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Abstract

In a first part an irreversible port-Hamiltonian system formulation of a class of piezoelectric
actuator with non-negligible entropy increase is proposed. The proposed model encom-
passes the hysteresis and the irreversible thermodynamic changes due to mechanical fric-
tion, electrical resistance and heat exchange between the actuator and the environment. The
electro-mechanical dynamic of the actuator is modeled using a non-linear resistive-capacitive-
inductor circuit coupled with a mass-spring-damper system, while the non-linear hysteresis
is characterized using hysterons. The thermodynamic behavior of the model is constructed
by making the electro-mechanical coupling temperature dependent, and by characterizing
the entropy produced by the irreversible phenomena. By means of numerical simulations it
is shown that the proposed model is capable of reproducing the expected behaviors and is
in line with reported experimental results.

In a second part the proposed model is used to synthesize a non-linear passivity based
controller for a class of piezoelectric actuator. The controller is designed starting from a
nominal model which is obtained under the assumption that the electro-mechanical coupling
is independent of the temperature. For this nominal model a control law which asymptot-
ically stabilizes the closed-loop system at the desired dynamic equilibrium is proposed. In
a second instance, the proposed model is obtained by perturbing the nominal model with
the temperature dependent electro-mechanical coupling. Lyapunov perturbation theory is
then used to show that under some general operation assumptions the proposed passivity
based controller asymptotically stabilizes the closed-loop system. The control action can
be interpreted in terms of damping/entropy injection with respect to the desired dynamic
equilibrium.

v



Chapter 1

Introduction

Multi-physical systems are system whose dynamic behavior is generated by different physical
phenomena. These systems encompass chemical processes, nano/micro-mechanical systems,
smart materials, heat transfer processes, piezoelectric actuators, etc. Moreover, usually the
approach to model multi-physical systems is by decomposing it into a set of more simple
interconnected subsystems. Hence, using an appropriate framework, they can be studied
and analyzed in a modular manner if the properties of its subsystems are understood [1].

The port-Hamiltonian framework has been effectively used to model multi-physical sys-
tems, specially electrical, mechanical, electro-mechanical systems [1, 2]. This theory is based
on the first law of the thermodynamics, conservation of the internal energy, [2, 3] and pro-
vides a clear physical interpretation. Besides, a port-Hamiltonian system is composed by
the interconnection of energy storing and energy dissipating elements, which define a set of
matrices in addition to an Hamiltonian energy function determined by the parameters of
the energy storing elements.

Thermodynamic systems deals with irreversible phenomena that can be caused by fric-
tion, heat transfer, electric resistance, inelastic deformation of solids and chemical reactions,
among others. In any irreversible process the entropy, and thereby the second law of thermo-
dynamics plays a major role. Port-Hamiltonian systems have been extended to incorporate
simultaneously the first and second law of the thermodynamics, this kind of systems are
denominated Irreversible port-Hamiltonian systems [4, 5].

Piezoelectric actuators are a non-linear, multi-physical systems that exhibit irreversible
phenomena due to the inelastic deformation when a voltage or force is applied to them
[6, 7, 8, 9]. In this thesis work an irreversible port-Hamiltonian system formulation of a
class of piezoelectric actuator with non-negligible entropy increase is proposed. This model
represents the hysteresis and the irreversible thermodynamic changes using an idealized
element denominated hysteron [10, 11, 12], while the electro-mechanical dynamic of the
actuator is modeled using a non-linear resistive-capacitive-inductor circuit coupled with a
mass-spring-damper system.

Then, a first approach using the proposed model to design and synthesize a non-linear
passivity based controller (PBC) [13, 2, 5] is presented. The controller is designed using
the analysis of stability of perturbed systems [14], therefore we can divide the design into
two steps: First a PBC for a simplified nominal system is synthesized under some general
operation assumptions. Under this assumptions a controller which asymptotically stabilizes
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the nominal system is derived using as candidate Lyapunov function an energy based avail-
ability function [15, 16, 17, 18]. The second step is to perform a perturbed system stability
analysis on the proposed irreversible port-Hamiltonian model with the controller designed
in the first step to show the asymptotic stability of the piezoelectric actuator.

This thesis is partially financed by Chilean FONDECYT 1191544 and CONICYT BASAL
FB0008 projects.

1.1 Organization of the chapters of this thesis
This thesis is divided into five main chapters.

• Chapter 2: In this chapter we give the state of the art of mathematical/physical
representations of the dynamics of piezoelectric actuators for control purposes.
The hysteresis representation via hysteron plays a major role in the development of our
proposed irreversible port-Hamiltonian model, and it is presented using a resistance-
inductor as an example.

• Chapter 3: A brief reminder of port Hamiltonian systems (PHS) is given along with
their main characteristics. The PHS model of a mass-spring-damper system is also
shown as an example.
The definition of an Irreversible port-Hamiltonian system is presented and its main
properties are analyzed, as well as, differences with respect to the port-Hamiltonian
systems. Two examples are shown, a gas-piston system and a RLC non-linear circuit
that uses the hysteron component.
The IPHS formulation of the piezoelectric actuator is developed. The proposed model
is composed by an electro-mechanical system that is interconnected via a transducer
element, the hysteresis behavior is characterized using hysterons components. Numer-
ical simulations of the proposed model are performed.

• Chapter 4: In this chapter, some fundamental theorems on Lyapunov stability are
presented. Then, a first approach for using the proposed model to synthesize a non-
linear passivity based position controller for a class of piezoelectric actuator is devel-
oped. The design strategy is based on the analysis of perturbed systems stability.

• Chapter 5: Conclusions and comments on future work are given in this chapter.

1.2 Main Contributions
The main contributions of this thesis can be summarized in the following points:

• An irreversible port-Hamiltonian system formulation for a class of piezoelectric actu-
ators has been proposed.

• The non-linear hysteresis has been characterized using a linear inductor connected
with a non-linear resistance which together form a component called hysteron.
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• A passivity based controller is designed for the proposed model using the analysis of
perturbed systems stability.
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Chapter 2

Models of Piezoelectric Actuators

Piezoelectric actuators are a non-linear, multi-physical systems that exhibit irreversible phe-
nomena due to the inelastic deformation when a voltage or force is applied to them, this
affects significantly the tracking accuracy applications, which is a subject of study for many
researchers.

In this chapter we present different models that characterize the dynamic behavior of
piezoelectric actuators, such as: Linear, Preisach, Prandtl-Ishlinskii, Bouc-Wen, Maxwell
Resistive Capacitor and Hysteron. We focus our review in the Hysteron which is a passive
approach to represent the hysteresis behavior via the interconnection of two types of physical
elements, an energy storage element and a resistive element. Using this idea we propose a
hysteron composed by a inductor connected in series with a resistance that allows to represent
hysteresis curves in the electrical domain.

2.1 Dynamics Models with Hysteresis
Micro-manipulators, micro-grippers or micro-robots in general are widely used in micro-
manipulation systems covering industrial manufacturing, pharmaceutics, biological and med-
ical fields, and are of special importance in micro-assembly process. There are several reasons
why micro-manipulators require special consideration. The first reason is that as the size of
the involved parts lies in the millimetre or micron, the strength and stiffness compared to
those of macro components is much smaller and thus micro-miniature parts are very easily
damaged. Another important reason is that adhesion phenomena in micro-assembly pro-
cess are a difficult problem that limits the development of micro-grippers. According to the
driving force, micro-actuators can be divided into piezoelectric-ceramic-based, electrostatic-
based, electromagnetic-force-based, electric-based, vacuum, adhesive-material-based, shape-
memory-alloy-based, and so on [19].

