturbation, like magnetic field or magnetic doping [96], al-
lows to distinguish between t and −t states. These systems are named Chern
insulators, since they are a generalization of integer/anomalous quantum Hall
state, which is classified by a topological invariant known as the Chern number
[76]. Specific characteristics of this topological index will be exposed below.

A somehow related class of TIs, which is not substantially dependent on
time reversal but uses it, are crystalline topological insulators, where topologi-
cal non-trivial states are protected by a combination of antiunitary and lattice
symmetries. This class of TI could arise in penta-materials, a work that is in
progress at the time of writing this work.

Thus we have three rough classes for the TIs we are trying to find. Within
each group, additional divisions exist that can discriminate between the differ-
ent types of topological protection beyond time reversal symmetry.
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Figure 7.1: Scheme for the evolution of topological non-trivial phases up to
TIs.

As a graphical compendium we present a summary chart in fig. (7.1) where
we highlight the topological features we use in this work.

7.2.2 Topological (semi)-metals

Topological metals are phases where no full gap is present at the Fermi level,
giving a gapless nontrivial phase. We can have compensated electron and
hole pockets, which give a semi-metallic state, otherwise we have a nontrivial
metallic phase.

In a very qualitative manner, interesting gapless phases present nodal cross-
ings between two or more bands in momentum space, giving rise to a linear
energy dispersion at the vicinity of the degeneracy point. The most iconic
of these nodal points are Dirac cones, which represent four-fold degenerate
crossings, as for example in graphene [97].

In general the most basic setting for the presence of Dirac cones requires
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both time-reversal and inversion symmetry. Additional symmetries might be
part of the system, in order to further protect the nodal point under perturba-
tions. Dirac points have been found in several materials, both in 2-dimensions
[98, 7, 99, 100] and 3-dimensions [85, 86, 87], and host many interesting phys-
ical properties, related with its effective relativistic energy dispersion, such as
Klein tunneling, high electron mobility, among others [101].

As we explore further some low symmetry scenarios, we come to relax time
reversal and/or inversion symmetry. This leads us to violate Kramers require-
ment for bands to be doubly degenerate throughout the entire Brillouin zone.
As this happens, four-fold Dirac point becomes split into two-fold degenerated
nodes, known as Weyl points, which represent an effective, low energy version
of Weyl massless fermions, first encountered in the field of high energy physics
[102]. As we remove this four-fold degeneracy, we have some possible result-
ing scenarios. If we break time-reversal symmetry without breaking inversion
symmetry -as in noncentrosymmetric, nonmagnetic compounds- we end with
at least two Weyl nodes. This is the minimum amount possible for any system
[103]. On the other hand, relaxing inversion symmetry but keeping time rever-
sal, we end with a minimum of four Weyl points due to time-reversal constraint
[104]. If additional spatial symmetries are included in the space group, we can
greatly multiply the amount of Weyl points in the BZ. Still, materials with
few Weyl points (ideally two) are very desirable, with the aim to precisely iso-
late the associated physical phenomena. Such physical phenomena are related
to the chiral character of Weyl points and in particular to the chiral anomaly
effect, first discussed in quantum field theories for chiral particles [105]. In sim-
ple terms, the chiral anomaly is the production of an excess of particles with a
particular chirality under the application of a combined electric and magnetic
field [106]. Derived from the chiral anomaly, some exotic phenomena appear
such as the so-called Fermi arcs and drum surface states as well as negative
magnetoresistance [107].

Nodal points could be described with the Dirac equation for the low energy
regime. Dirac nodes can be described by a Hamiltonian given by [102]

H = vp · γ +mvγ0, (7.1)

wherem is the mass of particles and v is the effective Fermi velocity. γ = (γ0, γ)
are Dirac gamma matrices given in terms of Pauli matrices σi as

γi =

[
0 σi
σi 0

]
, (7.2)

γ0 =

[
σ0 0
0 σ0

]
, (7.3)

where σ0 is the 2 by 2 identity matrix.
This Hamiltonian allows for touching points depending on the mass param-

eter m giving rise to a four-fold degeneracy due to time reversal and inversion
symmetry.
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Figure 7.2: Point-like nodal phases. (a) Dirac node, (b) Weyl nodes pair with
specified chirality.

Now, if we take m equal to zero we are left with a massless Hamiltonian

H = ±vp · σ. (7.4)

We see immediately that this Hamiltonian defines two types of fermions
with opposite chirality. Chiral particles have their spin locked to momentum as
is observed in eq. (7.4). Thus we are left with two nodes at energy-momentum
space that have energy eigenvalues given by E = ±vp and cross at p = 0.
These nodes are known as Weyl nodes [108].

Deeper analysis could be done for these nodal systems, characterizing phys-
ical properties and related effects, but for our purposes it is sufficient this phe-
nomenological description in order to understand that Dirac nodes need TRS
and Weyl nodes lack either TRS or inversion symmetry.

Up to now we have concentrated in point-like nodes in BZ, but it is also
possible to have some sets of degeneracies forming one-dimensional curves in
momentum space, which are generally denoted as nodal-line systems [109, 110].
The location of degeneracy lines in momentum space depends on the space
group symmetries. Also for a nodal line to be constant in energy over all BZ,
spatial inversion must be a symmetry of the system [104], otherwise, we have a
nodal-line over an energy window which might coexist with electron and hole
pockets at the same energy range. The origin of nodal lines could be traced
to either symmorphic and nonsymmorphic symmetries and in general are not
very robust under symmetry breaking perturbations, as for example spin-orbit
coupling [111]. There exist further line-like nodal phases such as nodal-link
semi-metals [112], nodal-chain semi-metals [113], nodal-knot semi-metals [114]
and hourglass semi-metals among others [115]. For the sake of this work, what
we have to keep in mind is that nodal-line band touching happens very often
in nonsymmophic groups, with the addition of TRS. This is called the stick-
together phenomena, well-known in the solid state literature [27]. This is a
common effect in pentagonal materials, due to the space group components as
we will explain in detail in upcoming sections.
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A graphical depiction of these possible cases is presented in fig. (7.2). We
see the change in degeneracy from Dirac nodes to Weyl nodes as well as the spin
separation which become very important for chiral effects in Weyl materials.

In looking forward, we want to identify all mentioned topological phases in
penta-materials. We scrutinize their symmetry character by group theoretical
methods giving hints for the apparition of some insulator and/or gapless phases.
Also, band structure calculations allow to identify nodal-like or insulating states
more precisely. Then, the topological character of these phases is studied in
detail and a global classification is achieved for the whole family of penta-
materials. This procedure will be explained in the results section below.



Chapter 8

Theoretical tools to characterize a
topological phase

Materials with topological features, TIs in particular, present a bulk structure
that seems trivial if no surface information is added. Thus, a method to dis-
tinguish trivial phases from non-trivial ones is essential. Topological gapless
phases as well need for a proper description of their topological characteristics,
in order to differentiate robust edges states beyond the bulk nodal structure.
In this section we present some theoretical frameworks that serve to describe
and also predict in a unambiguously way if weak interacting materials possess
some topologically non-trivial bands. With the aid of Wannier functions analy-
sis, group theoretical methods, Z invariants, band filling constraints and other
tools, we apply several techniques where topological features are identified from
the lattice symmetry and electronic band structure.

8.1 Topological Quantum Chemistry

In the task of material characterization and design it is always desirable to
have some predictive procedure to discern whether a given band structure has
topological attributes or not. In the toolkit of topological characterization
most of the gear is designed to classify phases, with the so-called topological
invariants [64]. It was not until recent time that a constructive method designed
by Bradlyn et al. [91], dubbed topological quantum chemistry (TQC), came to
fill this gap. We present here a detailed description of the line of work and its
most prominent and basic fundamentals.

The main idea of this framework is to use the well-known result that there
exists a dual map between properties in real space and momentum space.
Namely, a global property in one space is related to a local property at the
other [22]. As it was recognized, topological properties are global in momen-
tum space, since they are related to band connectivity over the whole BZ. This
property is translated to a local orbital description in real space. The impos-
sibility to establish this map, that is to say, if a given group of bands cannot
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be modeled by a set of localized Wannier functions, is a clear indicative of
non-trivial topology for a subset of these group of bands [116].

The main target of TQC is to classify all the possible bands connectivities
for a given double space group. This was done with the aid of graph-theoretical
tools to map connectivities in band structures to multipartite graphs that can
be analyzed with appropriate reduction algorithms [117]. However, for this
thesis the emphasis is located in the subsequent procedure developed once the
connectivity information is available. The procedure heavily depends in several
concepts that we expose in what follows.

In first place, we need a local description in real space in order to charac-
terize the material. As we already mentioned, Wannier functions are the most
useful basis for the local description of the direct lattice. It is worth to mention
that this basis could coincide with atomic sites or not, and could be composed
of atomic orbitals or not [118]. The important ingredient is that we must be in
knowledge of the orbital composition for the bands within the energy range we
are interested in. This is important because not all bands in a material have
to be analyzed in order to find if a topological property is present or not [91].

In addition, the symmetry operations that leave the crystal structure in-
variant in real space must be included. The set of these operations form a
group structure, the so called space group G of the material. An element g∈G
acting in real space in local coordinates as r→ Rr + v is denoted as {R|v}. If
we now denote q to be a position in the unit cell, that can be occupied by an
atom or not, we have the following (for the rest of this section, we heavily rely
on Ref. [119])

Definition (stabilizer group).- The set of symmetry operations g∈G that
leave the site q fixed is called the stabilizer group or site-symmetry
group of q, and is denoted by Gq = {g|gq = q}⊂ G. It is worth
to mention that a site-symmetry group is always isomorphic to a
crystallographic point group.

With this structure at hand we add the next

Definition (Wyckoff position).- Any two sites whose site-symmetry groups
are conjugate are said to lie in the same Wyckoff position. Given
a site in the Wyckoff position, the number of sites in its orbit that
lie in a single unit cell defines the multiplicity of the position.

Wickoff positions (WPs) are very important sites within a unit cell, since they
condensate the most symmetric places in a solid. A derived concept from
site-symmetry groups and WPs is the following

Definition (maximal site-symmetry group).- A site-symmetry group is
non-maximal if there exists a finite group H 6= Gq, such that
Gq ⊂ H ⊂ G. A site symmetry group that is not non-maximal
is maximal. A WP containing q is maximal if the stabilizer group
Gq is maximal.



CHAPTER 8. THEORETICAL TOOLS TO CHARACTERIZE A
TOPOLOGICAL PHASE 42

Maximal site-symmetry groups play a central role in the mapping to reciprocal
space and the labeling of bands, as we will show below.

Now that the needed group theoretical information is defined, we must
impose some conditions on Wannier functions. First, suppose we have nq or-
bitals on site q, which belongs to a WP of multiplicity n. The wave functions
of these orbitals transform under an nq-dimensional representation ρ of the
site-symmetry group Gq. This representation can be single-valued for spinless
electrons or double-valued for spinful systems. Additionally, it can be reducible
or irreducible in principle, although only irreducible representations are truly
fundamental [25]. Further equivalent sites of q, namely, the ones in the orbit of
q, transform under the conjugate representation defined by ρα(h) = ρ(g−1

α hgα)
for each h ∈ Gq. As we mentioned, orbitals on site q can be described by a
set of Wannier functions (WFs) Wiα(r), where i = 1, ..., nq. These WFs are
localized at site q. For each q ∈ Gq, the functions transform as

gWi1(r) = [ρ(g)]jiWj1(r). (8.1)

WFs localized on qα, the orbit of q within the same unit cell, are defined by
Wiα(r) = gαWi1(r) = Wi1(g−1

α r), where α = 1, ..., n and n is the multiplicity
of the WP.

Now all the ingredients for real space description are set. In what follows
we have to translate this information to momentum space. The step to do this
is to define the Fourier transformed WFs as

aiα(k, r) =
∑
µ

eik·tµWiα(r − tµ), (8.2)

where tµ is a lattice translation.
This transformation exchanges the infinite n×nq×N -dimensional (N →∞)

basis, for a finite n×nq basis for each of the N ks in the first BZ, corresponding
to n× nq energy bands. The natural procedure is to define the representation
for the transformation of these aiα functions induced by representation ρ in
real space. This can be defined by

Definition (band representation).- The band representation ρG, induced
from the nq-dimensional representation ρ of the site-symmetry group
Gq of a particular point q whose orbit contains the sites {qα = gαq}
in the unit cell, is defined by the action

[ρG(h)a]iα(k, r) = e−i(Rk)·tβα
nq∑
i′=1

ρi′i(g
−1
β {E|tβα}hgα)ai′β(Rk, r),

(8.3)
for each h = {R|v} ∈ G, where for each choice of α the index β is
determined by the unique coset decomposition of G given by

G =

n⋃
α=1

gα(Gq n Z3), (8.4)
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where Z3 is the group of Bravais lattice translations and n denotes
a semi-direct product. This coset decomposition contains hgα ex-
pressed as

hgα = {E|tβα}gβg, (8.5)

for some g ∈ Gq. gβ is some coset representative and tβα is a lattice
vector.

The matrix form of ρG(h) consists of infinitely many (n · nq)× (n · nq) blocks.
Each block is labeled by a pair (k′,k), where k′ is a row index and k is a
column index. For each h = {R|v} ∈ G and each set of columns corresponding
to ρG(h), there is exactly one nonzero block, which corresponds to k′ = Rk.
We denote this block by ρkG(h), whose matrix elements are given by

ρkG(h)jβ,iα = e−i(Rk)·tβαρji(g
−1
β {E|tβα}hgα). (8.6)

The full set of matrices ρkG(h), for each k in the first BZ contains all of the
nonzero elements of ρG(h) and thus completely determine the band representa-
tion.

As we have induced a momentum space representation for the whole BZ
with ρG, we can project this representation at special points within the BZ
with a subduction procedure [91]. For each k in the first BZ, the little group
of k, Gk, is defined by Gk = {h = {R|v}|Rk = k, h ∈ G}. Now the set
{ρkG(h)|h ∈ Gk} furnishes an (n · nq) × (n · nq) representation of Gk, whose
matrix representation is given by eq. (8.6). This representation is denoted by
ρG ↓ Gk. The characters of ρG ↓ Gk are given by

χkG(h) =
∑
α

e−i(Rk)·tαα χ̃[ρ(g−1
α {E| − tαα}hgα)], (8.7)

where h ∈ Gk and

χ̃[ρ(g)] =

{
χ[ρ(g)] if g ∈ Gq

0 if g /∈ Gq
. (8.8)

Thus, energy bands in reciprocal space inherits their properties from the
direct-space orbitals on WPs in the unit cell. Induced representations presented
before are not restricted in the sense of reducibility. However, there exists a
special type of band representation which can be defined by

Definition (elementary band representation).- A band representation is
called composite if it is equivalent to the direct sum of other band
representations. A band representation that is not composite is
called elementary.

