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Departamento de Matemática
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Universidad Técnica Federico Santa Maŕıa, Chile.
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Resumen

En este trabajo, proponemos dos enfoques numéricos para resolver problemas primales-duales de
optimización convexa con restricciones. Las restricciones del problema están representadas por la
intersección de un número finito de conjuntos convexos cerrados sobre los cuales los algoritmos
propuestos proyectan de manera alternada y/o aleatoria. El primer algoritmo incluye un paso de
activación aleatorio sobre un esquema de proyección ćıclico, mientras que el segundo elige un ele-
mento aleatorio del conjunto de operadores de proyección. La convergencia casi segura de ambos
algoritmos se deriva de las propiedades de las sucesiones estocásticas Quasi-Fejér.

Como casos especiales de los algoritmos propuestos, recuperamos varios algoritmos primales-duales
en la literatura y algoritmos clásicos para resolver problemas de factibilidad de conjuntos convexos,
como proyecciones ćıclicas, Kaczmarz y Kaczmarz aleatorio. Finalmente, probamos ambos algorit-
mos en un problema de expansión de capacidad de arco en una red de transporte. El problema
puede formularse como un problema primal-dual de optimización convexa con restricciones. Luego
comparamos la eficiencia de diferentes esquemas de proyección alternada / aleatoria propuestos en
este trabajo con el algoritmo primal-dual sin ninguna proyección. Todos los algoritmos propuestos
que incluyen una proyección mejoran considerablemente el tiempo de ejecución y el número de it-
eraciones. En el caso de los algoritmos que incluyen proyecciones aleatorias y alternada obtenemos
hasta un 31% y 35% de mejora en el tiempo de ejecución promedio, respectivamente, en los ejemplos
de dimensiones superiores.

Palabras clave: Optimización convexa con restricciones, Algoritmo de minimización, Algoritmo
Primal-dual, Sucesiones estocásticas Quasi-Fejér, Algoritmo de Kaczmarz aleatorio.
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Chapter 1

Introduction

1.1 State of the art and context

The main goal of this work is study and propose an efficient algorithm to solve the following convex
minimization problem.

Problem 1.1 Let H and G be separable real Hilbert spaces, endowed by the scalar product 〈· | ·〉
and the associated norm ‖ · ‖. Let f : H 7→] −∞,+∞] and g : G 7→] −∞,+∞] be proper lower
semicontinuous convex functions, let h : H → R be convex and differentiable with µ−1- Lipschitzian
gradient, for some µ ∈]0,+∞[, and let L : H → G be a nonzero bounded linear operator. Let
C :=

⋂m
i=1Ci 6= ∅, where, for every i in {1, ...,m}, Ci is a nonempty closed convex subset of H.

Consider the primal problem

find x ∈ C ∩ argminx∈H(f(x) + g(Lx) + h(x)) (1.1)

and the dual problem

find u ∈ argminu∈G(g∗(u) + (f + h)∗(−L∗u)), (1.2)

where G∗ denote the conjugate function of G and L∗ is the adjoint of L.

Problem 1.1 arises in several areas such as image recovery [6, 10, 20], partial diferential equations
[1, 17], signal processing [11, 14] and arc capacity expansion over a directed graph in a stochastic
context [9]. In [8] a primal-dual algorithm for solving Problem 1.1 is proposed, in the case when
h = 0 and C = H. In [16, 24] the previous algorithm is extended to the case h 6= 0, while in
[7], Problem 1.1 is solved in its all generality, by including a deterministic projection onto C. In
several cases the projection operator is not easy to compute, and the main goal of this work is to
provide eficcient algorithms which implement projections onto C1, . . . , Cm and generate sequences
converging to a solution to Problem 1.1.

As a particular instances of Problem 1.1, consider the case when f = g = L = h = 0, H = Rn and
C = {x ∈ H| Rx = b}, where R is full rank m×n real matrix, such that m ≤ n, and b ∈ Rm. In this
case Problem 1.1 reduces to the problem of finding x ∈ C and one possibility to solve the system
is to use the Kaczmarz method [19], which performs cyclic projections onto hyperplanes defined by
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linear equations r>i x = bi, for all i ∈ {1, ...,m}, where ri ∈ Rm is the ith line of matrix R . The
algorithm converges to a feasible solution of the problem in the consistent case. In the case when
the linear system is inconsistent we refer the reader to [18]. In [23] a randomized version of the
Kaczmarz method for consistent and overdetermined linear systems with an expected exponential
convergence rate is proposed.