Piezoelectric actuators, compared with other kinds of micro-actuators, are the most
widely used ones because of their unique properties such as direct and reverse piezoelectric
effects, their small size, high resolution, high bandwidth and high force density. This actu-
ators are utilized to generate controllable displacement in micro/nano robotic applications
[6, 20, 21, 22, 23]. It is well known that piezoelectric actuators exhibit hysteresis in their
dynamics, which is due to irreversible thermodynamic phenomena. An important aspect
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to consider in automatic control applications, such as position tracking or force control,
is to compensate for the non-linear behavior caused by the hysteresis. This is a widely
investigated subject and various models have been proposed for piezo actuators, as for in-
stance: Preisach [24, 25, 26], Prandtl-Ishlinskii [6, 9], Bouc-Wen [8, 27], generalized Maxwell
resistive-capacitive model [7] or models based on hysterons [10, 12]. Using models of the
hysteresis its non-linear effects have been compensated using for instance the inverse model
in cascade with an electro-mechanical actuator model [6, 9, 8, 27]. Other approach is to
use sensors to measure and compensate the non-linear behavior, but the integration in
nano/micro applications is complicated given how expensive and bulky sensing elements for
these applications are [28].

The irreversible thermodynamic phenomena in piezoelectric actuators are mainly due to
internal mechanical friction, inelastic deformations, electrical resistance and heat transfer
with the surroundings. For certain applications the performance of the actuator is highly
sensitive to temperature changes [29, 30, 31, 32], hence in addition to characterizing the
hysteresis a thermodynamic model has to be considered to characterize the temperature of
the actuator.

In the following sections we summarized different models in existing in the literature
that can represent the behavior of the piezoelectric actuator.

2.1.1 Linear Model
The linear model characterizes the dynamics of the piezoelectric actuator as a linear repre-
sentation, it is presented in [33] where the results are based on linear piezoelectricity in which
all the coefficients are treated as constants, independent of the magnitude and frequency of
applied mechanical forces and electrical field. The constitutive relationships of this model
are

Tp = cEpqSq − ekpEk (2.1)
Di = eEiqSq − εSikEk (2.2)

U =
1

2
cEpqSpSq +

1

2
εSijEiEj (2.3)

where Tp is the stress component, cpq the elastic stiffness constant, Sq the strain component,
e· the piezoelectric constant, Ek the electric field component, Di the electric displacement
component, εij the dielectric constants and U the stored energy density in the piezoelectric
and finally p, q = {1, 2, 3, 4, 5, 6} represents the space coordinates.

These equations state that the material strain and electrical displacement exhibited by a
piezoelectric ceramic are both linearly affected by the mechanical stress and electrical field
to which the ceramic is subjected [7].

This linear model does not to describe the non-linearities (hysteresis) that are inherent
present in piezoelectric actuators.

2.1.2 Preisach Model
A classical Preisach model is used in [24, 25, 26] to identify the hysteresis behavior of the
piezoelectric actuators. The equation that describes the hysteresis with this method is:
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x(t) =

∫∫
α≥β

µ(α, β)γαβ[u(t)]dαdβ (2.4)

where x(t) is the output displacement, u(t) is the voltage input of the piezoelectric actuator,
µ(α, β) is a weighing function, commonly experimentally-obtained, in the Preisach model, α
and β correspond to the threshold input values, γαβ[u(t)] is known as a hysteresis operator
or basic hysteron, whose value are zero or one, mathematically this can be written as follows,
with β ≤ α:

γαβ[u(t)] =


0 u(t) ≤ β

γαβ[u(t)] β ≤ u(t) ≤ α

1 u(t) ≥ α

(2.5)

and graphically Equation (2.5) is shown in Figure 2.1. Besides, to determining the weighting
function µ(α, β) in [24, 25, 26] they use the system’s first-order reversal curves to construct
a Everett function [26] as follows:

X(α, β) =
1

2
(xα − xαβ) (2.6)

where xα is defined as the piezoelectric expansion on the limiting ascending branch of the
hysteresis curve corresponding to an input value α and, similarly xαβ is defined as the
expansion on the descending branch that starts at the previous xα, see Figure 2.2. This
function will allow to avoid the double integration and finally obtain the following discrete
Preisach model for the hysteresis, for more details see [26]:

x(t) =


X(u(t), βN) +

N∑
i=1

(X(αi, βi−1)−X(αi, βi)) u̇(t) > 0

X(αN , βN−1)−X(αN , u(t)) +
N∑
i=1

(X(αi, βi−1)−X(αi, βi)) u̇(t) < 0

(2.7)

Figure 2.1: Basic hysteron with thresholds α, β. [26]
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Figure 2.2: First-order reversal curves used to construct the Everett function. [26]

2.1.3 Prandtl-Ishlinskii
The Prandtl-Ishlinskii (PI) approach is commonly used to represent the hysteresis behavior
of the piezoelectric actuators. To introduce this, the work [6] shows a lumped representation
that models and control the position of a microgripper based on two piezocantilevers. This
led to a non-linear model but they turn it to a linear one by compensating the hystere-
sis with its inverse, in order to achieve this objective they characterized the hysteresis by
the Prandtl-Ishlinskii (PI) approach. Finally the model obtained is a transfer function, one-
parameter dependent that links the control input and the output force of the piezocantilever.

Other approach to describe the dynamics of a bimorph piezoelectric cantilevered actua-
tor is proposed in [9] where the dynamics are divided in two, a linear second order model of
the actuator that is based on the Euler-Bernoulli beam theory and a non-linear hysteresis
behavior that also is identified by the PI approach.

In the previous works, the common factor is that both used the Prandtl-Ishlinskii to
characterize the hysteresis behavior and therefore calculate the inverse of the hysteresis to
compensate this non-linearity behavior. The Prandtl-Ishlinskii approach is based on the
weighted superposition of many elementary hysteresis operators also called play or backlash
operator. This element is defined as follows:

δel(t) = max
{
U(t)− r,min

{
U(t) + r, δel(t− T )

}}
(2.8)

where U(t) is the input voltage signal, δel the output displacement of the operator, T is the
sampling time and r the threshold of the operator, see Figure 2.3.

Thus, an hysteresis Hst is approximated by the sum of several play operators weighted
by the gain (slope) wi. Let n be a number of elements, so we have:

δ(t) = Hst(U) =
n∑

i=1

wi max
{
U(t)− ri,min

{
U(t) + ri, δ

el
i (t− T )

}}
(2.9)

with δeli being the output of the ith play operator, ri the threshold value of the ith operator
and δ being the output of the actuator, for the piezoelectric case, the displacement. In
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Figure 2.3: Curve of the i-th backlash opetaor.

Figure 2.3 we show the behavior of the i-th backlash operator.

Besides, the hysteresis inverse H inv
st (·) is also a Prandtl-Ishlinskii model with rinvi thresh-

olds and winv
i weightings. These parameters can be analytically computed using the param-

eters of the direct model [34, 6].

2.1.4 Bouc-Wen Model
Another way to represent the hysteresis effect of a piezoelectric actuator is by using the
Bouc-Wen model [27] which allows to describe this behavior with compact equations, low
numbers of parameters to identify will imply a easy implementation of this equations. The
Bouc-Wen model is defined as a set of two differential equations that relates the applied
mechanical f to the deformation x of the structure:

f(x, ẋ, h) = ak0x+ (1− α)k0h (2.10)
dh

dt
=

dx

dt

[
A− |h|m

(
γ + βsgn

(
dx

dt
h

))]
(2.11)

where h represents an internal variable describing the structure inelastic behavior, k0 and
α denote the initial and the post-to-pre yield stiffness, respectively, and parameters A, β, γ
controls the hysteresis shape and scale.

In [8] the model presented in Equations (2.10) and (2.11) is adapted to piezoelectric
actuators. The resulting model is given by the following equations:

y(t) = dpU(t)− h(t), y(t0) = y0 (2.12)

dh

dt
= A

dU

dt
− β

∣∣∣∣dUdt
∣∣∣∣h− γ

dU

dt
|h|, h(t0) = h0 (2.13)

where y is the displacement output, U is the applied voltage input, dp is a parameter that
represents the piezoelectric coefficient and is strictly positive.
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The model described by Equations (2.12), (2.13) can be reduced if we write h = H(U),
where H(U) is a non-linear operator characterized by the differential Equation (2.13):

y = dpU −H(U) (2.14)

this reduction is useful to use in a feedforward compensator of the hysteresis because there
is no need to invert the model, in fact, the compensator is given by:

U =
1

dp
(yr +H(U)) (2.15)

where yr is a displacement reference output. Note that the only term to invert is dp which
is strictly positive as stated before.