By definition, all elementary band representations (EBRs) admit a description
in terms of localized WFs, as they are induced from the representation of some
site-symmetry group Gq. Two important remarks follow, noting that

(ρ1 � ρ2) ↑ G = (ρ1 ↑ G) � (ρ2 ↑ G). (8.9)

From this it can be deduced that
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1. reducible representations of Gq induce composite band representations
and

2. all EBRs can be induced from irreducible representations of the maximal
site-symmetry groups.

This implies that maximal WPs are the principal source of EBRs [120].
There are some exceptions to this rule, that is to say, cases where an ir-

reducible representation (irrep) of the site-symmetry group of a maximal WP
induces a composite band representation. This can happen because the decom-
position of an infinite dimensional representation into elementary representa-
tions is not necessarily unique [121]. A list of exceptions is presented in tables
III and IV in [119].

So far, all the analysis has been reduced to the computation of EBRs in-
duced from maximal site-symmetry groups. This EBRs allow to define a crite-
rion for a set of band to be topological. This can be expressed as the following

Definition (topological bands).- A set of bands is in the atomic limit of a
space group if they can be induced from localized Wannier func-
tions consistent with the crystalline symmetry of that space group.
Otherwise they are topological.

In other words, topological bands correspond to a set of bands that do not
transform as a band representation, even respecting all crystal symmetries in
momentum space.

This central result can be complemented taking into account some general
group theoretical aspects of momentum space. Namely, it is known that at each
point in BZ, Bloch functions transform as a sum of irreps of the little group
corresponding to that particular point. If we take different points or lines,
specially high symmetry points and lines, their irreps are not independently
defined. Lines emanating from high symmetry points are constrained to host
irreps that form a subgroup of the little group for the high symmetry point
[121]. Thus, there is a subduction procedure that limits the set of irreps for
a set of bands and fixes all symmetry labels through the entire BZ. These
limitations in connectivity are the so-called compatibility relations [25]. By
construction, every band representation gives a solution to a compatibility
relation. The important thing is that there can be solutions to compatibility
relations that are not band representations. These relations are associated to
the topological bands mentioned before. It is worth to mention that this is a
band property, that is independent of the location of the Fermi level [119].

An exceptional case can occur in some instances. There exists a class of
weak topological phases that in two and three dimensions inherit their topology
from one-dimensional systems. This implies the possibility to describe those
phases with a WF atomic limit [122]. The main difference is that this de-
scription in terms of localized orbitals does not reside on the atomic sites and
thereby, it cannot be connected to any atomic-like limit without breaking a
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symmetry or closing a gap. These phases are said to have an obstructed atomic
limit [91].

Time reversal symmetry (TRS) is an important ingredient for the descrip-
tion of topological phases, as for example in topological insulators [123]. In
general terms, TRS imposes some additional constraints in the form of allowed
irreps of groups in real and momentum space. It is necessary to classify irreps
invariance under TRS using the Frobenius-Schur indicator [26]. This could
result in a irrep being real, quaternionic or complex. If the irrep is real and
single-valued or quaternionic and double-valued, then it is time-reversal invari-
ant. Otherwise it is not TR invariant on its own, and has to be combined
with its conjugate partner to restore time reversal symmetry [119]. Thus, if
we find an irrep that is not time-reversal invariant, we have to pair it with its
complex conjugate. This new direct sum will become the allowed irreducible
representation in the TRS case. All of these real, quaternionic or paired com-
plex conjugates irreps are called physical irreducible representations [120]. As
a straightforward implication of this last result, if TRS is present, EBRs will
have to be physical EBR (pEBR) [91].

This exhausts the general formal framework of TQC. A more detailed de-
scription is available in the original papers [124, 119, 91, 117].

The EBRs characterization task has been accomplished recently [125] for
double space groups, giving the access to the set of all EBRs for a given space
group. This information is compiled at the Bilbao crystallographic server [28].

Now, as all possible EBRs for any space group can be obtained, it remains
to find materials for which a group of bands cannot be described by this EBRs
or pEBRs sitting near the Fermi level of the system.

Below we explain in more practical words the procedure to analyze if a
given material may have a set of topologically nontrivial bands.

• First, is it desirable to have some electronic band structure calculation
for the material of interest. This can be obtained as the output of an
ab-initio code based on DFT.

• When the ab-initio bands are available, an orbital decomposition for the
bands near the Fermi level is carried out, in order to set a low energy
model. This last point is done by identifying which atoms in the unit cell
contributes a given orbital.

• Once the contributions are available, the corresponding WPs for every
atom in the low energy model must be identified.

• Find the site-symmetry group associated with every group of WPs in the
model, either maximal and nonmaximal.

• For the orbitals in the model, find the corresponding irrep under which
this group of orbitals transforms.

• Using this irrep in real space, induce the band representation in momen-
tum space for the bands associated with the atomic limit. Classify it as
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composite or elementary. If composite, find its elementary components.
Take care of exceptions as listed in [119].

• Try the different possibilities of double groups with or without TRS.

• Identify whether some of the band representations are decomposable (dis-
connected). If this is the case, calculate the possible solutions for the
compatibility relations through high symmetry lines and points in the
BZ.

• Classify all the solutions in the last step as being (p)EBRs or not. If some
of these solutions cannot be matched to a EBR or pEBR for the space
group, then the associated group of bands is topologically non trivial.

• Classify all possible non-trivial phases in the model.

This straightforward process includes the usage of the Bilbao crystallographic
server information as it will be explained in detail in the results section.

We can draw a flow diagram to depict in a more visual way the workflow
to find topological phases within the TQC approach.

To conclude this TQC summary, we mention that it is also possible to work
in a different manner. Namely, if a DFT calculation is given, it is possible to
obtain the symmetry labeling for the bands of interest at high symmetry points
and lines in the BZ. Armed with this information, compatibility relations are
solved and can be directly compared to (p)EBRs for the space group of the
material to identify their topological character. Both ways are complementary
and necessary to achieve a fruitful design of topological materials.

8.2 Other methods to classify topological phases

TQC is a relatively recent method to discriminate topological phases based on
energy band structure, although it is based on older results obtained by Zak
[120, 121]. Here we briefly discuss other methods to classify topological phases.

In its most general form, the description of topological phases is carried by
definition of topological invariants. A topological invariant is an index that
naturally arises from a conjugation class decomposition of the configuration
space for a given physical system [126]. Specifically, for a given Hamiltonian,
the parameter space could be partitioned in disjoint classes for some physical
property that allows to classify different phases. In condensed matter, we study
the energy-momentum space with the aim to analyze its band connectivity.
This band connectivity can be classified under some invariants depending on
the symmetries that are present in the system [79].

8.2.1 Ten-fold way (K-theory)

The most universal classification framework for topological phases is based in
K-theory [80]. The fundamentals of this theory are outside the scope of this
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Figure 8.1: Topological quantum chemistry workflow diagram. The starting
point is the ab initio calculation at the top.

thesis (interested readers can consult [127, 128, 129, 130]), thus we only go
through a how to use description of symmetry classifications.

We start by pointing out that fermionic systems are distinguished based on
three antiunitary symmetries: Time-reversal symmetry T, particle-hole sym-
metry C and chiral symmetry S which have the following properties (all this
section is based in [1])

THT−1 = H, T = UTK, UTU
∗
T = ±1,

C−1HC = −H, C = UCK, UCU
∗
C = ±1,

S−1HS = −H, S = Us, U2
T = 1.

(8.10)

Chiral symmetry is defined as a composed symmetry, US = UTUC . This set of
symmetries exhausts all possible nonunitary symmetries for a fermonic system
(unitary symmetries only separate Hamiltonians in block diagonal form and do
not enter in principle in this universal classification). Next ingredient to per-
form the classification is the dimension of real space d. Dimension is important
because some topological invariants depend on the parity of d [128].



CHAPTER 8. THEORETICAL TOOLS TO CHARACTERIZE A
TOPOLOGICAL PHASE 48

Class T C S δ = 0 1 2 3 4 5 6 7
A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z
AI + 0 0 Z 0 0 0 2Z 0 Z2 Z2

BDI + + 1 Z2 Z 0 0 0 2Z 0 Z2

D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0
DIII - + 1 0 Z2 Z2 Z 0 0 0 2Z
AII - 0 0 2Z 0 Z2 Z2 Z 0 0 0
CII - - 1 0 2Z 0 Z2 Z2 Z 0 0
C 0 - 0 0 0 2Z 0 Z2 Z2 Z 0
CI + - 1 0 0 0 2Z 0 Z2 Z2 Z

Table 8.1: Periodic table for strong topological insulators and topological su-
perconductors. Adapted from [1].

The group of three symmetries presented can generate ten possible combi-
nations, using triplets (t, c, s), where t and c can have values 0,±1 and s = 0, 1.
These are the strong symmetry classes for gapped fermion systems. Therefore,
at exploring systems in different dimensions, K-theory answers whether it is
possible to have a nontrivial phase in each case. In this way it yields the
topological index that describes the topological states. This information is
condensed in a periodic table for gapped systems, which includes topological
insulators and also topological superconductors [128]. We present an adapted
form in table (8.1).

First, take into account that there exists periodicity in the dimension d and
repetition of the information of the table arises after d = 8 [1].

Note also that if a topological nontrivial phase does not exist, zero is placed
in the corresponding box. Otherwise an index is given. We briefly explain what
those nonzero labels mean.

• Z : This index represent an integer number. It is related to the Chern
number (see appendix III.A for the properties of the Chern and related
quantities).

• 2Z : This index indicates that only even integers are possible values.

• Z2 : This index states that only two integer values are needed to charac-
terize different phases.

It is worth to mention that this classification is only for strong topological
phases, which means that no lattice symmetry is considered in the process.
Still, the classification of weak or crystalline topological phases is in principle
based on this framework.

Following this successful description of gapped systems in terms of antiu-
nitary symmetries, some years later an analogous description was developed
for gapless fermionic systems. This classification was accomplished, by noting
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FS1 p= 8 1 2 3 4 5 6 7
FS2 p= 2 3 4 5 6 7 8 1

A 0 Z 0 Z 0 Z 0 Z
AIII Z 0 Z 0 Z 0 Z 0
AI 0 0 0 2Z 0 Z2 Z2 Z
BDI Z 0 0 0 2Z 0 Z2 Z2

D Z2 Z 0 0 0 2Z 0 Z2

DIII Z2 Z2 Z 0 0 0 2Z 0
AII 0 Z2 Z2 Z 0 0 0 2Z
CII 2Z 0 Z2 Z2 Z 0 0 0
C 0 2Z 0 Z2 Z2 Z 0 0
CI 0 0 2Z 0 Z2 Z2 Z 0

Table 8.2: Periodic table for topological semimetals. p = d− dFS is the Fermi
surface codimension where dFS is the FS dimension. FS1 takes p at HSP and
FS2 is for p out of HSP.

that in gapless systems an important role is played by the dimension of the
Fermi surface in addition to the mentioned ingredients for the gapped case
[131]. Inclusion of Fermi level information thus allowed for the construction of
a periodic table for gapless fermionic systems, which closely parallels that of
gapped systems. An adapted version is presented in table (8.2).

Topological invariants appearing in this table have the same meaning that
those presented in the previous gapped case.

Other types of tables can be assembled by considering additional symme-
tries for the system. Including some kind of crystalline symmetry an extended
periodic table is achieved. For example, in [132, 133] reflection symmetry is
included.

This general classification will be used later to describe the materials under
study to elucidate if some variant of the nontrivial phases can exist in these
systems. We mix this with TQC results to achieve a better picture for the
possible topological phases.

8.2.2 Band filling constraints and symmetry indicators

A related method, with less predictive power but still useful, is based on band
filling and eigenvalues symmetry at high-symmetry points in the BZ [134]. The
method establishes a relation between symmetry-enforced gapless phases and
electron filling that deviates from particular values, that depends of the space
group and time reversal symmetry and interactions [135]. Ref. [134] presents a
complete table of the forms that have the insulator band fillings for each of the
230 space groups. This result imposes a necessary condition for a material to be
gapless. However, this is not sufficient to achieve well-defined materials since
additional stability information is needed, mainly extracted from experimental
studies or in its defect, from first-principles calculations [136, 135].
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Examining the table one can identify the possible values of band fillings
(average number of electrons per primitive unit cell) that yield a band insulator
structure. The unbalance of this relation opens the possibility to intentionally
design nodal phases changing some elements in the material. As we will explain
later, we use this result as a guideline to construct a family of materials based
on a pentagonal lattice with non-insulating band filling.

8.3 Calculating topological invariants: Wannier charge
centers

Up to now, we have described TQC as the central topic for topological phase
prediction. We also have presented definitions of the most used topological in-
variants that allow a clear classification of different phases. In what follows, we
will present a method to actually calculate some topological invariants that it
is of high practical use, due to its low computational cost and simple implemen-
tation [122]. We are talking about Wannier charge centers and its associated
evolution in momentum space, which gives information of the topological in-
variants in a system by graphical inspection [137, 138].

Wannier charge centers are based on the general concept of hybrid Wannier
functions (HWF) [118]. HWF can be defined as a of mixture between a Bloch
function in momentum space and a real space Wannier function. As it is well-
known, one-dimensional systems always admit a localized WF representation
in real space, independently of its topological phase, a result that cannot be
generalized to higher dimensions [116]. This idea induces to transform a general
crystal wavefunction in terms of Bloch states, such that now, one of the degrees
of freedom passes to real space as a coordinate variable. To fix the concept,
consider a Bloch state in three dimensions |ψnk〉 with its cell-periodic version
expressed as |unk〉 = e−ik·(r−R) |ψnk〉. Then, choosing z direction for the
wannierization in three dimensions, the result is [122]

|Wnlz (kx, ky)〉 =
1

2π

ˆ
dkze

−ik·(r−lzcẑ) |unk〉 , (8.11)

where lz is a layer index and c is the lattice constant along the ẑ direction.
Equation (8.11) define hybrid Wannier functions in three dimensions. It is
straightforward to define these functions in other dimensions.