The objective of this work is to propose new algorithms with alternating and random projections
to solve Problem 1.1 in its whole generality and verify its numerical performance of the algorithms
in capacity expansion problems in transport networks.

As a consequence of the results of this work, we obtain generalizations of Kaczmarz method [19],
Randomized Kaczmarz [23], and several deterministic methods for the convex feasibility problem
[3]. On the other hand, we generalize primal-dual methods [7, 8] by including alternating and ran-
domized projections onto a priori knowledge of the solutions.

This document is organized as follows. In Chapter 1 we introduce some notation and a back-
ground in Convex Optimization and Probability in Hilbert spaces. In the next section we present
an equivalent formulation and preliminary results. In chapter 2 and 3 we propose a primal-dual
method with random binary projection algorithm and randomized Kaczmarz version. We prove
convergence results by using Stochastic Quasi-Fejér sequences as in [13]. Finally we verify the per-
formance of the algorithms in the example of arc capacity expansion problem in transport networks.

1.2 Notation

The identity operator on H is denoted by Id and ⇀ and→ denote, weak and strong convergence in
H, respectively. The set of weak sequential cluster points of a sequence (xn)n∈N in H is denoted by
W (xn)n∈N. The adjoint of a linear bounded operator L : H 7→ G is denoted by L∗. The projector
operator onto a nonempty closed convex set C ⊂ H is denoted by PC : x ∈ H → argminy∈C ‖y− x‖
and its normal cone operator is defined by

NC : H⇒ H : x 7→
{
{u ∈ H | (∀y ∈ C) 〈u | y − x〉 ≤ 0} if x ∈ C;
∅ if x /∈ C. (1.3)

Let C be a nonempty convex subset of H. The strong relative interior of C is

sriC = {x ∈ C | R++(C − x) = span(C − x)} , (1.4)

where R++C1 = {λy | (λ > 0) ∧ (y ∈ C1)} and span(C1) is the smallest closed linear subspace of H
containing C1.

Given α ∈]0, 1[, an operator T : H → H is α-averaged nonexpansive iff,

(∀x ∈ H)(∀y ∈ H) ‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1− α
α
‖(Id −T )x− (Id −T )y‖2, (1.5)

and T is firmly nonexpansive if and only if it is
1

2
-averaged.

4



Let M : H ⇒ H be a set-valued operator. The domain of M is domM := {x ∈ H |Mx 6= ∅},
we denote by ran(M) := {u ∈ H | (∃x ∈ H) u ∈ Mx} the range of M and the graph of M
is graM := {(x, u) ∈ H2 | u ∈ Mx}. The inverse M−1 of M is defined via the equivalences(
∀(x, u) ∈ H2

)
x ∈M−1u⇔ u ∈Mx. Given ρ ≥ 0, M is ρ-strongly monotone iff,

(∀(x, u) ∈ gra(M))(∀(y, v) ∈ gra(M)) 〈x− y | u− v〉 ≥ ρ‖x− y‖2.

M is ρ-cocoercive iff M−1 is ρ-strongly monotone, M is monotone iff it is ρ-strongly monotone with
ρ = 0, and it is maximally monotone iff its graph is maximal, in the sense of inclusions in H ×H,
among the graphs of monotone operators. The resolvent of M is denoted by JM = (Id +M)−1,
where Id is the identity operator. If M is maximally monotone, then JM is single-valued and
firmly nonexpansive operator, with domJM = H. We denote by Γ0(H) the set of proper, lower
semicontinuous and convex functions from H 7→ R∪{+∞}. The subdifferential of f ∈ Γ0(H) is the
maximal monotone operator

∂f : H⇒ H : x 7→ {u ∈ H | (∀y ∈ H) f(x) + 〈y − x | u〉 ≤ f(y)} (1.6)

and, if f is Gâteaux differentiable in x, then ∂f(x) = {∇f(x)}. We have (∂f)−1 = ∂f∗, where
f∗ ∈ Γ0(H) is the conjugate function of f ∈ Γ0(H) defined by f∗ : u 7→ supx∈H(〈x | u〉− f(x)). The
proximal operator of f ∈ Γ0(H) is

proxf : H → H : x 7→ argmin
y∈H

f(y) +
1

2
‖x− y‖2 (1.7)

and we have J∂f = proxf . Moreover, if C ⊂ H is a nonempty convex closed subset, then δC ∈ Γ0(H),
NC = ∂δC , and JNC = PC , where