2.1.5 Maxwell Resistive Capacitor
In [7] a non-linear lumped-parameter model of a piezoelectric stack actuator is presented
where the purpose of this model is to establish a relationship between the electrical and
mechanical domain of this piezoelectric. In Figure 2.4 a schematic representation of the
model is shown

Figure 2.4: Physical system of a piezoelectric stack actuator. [7]

Thus, the model is represented by the interconnection of a mechanical mass-spring-
damper system coupled with an non-linear electrical circuit and the hysteresis behavior is
represented as a generalized Maxwell resistive capacitor (MRC in Figure 2.4) or Generalized
Maxwell Slip. The different physical domains are interconnected by a transducer element
T . Therefore, the behavior of the piezoelectric actuator is describe by the following set of
equations

q = Tx+ Cvt (2.16)
vin = vt + vrc (2.17)
vrc = mrc(q) (2.18)
Ft = Tvt (2.19)

mẍ+ bẋ+ kx = Ft + fext (2.20)

9



where q is the total charge in the ceramic, T is the electro-mechanical transducer ratio, x
is the stack endpoint displacement, C is the linear capacitance in parallel with the trans-
former, vt is the back-emf from the mechanical side, vin is the actuator input voltage, vrc
is the voltage across the Maxwell capacitor (which is a function of q), Ft is the transduced
force from the electrical domain, m, b and k are the mass, damping and stiffness of the
ceramic, and fext is the force imposed from the external mechanical load.

The generalized Maxwell resistive capacitor is a component composed by the combina-
tion of a pure energy storage element coupled to a pure Coulomb friction element. The
constitutive behaviour of the MRC is described by

Vi =


q − qbi
Ci

if
∣∣∣∣q − qbi

Ci

∣∣∣∣ < vi

visgn(q̇) and qbi = q − Civisgn(q̇) otherwise
(2.21)

vrc =
n∑

i=1

Vi (2.22)

where Vi is the voltage output, Ci the capacitance, qbi the charge reference, and vi the break-
away voltage of the i− th resistive-capacitor element, vrc is the voltage across the Maxwell
capacitor. Note that the accuracy of the hysteresis depends on n resistive-capacitor elements
which not affects to the order of the model but increases the computational calculations.

2.1.6 Hysteron

The hysteresis behavior can be modeled using a component called hysteron, that is presented
in [10] and it consists of an energy consistent formulation. An hysteron is the interconnection
of two basic physical elements, an energy storage element and a resistive element, both
components are necessary because in the process of the hysteresis a part of the energy is
dissipated and a part of the energy is conserved [11].

The constitutive equation of the energy storage element of the hysteron can be linear or
non-linear and the resistive element is described by a non-linear equation. A peculiarity of
the dissipating component is that has a dead zone and any curve must lay in first and third
quadrant in order to satisfy the energy dissipation. A simple constitutive equation for the
non-linear resistive element is given in Figure 2.5 for the electrical domain

10
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Figure 2.5: Non-linear relation between current and voltage

Vin
R

Non-linear resistance Linear inductor

L

Figure 2.6: Diagram of one hysteron connected to a voltage input source

Let us consider, one hysteron as the combination of a non-linear resistance and a linear
inductor in series, see Figure 2.6. Then, the Kirchhoff’s voltage law gives us

Vin = VR + VL (2.23)

where Vin, VR and VL are the voltage input, voltage of the resistance and voltage of the
inductor respectively. Note that all the elements share the same current i.

The inductor is assumed to be linear with constitutive relation as

i =
ϕ

L
(2.24)

where ϕ is the magnetic flux of the inductor and L the inductance. The voltage of the
resistance is defined as follows

VR = w(iR) (2.25)

11



where iR is the current through the resistance and w(·) is a non-linear operator that satisfies
the properties of the Figure 2.5. Thus, ϕ̇ is equal to

ϕ̇ = Vin − w
(
ϕ
L

)
(2.26)

Using this equations, a simulation is performed where the input is a sinusoidal wave, Vin =
20 sin(2πt), and it is applied to only one hysteron. Figure 2.7 shows the hysteresis between
voltage and magnetic flux for two different width of dead zone, [−1, 1] and [−5, 5][A] for the
blue and red curve respectively.

-20 -15 -10 -5 0 5 10 15 20
-3

-2

-1

0

1

2

3

Figure 2.7: Simulation of one hysteron

In order to construct complex and more accurate hysteresis curves is necessary the in-
terconnection of several hysterons [10]. For our particular case, this can be achieve by
connecting the hysterons in parallel between them as in Figure 2.8.

Vin

Rr

R2

R1 L
1

L2

Lr

Figure 2.8: Diagram of r hysterons connected to a voltage input source

Then, the dynamic equation for each hysteron is

ϕ̇j = Vin − wj

(
ϕj

Lj

)
(2.27)
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where ϕj is the magnetic flux of the j − th inductor, Lj the inductance value of the j − th
inductor and wj(·) the non-linear operator of the j − th resistance. Thus, the current i is

i =
r∑

j=1

ϕj

Lj

(2.28)

Note that the difference between the hysteron configuration presented in this thesis work
with the equivalent electrical domain configuration presented in [10, 11], which consists in
the interconnection of a capacitor with a resistance in series or parallel, not only relies in
the energy storing element, also we are able to disengage the input Vin from the non-linear
operator w(·) that defines the constitutive relation for the resistive element.
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Chapter 3

IPHS Model of a class of piezoelectric
actuator

In this chapter an Irreversible port-Hamiltonian formulation of a class of piezoelectric actu-
ators that includes the hysteresis behavior is presented.

In the first section, the definition of a port-Hamiltonian system is introduced, along
with its main characteristics and properties. The mass-spring-damper system is used as an
example of this framework. Then, in the following section the definition of an Irreversible
port-Hamiltonian system is presented and its main properties and differences are analyzed,
with respect to the port-Hamiltonian systems. Two examples are shown, a gas-piston system
and an RLC non-linear circuit that uses the hysteron component.

Finally, in the last section the IPHS formulation of the piezoelectric actuator is developed.
The proposed model is composed by an electro-mechanical system that is interconnected via
a transducer element, the hysteresis behavior is characterized using hysterons components.
Numerical simulations of the proposed model are performed.

3.1 Port-Hamiltonian Systems
Port-Hamiltonian systems (PHS) are a framework that allows to describe a large class of
mechanical-electrical systems and it is based on the principle of conservation of energy
[1, 13, 35].

This framework formalizes the modelling of complex multi-domain physical models as
the interconnection of energy storing elements with energy dissipating elements via basic
physical interconnection laws and uses the total energy of the system, also denominated as
Hamiltonian function, as the link between all the physical domains. This approach has been
used in passivity-based control (PBC) techniques providing a clear physical interpretation
of the control design problem [2, 3].
Definition 3.1 Port-Hamiltonian systems are defined by the dynamic equations [13]:

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + g(x)u(t) (3.1)

y = gT (x)
∂H

∂x
(x) (3.2)
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where x ∈ Rn is the state variable, u ∈ Rm and y ∈ Rn are the input and output of the system
respectively, g(x) ∈ Rn×m is the input mapping to the system, H(x) : Rn → R is a function
that represents the internal energy of the system and it is denominated as Hamiltonian,
J(x) = −J(x)T ∈ Rn×n is a skew-symmetric matrix that represents the interconnection
structure of the system, R(x) = R(x)T ≥ 0 ∈ Rn×n is a symmetric matrix and corresponds
to the resistive structures of the system. �

Furthermore the structure matrix J(x) relates to a symplectic geometry as it defines a
Poisson Bracket, if it satisfies the Jacobi identities [13]. The Poisson bracket of two functions
C∞(Rn), Z and G is expressed as follows [36, 4].