Once HWF are settled, we define the central concept that reflects the topol-
ogy of materials, i.e., Wannier charge centers (WCCs). For a given direction
in real space they are defined as the expectation value of the position operator
along that direction with respect to HWF at home unit cell R = 0. Using the
same direction as above, we express the WCC for z direction as [138]

z̄(kxky) = 〈Wn0| z |Wn0〉 (8.12)

This WCC will form surfaces on the two-dimensional BZ (kx, ky) which
are known as Wannier center sheets [122] (or lines in two-dimensional hybrid
space).
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Construction of WCCs can be carried by a parallel-transport procedure
[116, 137]. This process is readily implemented in some computational codes
[138, 139] and it is not the focus of our work.

We choose this approach of WCC analysis because it is based on purely
bulk properties (Bloch and Wannier states) and is not very expensive com-
putationally speaking. Also WCCs reflect same symmetries and topological
features that a surface energy structure, respecting degeneracies and connec-
tivities [118]. Thus WCCs allow for the calculation of topological invariants
as Chern numbers and Z invariants for a wide class of TIs and topological
semimetals [122, 138].

We will illustrate the use of WCCs and its application to penta-materials
in the results section and in a respective appendix (III.D), where an example
of code input will be displayed.



Part II

Electronic, optical and transport
properties of penta-graphene
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Chapter 9

Results

9.1 Penta-graphene lattice geometry

As described by Zhang et al. [4], penta-graphene has a buckled lattice structure
composed by non-planar carbon pentagons, shown in Fig. (9.1). The space
group of this crystal lattice is P4̄21

m (#113) [25, 28], which is nonsymmorphic.
The unit cell has six carbon atoms, highlighted with a black box in Fig. (9.1)
(a). The buckled lattice structure of PG can also be described as composed of
three layers, see Fig. (9.1) (b). Notice that two of the atoms in the unit cell,
labeled C1, have coordination 4. They belong to the central layer, whereas
the other four C2 atoms have coordination 3 and form the outer layers of
PG. The difference in coordination number is obviously related to a different
hybridization: C1 atoms have a sp³ character, whereas C2 atoms are more
sp2-like. This double hybridization is rooted in the buckled structure. The
non-planarity has important effects in the mechanical properties [11] as with
phononic transport as well and possibly interfere on spin-orbit effects.

Another important consequence of this lattice structure is its nonsymmor-
phic character, which provides important restrictions to degeneracies along
high symmetry points and lines. In particular the symmetries that compose
this space group are the following 1

• Cz2 : a π rotation about a perpendicular axis with respect to the structure
plane.

• S+
4 : an improper rotation through 2π/n where in this case n = 4, which

consists of a proper rotation by the former angle followed by a reflection
in a horizontal plane of the system (x− y plane in PG case).

• S−4 : inverse improper rotation of the former operation.

1Symmetry operations are presented in the standard notation {R|v} where R denotes a
fixed point operation and v stems for a translation, which could be a lattice vector translation
or a fractional translation [25].
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Figure 9.1: a) Top and (b) side views of the PG lattice. The unit cell comprising
6 carbon atoms is enclosed in a black square. Atoms with coordination number
4 are labeled as C1, those with coordination number 3 are labeled C2.

• (Cx2 | 12
1
20) : a π rotation about the x axis of the lattice along with a

translation by the fractional vector t = (1/2a, 1/2a, 0), where a is the
lattice structure constant.

• (Cy2 | 12
1
20) : a π rotation about the y axis of the lattice along with a

translation by the fractional vector t = (1/2a, 1/2a, 0), where a is the
lattice structure constant.

• (mx−y| 12
1
20) : a mirror reflection with respect to a plane that bisects the

positive x and y axes along with a translation by the fractional vector
t = (1/2a, 1/2a, 0).

• (mx−ȳ| 12
1
20) : a mirror reflection with respect to a plane that bisects

the positive x axis and negative y axis along with a translation by the
fractional vector t = (1/2a, 1/2a, 0).

Adding the identity operation I, these symmetry operations compose the space
group of penta-graphene and of buckled pentagonal materials in general. Non-
symmorphic operations comprise half of the total amount of operations, and
thus will have great influence in the degeneracy panorama of these systems.
Conjugation classes for this space group are given by{

(I), (Cz2 ), (S+
4 , S

−
4 ), ((Cx2 |

1

2

1

2
0), (Cy2 |

1

2

1

2
0)), ((mx−y|

1

2

1

2
0), (mx−ȳ|

1

2

1

2
0))

}
and are labeled by one of the elements of the class or by a representative tag
to represent character tables (see appendix III.B).

These symmetry operations have to be enlarged for the inclusion of spin-
orbit coupling, becoming double space groups (see Part III). For PG this effect
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is rather weak and can be neglected, however spin-orbit coupling will be impor-
tant later and double groups will be used in the general treatment of pentagonal
materials. For the purpose of this part we will be using this lattice structure
as the basis input for the TB model.

9.2 First-principles calculations

We employ the Density Functional Theory (DFT) approach, using the SIESTA
ab-initio code [38], to calculate the opto-electronic properties of monolayer
PG and penta-graphene nanoribbons (PGNR). In particular, we use for the
exchange-correlation functional the generalized gradient approximation (GGA)
of Perdew-Burke-Ernzerhof [140] instead of more expensive hybrid functionals
[4], because the observed general trends in the electronic structure remain al-
most unaltered in both schemes, and only the magnitude of the band gap
is changed [4, 16]. We use a double-ζ plus polarization basis set and norm-
conserving pseudopotentials. The mesh cutoff was set to 150 Ry and the energy
shift to 0.07 eV. The Brillouin zone was sampled with a 15×15×1 Monkhorst-
Pack grid for PG and a 10×1×1 Monkhorst-Pack grid for PGNRs. A conjugate
gradient self-consistent procedure was used to relax all structures with a max-
imal force tolerance per atom of 0.04 eV/Å. These sets of parameters assured
a good energy convergence. In the case of PGNR, edges were passivated with
hydrogen in order to saturate the dangling bonds.

For the optical absorption described below, we use a 201 × 201 × 1 k-
point grid for PG and a 201 × 1 × 1 k-point grid for the PGNRs, with a 0.06
eV broadening for both structures. We also assume that the electromagnetic
radiation is incident perpendicularly to the PG sheet, i.e., with the electric
field E polarization fixed in the xy plane.

9.3 Tight-binding model

We follow the Slater-Koster approach [41] for orthogonal tight-binding calcu-
lations with the aim of providing the simplest model with a good description
of the electronic and optical properties. Our first concern is the orbital basis
choice. Penta-graphene only has carbon atoms, so we take the usual basis se-
lection of one s orbital and three p orbitals per atom. There are 6 atoms in the
unit cell of PG; thus our basis for the S-K Hamiltonian has 24 orbitals. Note
that previous parameterizations with fewer orbitals present a poor agreement
with DFT bands; only consideration of the full sp3 basis provides a reasonable
accord [16]. Our goal is to find a set of parameters which gives not only a good
depiction of the band structure, but also of the optical properties, so nanos-
tructures based in PG, such as nanoribbons and nanotubes could be described
within this approach in a computationally affordable manner.

Since we follow the Slater-Koster scheme we have to assign to the orbital
integrals the corresponding parameters. For PG it is already known that a
simple scaling of a graphene-based parameterization yields a qualitative agree-



CHAPTER 9. RESULTS 56

ment, and a fit to DFT bands is needed to improve this description [16]. With
this purpose we analyze the bonding structure and geometry of PG. As dis-
cussed in the previous section, in the 6-atom unit cell of PG there are two
carbon atoms with coordination 4 and sp3 hybridization, i.e., with four bonds
each, labeled C1, and four carbon atoms with three bonds each, labeled C2,
with sp2 character. This partition leads us to treat each group of atoms sepa-
rately with respect to the S-K parameterization. The basic idea is that these
two groups of atoms not only have different nearest-neighbor (NN) distances,
but also different hybridizations. From Fig. (9.1) we see that the first NNs
for C1 atoms are four C2 atoms. In turn, the C2 atoms only have one NN, a
C2 atom which is in the same layer. Therefore, we can assign a group of first
NN parameters for each group. We parameterize the C1-C2 interaction with
the S-K integrals V C1C2

ssσ ,V C1C2
spσ ,V C1C2

ppσ ,V C1C2
ppπ , and the C2-C2 interaction with

integrals V C2C2
ssσ ,V C2C2

spσ ,V C2C2
ppσ ,V C2C2

ppπ . On the other hand, for the C2 atoms
we already have included up to second NNs. We consider also the hopping
between a C2 carbon atom in one of the external planes and another C2 atom
from the opposite one, which we have labeled as C2′ to distinguish it from the
first NN C2-C2 pair. This interaction is indeed a third NN interaction, and we
can assign to it the corresponding SK integrals V C2C2′

ssσ ,V C2C2′

spσ ,V C2C2′

ppσ ,V C2C2′

ppπ .
This exhausts the basic interactions for our model. We have checked that

considering the next NN for the C1 atoms, i.e., another C1-C2 coupling, does
not improve appreciably our results, so in fact we have a geometrical cutoff
that includes interactions up to distances equal or smaller than the 3rd NN
interactions between C2 atoms.

In summary, we have twelve S-K hopping parameters with contributions
up to first NN for the C1 atoms and up to third NN for the C2. Finally, we
consider the onsite energies associated with each atom and orbital. Specifically,
we assign four onsite energies, EC1

s , EC1
p , EC2

s , EC2
p corresponding to s orbitals

and p orbitals for each group of atoms respectively. This amounts to a total of
sixteen S-K parameters in our model.

The bands are usually fitted at the high symmetry points and special lines,
which are in principle the main contributions to the optical absorption. Such
fitting is done with respect to the bands obtained within the DFT approach.
However, we have verified that the four bands closer to the gap may have a
very good agreement with the DFT bands, but without achieving a similarly
acceptable description of the optical absorption.

We have found that there are local maxima and minima in the dispersion re-
lations, especially in the valence band, which cannot be fitted with this reduced
set of parameters. We have explored several parameterizations along these spe-
cial lines, and despite obtaining very good fits to the conduction bands, all fail
to give the shape of the valence bands, which are relevant to the fit of the
optical spectrum. Since the optical properties depend on all the states over
the Brillouin zone (BZ), not only over the special lines, we decided to per-
form a fit to the energy dispersion relation over the entire 2D BZ, with 8000 k
points. However, this did not improve the optical absorption results obtained
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by our initial method. Therefore, it is necessary to further correct the param-
eter set considering the optical absorption in order to describe optimally both,
the electronic structure and the optical response. Details of our computational
procedure are described in the additional parameterizations section below. The
final values for the TB parameters are presented in Table 9.1.

EC1
s EC1

p EC2
s EC2

p

−6.433 −4.311 −2.081 6.506

V C1C2
ssσ V C1C2

spσ V C1C2
ppσ V C1C2

ppπ V C2C2
ssσ V C2C2

spσ

−3.555 2.246 3.903 −0.262 −11.731 −10.017

V C2C2
ppσ V C2C2

ppπ V C
′2C2

ssσ V C
′2C2

spσ V C
′2C2

ppσ V C′2C2
ppπ

15.490 −1.762 −2.504 1.080 −3.247 −0.921

Table 9.1: Slater-Koster tight-binding parameters (in eV) for PG.

9.4 Electronic properties of PG

In the left panel of fig. 9.2 we present the TB band structure obtained with the
parameters given in table 9.1 along with the bands calculated using the SIESTA
code for PG. It can be seen that there is a very good overall agreement between
them. We have been able to reproduce the conduction band minimum along
the Σ line, among other features.

As mentioned before, it is feasible to obtain an excellent fit to the four
bands of interest, especially the conduction bands, with the same number of
parameters, but failing to reproduce other valence bands at lower energy. In
particular, the maxima and minima of the valence bands in the Σ direction
cannot be reproduced with this model. This wiggling of the valence bands also
appears in other low-symmetry points of the BZ inside the 2D region enclosed
by the special symmetry lines. We have found that the appearance of local
maxima and minima in the DFT calculation, specially in the valence bands, is
the reason why the optical spectrum is not even qualitatively correct. We opted
for a compromise solution, maintaining the overall agreement of the bands but
without losing the description of the optical properties while keeping the same
number of parameters.

Our election of tight-binding parameters can be supported with the orbital
decomposition of the density of states (DOS) for monolayer PG, shown in the
right panel of fig. 9.2. The DOS calculation was performed with SIESTA with
a dedicated 251×251×1 k-point grid for this particular calculation along with a
energy broadening of 0.010 eV. The figure also shows the orbital decomposition
of the DOS in s and p orbitals. As expected [16], these four bands mainly have
a p character, more specifically pz, albeit with a non-negligible contribution of
the px and py orbitals, which are equivalent. In addition, we have identified
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Figure 9.2: Left panel: PG energy band structures near the Fermi level calcu-
lated with DFT (black dotted lines) and tight-binding (red solid lines). Right
panel: DFT-calculated penta-graphene total DOS (black solid line), and its de-
composition in s-orbital (green), px/py-orbitals (blue) and pz orbital (orange)
projected DOS

the DOS peaks corresponding to high symmetry points and lines within the
BZ, shown in the inset of the figure, with the aim to elucidate the symmetry
of the BZ points with a high density of states. This can serve as a guide to
understand the optical features of the material.

9.5 Optical properties of monolayer PG

As in the case of the electronic band structure, we compare the optical ab-
sorption coefficient computed within the DFT approach with that calculated
with the tight-binding approximation. In this case we use the same k-space
grid and broadening energy in both calculations, TB and DFT. The results are
shown in fig. 9.4. There are three marked peaks in the low energy region of
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the DFT optical spectrum. We have labeled them according to the symmetry
of the relevant states, as in the DOS plot. The lowest peak (∼ 2.45 eV), is
due to transitions near the band gap; it is dominated by contributions from
a region around the ∆ line, where the conduction and valence band states
have an energy difference ∼ 2.5 eV. The next peak (∼ 3 eV) has contributions
from the Σ line across the BZ, where many transitions are allowed due to the
low symmetry. The last and higher peak in this energy window (∼ 3.8 eV),
can be related to the ∆ line, where we have several allowed transitions due to
the low symmetry present in this line, similar to those from the Σ direction
and the peak near 3 eV. Additionally, we have checked that the Γ point does
not have a major weight in this peak; its height is due to other low-symmetry
points involving the local maxima and minima of the valence bands. Additional
symmetry analysis gives us another interesting property related to the optical
response of PG. Due to the group of the wave vector at the high symmetry
points X and M of the BZ, we obtain a selection rule that forbids transitions
from the valence to the conduction band at these two points. This is because
of the different parities of the irreducible representations that are coupled by
the momentum operator, giving a direct product that does not contain the
invariant irreducible representation of the group [27]. Moving away from these
points, the restriction is relaxed; the shoulder at ∼ 4 eV has contributions of
transitions from the Σ and Y lines around M and neighboring low-symmetry
points.