δC(x) =

{
0, if x ∈ C
+∞, if x /∈ C. (1.8)

Let (Ω,F ,P) be a probability space. The space of all random variables z with values in H such that
‖z‖ is integrable is denoted by L1(Ω,F ,P;H). Given a σ-algebra E of Ω, x ∈ L1(Ω,F ,P;H), and y ∈
L1(Ω,F ,P;H), y is the conditional expectation of x with respect to E iff (∀E ∈ E)

∫
E xdP =

∫
E ydP,

in this case we write y = E(x | E). The characteristic function on D ⊂ Ω is denote by 1D, which is 1
in D and 0 otherwise. AnH-valued random variable is a measurable map x : (Ω,F)→ (H,B), where
B is the Borel σ-algebra. The σ-algebra generated by a family Φ of random variables is denoted by
σ(Φ). Let F = (Fn)n∈N be a sequence of sub-sigma algebras of F such that (∀n ∈ N) Fn ⊂ Fn+1.
We denote by `+(F ) the set of sequences of [0,∞)-valued random variables (ξn)n∈N such that, for
every n ∈ N, ξn is Fn-measurable. We set

(∀p ∈]0,∞[) `p+(F ) :=

{
(ξn)n∈N ∈ `+(F )

∣∣∣∣∣∑
n∈N

ξpn <∞ P − a.s.

}
. (1.9)

1.3 Alternative formulation and Preliminaries

Assume that the following qualification condition is satisfied

0 ∈ sri (L (dom f)− dom g) . (1.10)

Then, applying [3, Theorem 16.47], we have the following equivalent formulation for the Problem 1.1.
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Problem 1.2 Consider the setting of Problem 1.1. The problem can be restated as solving the
primal-dual inclusions

find x ∈ C =
m⋂
i=1

Ci such that 0 ∈ ∂f(x) + L∗∂g(Lx) +∇h(x), (P0)

together with the dual inclusion

find u ∈ G such that (∃x ∈ C)


0 ∈ ∂f(x) + L∗u+∇h(x)

0 ∈ ∂g∗(u)− Lx,
(D0)

under the assumption that solutions exist. We denote by Z ⊂ H×G the set of primal-dual solutions.

The following proposition give us some technical inequalities and properties used in the convergence
of algorithm proposed in the chapters 2 and 3.

Proposition 1.3 Consider the setting of Problem 1.2. Let τ ∈]0, 2µ[, let γ > 0, and let
(x0, x0, u0) ∈ H × H × G be such that x0 = x0. Moreover, let (εk)k∈N be a sequence of inde-
pendent I-valued random variables, where I is a finite set of N∪{0}, and let (Gk(p

k+1, εk+1))k∈N be
a sequence of H-valued random variables. Consider the following routine

(∀k ∈ N)


uk+1 = proxγg∗(u

k + γLx̄k)

pk+1 = proxτf
(
xk − τ(L∗uk+1 +∇h(xk))

)
xk+1 = Gk+1(pk+1, εk+1)
x̄k+1 = xk+1 + pk+1 − xk.

(1.11)

Then the following hold:

(i) For every k ≥ 1 and (x̂, û) ∈ Z, we have

‖xk − x̂‖2

τ
+
‖uk − û‖2

γ
≥ ‖p

k+1 − x̂‖2

τ
+

(
1

τ
− 1

2µ

)
‖xk − pk+1‖2 +

‖uk+1 − û‖2

γ
+
‖uk+1 − uk‖2

γ

+ 2〈L(pk+1 − xk) | uk+1 − û〉 − 2〈L(pk − xk−1) | uk − û〉
− 2‖L‖‖pk − xk−1‖‖uk+1 − uk‖. (1.12)

(ii) Suppose that, for every (x̂, û) ∈ Z, the sequence
(
‖xk−x̂‖2

τ + ‖uk−û‖2
γ

)
k∈N

converges P-a.s. to

a [0,∞[-valued random variable. Then there exists ΩZ such that P(ΩZ) = 1 and, for every

ω ∈ ΩZ and for every (x̂, û) ∈ Z,
(
‖xk(w)−x̂‖2

τ + ‖uk(w)−û‖2
γ

)
k∈N

converges.