{Z,G}J(x) =
∂Z

∂x

T

J(x)
∂G

∂x
(3.3)

The PHS dynamical equation, with dissipation matrix R(x) = 0, can be expressed in terms
of the Poisson brackets as

ẋ = {x,H}J(x) + g(x)u(t) (3.4)

Port-Hamiltonian systems fulfill the first principle of the thermodynamics: conservation of
the energy. Taking the following balance equation

dH

dt
=

∂H

∂x

T dx

dt

=
∂H

∂x

T

[J(x)−R(x)]
∂H

∂x
(x) +

∂H

∂x

T

g(x)u(t)

Thus, by the skew-symmetry of J(x), the balance equation of the internal energy is:

dH

dt
= −{H,H}R(x) + yTu (3.5)

where the first term of (3.5) represents the loss of the internal energy in the systems due
to dissipative elements. Suppose that we have a lossless dissipative system, this means
R(x) = 0, the balance Equation (3.5) is now:

dH

dt
= yTu (3.6)

This equation represents that the internal energy will change with supply rate yTu and if
we do not have any input to the system, Equation (3.6) is equal to zero, this means that
the internal energy of the system is conserved.

3.1.1 The Mass-Spring-Damper System
As an illustrative example, consider the mass-spring-damper (MSD) system in Figure 3.1
and assume that the effects of friction between the mass and the surface is negligible
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M

d

k
F
e

F
d

F
s

q
v

Figure 3.1: Mass-spring-damper system

where q is the relative displacement across the spring, v is the velocity of the mass, p rep-
resents the kinetic momentum, Fe, Fd and Fs are the elastic, damper and external force
respectively, M is the mass, d is the damper constant and k is the Spring Hooke’s law con-
stant.

To obtain the port-Hamiltonian model of this system, first the interconnection relations
for the forces and velocities are

F = −kq − dq̇ + Fs

vd = vm = q̇

where F represents the net force (mass times acceleration) when the system is on movement.
Note that the spring and damper are assumed to be linear. Then, we obtain the state
equations for the PHS model

q̇ =
p

M
(3.7)

ṗ = −kq − d
p

M
+ Fs (3.8)

The mechanical energy is given by

H(q, p) =
1

2
kq2 +

1

2

p2

M
(3.9)

Finally, the port-Hamiltonian model of the MSD is:[
ṗ
q̇

]
=

([
0 1
−1 0

]
−
[
0 0
0 d

])[
kq
p
M

]
+

[
0
1

]
Fs

y =
[
0 1

] [kq
p
M

] (3.10)

with constant matrices J , R satisfying J = −JT and R = RT ≥ 0.
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3.2 Irreversible Port-Hamiltonian Systems
The irreversible port-Hamiltonian system (IPHS) [4, 5] are an extension of PHS that en-
compasses the first and second principle of thermodynamics, that is the conservation of the
internal energy and irreversible entropy creation, as structural properties. The definition of
IPHS not only allows to represent the irreversible phenomena of the system, also includes
the reversible phenomena.

Definition 3.2 An Irreversible Port-Hamiltonian System (IPHS) is defined by the dynamic
equation [12, 5]:

ẋ = Jir

(
x,

∂U

∂x

)
∂U

∂x
(x) + g

(
x,

∂U

∂x

)
u(t) (3.11)

y = g

(
x,

∂U

∂x

)T
∂U

∂x
(x) (3.12)

where x ∈ Rn is the state variable, U : C∞(Rn) → R is the Hamiltonian function, S :
C∞(Rn) → R represents the entropy, the matrix Jir is skew-symmetric and is defined as:

Jir

(
x,

∂U

∂x

)
= J0(x) + R

(
x,

∂U

∂x

)
J (3.13)

where J0(x) is the structure matrix of a Poisson bracket and S(x) is a Casimir function of

J0(x), J = −JT ∈ Rn×n is a constant skew-symmetric matrix, R
(
x,

∂U

∂x

)
is the product of

a positive definite function γ and the Poisson bracket of the entropy S and the Hamiltonian
U defined as:

R = R

(
x,

∂U

∂x

)
= γ

(
x,

∂U

∂x

)
{S, U}J (3.14)

with γ

(
x,

∂U

∂x

)
≥ 0 a non-linear positive function of the states and co-states that might

be only a function of the states. Also, u ∈ Rm is the external input to the system and
g

(
x,

∂U

∂x

)
∈ Rn×m is the input mapping to the system. �

Let us derive from the balance equations of the total energy function U(x) and entropy
function S(x) the two principles of thermodynamics. Taking the derivative of U(x) respect
to time

dU

dt
= {U,U}J0(x) +R{U,U}J + yTu

by the skew-symmetry property of J and J0, the Poisson brackets {U,U}J , {U,U}J0 are
equal to zero, this led us to:

dU

dt
= yTu

the previous equation represents that the system defined in (3.11)-(3.12) is a lossless dissi-
pative system with energy supply rate yTu, this means that the variation of energy is due to

17



its interaction with the environment, hence satisfies the first principle of thermodynamics.
Now taking the balance equation of the entropy function gives us

dS

dt
= {S, U}J0(x) +R{S, U}J + yTs u

where ys = ∂S
∂x

T
(x)g is an entropy conjugated output. The term {S, U}J0(x) = 0 for any

Hamiltonian U(x) because J0(x) is a Casimir function of S(x). In the absence of some
internal input, i.e., u = 0, and by the definition of the modulating function (3.14) we obtain

dS

dt
= γ

(
x,

∂U

∂x

)
{S, U}2J = σs(x) ≥ 0 (3.15)

where σs(x) is the internal entropy production, this expresses that for a thermodynamic
system the variation of the entropy function is greater or equal to zero and equal to σs(x),
in accordance with the second principle of the thermodynamics.

The difference between the PHS definition and the IPHS relies in the modulating function
R that depends of the co-states destroying the linearity of any Poisson tensor [5]. Besides
the Poisson bracket {S, U}J defines the thermodynamic driving force of the system [4].

3.2.1 Example: Gas-Piston System
Consider a gas contained in a cylinder closed by a piston submitted to gravity [5], the
objective is to obtain the irreversible port-Hamiltonian system. To achieve this, we can
divide the dynamics of this system as two, the effect of the piston under the gravitation
field and the properties of the perfect gas. The first is determined by the sum of the kinetic
and potential energy, the second may be defined by its internal energy, for this example is
supposed that there is no exchange of matter. The total energy of the system is

E(x) = Hmec(z, p) + U(S, V )

where z is the altitude of the piston, p the kinetic momentum, U(S, V ) represents the internal
energy, S is the entropy variable, V is the volume variable and x is the state vector given by
x = [S, V, z, p]T . Note that N represents the number of moles and it is a constant for this
example and Hmec(z, p) is defined as follows

Hmec(z, p) =
1

2
mp2 +mgz (3.16)

where m is the piston mass. The co-energy vector and variables are defined by the gradient
of the total energy E(x), this is:

∂E

∂S
= T

∂E

∂V
= −P

∂E

∂z
= mg = Fg

∂E

∂p
= v
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where T is the temperature, P is the pressure, Fg is the gravity force and v is the velocity
of the piston.

The gas in the cylinder under the piston may undergo a non-reversible transformation
when the piston moves. We assume that in this case a non-adiabatic transformation due to
mechanical friction (and/or viscocity of the gas), and that the dissipated mechanical energy
is converted entirely into heat flow in the gas. The resisting mechanical force due to friction
is Fr = vν. Then, the entropy balance equation is

dS

dt
=

1

T
νv2 = σint (3.17)

which is the irreversible entropy flow at temperature T , induced by the heat flow νv2 due
to the friction of the piston. In the following equation is shown the coupling between the
piston and the gas [

f e
V

F e

]
=

[
0 A

−A 0

] [
−P
v

]
where f e

V is the variation of the volume of the gas, F e is the relating force, A is the area of
the piston.