The TB parameterization reproduces the main features in the optical ab-
sorption spectrum, as shown in Fig. (9.4). The two higher energy peaks, at 3
and 3.8 eV, appear at the same energy; the lower peak is blue-shifted around
0.3 eV. However, the intensities are not well described by the TB model. The
lower and higher energy peaks show an appreciable difference in intensity com-
pared to the DFT result. The central peak does match the DFT intensity. The
dip between ∼ 2.5 eV and ∼ 3 eV peak is substantially reduced. This is due to
the fact that these two peaks stem from transitions involving the local maxima
and minima of the valence bands, difficult to fit with this TB basis set. We
would like to emphasize that our parameterization of the energy band struc-
ture, which uses the optical absorption as a criterion for its validity, manages
to provide a remarkably good description of both features.

9.6 Additional parameterizations

As mentioned above, we have performed a systematic search for parameter-
izations that describe well the electronic structure near Fermi level for PG.
This was accomplished by the model presented before and by some additional
procedures that we explain here.

We started by performing a fit of the bands along the high symmetry lines.
No constraints are imposed on the parameters and 8 bands are fitted by a least
squares method. This yields a parameter set that we call TB1, given in Table



CHAPTER 9. RESULTS 60

9.2. The corresponding bands are shown in fig. 9.3 in blue, along with the DFT
bands, plotted as a reference. With this set we start a new fit of the parameters,
now in a two-dimensional (2D) grid over the entire Brillouin zone. This is done
incrementally: first we take a 2000 k-point grid to adjust the bands, and we
increase successively to 4000 and 8000 k-points, which were enough to achieve
convergence to the energy dispersion relations; see fig. 9.3 in magenta. With
this set, that we call TB2 we start a manual correction procedure with the aim
of describing the optical properties. With this purpose, we use the total DOS
as a guide to elucidate the main contributions to the optical spectra.

It can be seen that both sets of parameters allow to obtain a good de-
scription of the four bands closer to the gap. In fact, the conduction bands
are specially well described, presenting the minima along the ΓX and ΓM di-
rections, as in SIESTA results. However, the valence bands are not so well
described, particularly below −3 eV. Even the two highest valence bands are
not well reproduced. Wiggling of the DFT valence bands produce contributions
to the optical spectra that cannot be reproduced with these TB parameteri-
zations, as it can be observed in fig. 9.4, where we present the absorption
coefficient calculated with the sets TB1 and TB2, as well as with the SIESTA
code. As discussed in the past section, we find that the optimal procedure is to
correct the parameter set in order to attain the best agreement to the optical
spectrum.

EC1
s EC1

p EC2
s EC2

p

−19.99 −6.423 −5.316 7.223
V C1C2
ssσ V C1C2

spσ V C1C2
ppσ V C1C2

ppπ V C2C2
ssσ V C2C2

spσ

−8.143 4.593 3.924 −0.162 −11.787 −7.348

V C2C2
ppσ V C2C2

ppπ V C
′2C2

ssσ V C
′2C2

spσ V C
′2C2

ppσ V C′2C2
ppπ

11.207 −2.832 −2.478 −0.037 −4.058 −0.722

Table 9.2: Set TB1 of Slater-Koster tight-binding parameters (in eV) for PG.

EC1
s EC1

p EC2
s EC2

p

−6.433 −4.311 −2.081 7.006
V C1C2
ssσ V C1C2

spσ V C1C2
ppσ V C1C2

ppπ V C2C2
ssσ V C2C2

spσ

16.589 −1.862 −2.504 −1.080 −3.447 0.921
V C2C2
ppσ V C2C2

ppπ V C
′2C2

ssσ V C
′2C2

spσ V C
′2C2

ppσ V C′2C2
ppπ

−3.555 2.246 3.903 −0.262 −11.731 −10.017

Table 9.3: Set TB2 of Slater-Koster tight-binding parameters (in eV) for PG.
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Figure 9.3: PG energy band structure near the Fermi level calculated with
DFT (black dotted lines), and the two TB parameters sets, TB1 (blue lines)
and TB2 (magenta lines).

9.7 Penta-graphene nanoribbons

In this section we present the band structures and optical absorption spectra of
a particular type of penta-graphene nanoribbons (PGNRs) as a means to test
our model in nanostructured systems. In particular, we choose PGNRs with
sawtooth-like edges [141], shown in fig.9.5. The reason for this choice is that
PGNRs with such edges are not magnetic [142, 143], so we can concentrate
in the validity of the tight-binding parameterization focusing on size effects.
PGNRs are labeled with the number of longitudinal chains across its width.
For example, fig. 9.5 depicts a 11-PGNR. Obviously, the symmetry of PGNRs
is reduced with respect to PG. Since nanoribbons have translation symmetry
in only one direction, we have to resort to the so called rod groups to describe
their symmetry. The PGNRs studied in this work belong to the rod group
labeled P1121 [144]. It has the identity transformation plus a C2 rotation
around the periodic axis of the ribbon combined with a glide plane translation
by 1/2a, where a is the lattice constant vector in the direction with translation
symmetry.
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Figure 9.4: Optical absorption for PG calculated with DFT (black dotted lines)
and with the two tight-binding parameterizations TB1 (blue lines) and TB2
(magenta lines).

Figure 9.5: 11-PGNR lattice structure. The translational unit cell is marked
between two black lines. The labeling based in longitudinal chains is herein
illustrated.
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9.7.1 Band structure of PGNRs

Ultra-narrow nanoribbons present strong lattice relaxation effects, so we fo-
cus on wider ribbons, for which such effects are not so important and can be
described with a small modification of the hopping parameters at the edges.
The translational unit cell employed for the calculations is marked with two
black lines in fig. 9.5. We use the TB parameterization of monolayer PG and
a hard wall boundary condition for the edges, which means that the dangling
bonds of the edge atoms are modeled by hopping matrix elements set to zero.
In fact, this is analogous to the inclusion of hydrogen atoms at the edges, but
more economical from the computational viewpoint. Since these unsaturated
orbitals produce deformations at the edge bonds, we change the corresponding
hoppings, increasing their value in 10 % in order to mimic such geometrical
changes.

Figure 9.6 shows the band structures calculated with SIESTA and TB for
two particular nanoribbons, namely, 17-PGNR and 23-PGNR, respectively.
The band structures obtained by both, the ab-initio and the TB method, show
a good agreement. Most remarkably, the low-energy conduction subbands show
the indirect minima appearing in the ΓX line. Valence subbands lack some of
the fine details concerning some accidental degeneracies that occur along the
aforementioned ΓX line. These differences can be easily understood, since the
band structure of bulk PG did not reproduce accurately the valence bands
of the DFT calculation. On the other hand, since the ribbons have a lower
symmetry with respect to the bulk structure, we expect some decrease in the
degeneracy at high symmetry points in the Brillouin zone. This can be seen at
Γ and X, where subbands tend to avoid degeneracy in contrast to the case of
the bulk. This is observed in both calculations, DFT and TB.

9.7.2 Optical absorption of PGNRs

We have additionally computed the optical absorption for nanoribbons with
different widths, namely, 17-PGNR to 23-PGNR. In this case we consider that
the electric field of the EM radiation oscillates along the nanoribbon axis. In
order to make a comparison between both approaches and test the TB pa-
rameterization, we have also employed a first-principles method. The optical
absorption is also computed employing eq. (5.13) using the same external
electric field configuration, k-space grid and energy broadening in the TB cal-
culation as in the DFT. The included nanoribbon subbands are those stemming
from the bulk bands considered for the monolayer optical absorption.

Results for optical absorption spectra in both approaches are presented in
fig. 9.7. For the sake of comparison, we restrict the spectra up to 4 eV, given
that the DFT peak at this energy is not well reproduced in the TB calculation.

There is a very good overall agreement in the visible and near ultraviolet
photon energy range in both, TB and DFT spectra, quantum size effects can be
observed as smooth ripples in the spectra. In fact, as the width of the ribbon
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Figure 9.6: Energy band structures for 17-PGNR and 23-PGNR. Top panels
(black lines) are computed with SIESTA; bottom panels (red lines) are the TB
results.

increases, the features corresponding to the 2D peak at 3 eV emerge more
clearly. In view of the validity of the TB parameterization, the description of
the optical properties is quite good. In particular, the evolution of the low-
energy peak with the width of the nanoribbon is correctly described.

�In summary, we have developed a tight-binding parameterization for penta-
graphene that provides a very good description of the opto-electronics proper-
ties of this material, as it can be seen by comparing the tight-binding calculated
magnitudes to the first-principles results. Our choice of parameters was guided
by the existence of two types of hybridization in PG: we assigned different
parameters to atoms with different hybridization, and set a geometric cutoff
corresponding to third-nearest neighbor interactions for the C2 atoms. The
validity of the basis and parameterization was substantiated by the orbital-
resolved DFT calculated density of states of PG and by the agreement of
the energy bands and optical spectrum calculated within the TB and the
DFT approaches, respectively. This parameterization was also employed to
model PG nanoribbons with non-magnetic edges, achieving a good description
of the quantum-size effects and the recovery of bulk features with increasing
widths. We additionally performed a symmetry analysis of the bands, iden-
tifying the space group structure of PG and elucidating the contributions of
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Figure 9.7: Optical absorption for 17- to 23-PGNRs calculated with (a) TB;
and (b) DFT (SIESTA). For the sake of clarity each curve is shifted a fixed
amount.

different states to the prominent peaks of the optical spectra. Our parameteri-
zation can be of interest to model further physical properties of penta-graphene
based nanostructures, for which a first-principles approach is computationally
unaffordable.�

9.8 Thermoelectric properties of penta-graphene

Thermoelectric physics is nowadays a very broad field with intense research
efforts due to the implications it can have in energetic applications [59]. Dis-
covering new materials with good thermal to electrical conversion ratio becomes
thus highly desirable and useful for energy harvesting [145].

In this context, and following the growing interest for this type of ther-
moelectric materials, we analyzed the response of PGNR under a particularly
convenient device configuration. The geometric disposition of the system is
presented in the following diagram
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PGNR PGNRBL-PGNR

 

The device consists of two electrodes composed in this case of penta-graphene
nanoribbons. with temperature reservoirs kept at two different temperatures
T1and T2 respectively. This generates the temperature gradient across the cen-
tral region where induced thermal current goes through. This central region
is composed of a bilayer penta-graphene ribbon with the electrodes attaching
only to one of the layers (irrespective of which one in principle).

The selection criterion for this particular setting was guided by the general
principle that, in order to have a good thermoelectric material, the phononic
contribution to thermal conductivity has to be minimized, while maintaining
an acceptable electronic conductivity [56]. Thus, to reduce this conductivity
within the central region, a physical cutoff barrier was designed in the form
of a bilayer flake. This has demonstrated to decrease substantially the lattice
thermal conductivity κph in nanodevices [58].

For the thermoelectric analysis we have to calculate transport properties
within the recursive GF approach outlined in the theoretical fundamentals
part and in appendix II.B. This method uses a tight-binding model for the
transport region and electrodes in order to compute the transmission function
for the system [53].

We have already presented the results for monolayer PG nanoribbons in
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Figure 9.8: Band structure for bilayer penta-graphene in tight binding and
DFT.

previous sections. So we will use this model for the electrode zones, where both
electrodes are considered as equivalent. It is still needed a parameterization for
the bilayer-PGNR at the central zone. We do this extending the tight-binding
model for monolayer PG in the most straightforward way: by adding hopping
parameters to represent the coupling between the two layers. We choose to
add two new S-K parameters VB1 and VB2, which denote the hopping between
C1 to C1 atoms and C2 to C2 atoms at different layers, respectively.

We have adjusted these two free parameters to a DFT calculation of an
infinite bilayer of PG. We present the band structure results for both DFT and
TB in fig. 9.8.

The obtained S-K additional parameters for bilayer PG are presented in
the table below

VB1(eV ) VB2(eV )

0.24 -0.11
.

The rest of TB parameters, corresponding to intralayer hopping are the
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Figure 9.9: Transmission function for monolayer PGNR and a bilayer-PGNR
with 6-slices in the central region.

same as in the monolayer case. We now construct a Hamiltonian for both
electrodes as monolayers PGNR and subsequently a finite bilayer flake Hamil-
tonian with a determined length and width as inputs for the numerical routine
[146].

In a first stage we have calculated the transmission as a function of energy
for this setting as it is presented in fig. 9.9. Here we can observe two trans-
missions, the red line represents the monolayer transmission and black line
depicts the bilayer transmission in the configuration mentioned above. In the
monolayer case a quantized response with respect to energy can be appreciated.
This is due to the opening and closing of conduction channels as we sweep the
energy range. For the bilayer case, we appreciate that the quantized response
is less definite, and several resonances arise due to a more complicated channel
distribution in the bilayer system.

Once the electronic transmission is available, we can compute the ther-
moelectric coefficients. This is a straightforward task, since all quantities are
expressed in terms of one integral (see equation 6.15) as was presented in the
theoretical preliminaries section (see equations 6.16).

We obtained, for a particular length and width of the central region, the
results presented in fig. 9.10.

We can observe that although PG is not a good electrical conductor (it is an
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Figure 9.10: Thermoelectric coefficients for a 6-slice bilayer PGNR.

insulator indeed), thermoelectric performance is enhanced due to the electronic
thermal conductivity reduction. A good Seebeck coefficient is obtained for the
thermopower production of this configuration, in comparison with, for example,
an analog geometrical setting based on graphene [58].

An important thing to mention at this point is related to the the ZT results.
The magnitudes of this figure of merit are unreal, since the lattice thermal con-
ductivity is not considered, only the electronic thermal conductivity is included.
This is mainly due to the lack of a phononic band structure calculation similar
to the electronic case. This phonon contribution can be computed by first-
principles methods [57] or tight-binding models [56], but at this time is out of
the scope of this work. However, we can give a rough estimation for this ther-
mal conductivity in the PG case, by looking at the graphene case. Following
[58] we found that the phononic contribution for κ in a graphene based system,
is of the order of κph ≈ (0.15 to 0.28 nW/K). This can be taken as a upper
bound for the PG case since in this case we expect greater anisotropy in the
thermal conductivity due in part to different bond length and hybridizations
[147].

Taking into account this contribution, we estimate that the figure of merit
ZT will be at least of the order of unity, which is an acceptable starting value
[59, 145]. Overall, this are promising results for the thermoelectric performance
of PG. Also this could be improved by the use of other kinds of pentagonal
materials.
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Chapter 10

Results

10.1 Symmetry analysis

Following the guidelines of the TQC approach, the fundamental starting point
for the analysis of penta-materials is the knowledge of their symmetry group.
The only formal requisite we impose to this class of materials is that their space
group (P 4̄21mm/no. 113) remains unaltered. Specifically, this space group is
nonsymmorphic; it includes a glide plane with a fractional translation vector
given by t = (a/2, a/2, 0), where a is the lattice constant of the material (see
section 10.1 for a description of the symmetry operations). In table (10.1) we
present a summary of the space group data. The nonsymmorphic character
has direct consequences on the energy band structure in momentum space, as
we will see below.

The topological nontrivial character of a material is directly related to the
behavior of high-symmetry points (HSP) and high-symmetry lines (HSL). If
a reciprocal wavevector k is a HSP or belongs to a HSL, there are certain
operations of the space symmetry group G (modulo a reciprocal wavevector)
that leaves it invariant. This set of operations form the so-called little group
of k, Gk, which is a subgroup of G [25]. The two-dimensional BZ belonging to
the space group no. 113 is presented in fig. 10.1. The most relevant set of k

C1 C2 C3 C4 C5 C6 C7

A1 1 1 1 1 1 1 1
B1 1 1 -1 1 -1 1 -1
B2 1 1 -1 -1 1 1 -1
A2 1 1 1 -1 -1 1 1
E 2 -2 0 0 0 2 0
Ē2 2 0 −

√
2 0 0 -2

√
2

Ē1 2 0 −
√

2 0 0 -2
√

2

Table 10.1: Character table for point group isomorphic to space group no. 113

71
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C1 C2 C3 C4 C5

M1 1 1 1 i -i
M2 1 -1 -1 -i i
M3 1 -1 1 i -i
M4 1 1 -1 -i i
M5 2 0 0 0 0

Table 10.2: Character table for group GM .

C1 C2

Y1 1 ω
Y2 1 ω∗

Table 10.3: Character table for group GY . ω = eikY ·t.

points in this group for the subsequent analysis are Γ, X, M , and the Y -line.
Let us begin with Γ. All the transformations of the space group leave this

point invariant, so its little group is isomorphic to the space group of the sys-
tem (table 1). With respect to X, the symmetry transformations that leave
the point invariant are I, C2z, (Cx2 | 12

1
20), (Cy2 | 12

1
20). Therefore, there are three

equivalence classes for GX , and in principle the same number of irreps. How-
ever, using the

∑
h2
l = n constraint [27], where hl is the dimension of the l-th

irrep and n = 4 is the order of the group, we obtain that only a two-dimensional
irrep can exist. This irrep is labeled as X1. For the M point, the invariant op-
erations are I, C2z, S−4 , S+

4 , (Cx2 | 12
1
20), (Cy2 | 12

1
20), {mx−y| 12

1
20},{mx−ȳ| 12

1
20}.

Thus, M is invariant under the complete space group G, so GM ∼= G. How-
ever, as k 6= 0, we have a phase of eikM·t that is present in the wavefunction
at momentum space. As

∑
h2
l = 8 it follows that h1 = h2 = h3 = h4 = 1

and h5 = 2. The character table for this little group is given in table (10.2),
that includes some complex characters due to the nonsymmorphic nature of the
group. Finally, the symmetry transformations for the Y line are I, (Cy2 | 12

1
20).

Since we have two classes with only one element each, there are two irreps.
The corresponding character table is shown in table (10.3), which also shows
some complex characters.

The former data for the little groups allows for the description of degen-
eracies at these HSPs and HSLs. We thus analyze all points listed above. The
Γ point has one- and two-dimensional real representations and then no TRS
constraint is necessary. At X there is only one irrep with dimension two; there-
fore, this point always has a two-fold degeneracy for a spinless system. The
M point has four complex-valued representations and one real-valued repre-
sentation. TRS forces us to combine these four irreps in two pairs of conjugate
physical irreps. This process yields pairs M1 +M4, M2 +M3 and real M5. All
three physical irreps are two-dimensional. Thus, as long as TRS holds and the
space group is nonsymmorphic, the energy bands at this point will be two-fold
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degenerate. Finally, imposing TRS at the Y line we are left with only one pos-
sible physical irrep, Y1 + Y2, which is also two-dimensional. Therefore, every
point located at Y has a two-fold degeneracy. It is worth to notice that the
Y line, along with the X and M points, comprise all the nonequivalent points
at the BZ boundary. As there is a two-fold degeneracy in each case, it occurs
a two-fold band touching over the entire BZ perimeter. This phenomenon is
known as a nodal-line degeneracy [148].

If the spin degree of freedom is taken into account, the first trivial conse-
quence is the doubling of the spinless original degeneracy. In this case, the
trivial addition of spin yields a four-fold degeneracy along the nodal line. A
more interesting scenario arises when SOC is included. Symmetry considera-
tions must be extended to include double groups [25, 27]. Consequently, the
analysis for the little groups should be performed again, and the bands should
be relabeled according to the new spinorial irreps.

Let us proceed with the analysis. The little group of the Γ point, GΓ,
is enlarged to embrace two new spinorial irreps labeled by Γ6 and Γ7; see
Appendix III.B for the character tables of all the double groups used in this
work, and Table III.B.1 for this particular group. As we can see, these two
irreps are two-dimensional, which implies that the maximal degeneracy at this
point is two. As we saw above, the X point is described by a unique two-
dimensional irrep without spin; the inclusion of SOC enlarges the character
table. This can be easily seen using the basic relation

∑
h2
l = 6, where the

solution is given by h1 = 2 and h2 = h3 = h4 = h5 = 1. Thus, four new one-
dimensional complex representations are added with respect to the spinless
case. The character table for this group is presented in Table III.B.2. If TRS
holds, these irreps are joined in conjugate pairs, giving two possible physical
irreps, namely, X2 +X4 and X3 +X5, both two-dimensional. This last result
implies that degeneracy is lifted, as in the Γ point, splitting the group of four
bands into two pairs of bands. For theM point, the double group includes now
two new spinorial irreps M6 and M7, both two-dimensional. The character
table for GM is presented in table III.B.3. Again we have complex valued
irreps. Under TRS these two irreps have to be paired in a single physical irrep,
denoted as M6 +M7. This irrep is four-dimensional; being the only option for
the spinful case, we conclude that theM point is unaffected by the inclusion of
SOC, maintaining the four-fold degeneracy for the energy bands. Finally, the
double group for Y line has two more irreps, Y 3 and Y 4, as presented in the
character table III.B.4. These two irreps are complex and one-dimensional. As
in the previous cases, TRS implies the pairing of both irreps in the physical
irrep Y 3 + Y 4, forming a two-dimensional irrep. Therefore, as in Γ and X,
the possible four-fold degeneracy is lifted, yielding two stick-together, two-fold
degenerate bands, along the whole line.

In summary, we have shown, based only on symmetry grounds, that the
boundary nodal line disappears under SOC, leaving only a point-like degener-
acy at M . The nodal character of this point will be later analyzed.

We finish the exploration of symmetries in penta-materials by relaxing time-
reversal invariance. If TRS is broken, single complex irreps can be physical
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Figure 10.1: a) 2D projection of Wyckoff positions and b) 2D Brillouin zone
for space group no. 113

representations without the need of coupling them in conjugate pairs. This has
straightforward implications in the degeneracy landscape of the energy bands,
with or without SOC. If TRS is absent and no SOC in considered, the following
consequences can be deduced: (i) The Γ point is still four-fold degenerated; (ii)
The X point becomes non-degenerate; (iii) M changes its degeneracy from
four-fold to two-fold; and finally, (iv) at the Y line we find non-degenerate
bands, implying the disappearance of the nodal line for this case.

Additionally, in the SOC plus TRS breaking case we can deduce the follow-
ing: (i) at Γ nothing happens, since all irreps are already real; however, (ii) the
conjugate pairs formed at X under TRS break apart in the single complex one-
dimensional irreps X2, X4, X3, X5. Therefore, all bands are non-degenerate
at this point. The M point, which had a protected four-fold degeneracy due
to TR and nonsymmorphic symmetries, ends up with a pair of two-fold de-
generated bands. Finally, the degeneracy of the Y line is lifted, leaving four
non-degenerate bands for each group of the eight bands occurring in the spinful
model.
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I C2
2 Ī C̄z2

A 1 1 1 1
A′ 1 -1 1 -1
Ē1 1 -i -1 i
Ē2 1 i -1 -i

Table 10.4: Character table for the 4e WP site-symmetry group.

10.2 Topological analysis

To apply the topological analysis based on the symmetry description given
in the previous section, we need to establish a model for the relevant energy
range, namely, the vicinity of the Fermi level. All the penta-materials presented
here have the pentagonal lattice of PG as a basic structure (fig. 9.1), which
has six carbon atoms in its unit cell, four of them with coordination 3 and
the other two with coordination 4. In terms of Wyckoff positions (WPs), the
atoms with coordination 3 are located at a nonmaximal 4e WP, and those
with coordination 4 are allocated in a maximal 2a WP. Figure 10.1 presents a
graphical description of WPs for this particular space group.

With the WPs of the atoms identified, the real space description is com-
pleted enumerating the orbital components for each atomic site. The most
important contribution for the considered penta-materials comes from the pz
orbitals, and in particular from atoms at the 4e WP. We present a minimal
model for the topological analysis based on the four pz orbitals at the 4e WP.
Extensions to this model, including additional atoms, either adsorbed or as
substitutions, can also be important and may involve other combinations of
atomic orbitals. However, in terms of the essential topological behavior the
main results are not modified, so we rely on this minimal model and discuss
the necessary additions when be appropriate.

Once the real space model is complete, it has to be translated to momentum
space, with the aim to compute its induced band representation and the sub-
sequent topological characteristics. To calculate the corresponding band rep-
resentation, the site-symmetry group (SSG) related to the 4e WP [119] should
be identified. This group is composed of two operations, I, and {mx−y| 12

1
20}.

Its character table is given in table (10.4) where we are only considering the
first two columns and rows for the single-valued SSG. In a first stage we ig-
nore spin-orbit coupling (SOC) and assume that TRS holds, which implies the
use of physical irreducible representations [91]. The pz orbitals transform as
the A′ irrep of this SSG. This information allows to define an induced band
representation which gives as a result the symmetry (irrep labels) of the four
bands throughout the entire BZ, as shown in table (10.5). Here we only show
explicitly the TR symmetric points Γ, X and M .

A straightforward observation is that this band representation is composite
[91]. This is to be expected, since our model is based on pz orbitals located at
non-maximal WP. Nevertheless, we can express this band representation as a
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BZ point A′ ↑ G
Γ Γ1(1)⊕ Γ3(1)⊕ Γ5(2)
X 2X1(2)
M M1(1)M3(1)⊕M5(2)

Table 10.5: Band representation for 4e WP with TR and no SOC.

BZ point Ē1 + Ē2 ↑ G
Γ 2Γ̄6(2)⊕ 2Γ̄7(2)
X 2X̄2X̄5(2)⊕ 2X̄3X̄4(2)
M 2M̄6M̄7(4)

Table 10.6: Band representation for 4e WP, with SOC and TR.

BZ point 2Ē1 ↑ G
Γ 2Γ̄6(2)⊕ 2Γ̄7(2)
X X̄2(1)⊕ X̄3(1)⊕ X̄4(1)⊕ X̄5(1)
M 2M̄6(2)⊕ ¯2M7(2)

Table 10.7: Band representation for 4e WP with SOC and no TR

sum of EBRs coming from maximal WP: A′ ↑ G = (2a) ↑ G⊕(2c) ↑ G (see [28]
for the complete list of EBRs for the group). The most important conclusion
for this model is that all sets of bands are two-connected, and therefore all
bands are topologically trivial. Particular examples of this phase show some
variations of the electronic character of the material, depending on the specific
band filling. The inclusion of SOC can lead to the appearance of additional
phases in these materials. This implies the use of a double group (double SSG)
description, as mentioned before. The character table for the corresponding
double group is given in table (10.4). Due to TRS, we apply the conjugate pair
procedure and join the E1 and E2 irreps in a single E1 +E2 physical irrep for
the spinful orbitals. This two-dimensional irrep induces a band representation
in reciprocal space shown in table (10.6).

The above band representation takes into account eight bands arising from
the spin degree of freedom. Additionally, by exploring the character of all the
EBRs with TRS for this double group, it can be verified that all sets of bands
are connected, with a maximum of 4-connected bands (see [28]). Thus, all
bands are trivial in this case. Still, we have some SOC-induced transitions
at the HSP and HSL that modify the degeneracy order as mentioned in the
above symmetry analysis, this has consequences on the electronic properties of
particular penta-materials (see next Section).

Finally, we consider TRS breaking, so complex valued irreps are allowed.
With the same induction procedure employed above, we found the band rep-
resentation shown in table 10.7.
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HSP path Character
Γ̄6 → X̄2 ⊕ X̄4 → M̄6 trivial
Γ̄7 → X̄3 ⊕ X̄5 → M̄7 topological
Γ̄6 → X̄3 ⊕ X̄5 → M̄6 topological
Γ̄7 → X̄2 ⊕ X̄4 → M̄7 trivial
Γ̄7 → X̄2 ⊕ X̄4 → M̄6 topological
Γ̄6 → X̄3 ⊕ X̄5 → M̄7 trivial
Γ̄7 → X̄3 ⊕ X̄5 → M̄6 trivial
Γ̄6 → X̄2 ⊕ X̄4 → M̄7 topological

Table 10.8: Topological phases

This is a composite band representation formed by two groups of four bands.
We study only one group, since the other one has exactly the same structure.

As it is well-known, degeneracy is lowered by TRS breaking. This is re-
flected in the band representation which becomes decomposable, a signal for
the presence of a topological set of bands [91, 119, 124]. If an EBR is decompos-
able, then different connectivity paths can appear among the high-symmetry
points and lines through the BZ, which implies different topological phases in
the material. The different topological realizations of the band representation
correspond to all possible solutions of the compatibility relations between HSP
and HSL over the BZ. We have carried out this process for a two-dimensional
BZ of the space group of penta-materials, finding the connectivity solutions
presented in table (10.8).

These sets of bands have to be compared with the EBRs that the space
group induces in the momentum space. As a general rule, if a band representa-
tion can be expressed as the combination of some EBRs, then the set of bands
is trivial [119]. Comparing the results for the band representations above with
all possible ERBs, it can be seen that some sets cannot be expressed in terms
of EBRs; in conclusion, such bands are topological. The labeling presented in
the former table (10.8) depicts this situation.