The dynamics of the gas-piston system is given by the following set of equations

dS

dt
=

1

T
νv2

dV

dt
= Av

dz

dt
= v

dp

dt
= −Fg + AP − Fr = −mg + AP − νv

(3.18)

The first equation is the entropy balance accounting for the irreversible creation of en-
tropy due to the mechanical friction. The second equation indicates that the motion of the
piston induces a variation of the volume of the gas. The third euqation defines the velocity
of the piston. The last equation is the Newton’s law applied to the piston. This control
system can be written in state space representation form as follows:

d

dt


S
V
z
p

 =


0 0 0 νv

T

0 0 0 A
0 0 0 1

−νv
T

−A −1 0




T
−P
F
v


Thus, it can be identified the IPHS structure matrix Jir(T, v) and its decomposition from
definition 3.2:

Jir(T, v) = J0 +R

(
x,

∂U

∂x

)
J
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where the constant Poisson structure matrix is:

J0 =


0 0 0 0
0 0 0 A
0 0 0 1
0 −A −1 0

 (3.19)

and the matrix associated to the irreversible phenomena is:

R

(
x,

∂U

∂x

)
J =

νv

T


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 (3.20)

3.2.2 IPHS formulation of a RLC circuit with hysteron
As illustrative example, consider the RLC circuit of the Figure 3.2, which is conformed by
a voltage input source Vin, one hysteron defined as in Section 2.1.6 and a linear capacitor.
The objective is to obtain an IPHS formulation for this system

Vin

R L

C

Figure 3.2: RLC circuit diagram

The state equations that characterize this system are

Q̇ =
ϕ

L
(3.21)

ϕ̇ = Vin −
Q

C
− w

(
ϕ

L

)
(3.22)

where Q is the charge in the capacitor, ϕ is the electromagnetic flux of the inductor, C and
L are the capacitance and inductance respectively. Besides, as it was defined in Section 2.1.6
one hysteron is the interconnection between the non-linear resistance with a linear inductor
in series. The resistance has the following constitutive law

VR = w(iR)
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where w(·) is a non-linear, non-smooth operator that must satisfy the following dissipation
relation

VRiR = w(iR)iR ≥ 0 (3.23)
The internal energy of the system, which is the sum of the electrical energy and a smooth
function of the entropy

U =
1

2

Q2

C
+

1

2

ϕ2

L
+ f(S) (3.24)

the variation in time of the internal energy is given by

U̇ = −ϕ

L
w

(
ϕ

L

)
+ Vin

ϕ

L
+

∂U

∂S
Ṡ

From Gibb’s relation [37] we have that ∂U
∂S

= T (S). Now suppose that there is not input,
i.e. Vin = 0, then it is obtained

Ṡ =
1

T

ϕ

L
w

(
ϕ

L

)
= σ ≥ 0 (3.25)

where σ corresponds to the internal entropy production and it is related to the electrical
dissipation of the hysteron. The IPHS formulation of the RLC hysteron circuit is thenQ̇ϕ̇

Ṡ

 =

 0 1 0
−1 0 0
0 0 0

+
1

T
w
(
ϕ
L

)0 0 0
0 0 −1
0 1 0

Q
C
ϕ
L

T

+

01
0

Vin (3.26)

Note that this example shows the main reason to use hysterons to represent the hysteresis,
which is a passive approach, allowing incorporate the hysteresis as by an energy preserving
interconnection with the rest of the system [10, 12].

3.3 The Piezoelectric Actuator as IPHS
In this section we develop an IPHS formulation for the proposed model shown in Figure 3.3
that represents the electro-mechanical part of the piezoelectric actuator.

Vin

Rr

R2

R1 L
1

L2

Lr

C

dk

M

PT

FPT

Fext

iPT

VPT

Figure 3.3: Piezoelectric actuator model
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This model is based on the work of Goldfarb and Celanovic [7], where a lumped-parameter
model of a piezoelectric stack actuator is represented by an electrical subsystem with a
nonlinear hysteresis element and a mechanical subsystem. The electrical and mechanical
domains are coupled through a transducer element PT . Different to the model in [7], we
model the hysteresis by the interconnection of hysterons [10, 12]. In the following subsections
we present the model of each physical subdomain of before giving the complete thermo-
electro-mechanical model the piezo actuator.

3.3.1 Mechanical Domain
The mechanical part of the piezoelectric actuator is represented by a mass-spring-damper
system with parameters M , k and d respectively. The interconnection relations for the forces
and velocities are

FM = −Fk − Fd + FPT
+ Fext

vM = vd = q̇

where FM is the force over the mass, Fk is the elastic force from the spring, Fd is the
damping force, Fext is an external force and FPT

is the force produced by electro-mechanical
coupling, vM and vs are the velocities of the damper and the mass respectively and q is the
tip displacement of the piezoelectric actuator. The spring and damper are assumed to be
linear. Thus, the constitutive laws of the energy storage elements can be expressed as

Fe = k(q − ql), Fd = dvd, vM =
p

M

where ql is the displacement of the spring in rest position and p the kinetic momentum.
Taking as state variables the pair (q, p) the dynamic equations of this subsystem are

q̇ =
p

M

ṗ = −k(q − ql)− d
p

M
+ FPT

+ Fext

3.3.2 Electrical Domain
The electrical part of the piezoelectric model is composed by a voltage source, which is the
input of the system, a capacitor of capacitance C and r hysterons, each composed by a
resistance and an inductor in series. The interconnection relations are

VRj
+ VLj

+ VC = Vin

VRj
+ VLj

= VRk
+ VLk

for j ̸= k

iC =
r∑

j=1

ihj
− iPT
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where j, k = {1, 2, · · · , r}; VRj
, VLj

and VC are the voltage of the j-th resistance, j-th
inductor and capacitor respectively; iC , ihj

and iPT
are the currents through the capacitor,

j-th hysteron and the transducer respectively. The constitutive laws for the energy storage
elements are considered linear,

iLj
=

ϕj

Lj

, VC =
Q

C

where iLj
is the current through the j-th inductor, ϕj the electromagnetic flux of the j-th

inductor, Q is the charge stored in the capacitor, Lj is the inductance of the j-th inductor and
C is the capacitance. The r resistances are non-linear with constitutive law VRj

= wj(iRj
, T )

where wj(·, T ) is a non-linear, non-smooth operator satisfying the dissipation relation

VRj
iRj

= wj(iRj
, T )iRj

= σhj
≥ 0 (3.27)

where σhj
corresponds to the internal entropy production of the j-th hysteron. From the

interconnection equations the following set of state equations are obtained

Q̇ =
r∑

j=1

ϕj

Lj

− iPT

ϕ̇j = Vin −
Q

C
− wTj

(
ϕj

Lj
, T
)

3.3.3 Thermodynamic Domain
We consider that the piezoelectric actuator is a thermodynamic system which exchanges
heat with its environment. Denoting by S the total entropy of the system, the entropy
balance is given by Ṡ = σ+ Ṡen where σ represents the internal entropy production and Ṡen

the entropy exchanges with the environment which is modeled as

Ṡen = λ

(
Te(t)

T (S)
− 1

)
(3.28)

where λ denotes the Fourier’s heat conduction coefficient and Te(t) is the temperature of
the environment. The constitutive relation considered for the temperature is

T (S) = T0e
S
c0 (3.29)

where T0 and c0 are constants [5]. To obtain σ we consider the total energy function of the
interconnected system

U =
1

2
k(q − ql)

2 +
1

2

p2

M
+

1

2

Q2

C
+

1

2

r∑
j=1

ϕ2
j

Lj

+ fh(S) (3.30)

where fh(S) is some smooth function of the entropy which is yet to be deduced. Assuming
that there are no external inputs, i.e., Fext = 0, Vin = 0, and Te = T , which implies Ṡen = 0,
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the time variation of (3.30) is

U̇ = −
r∑

j=1

ϕj

Lj

wj

(
ϕj

Lj
, T
)
− d

( p

M

)2
+

∂U

∂S
Ṡ

from were we obtain

σ =
1

T

(
r∑

j=1

ϕj

Lj

wj

(
ϕj

Lj
, T
)
+ d

( p

M

)2)

=
r∑

j=1

σhj
+ σd ≥ 0

(3.31)

where σhj
and σd correspond respectively to the internal entropy production of the j-th

hysteron and the damper. The entropy balance is given by

Ṡ =
r∑

j=1

σhj
+ σd + λ

(
Te(t)

T (S)
− 1

)

3.3.4 IPHS Representation
In order to define the coupling relation between the thermal-electrical-mechanical we assume
the following.

Assumption 3.1 The three domains are interconnected through the hysterons by the non-
linear resistances and by the transducer element PT as follows

VRj
= wj(iRj

, T )

where wj(iRj
, T ) is an operator that depends on the temperature T but it is applied to

the current iRj
. Furthermore the transducer is temperature modulated, and defined by the

following power preserving relations

FPT
= α(T )VPT

= α(T )VC , iPT
= α(T )vPT

= α(T )vM

where α is the electro-mechanical transducer ratio which depends on the temperature T of
the piezoelectric actuator.

Assumption 3.2 The electro-mechanical transducer ratio is a linear function of the tem-
perature, that is

α(T ) = aTT (3.32)

where aT is a constant.
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Using Assumption 3.1 together with the balance equations deduced in the previous sub-
sections,

q̇ =
p

M
(3.33)

ṗ = −k(q − ql)− d
p

M
+ α(T )

Q

C
+ Fext (3.34)

Q̇ =
r∑

j=1

ϕj

Lj

− α(T )
p

M
(3.35)

ϕ̇Lj
= Vin −

Q

C
− wj

(
ϕj

Lj

, T

)
(3.36)

Ṡ =
r∑

j=1

σhj
+ σd + λ

(
Te

T
− 1

)
(3.37)

the piezo actuator model allows the IPHS formulation given in the following proposition.

Proposition 3.1 Consider x = (q, p,Q, ., ϕj, ., S) as state vector. Then a IPHS formulation
for the thermo-electro-mechanical model of the piezo actuator characterized by (3.33)-(3.37)
is

ẋ =

(
J0 +RdJd +

r∑
j=1

RjJj

)
∂U

∂x
+ gu (3.38)

where the structure matrices are defined as

J0 =


0 1 0 0 ··· 0 0
−1 0 α(T ) 0 ··· 0 0
0 −α(T ) 0 1 ··· 1 0
0 0 −1 0 ··· 0 0
... ... ... ... ... ... ...
0 0 −1 0 ··· 0 0
0 0 0 0 ··· 0 0

 , (3.39)

Jd and Jj are have all their elements equal to zero except for two elements in each matrix,
respectively

Jd(n,2)
= 1 Jd(2,n)

= −1

Jj(n,j+3)
= 1 Jj(j+3,n)

= −1

The non-linear modulating functions are

Rd =
1

T
d
( p

M

)
Rj =

1

T
wj

(
ϕj

Lj

, T

)
The input vector is uT = (Fext, Vin, λ

(
Te

T
− 1
)
), with input mapping

gT =

0 1 0 0 · · · 0 0
0 0 0 1 · · · 1 0
0 0 0 0 · · · 0 1


and conjugated output yT = ( p

M
,
∑r

j=1
ϕj

Lj
, T ).
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From the proposed model the matrices Jd and Jk represent the interconnection of the dissi-
pative elements (damper and hysterons) and J0 represents the interconnection of the energy
preserving elements. Note that J0 depends on T which is a co-energy variable, implying it
is a pseudo port-Hamiltonian matrix [38, 39].

In addition, the thermodynamic driving forces, associated with the damper and j − th
hysteron are, respectively, {S, U}Jd = p

M
and {S, U}Jj =

ϕj

Lj
while the positive definite

modulation functions are γd =
d
T

and γj =
1
T
wj(·, T ).

3.3.5 Numerical Simulations
In this subsection, numerical simulations are performed to verify that the proposed thermo-
dynamic model reproduces the behavior of a piezoelectric actuator when the environment
temperature and the frequency of the voltage input vary. Numerical values within standard
physical ranges were considered for the electro-mechanical components [7, 40] while suitable
values were selected for the thermodynamic parameters. The considered parameters are
resumed in Table 3.1. No external mechanical loading has been considered, i.e., Fext = 0.

M k d C
3, 5 · 10−3[kg] 5 · 105[N/m] 4 · 102[N · s/m] 5[µF ]

L T0 λ c0
1 · 10−3[H] 296, 15[K] 2[W/m2K] 5[K/J ]

Table 3.1: Parameters of the model

Temperature dependent coupling elements

The electro-mechanical transducer ratio α, which is by assumption temperature dependent,
is defined as

α(T ) = a
T

T0

where a = 10 with units [C/m] or [C/s · kg] if it is the electrical to mechanical transducer
ratio or mechanical to electrical, respectively. For simplicity two hysterons are used for
the simulations. Notice that this is a very low number, and that to achieve complex and
more precisely hysteresis curves a larger number of hysterons needs to be employed [10].
The inductance values are chosen equal for both hysterons and the non-linear resistance
operators wj(z, T ) defined as

wj =


10

T−T0
(z − 0.5) z > 0.5

0 −0.5 ≤ z ≤ 0.5
10

T−T0
(z + 0.5) z < −0.5

Notice that for this particular choice the reference temperature T0 has to be selected lower
than the operation range of T . Figure 3.4. shows the curve generated by the chosen non-
linear operator for different values of T .

26



-1 -0.5 0 0.5 1
-4

-3

-2

-1

0

1

2

3

4

25 [°C]
30 [°C]
35 [°C]

Figure 3.4: wj(·, T ) operator behavior for different temperatures values

Simulations Results

The hysteresis behavior is shown in Figure 3.5. A 100[V ] sinusoidal input voltage at fre-
quency 100[Hz] has been considered, i.e., Vin = 100 sin(100 · 2πt)[V ], and different values
for the external temperature Te = {25, 30, 35, 40}[◦C] have been used. It is appreciated
that the slope of the hysteresis curve changes when the external temperature changes. This
is in accordance with reported results on temperature dependent hysteresis in piezoelectric
actuators [31, 32] (see Figure 3.6).
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Figure 3.5: Hysteresis behavior between voltage and displacement under different environ-
ment temperatures
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Figure 3.6: Hysteresis behavior presented by Al Janaideh et al., 2019 [32]

Figure 3.7 shows static temperature changes when the input voltage frequency f is
increased, i.e., Vin = 100 sin(f · 2πt)[V ], for different values of inductance in the hysterons,
L = {0.1, 0.5, 1, 5, } · 10−3[H]. From the reported characteristics of commercial piezoelectric
actuators, like the bimorph PB4NB2W from Thorlabs [40] (see Figure 3.8), it is expected
that the static temperature of the actuator increases as the operation frequency increases.
It is observed in Figure 3.7 that the aforementioned characteristic is achieved for a range of
lower frequencies which depend on the value of the parameter L.
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Figure 3.7: Static temperature change for different frequency operation
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Figure 3.8: Change of temperature with respect to the frequency for a bimorph PB4NB2W
Thorlabs, 2020 [40]

Figure 3.9 shows the displacement step response when the input voltage is changed
from 50[V ] to 100[V ] for different external temperature values, Te = {25, 30, 35, 40}[C].
The results show that the temperature generates an offset in the static response of the
displacement, which is in accordance with reported results [31].
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Figure 3.9: Step response for different environment temperatures

Figure 3.10 shows how the hysteresis curve changes for different voltage frequencies.
In this simulation Vin = 100 sin(f · 2πt)[V ] and f = {10, 50, 100, 200}[Hz]. Notice that
the hysteresis curve gets wider and the slope decreases when the frequency is increases, as
expected from reported results in [41, 42] (see Figure 3.11). These effects are a combination
of the ones depicted in Figures 3.5 and 3.7.
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Figure 3.10: Change of the hysteresis curve due to the frequency operation

Figure 3.11: Hysteresis curves for different input frequencies Zhu and Rui, 2016 [41]
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Chapter 4

Control of the piezoelectric actuator

In this chapter we present a first approach for using the proposed model to synthesize a non-
linear passivity based position controller for a class of piezoelectric actuator. The controller
is designed starting from a nominal model which is obtained under the assumption that the
electro-mechanical coupling is independent of the temperature. For this nominal model a
control law which asymptotically stabilizes the closed-loop system at the desired dynamic
equilibrium is proposed. In a second instance, the proposed model is obtained by perturbing
the nominal model with the temperature dependent electro-mechanical coupling. Lyapunov
perturbation theory is then used to show that under some general operation assumptions the
proposed passivity based controller asymptotically stabilizes the closed-loop system. The
control action can be interpreted in terms of damping/entropy injection with respect to the
desired dynamic equilibrium.