There are four different possible connectivities that depend on the particular
characteristics and band filling of the material. We can build a toy model to
grasp the general behavior of these phases by fixing the energy ordering of bands
(irreps) to some particular sequence at HSP and HSL. The possible outcomes
are depicted graphically in fig. 10.2. There are three phases presenting nodal
degeneracy and one phase with gapped character. The knowledge of the specific
band filling is necessary in order to classify this topological behavior as semi-
metallic or insulating. This is strongly material-dependent, making it necessary
to analyze the specific cases. In particular, for penta-materials studied in this
work, there is an interplay of semi-metallic phases with or without nodes, along
with electron or hole pockets near the Fermi energy, an scenario that has been
found for other systems [109].

In summary, if TRS is preserved and no SOC is included, penta-materials
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Figure 10.2: Scheme of the energy ordering of bands (irreps) to some particular
sequence at HSP and HSL.

possess a general band structure with trivial bands in all its energy range,
displaying a perimeter nodal line. The inclusion of SOC while maintaining TRS
yields also trivial bands, but some degeneracies are lifted in the BZ, changing
the character of the electronic properties. Breaking TRS with SOC produces a
decomposable band representation that gives rise to four different topological
phases, according to the distinct possibilities for the band connectivity.

This exhausts our study of the electronic band structure for penta-materials
within a general group theory framework. Naturally, other perturbations could
be included in order to modify the symmetry character of the underlying lattice
with the possible induction of more topological phases.

In the following section we apply this general group-theoretical description
to some specific penta-materials. This is done with the aid of first-principles
calculations and effective models.

10.3 Examples of penta-materials

Penta-materials comprehend a family of materials with a pentagonal lattice
structure, which in its two dimensional projection resembles to the Cairo tilling
(see Fig. 9.1). The basic definition for these materials is that all have the
same space group, that is no. 113 space group. There exist other types of
pentagonal materials which have a Cairo tiling lattice, but with a planar space
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group. We leave this subclass out from our definition of penta-materials since
we are interested in the particular space group mentioned above.

The first instance of this family of materials is penta-graphene. It has an
all-carbon lattice structure and an insulating character. Two conduction bands
and two valence bands are the main contributors to the low-energy range [4].
Applying the TQC analysis we obtain that only (p)EBRs occur in the band
structure of PG. Thus it can be concluded that, since carbon has a weak SOC
and TRS holds, PG is a trivial (band) insulator. However, as mentioned be-
fore, we can explore additional configurations by functionalization, adsorption
or doping of penta-graphene without altering its original symmetry. We will
study materials with substitutional doping and metallic adsorption in selective
lattice sites (replacing atoms in different WPs). These new configurations en-
hance the spin-orbit coupling of the system and can also induce time-reversal
symmetry breaking, which allows the exploration of all the phases described in
the symmetry and topological analysis.

This proposition can be reinforced by an electron filling analysis as pre-
sented in [134]. For the PG space group (No. 113) the band insulator filling
is dictated by a 4n relation, where n is a positive integer. For PG this yields
a band filling of 36, which results in a band insulator state. If we substitute
some carbon atoms we deviate from the 4n-band filling, accomplishing a con-
dition for the filling-enforced formation of a nodal (semi)-metal. This has to
be additionally cross-checked with a chemical stability study of the material
[135].

We present first-principles calculations for some penta-materials based on
PG, with an emphasis in both, global and local features of their energy bands.
We explain the modifications performed in PG to achieve the penta-material
and the particular phase realizations with respect to our previous symmetry
and topological analysis.

10.3.1 Symmetry-protected metallic phases

In order to access the metallic phases, i.e., to shift the conduction or valence
bands, other elements rather than carbon should be added to PG. We first
functionalize PG with adsorption of metallic atoms at 4e WP. This case has
been previously explored for various elements, showing metallization of PG
[12, 2]. An example of a relaxed lattice structure with adsorbed Li is presented
in fig. 10.3. Also, electronic band structure calculations are shown for this case
of Li-adsorbed PG (Li-PG) as well as Na-adsorbed PG (Na-PG) in fig. 10.4.

Another possibility is the substitutional doping of PG. Particularly inter-
esting for this work is the 2a WP doping, forming a penta-XC2 configuration
[149, 3, 17], where X={B, N, P, Si, G}. The lattice structure of these materials
is exactly the same as PG, with modifications in the relative bond magnitudes
and lattice constant. We show the band structure calculations for X=B,N,P in
fig. 10.5.

As these theoretical materials preserve the PG space group P 4̄21mm, they
show a similar trend in the electronic band structure. However, now there is
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Figure 10.3: Li-PG relaxed lattice.

a fractional filling of the conduction (valence) band, which can be described
in this trivial phase (no SOC + TRS) by a single EBR. As stated by Bradlyn
et al. [91], if the Fermi level sits on a single EBR with fractional filling, the
corresponding material is necessarily a protected (semi)-metal. Thus, all these
metal-PG and penta-XC2 materials are symmetry-protected metals.

We have some remarks about this result. The above-mentioned symmetry
protection is of crystalline character; since the space group is nonsymmorphic
and TRS symmetry is preserved, it implies the well-known "stick-together"
phenomenon for energy bands [27] along the Y line. This effect can be seen in
the band structures of all penta-materials in this regime. It is remarkable that
the sticky bands occur along all the BZ boundary. This implies that there is a
trivial crystalline nodal line for these penta-materials. The nodal line presents
a certain dispersion, i.e., it is not at constant energy in momentum space. This
effect is mainly induced by the lack of inversion symmetry which moves the
nodal states to different energies, a fact that has been demonstrated in general
in previous works [109, 148].

For PG-adsorbed or substituted materials, although the nodal line is energy-
dependent, it crosses the Fermi energy, producing a single nodal point plus
pockets of electrons or holes. This can be clearly seen in the band structures
shown in figs. 10.4 and 10.5. Looking closer to the local low-energy behavior of
the nodal line at the vicinity of the Y line, we observe that bands have a linear
dependence on kx along ky−constant lines, so these carriers behave as massless
fermions. This can be observed in a momentum space cut presented in fig.
10.6. The massless fermion low-energy dispersion becomes more relevant if the
Fermi level actually sits on a state of the nodal line. This crucially depends on
the band filling fraction, being realizable in some of the materials studied.

Notice that, although we have a trivial phase in these materials, we still can
have protected edge states. This can be explained in terms of the ten-fold way
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Figure 10.4: Li-PG and Na-PG band structure.

classification of the Fermi surface [131]. As the considered materials belong
to the AIII (chiral unitary) class, for spatial dimension d = 2 a trivial phase
arises, as expected. But due to an inherited non-triviality from another related
AI (orthogonal) class, robust edge states that present linear or dispersionless
characteristics might appear [1].

Next, the inclusion of SOC is explored by means of first-principles calcu-
lations. To this end, we use as an example penta-PC2. Its band structure
is presented in fig. 10.7. As we are dealing with light elements the effect of
SOC is rather weak; therefore, all these materials will behave as nodal line
semi-metals at room temperature. Notwithstanding, the results derived by the
symmetry analysis are confirmed. Namely, degeneracies at Γ and X points and
along the Y line are lifted. Likewise, the robustness of the M point four-fold
degeneracy is confirmed by these calculations, which allow us to classify this as
a new metallic phase [110]. The symmetry that protects the "stick-together"
effect along the Y line is broken, and the degeneracy of the above-mentioned
high-symmetry points is also modified, implying the disappearance of the nodal
line. Therefore, for these penta-materials, SOC plus TRS enforces a transition
from a nodal-line metallic state to a spin-orbit Dirac-node metal with nodal
points located at M [150, 111], both phases being topologically trivial.
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Figure 10.7: Band structure for penta-PC2 with SOC.

10.3.2 Topological phase: breaking TRS

A final stage in the topological phase analysis of penta-materials, consists
in the application of a TRS breaking perturbation. To do this it is necessary to
make use of a magnetic field-related perturbation, such as an external applied
field or a substitution by magnetic atoms [109]. In first-principles calcula-
tions, the only practical way to introduce some magnetic field perturbation
is by introduction of magnetic atoms [151]. Accordingly, we present a mag-
netic substitution for penta-materials, using a transition metal element, with
considerable spin-orbit coupling contribution.

In particular, manganese-doped PG was selected to analyze this topological
phase. Manganese substitutes carbon atoms at 2a WP (see lattice in fig. 9.1).
As we have seen from the TQC study, topological nontrivial character arises
in bands where p orbitals have contribution. The type of topological bands,
depends on the specific energetic ordering of the material. To characterize
this topological phase we will use WFs and Wannier charge centers analysis to
compute some topological invariant for the particular system at hand [137].

The initial step is to compute the band structure for this material. We make
use Quantum Espresso package including SOC and fully relativistic pseudopo-
tentials from ONVC code [152]. Additionally, an antiferromagnetic initial state
is set for the Mn atoms in the primitive unit cell, fixing one Mn atom (cell ori-
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Figure 10.8: DFT band structure calculation for Mn-PG.

gin) in a spin up state and the other (cell center) in a down spin state.1 This
allows to explore TRS breaking from manganese magnetism plus a SOC con-
tribution intrinsic to this element. The resulting band structure is presented in
fig. 10.8. It can be seen that this penta-material is an insulator in bulk, with
an indirect band gap of ∼ 1.75 eV.

Once the band structure calculation is available, a Wannier charge center
calculation must be performed. For this, it is necessary to build an effective
model based on WFs. This last model is done by projecting from the first-
principles energy bands and eigenstates to a Wannier function basis selected
from an initial atomic set. The Wannierization is carried with the Wannier90
code [153], which takes as an input the DFT energy bands and fits a low energy
model for the Fermi level bands (see appendix III.C for more details on the code
use). We have obtained Wannier bands for this Mn-PG with SOC contribution.
The result for this WFs model is depicted in fig. 10.9. We see that the vicinity
of the Fermi level is well represented in this wannierization being able to be
used as the starting point for the WCC study.

The WCC calculation was performed using another post-processing code
called WannierTools [139]. This package takes the wannier90 Hamiltonian in
a tight-binding format and calculates the associated Wannier charge centers
with the translation method of Soluyanov et al. [116, 137]. As we have seen in
the theoretical section, Wannier charge centers are defined as the expectation
value for the position operator of some previously chosen spatial direction (see
eq. 8.12). In this particular case, The Brillouin zone is two-dimensional and
thus there are only two ways for the hybridization procedure required. We

1The other equivalent phase with opposite ordering, was also analyzed giving the same
results.
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Figure 10.9: Mn-PG bands from the Wannier90 code.

can choose to calculate the ȳ direction WCC or the x̄ direction WCC. Both
directions must be respectively computed in order to see how strong is the
non-trivial phase in this material [122]. More in detail, we fix the integration
k−vector and the spatial direction (x or y) for WCC calculation, and the
evolution of the WCCs is analyzed along the k-line [139](see appendix III.D
for more details of the WCC input).

The WCC analysis can be done, by the calculation of accumulative quanti-
ties from individual WCCs. These correspond to the total sum of the WCCs at
each point in the k-line and to the larger gap ∆x̄i between two WCCs, also at
one particular k−point [116]. The evolution of these two functions all over the
the entire k-path gives clear hints of the topological character of the highest
occupied band that we have chosen [138]. In particular

∑
x̄i → Chernnumber , (10.1)∑

wcc between∆x̄i → Z2 invariant.

These two values can be extracted directly from the WCC calculation; Z2

invariant can be calculated by counting the total number of WCCs that are
covered by all the discontinuous jumps of ∆x̄i along the k-line. The number
of bands pierced by jumps will give the indication of an even or odd Z2 which
serves to identify TR invariant phases as trivial or non-trivial [138]. The Chern
number can be calculated as the total winding number in the spatial direction
(vertical axis) as the

∑
x̄i evolves in k-path [137, 118, 122].

We calculate the Chern number for the Mn-PG penta-material for the two
primitive directions in real space, x and y. In particular, the occupation is fixed
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at the gap as the Fermi level location. This occupation will tell us if the gap has
a nontrivial character. The calculation of the WCCs and the associated Chern
number are presented for both directions in Figs 10.10 and 10.11 respectively.
This computation was carried with the Z2Pack code [138].

In addition we have to study the edge states of the material to see if we have
a bulk boundary correspondence. To analyze this, the edge band structure for
the WF model has been calculated in order to observe boundary states. This
calculation was with WannierTools, and the obtained band structure for a 10-
slab structure along different spatial directions is presented in figs. 10.12, 10.13
and 10.14. It can be appreciated that some edge states appear at the bulk gap.
The topological nature of this state has to be further analyzed.

Thus we have a Chern insulator phase for this Mn-PG. Other phases can
be explored for this same penta-material by controlling the inversion symmetry
breaking, with the possible presence of Weyl nodes in the bulk band structure
[104, 1].

2 In summary a whole family of materials, pentagonal materials, were pre-
sented. Its symmetry and topological properties were studied based on group
theoretical and TQC grounds, which results in a complete classification of the
trivial and nontrivial band character. This general framework was applied
to particular penta-materials, were both (semi)-metallic and insulating phases
were analyzed, including SOC and TRS breaking by magnetic atomic substitu-
tion. We have found that most of these materials are trivial in the TRS case,
even with SOC inclusion, yielding nodal-line or Dirac-node metallic phases.
The nontrivial phase arises with in the TRS breaking regime, were a magnetic
penta-material was presented, showing a two dimensional Chern insulator char-
acter. All these phases and others not explored here give these pentagonal ma-
terials great value as examples of two-dimensional symmetry-enforced metallic
and topological phases, which deserve to be more amply studied in the future.2



CHAPTER 10. RESULTS 87

0 2π

k
y

0

0.2

0.4

0.6

0.8

1

x

0 2π

k
y

0

0.2

0.4

0.6

0.8

1

x

Figure 10.10: Top: WCC evolution. Bottom: sum of WCC for the x direction.



CHAPTER 10. RESULTS 88

0 2π

k
x

0

0.2

0.4

0.6

0.8

1

y

0 2π

k
x

0

0.2

0.4

0.6

0.8

1

y

Figure 10.11: Top: WCC evolution. Bottom: sum of WCC for the x direction.