4.1 Some preliminaries on stability
In this section, some fundamental theorems on Lyapunov stability are presented [14].

Theorem 4.1 (Lyapunov’s Stability Theorem) Let x∗ be an equilibrium point and D ⊂ Rn

be a domain containing x∗. Let V : D → R be a continuously differentiable function such
that satisfies

1. V (x) > 0, ∀x ∈ D − {x∗}

2. V (x∗) = 0

3. V̇ (x) ≤ 0

Then, x∗ is stable in the sense of Lyapunov and V (x) is denominated as Lyapunov function.
Moreover if

V̇ (x) < 0

Then, x∗ is asymptotically stable.

Theorem 4.2 (LaSalle’s Invariance Principle) Let Ω ⊂ D be a compact set that is positively
invariant with respect to ẋ = f(x). Let V : D → R be a continuously differentiable function
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such that V̇ (x) ≤ 0 in Ω. Let E be a set of all the points in Ω where V̇ (x) = 0. Let M be
the largest invariant set in E. Then every solutions starting in Ω approaches M as t → ∞.

Corollary 4.1 Let x∗ be an equilibrium point for ẋ = f(x). Let V : D → R be a continuously
differentiable positive definite function on a domain D containing x∗, such that V̇ (x) ≤ 0
in D. Let S = {x ∈ D | V̇ (x) = 0} and suppose that no solution can stay identically in S,
other than the solution x(t) = x∗. Then, the equilibrium point x∗ is asymptotically stable.

Lemma 4.1 (Stability of Perturbed Systems) Consider the system

ẋ = f(t, x) + g(t, x) (4.1)

and x = x∗ be an uniformly asymptotically stable equilibrium point of the nominal system

ẋ = f(t, x) (4.2)

suppose the nominal system has a definite, decrescent Lyapunov function V (t, x) that satisfies

∂V

∂t
+

∂V

∂x

T

f(t, x) ≤ −W (x) (4.3)

for all (t, x) ∈ [0,∞) × D where W (x) is positive definite and continuous. The derivative
along the trajectories of (4.1) is given by

V̇ (t, x) =
∂V

∂t
+

∂V

∂x

T

f(t, x) +
∂V

∂x

T

g(t, x)

≤ −W (x) +

∣∣∣∣∣∣∣∣∂V∂x T

g(t, x)

∣∣∣∣∣∣∣∣
Then, if W (x) satisfies ∣∣∣∣∣∣∣∣∂V∂x T

g(t, x)

∣∣∣∣∣∣∣∣ < W (x) (4.4)

the equilibrium point x∗ is an uniformly asymptotically stable of the perturbed system (4.1).

Candidate Lyapunov Function for IPHS

Since the internal energy of the irreversible thermodynamic system does not have a strict
minimum, a standard candidate Lyapunov function for control is the energy based availabil-
ity function [15, 16]

Definition 4.1 The energy based availability function is defined as

A(x, x∗) = U(x)− U(x∗)− ∂U

∂x
(x∗)(x− x∗) (4.5)

where U(x) is the internal energy of the system and x∗ is the desired equilibrium point of a
thermodynamic variable x.

The availability function uses the convexity of the internal energy together with the as-
sumption that one of the extensive variables is fixed, to construct a strictly convex extension
which serves as Lyapunov function for a desired equilibrium point [18, 17]. We shall use this
function as the Lyapunov closed-loop function for irreversible port-Hamiltonian system.
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4.2 Control design

In this section we propose a control design based on two steps: In a first instance a PBC
for a simplified nominal system is synthesized (see Figure 4.1a). The assumption used
to formulate the nominal system is that the electro-mechanical coupling is independent of
the temperature. Under this assumption a damping/entropy assignment controller which
asymptotically stabilizes the nominal systems is derived using as candidate Lyapunov func-
tion an energy based availability function. In a second instance, proposed model of the piezo
electric actuator is obtained by perturbing the nominal system with a temperature depen-
dent electro-mechanical coupling (see Figure 4.1b). A perturbed system stability analysis is
then performed under some general operation assumptions to show the asymptotic stability
analysis of the proposed model.

Nominal system

Controller

Position

* = (T*)

(a) Controller design for a nominal system

Nominal system

Controller

Position

Perturbation

(b) Stability analysis of a perturbed system

Figure 4.1: Strategy of control design

4.2.1 Characterization of equilibrium points

Let us characterize the admissible equilibrium(s) point(s) x∗ = (p∗, q∗, Q∗, ϕ∗
1, · · · , ϕ∗

r, S
∗) of

the proposed piezoelectric model. These are given when the derivatives of the system in
steady state are< equal to zero, that is ẋ = 0, for some constant inputs u∗ = (F ∗

ext, V
∗
in, T

∗
e ).

Proposition 4.1 The admissible equilibrium points are

x∗ =
(
0, ql +

1
k
(α(T ∗)V ∗

in + F ∗
ext) , V

∗
inC, 0, · · · , 0, c0 ln

(
T ∗

T0

))
(4.6)
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Proof. Recall that the state equations of the model are

q̇ =
p

M

ṗ = −k(q − ql)− d
p

M
+ α(T )

Q

C
+ Fext

Q̇ =
r∑

j=1

ϕj

Lj

− α(T )
p

M

ϕ̇Lj
= Vin −

Q

C
− wj

(
ϕj

Lj

, T

)
Ṡ =

r∑
j=1

σhj
+ σd + λ

(
Te

T
− 1

)
starting with the state equation of q̇ we can conclude that

q̇ =
p∗

M
= 0 ⇒ p∗ = 0

replacing this result in the state equation of Q̇ we can obtain

Q̇ =
r∑

j=1

ϕ∗
j

Lj

= 0

assuming that the temperature of the piezoelectric actuator is equal to the environment
temperature, i.e. T ∗

e = T ∗, the state equation of Ṡ is

Ṡ =
1

T ∗

(
r∑

j=1

ϕ∗
j

Lj

wj

(
ϕ∗
j

Lj
, T ∗
))

= 0 ⇒
r∑

j=1

ϕ∗
j

Lj

wj

(
ϕ∗
j

Lj
, T ∗
)
= 0

recalling that σhj
≥ 0 for each value of j leads us to conclude that

ϕ∗
j = 0, ∀j

from the last two state equations ṗ and ϕ̇j

ϕ̇j = V ∗
in −

Q∗

C
= 0 ⇒ Q∗ = V ∗

inC

ṗ = −k(q∗ − ql) + α(T ∗)
Q∗

C
+ F ∗

ext = 0 ⇒ q∗ = ql +
1

k
(α(T ∗)V ∗

in + F ∗
ext)

and S∗ is calculated from the constitutive equation T (S) = T0e
S
c0

S∗ = c0 ln

(
T ∗

T0

)
Thus, the admissible equilibrium points are defined by (4.6). �

Consider the piezoelectric model described by Equations (3.33) - (3.37), the objective
is to design a control law that asymptotically reaches an equilibrium point x∗. Lemma 4.1
shall be used in order to design the controller.
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4.2.2 Control design of the nominal system
Define the following nominal system from the IPHS model of the piezoelectric actuator

q̇ =
p

M
(4.7)