CHAPTER 10. RESULTS 89

Figure 10.12: (100) band structure for a 10-slab along XΓX BZ path. Color
scale indicates surface weight, with +1 for right edge and −1 for left edge.
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Figure 10.13: (010) band structure for a 10-slab along XΓX BZ path. Color
scale indicates surface weight, with +1 for right edge and −1 for left edge.
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Figure 10.14: (110) band structure for a 10-slab along XΓX BZ path. Color
scale indicates surface weight, with +1 for right edge and −1 for left edge.
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Chapter 11

Conclusions

In this thesis we have presented the study of pentagonal materials based on
penta-graphene through the analysis of different physical phenomena. This
subgroup of the family of penta-materials presents remarkable properties under
atom substitution and adsorption.

In first place, penta-graphene was found to be a wide band gap material
with an optical response that may have applications in opto-electronic devices.
Also, penta-graphene nanoribbons showed the same tendency in the optical
absorption within the developed Slater-Koster tight-binding model. Other in-
teresting result is related to the thermoelectric performance of penta-graphene,
where this material yields a good thermopower Seebeck coefficient. This and
other thermoelectric coefficents are comparable with known efficient thermo-
electric materials. This was in part by the clever design of the transport device,
which has a spatial mismatch of two ribbons that goes in direct detriment of
the lattice thermal conductivity enhancing the figure of merit ZT.

Going beyond penta-graphene by doping and adsorption, it was found
that breaking the insulator band filling of penta-graphene entails a symmetry-
enforced metallic transition. This is a very important effect, since the main
characteristic of these materials is their nodal line along the perimeter of the
Brillouin zone. Thus with these new pentagonal systems we can have access to
the nodal fermions at Fermi level. This novel character of penta-materials was
overlooked or briefly mentioned in previous works.

In order to explore more deeply the implications of this particular band
structure, spin-orbit coupling was introduced by means of an adequate doping.
We obtained that SOC destroys the nodal line by splitting the energy bands
with exception of the M-point. This point becomes a Dirac-node point, with
a four-fold degeneracy and the peculiarity of being protected against SOC due
to the nonsymmorphic character of the space group. This kind of nodal points
is of great interest nowadays because of their robustness against perturbations.

Additionally, magnetic substitution allows us to break time-reversal symme-
try in a direct way, giving the possibility to explore a topologically non-trivial
phase. This phase was characterized with the aid of topological quantum chem-
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istry as being non-trivial with the presence of a disconnected band represen-
tation. This gives rise to a Chern insulator phase according to the periodic
table of topological insulators and superconductors. The used material was
Mn-PG, which was studied by means of the Wannier charge center evolution
method showing a non-zero Chern number. We can mention that other func-
tionalizations of PG could yield a non-trivial metallic electronic structure, with
presence of nodal points in the band structure of the bulk.

Therefore, after this comprehensive study of PG-derived pentagonal ma-
terials, it turns out that this family has very promising features both, in the
area of fundamental physics and as a candidate for the implementation of new
technologies based on low-dimensional systems.
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Part II appendices

12.1 Appendix: Tight-binding code description

We briefly describe the tight-binding code we use for the Slater-Koster (S-
K) parameterization. This code was written in Python language, having the
following characteristics

• The input for the program consists of the atomic positions for the prim-
itive unit cell of the material and some list of k points in a standard
Quantum Espresso format [39]. Also, an initial guess for the S-K param-
eters must be given in order to use the fitting procedure.

• Next, the code establishes nearest neighbors with the common definition
of translation vectors a = na1 +ma2 + la3 where n, m and l are integers
[22]. This is necessary for the matrix element definition.

• An orbital sub-matrix is defined in a module with corresponding S-K
decomposition as expressed in [41]. In our case we include s and p orbitals.

• The Hamiltonian matrix is defined in the usual TB form

Hαβ(k) =
∑
Rij

eik·Rij tαβ(Rij).

Diagonalization of this matrix is carried with the ’scipy.linalg’ Python
package using the ’eigh’ routine, obtaining eigenvalues and eigenvectors.

• This is the main loop of the process. This can be used for

– Fitting procedure: In this case we use the ’scipy.optimize’ Python
package with minimize routine to find the best fit from the initial
guess of the S-K parameters. Here a DFT band structure calculation
must be provide to the subroutine fitting.

– Band structure calculation: Here only eigenvalues are calculated
over a predefined k-path and then plotted. This procedure assumes
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that a correct set of S-K must be provided to give a good band
structure graph.

– Optical absorption calculation: A routine in an external FORTRAN
module is defined to accelerate the numerical calculation. A dense
k-point grid must be provided in order to obtain good convergence
(external input). Using eq. (5.13) directly coded in the FORTRAN
script, optical absorption is calculated over an energy range given
by the user.

– Ribbon calculation: band structure and optical response can be also
calculated for ribbons. The Hamiltonian is built in a block form
based on the finite cell dimension given externally by the user as
an integer N. Thus N Hamiltonian copies are defined taking into
account intracell interactions in the off-diagonal elements and ter-
minations of the ribbon. After the obtention of the Hamiltonian,
same band structure and optical absorption modules are used as in
the bulk case.

This procedure was successfully implemented for PG and PG ribbons. It can be
also be used to parameterize any pentagonal material that we have presented
in this work with the corresponding change in the lattice parameters.
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Figure 12.1: Layer decomposition of a transport system.

12.2 Appendix: Recursive Green’s function method

In order to compute the physical response of nanostructured systems a reliable,
fast and automatizable procedure is mandatory. A candidate for this task is
based in the implementation of a well-known recursive algorithm presented
decades ago in [54, 55]. This routine is combined with standard formulas for
transport quantities expressed in terms of Green’s functions (see transport
section).

The particular form of the algorithm, suitable for numerical calculations,
requires a discrete formulation of the device. This is achieved by a tight-binding
representation of the system, in terms of intralayer and interlayer terms. Layer
dimension in the translation direction is chosen by the condition that only
nearest-neighbors layers have a non-negligible contribution [53]. Thus for each
layer a Hamiltonian matrix must be defined. Coupling between layers is taken
into account with hopping matrices with only non diagonal terms. A graphical
depiction of this abstract subdivision is presented in fig. 12.1.
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The target of the computation is to calculate the surface GF G11 for a
semi-infinite chain and also for a finite chain, where the complete chain GF
can be obtained after in the process.

With this setting, the surface GF of the system is calculated by the following
algorithm [54, 55, 146]

• Consider a three-site initial system labeled with n = 1, 2, 3 respectively.
Then using Dyson’s equation [51], we can formulate an interaction surface
GF for the site 1, G11, as

G11 = g1 + g1tG21, (12.1)
G21 = g2tG31 + g2t

∗G11. (12.2)

Where gi = (ω − ε0 + iη)−1 is the non-interacting GF for site i, and t is
the hopping term.

• Solving for G11 in the above system we find

(1− g1tg2t
∗)G11 = g1 + g1tg2tG31. (12.3)

• The non-diagonal term G21 can be generalized for a n-site system such
as Gn1which is given by

Gn1 = gntGn+1,1 + gnt
∗Gn−1,1. (12.4)

• If we write Gn+1,1 and Gn−1,1, which are both non-diagonal also, in terms
of recursive formula (12.4) then we obtain

Gn+1,1 = gntGn+2,1 + gnt
∗Gn,1,

Gn−1,1 = gntGn,1 + gnt
∗Gn−2,1.

• Replacing in eq (12.4) and solving for Gn,1

Gn,1 =
gntgn+1tGn+2,1 + gnt

∗gn−1t
∗Gn−2,1

1− gntgn+1t∗ − gnt∗gn−1t
. (12.5)

• Defining new variables as

α1 = tgt, (12.6)
β1 = t∗gt∗,

ε̃1 = ε+ tgt∗,

ε1 = ε̃1 + t∗gt,

it is possible to express Gn1 in the form

(ω − ε1 + iη)Gn1 = α1Gn+2,1 + β1Gn−2,1. (12.7)
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• This formula generates a recursion relation which only involves second
nearest neighbors. Nearest-neighbor couplings are now part of the new
coupling definition in term of α1 and β1. This is a renormalization tech-
nique for the layers.

• The structure of eq. (12.7) is similar to eq. (12.4), and thereby we can
repeat the renormalization process done before, this time starting from
Gn+2,1 and Gn−2,1. This new decimation process after x iterations gives
as a result (

ω − εSx + iη
)
G11 = αxG31 + 1,

(ω − εx + iη)G2x1+1,1 = α1G2x2−1,1 + β1G2x0−1,1,

...

(ω − εx + iη)G2xn+1,1 = αxG2x(n+1)−1,1 + βxG2x(n−1)+1,1.

Where

αx = αx−1gx−1αx−1, (12.8)
βx = βx−1gx−1βx−1,

εSx = εx−1 + αx−1gx−1βx−1,

εx = εSx + βx−1gx−1αx−1,

gx = (ω − εx−1 + iη)
−1
,

are the renormalized coupling terms.

• After this process, we have a decimation of 2x sites, where hopping pa-
rameters are getting smaller after each step. This procedure will stop
after a criteria for the magnitude of αx and βx is fulfilled. This implies
that αx and βx ∼ 0, thus εx ≈ εx−1 and εSx ≈ εSx−1, such that(

ω − εSx + iη
)
G11 ≈ 1

or
G11 ≈

1

(ω − εSx + iη)
. (12.9)

This is the final result for the surface GF that we need. This procedure
can be readily implemented in numerical form as it has been done in our
calculation of thermoelectric phenomena or in [58, 146].



Chapter 13

Part III appendices

13.1 Appendix: Chern number and Berry phase

A brief description of Z topological invariant is given only for referential use
with respect to the WCC calculation of the Chern number.

In a general quantum system with adiabatic evolution we can define the
Berry phase as the integral [96]

γ =

˛

C

dR ·An(R), (13.1.1)

where R represents coordinates in some parameter space and

An = i 〈un(R)| ∇R |un(R)〉

is known as the Berry connection [102]. Using Stokes theorem the previous
integral could be expressed as a surface integral

γ =

˛

C

dS ·Ωn(R), (13.1.2)

here Ω(R) is called the Berry connection. Taking momentum space as the
parameter space, the Berry curvature can be expressed by [60]

Ωn(k) = ∇k ×An(k) = ∇k × 〈un(k)| i∇k |un(k)〉 . (13.1.3)

This curvature arises as an additional term in the velocity of carriers in
momentum space such that [22]

Vn(q) =
1

~
∇kEn(k)− e

~
E × Ωn(k). (13.1.4)

q is a non-gauge-invariant crystal momentum related to k as k = q + e
~A(t),

where A(t) is an external electromagnetic field with the electric field E defined
as E = ∂tA(t).

101
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This anomalous velocity induces a density current j given by [60]

j = −e
∑ˆ

dk

(2π)2
Vn(k)f(k). (13.1.5)

f(k) is the Fermi-Dirac distribution function. If all bands below Fermi level
are filled, then the sum over the first term in velocity becomes zero, but second
term yields a Hall current [102]

σH =
e2

2π~
∑
n

ˆ
BZ

dkΩnkx,ky. (13.1.6)

Performing the integral over BZ, an integer ν is obtained such that [60]

σH = ν
e2

h
.

This integer value is related to the number of edge states available for conduc-
tion at the boundary of the system and it is known as the Chern number. As
we mentioned in the main text, this Chern number is related to the winding
number over the BZ or over the hybrid parameter space for the WCC evolution
[138]. This allows to give a direct physical meaning to this number.

13.2 Appendix: Character tables

A summary of double groups character tables of interest for this thesis is pre-
sented here. Information was retrieved from Bilbao Crystallographic Server
[28, 125].

Table 13.2.1 Γ-point little group character table.

I Cz2 S4 (C
x/y
2 | 12

1
20) (mx−y| 12

1
20) Ī S̄4

Γ1 1 1 1 1 1 1 1
Γ2 1 1 -1 1 -1 1 -1
Γ3 1 1 -1 -1 1 1 -1
Γ4 1 1 1 -1 -1 1 1
Γ5 2 -2 0 0 0 2 0
Γ̄6 2 0 −

√
2 0 0 -2

√
2

Γ̄7 2 0
√

2 0 0 -2 −
√

2

Table 13.2.2 X-point little group character table.
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I Cz2 (Cy2 | 12
1
20) (Cx2 | 12

1
20) I C

z

2 (C
y

2| 12
1
20) (C

x

2 | 12
1
20)

X1 2 0 0 0 2 0 0 0
X̄2 1 -i 1 -i -1 i -1 i
X̄3 1 i -1 -i -1 -i 1 i
X̄4 1 -i -1 i -1 i 1 -i
X̄5 1 i 1 i -1 -i -1 -i

Table 13.2.3 M -point little group character table.

I Cz2 S+
4 S−4 (Cy2 | 12

1
20) (Cx2 | 12

1
20) (mx−y| 12

1
20) (mx−ȳ| 12

1
20)

M1 1 -1 i -i i -i 1 -1
M2 1 -1 -i i i -i -1 1
M3 1 -1 -i i -i i 1 -1
M4 1 -1 i -i -i i -1 1
M5 2 2 0 0 0 0 0 0
M̄6 2 0

√
2i −

√
2i 0 0 0 0

M̄7 2 0 −
√

2i
√

2i 0 0 0 0

continuation

Ī C
z

2 S
+

4 S
−
4 (C

y

2| 12
1
20) (C

x

2 | 12
1
20) (mx−y| 12

1
20) (mx−ȳ| 12

1
20)

M1 1 -1 i -i -i i 1 -1
M2 1 -1 -i i -i i -1 1
M3 1 -1 -i i i -i 1 -1
M4 1 -1 i -i i -i -1 1
M5 2 2 0 0 0 0 0 0
M̄6 -2 0 −

√
2i

√
2i 0 0 0 0

M̄7 -2 0
√

2i −
√

2i 0 0 0 0

Table 13.2.4 Y -line little group character table.

I Cz2 Ī (Cx2 | 12
1
20)

Y1 1 eiπu 1 eiπu

Y2 1 eiπ(1+u) 1 eiπ(1+u)

Ȳ3 1 e−iπ( 1
2−u) -1 eiπ( 1

2 +u)

Ȳ4 1 eiπ( 1
2 +u) -1 e−iπ( 1

2−u)

Where kY = (1
2 , u, 0) with u ∈ (0, 1

2 ). The definition of each label and it
associated symmetry operation is presented in the main text.



CHAPTER 13. PART III APPENDICES 104

13.3 Appendix: Wannier90 input

We present an input file example for wannier90 code [153], in order to make
more explicit the form of our calculations for the low energy model in the
topological non-trivial case.

In particular

• A Quantum Espresso output from a non self-consistent calculation with
SOC included is needed [39].

• The Wannier90 script is executed in pre-processing mode with wannier.x
-pp file_name. (see below for the complete input).

• The pw2wannier utility is used with the following input file

&inputpp
outdir = ’./’
prefix = ’file_name’
seedname = ’file_name’
write_mmn = .true.
write_amn = .true.
write_spn = .true.
write_unk = .false.
/

• Once the pw2wannier routine is completed, files with extension .mn, .chk,
.eig and .amn are created. This are necessary for wannier90 proper work-
ing.

• Set Wannier90 execution with wannier.x file_name, using the following
example input file [153]

– num_bands = 56 ! number of WF to be found

– num_wann = 56 ! total number of bands passed to the code in the name.mmn
file.

– !!! specify lattice vectors

– begin unit_cell_cart

– 4.637613 0.000000 0.000000

– 0.000000 4.637614 0.000000

– 0.000000 0.000000 30.000000

– end unit_cell_cart

– !!! ionic positions within unit cell in fractional coordinates

– begin atoms_cart

– Mn 0.00000742 -0.00000820 0.00000349

– Mn 0.49999178 0.50000742 0.00000349

– C 0.40294873 0.09713598 0.03648161

– C 0.90293460 0.40293458 -0.03647881
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– C 0.59713596 0.90294870 0.03648161

– C 0.09712323 0.59712324 -0.03647557

– end atoms_cart

– ! Monkhorst-Pack grid k point mesh

– mp_grid : 7 7 1

– ! k points explicit list in fractional coordinates

– begin kpoints

– 0.00000000 0.00000000 0.00000000 2.040816e-02

– 0.00000000 0.14285714 0.00000000 2.040816e-02

– 0.00000000 0.28571429 0.00000000 2.040816e-02

– 0.00000000 0.42857143 0.00000000 2.040816e-02

– 0.00000000 0.57142857 0.00000000 2.040816e-02

– 0.00000000 0.71428571 0.00000000 2.040816e-02

– 0.00000000 0.85714286 0.00000000 2.040816e-02

– 0.14285714 0.00000000 0.00000000 2.040816e-02

– 0.14285714 0.14285714 0.00000000 2.040816e-02

– 0.14285714 0.28571429 0.00000000 2.040816e-02

– 0.14285714 0.42857143 0.00000000 2.040816e-02

– 0.14285714 0.57142857 0.00000000 2.040816e-02

– 0.14285714 0.71428571 0.00000000 2.040816e-02

– 0.14285714 0.85714286 0.00000000 2.040816e-02

– 0.28571429 0.00000000 0.00000000 2.040816e-02

– 0.28571429 0.14285714 0.00000000 2.040816e-02

– 0.28571429 0.28571429 0.00000000 2.040816e-02

– 0.28571429 0.42857143 0.00000000 2.040816e-02

– 0.28571429 0.57142857 0.00000000 2.040816e-02

– 0.28571429 0.71428571 0.00000000 2.040816e-02

– 0.28571429 0.85714286 0.00000000 2.040816e-02

– 0.42857143 0.00000000 0.00000000 2.040816e-02

– 0.42857143 0.14285714 0.00000000 2.040816e-02

– 0.42857143 0.28571429 0.00000000 2.040816e-02

– 0.42857143 0.42857143 0.00000000 2.040816e-02

– 0.42857143 0.57142857 0.00000000 2.040816e-02

– 0.42857143 0.71428571 0.00000000 2.040816e-02

– 0.42857143 0.85714286 0.00000000 2.040816e-02

– 0.57142857 0.00000000 0.00000000 2.040816e-02

– 0.57142857 0.14285714 0.00000000 2.040816e-02

– 0.57142857 0.28571429 0.00000000 2.040816e-02

– 0.57142857 0.42857143 0.00000000 2.040816e-02

– 0.57142857 0.57142857 0.00000000 2.040816e-02

– 0.57142857 0.71428571 0.00000000 2.040816e-02

– 0.57142857 0.85714286 0.00000000 2.040816e-02
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– 0.71428571 0.00000000 0.00000000 2.040816e-02

– 0.71428571 0.14285714 0.00000000 2.040816e-02

– 0.71428571 0.28571429 0.00000000 2.040816e-02

– 0.71428571 0.42857143 0.00000000 2.040816e-02

– 0.71428571 0.57142857 0.00000000 2.040816e-02

– 0.71428571 0.71428571 0.00000000 2.040816e-02

– 0.71428571 0.85714286 0.00000000 2.040816e-02

– 0.85714286 0.00000000 0.00000000 2.040816e-02

– 0.85714286 0.14285714 0.00000000 2.040816e-02

– 0.85714286 0.28571429 0.00000000 2.040816e-02

– 0.85714286 0.42857143 0.00000000 2.040816e-02

– 0.85714286 0.57142857 0.00000000 2.040816e-02

– 0.85714286 0.71428571 0.00000000 2.040816e-02

– 0.85714286 0.85714286 0.00000000 2.040816e-02

– end kpoints

– spinors = T ! if set true WF correspond to singularly occupied spinor states.

– ! projection block define a set of localized functions used to generate
! an initial guess for the unitary transformations. used to generate
nnkp file.

– begin projections

– Mn : l=2;l=0 C : sp3

– end projections

– !guiding centres = F ! in set true projections centres are used as the
guiding centres in Wsation

– iprint = 2 ! verbosity level

– optimisation = 3

– exclude_bands : 1,2,3,4 ! a kpoint independent list of states to eclude
from calc.

– restart : default !!!default wannierize plot transport.

– !spin : up

– translate_home_cell : F

– write_xyz : T

– !disentaglement, for degenerate bands activated if num_wann < num_bands

– ! window energy specification.

– fermi_energy = -4.1378

– dis_froz_min = -8.

– dis_froz_max = 0.

– !dis_win_min =

– !dis_win_max =

– dis_num_iter = 900 ! iterations to extract the most connected subpace.

– dis_mix_ratio = 0.5 ! 0 to 1. mixing par for convengence

– dis_conv_window = 2

– dis_conv_tol = 1.0e-7
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– !!!! wannierisation control

– num_iter = 300

– !!! Post processing

– wannier_plot = F

– !wannier_plot_supercell = 2 2 1

– bands_plot = F

– begin kpoint_path

– G 0.00000 0.00000 0.0000 X 0.50000 0.00000 0.0000 X 0.50000 0.00000 0.0000
M 0.50000 0.50000 0.0000 M 0.50000 0.50000 0.0000 G 0.00000 0.00000 0.0000

– end kpoint_path

– bands_num_points = 200

– bands_plot_format = gnuplot xmgrace

– !bands_plot_project ! list of WF to project over entire k point path.

– dist_cutoff_mode : two_dim !! dimension for the distance calculation

– one_dim_axis : z

– dist_cutoff = 500.0

– hr_cutoff = 0.0

– bands_plot_mode : s-k !! or cut

– bands_plot_dim = 2

– write_hr = T

• This process yields a ’file_name_hr.dat’ which contains the tight-binding
Hamiltonian in the WF basis. This is the input needed for the Wannier-
Tools code.

13.4 Appendix: WannierTools input

This post processing tool allows for WCC calculation and slab band structure
computation for a given WF tight-binding Hamiltonian.

• Necessary files for execution are a ’file_name_hr.dat’ file coming from a
wannier90 calculation and a inner input file name as ’wt.in’.

• An example file is given below [139]

– &TB_FILE Hrfile = ’file_name_hr.dat’

– Package = ’QE’ ! obtained from VASP, it could be ’VASP’, ’QE’, ’Wien2k’,
’OpenMx’ /

– &CONTROL

– BulkBand_calc = F

– DOS_calc = F

– BulkFS_calc = F

– BulkGap_cube_calc = F

– BulkGap_plane_calc = F

– SlabBand_calc = F
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– SlabBand_plane_calc = F

– WireBand_calc = F

– SlabSS_calc = F

– SlabArc_calc = F

– SlabQPI_calc = F

– ArcQPI_calc = F

– Z2_3D_calc = F

– SlabSpintexture_calc = F

– Wanniercenter_calc = T

– /

– &SYSTEM NSLAB = 11 ! for thin film system NSLAB1= 11 ! nanowire system
NSLAB2= 11 ! nanowire system NumOccupied = 41 ! NumOccupied SOC = 1 !
soc E_FERMI = -4.1378 ! e-fermi surf_onsite= 0.0 ! surf_onsite

– /

– &PARAMETERS

– Eta_Arc = 0.001 ! infinite small value, like brodening

– E_arc = 0.0 ! energy for calculate Fermi Arc

– OmegaNum = 501 ! omega number

– OmegaMin = -2.0 ! energy interval

– OmegaMax = 2.0 ! energy interval

– Nk1 = 1101 ! number k points odd number would be better

– Nk2 = 1101 ! number k points odd number would be better

– Nk3 = 1101 ! number k points odd number would be better

– NP = 2 ! number of principle layers

– Gap_threshold = 0.001 ! threshold for GapCube output

– /

– LATTICE Angstrom

– 4.637613 0.000000 0.000000

– 0.000000 4.637614 0.000000

– 0.000000 0.000000 30.000000

– ATOM_POSITIONS 6 ! number of atoms for projectors Direct ! Direct or
Cartisen coordinate

– Mn 0.00000742 -0.00000820 0.00000349

– Mn 0.49999178 0.50000742 0.00000349

– C 0.40294873 0.09713598 0.03648161

– C 0.90293460 0.40293458 -0.03647881

– C 0.59713596 0.90294870 0.03648161

– C 0.09712323 0.59712324 -0.03647557

– PROJECTORS

– 6 6 4 4 4 4 ! number of projectors

– Mn s dz2 dxz dyz dx2-y2 dxy

– Mn s dz2 dxz dyz dx2-y2 dxy
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– C s px py pz

– C s px py pz

– C s px py pz

– C s px py pz

– !MILLER_INDEX

– !1 0 0

– SURFACE ! Specify surface with two vectors, see doc

– 1 0 0

– 0 1 0

– KPATH_BULK ! k point path 3 ! number of k line only for bulk band

– G 0.00000 0.00000 0.0000 X 0.50000 0.00000 0.0000

– X 0.50000 0.00000 0.0000 M 0.50000 0.50000 0.0000

– M 0.50000 0.50000 0.0000 G 0.00000 0.00000 0.0000

– KPATH_SLAB 2 ! numker of k line for 2D case X 0.5 0.0 G 0.0 0.0 ! k path
for 2D case G 0.0 0.0 X 0.5 0.0

– !KPLANE_SLAB ! -0.5 -0.5 ! Original point for 2D k plane ! 1.0 0.0 !
The first vector to define 2D k plane ! 0.0 1.0 ! The second vector to
define 2D k plane for arc plots

– KPLANE_BULK 0.50 0.50 0.00 ! Original point for 3D k plane 1.00 0.00 0.00
! The first vector to define 3d k space plane 0.00 1.00 0.00 ! The second
vector to define 3d k space plane

– !KCUBE_BULK ! -0.50 -0.50 -0.50 ! Original point for 3D k plane ! 1.00
0.00 0.00 ! The first vector to define 3d k space plane ! 0.00 1.00 0.00
! The second vector to define 3d k space plane ! 0.00 0.00 1.00 ! The
third vector to define 3d k cube

– !EFFECTIVE_MASS ! optional !2 ! The i’th band to be calculated !0.01 !
k step in unit of (1/Angstrom) !0.0 0.0 0.0 ! k point where the effective
mass calculated.

– !KPOINTS_3D !4 !Direct !0.0 0.0 0.0 !0.5 0.0 0.0 !0.0 0.5 0.0 !0.0 0.0
0.5

– WANNIER_CENTRES ! copy from wannier90.wout

– Cartesian

– -2.20244006 -0.74606813 0.93510877

– -1.89917788 -1.19367513 0.83214786

– -0.01007151 0.00590747 -0.18383644

– -0.10438923 0.11069266 -0.12455080

– -0.22970125 0.00030128 0.08490797

– -0.15360900 -0.07944181 -0.13224412

– 0.01653210 0.03332069 -0.02826385

– 0.11817837 -0.12915681 -0.04930888

– -0.23264818 -0.05533031 -0.02375009

– -0.05378903 -0.19021198 0.01703492

– -0.23400293 -0.08558875 0.02222299

– -0.21338938 -0.11514902 -0.00802827

– -2.44520618 -2.36085497 -0.12876787
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– -2.11163293 2.36214403 -0.05429857

– 1.13623570 2.78560475 -0.88268161

– 2.12468318 2.16906574 0.06283309

– 2.32805116 0.01295728 1.40766577

– 2.32383756 -0.00131362 1.40562188

– -2.05062117 2.27565926 -0.07368166

– 0.01890337 2.30125457 -1.40888808

– 0.00744030 2.31251526 -1.40609401

– 1.19360653 2.73292283 -0.83164226

– 2.34586230 2.45280444 0.16237229

– 2.39757721 2.35032505 0.13715923

– 0.21962959 0.10026286 0.00141010

– 0.46103121 -1.18019626 -0.87125670

– 0.27179374 0.03075933 -0.03678634

– 1.46439479 0.21304703 0.96309872

– 1.12049353 0.41787310 0.83206734

– 0.18477240 0.21786328 0.04327955

– 0.19801942 -0.00335002 0.15859945

– 0.25128715 -0.03461766 0.11086838

– 2.34670282 0.02711980 0.81168817

– 2.32533861 0.00152416 0.81338028

– 2.23674124 -2.08903127 -0.05174178

– 2.21383307 -2.09373332 -0.00853566

– 1.85915898 1.13662427 0.86549859

– 2.16742467 -2.34387590 -0.18294907

– 2.40055478 2.06663984 -0.05124350

– 2.36242612 2.06300797 -0.08075780

– 2.32417652 2.32212655 0.07665142

– 2.10153923 0.88702998 0.95902455

– 2.25714465 2.55117812 0.18651991

– 2.20168265 2.49796156 0.16359927

– 0.02743480 2.27872744 -0.81078112

– 0.03480859 2.26221151 -0.81005554

– 2.20326035 2.16891091 -0.11862825

– -2.05974648 2.26309794 -0.03567981

– 0.41152395 -1.12079418 -0.81486746

– 0.09404740 0.20672006 0.14251217

– -0.74522264 2.20787075 -0.92692756

– -0.68784386 2.27437024 -0.91959336

– -0.35469207 1.37668860 -0.99418732

– -0.46547086 1.37838428 -1.00541512

– -1.37685658 -0.35008925 0.98235016
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– -1.17914029 -0.45405965 0.86672379

• This input can be use to calculate all quantities of interest depending on
which one we put in true mode. More information about the particular
use for each mode is given in the doc section in the distribution’s folder
[139].
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