ṗ = −k(q − ql)− d
p

M
+ α∗Q

C
+ Fext (4.8)

Q̇ =
r∑

j=1

ϕj

Lj

− α∗ p

M
(4.9)

ϕ̇Lj
= Vin −

Q

C
− wj

(
ϕj

Lj

, T

)
(4.10)

Ṡ =
r∑

j=1

σhj
+ σd + λ

(
Te

T
− 1

)
(4.11)

where the electro-mechanical transducer ratio is a constant that depends on the temperature
equilibrium point T ∗, that is α(T ∗) = α∗. We shall consider the following general operation
assumptions.
Assumption 4.1

1. The only control input is the voltage Vin.

2. The piezoelectric actuator is not under any external forces Fext = 0.

3. We measure but not modify the environment temperature, this implies Te = T ∗.

Proposition 4.2 The control law
Vin =

Q∗

C
(4.12)

asymptotically stabilizes the nominal system (4.7) - (4.11) at the equilibrium x∗.

Proof. Select the following Lyapunov function candidate for the nominal system (4.7) -
(4.11)

V (x) =
1

2
k(q − q∗)2 +

1

2

p2

M
+

1

2

(Q−Q∗)2

C
+

1

2

r∑
j=1

ϕ2
j

Lj

+ A(S) (4.13)

where V (x) is the sum of quadratic functions of the state and A(S) that is the energy based
availability function for the S component defined as

A(S) = fh(S)− fh(S
∗)− T ∗(S − S∗) (4.14)

Then, from Equation (4.13) we proceed to calculate the derivative respect to time of V (x)
obtaining

V̇ = k(ql − q∗)
p

M
+ α∗Q

∗

C

p

M
− T ∗

T

(∑ ϕj

Lj

wj

(
ϕj

Lj

, T

)
+ d

( p

M

)2)
+

(
Vin −

Q∗

C

)∑ ϕj

Lj

+ (T − T ∗)λ

(
Te

T
− 1

)
+ Fext

p

M

(4.15)
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Considering Assumption 4.1 and the definition of the feasible equilibrium points in (4.6)
(Proposition 4.1), we have that q∗ − ql =

1
k
(α∗Q∗

C
+ F ∗

ext). Thus, V̇ is equal to

V̇ (x) = −T ∗

T

(∑ ϕj

Lj

wj

(
ϕj

Lj

, T

)
+ d

( p

M

)2)
+

(
Vin −

Q∗

C

)∑ ϕj

Lj

− (T − T ∗)2
λ

T

and using the control Vin =
Q∗

C
the time variation of the Lyapunov candidate is

V̇ (x) = −T ∗
r∑

j=1

σhj
− T ∗σd − (T − T ∗)2

λ

T
≤ 0 (4.16)

Thus, the conditions from Theorem 4.1 are satisfied and we can conclude that the equilibrium
point x∗ is stable. Moreover, note that V̇ (x) = 0 only when x = x∗ then, from Corollary 4.1
the equilibrium point x∗ is asymptotically stable. �

4.2.3 Control of the perturbed system
We shall perform the following physically based assumption which assures that when the
system approaches the dynamic equilibrium it exhibits a linear behavior.
Assumption 4.2 Suppose that near the equilibrium point, the absolute the difference be-
tween the temperature and its equilibrium satisfies the following inequality

|T − T ∗| ≤ εd|p|+
r∑

j=1

εj

∣∣∣∣ϕj

Lj

∣∣∣∣ (4.17)

where εd, εj are positive constants.
Note that Assumption 4.2 can be interpreted as follows. The difference to reach the equilib-
rium point of the temperature is bounded by the linear combination of the kinetic momentum
p and magnetic flux of the inductors ϕj, indeed, (4.17) means that near the equilibrium, when
the kinetic momentum and the magnetic flux approaches zero, the temperature approaches
T ∗.

The following proposition uses Lemma 4.1 to conclude about asymptotic stability of the
proposed model.
Corollary 4.2 The control law of Proposition 4.2 asymptotically stabilizes the IPHS for-
mulation (3.33) - (3.37) within a region around the equilibrium point which depends on the
electro-mechanical coupling function α(T ).
Proof. Until this point, we have found a Lyapunov function and designed a control law that
stabilizes the nominal system at x∗. In the following we shall use Lemma 4.1 to show the
asymptotic stability of the proposed model. To this end we look for a continuous positive
function W (x) that satisfies (4.3). From Equation (4.16) we have

V̇ (x) = −T ∗
r∑

j=1

σhj
− T ∗σd − (T − T ∗)2

λ

T

≤ −T ∗
r∑

j=1

σhj
− T ∗σd
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Thus, we can select W (x) as

W (x) = T ∗

(
r∑

j=1

σhj
+ σd

)
(4.18)

Now we need to verify that the selected W (x) satisfies the condition∣∣∣∣∣∣∣∣∂V∂x T

g(t, x)

∣∣∣∣∣∣∣∣ < W (x) (4.19)

recall that g(t, x) is

g(t, x) =



0

α(T )Q
C
− α∗Q

C

−α(T ) p
M

+ α∗ p
M

0
...
0


Then, using this and Assumption 3.2 led us to∣∣∣∣∣∣∣∣∂V∂x g(t, x)

∣∣∣∣∣∣∣∣ = ∣∣∣∣aT (T − T ∗)
Q∗

C

p

M

∣∣∣∣ = ∣∣∣∣aTQ∗

CM

∣∣∣∣ |T − T ∗| |p| (4.20)

Considering Assumption 4.2, Equation (4.19) becomes

kα

(
εd|p|2 +

r∑
j=1

εj

∣∣∣∣ϕj

Lj

∣∣∣∣ |p|
)

< T ∗

(
r∑

j=1

σhj
+ σd

)
(4.21)

where kα =
∣∣aTQ∗

CM

∣∣. Hence, Lemma 4.1 is always fulfilled in a region sufficiently small around
the equilibrium. The values of εd and εj will depend on the choice of the electro-mechanical
coupling function α(T ). Thus it is concluded that the control law (4.12) stabilizes the IPHS
model of the piezoelectric actuator at the equilibrium point x∗ asymptotically. �
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Chapter 5

Conclusions

In this thesis work, an irreversible port-Hamiltonian system formulation for a class of piezo-
electric actuator with non-negligible entropy increase has been proposed. The proposed
model encompasses the hysteresis and the irreversible thermodynamic changes due to me-
chanical friction, electrical resistance and heat exchange between the actuator and the en-
vironment. The electromechanical dynamic of the actuator has been modeled using a non-
linear resistive-capacitive-inductor circuit coupled with a mass-spring-damper system, while
the non-linear hysteresis has been characterized using hysterons. The thermodynamic be-
havior of the model has been constructed by making the electro-mechanical coupling temper-
ature dependent, and by characterizing the entropy produced by the irreversible phenomena.
By means of numerical simulations it has been shown that the proposed model is capable of
reproducing the expected behaviors and that it is in line with reported experimental results.
It is interesting to notice that for the numerical simulations only two hysterons were used,
strongly limiting the possible dynamics.

A first approach for using the proposed irreversible port-Hamiltonian model to synthesize
a non-linear passivity based position controller for a class of piezoelectric actuator has been
proposed. The controller is designed from a nominal model which is obtained under the
assumption that the electro-mechanical transducer ratio is a constant. From this nominal
model a control law that asymptotically stabilizes the closed-loop system at the desired
equilibrium is proposed. Then, a perturbed system stability analysis is performed under
some assumptions to show the asymptotic stability of the proposed model.

Future work will deal with control design using other techniques, for instance: inter-
connection and entropy rate assignment, deduce the number of hysterons to be used in the
model and experimental validation.
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