Proof.
(i) Fix k ∈ N and (x̂, û) ∈ Z. It follows from (1.11) that

xk − pk+1

τ
− L∗uk+1 −∇h(xk) ∈∂f(pk+1)

uk − uk+1

γ
+ L(xk + pk − xk−1) ∈∂g∗(uk+1). (1.13)
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Since f ∈ Γ0(H) and g∗ ∈ Γ0(G) [3, Proposition 13.13], ∂f and ∂g∗ are maximally monotone
operators [3, Theorem 20.25] then we have〈
xk − pk+1

τ
− L∗(uk+1 − û)

∣∣∣∣ pk+1 − x̂
〉

+

〈
uk − uk+1

γ
+ L(xk + pk − xk−1 − x̂)

∣∣∣∣ uk+1 − û
〉

−
〈
∇h(xk)−∇h(x̂)

∣∣∣∣ pk+1 − x̂
〉
≥ 0,

(1.14)

multiplying (1.14) by 2 and from [3, Lemma 2.12 (i)] we obtain

‖xk − x̂‖2

τ
+
‖uk − û‖2

γ
≥1

τ
‖xk − pk+1‖2 +

‖pk+1 − x̂‖2

τ
+
‖uk+1 − uk‖2

γ
+
‖uk+1 − û‖2

γ

+ 2〈L(pk+1 − x̂) | uk+1 − û〉 − 2〈L(xk + pk − xk−1 − x̂) | uk+1 − û〉

+ 2

〈
∇h(xk)−∇h(x̂)

∣∣∣∣ pk+1 − x̂
〉
. (1.15)

On the other hand, we have

〈L(pk+1 − x̂) | uk+1 − û〉 − 〈L(xk + pk − xk−1 − x̂) | uk+1 − û〉
= 〈L(pk+1 − x̂) | uk+1 − û〉 − 〈L(xk − x̂) | uk+1 − û〉 − 〈L(pk − xk−1) | uk+1 − û〉
= 〈L(pk+1 − xk) | uk+1 − û〉 − 〈L(pk − xk−1) | uk+1 − û〉
= 〈L(pk+1 − xk) | uk+1 − û〉 − 〈L(pk − xk−1) | uk+1 − uk〉 − 〈L(pk − xk−1) | uk − û〉
≥ 〈L(pk+1 − xk) | uk+1 − û〉 − ‖L‖‖pk − xk−1‖‖uk+1 − uk‖ − 〈L(pk − xk−1) | uk − û〉.

(1.16)

Finally since h has µ−1- Lipschitzian gradient then ∇h is µ-cocoercive [3, Corollary 18.17], and

ab ≤ βa2 + b2

4β yield〈
∇h(xk)−∇h(x̂) | pk+1 − x̂

〉
=
〈
∇h(xk)−∇h(x̂) | pk+1 − xk

〉
+
〈
∇h(xk)−∇h(x̂) | xk − x̂

〉
≥ −‖∇h(xk)−∇h(x̂)‖‖pk+1 − xk‖+ µ‖∇h(xk)−∇h(x̂)‖2

≥ −
∥∥pk+1 − xk

∥∥2

4µ
, (1.17)

the result follows replacing (1.16) and (1.17) in (1.15).

(ii) We define a norm ||| · |||τ,γ on H× G by

∀(x, u) ∈ H × G |||(x, u)|||τ,γ =

√
‖x‖2
τ

+
‖u‖2
γ

. (1.18)

Now since H and G are separable then H × G and Z are separable and, by definition, there ex-
ists F ⊂ H × G countable such that F = Z. Moreover, for every (x, u) ∈ Z, there exists a set
Ω(x,u) ∈ F such that P(Ω(x,u)) = 1 and, (|||(xk, uk) − (x, u)|||τ,γ)k∈N converges to a [0,∞[-valued
random variable ϕ(x,u) : Ω(x,u) → [0,∞[. If we define ΩZ =

⋂
(x,u)∈F Ω(x,u), since F is countable, we

have that P(ΩZ) = P(
⋂

(x,u)∈F Ω(x,u)) = 1− P(
⋃

(x,u)∈F Ωc
(x,u)) ≥ 1−

∑
(x,u)∈F P(Ωc

(x,u)) = 1, which
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yields P(ΩZ) = 1.

We want to prove that, for every (x, u) ∈ Z and w ∈ ΩZ , the sequence (|||(xk(w), uk(w)) −
(x, u)|||τ,γ)k∈N converges. Since F is dense in Z, there exists a sequence ((xn, un))n∈N ⊂ F such
that (xn, un)→ (x, u). Now let w ∈ ΩZ . For every k ∈ N and n ∈ N, we have

−|||(xn, un)− (x, u)|||τ,γ ≤ |||(xk(w), uk(w))− (x, u)|||τ,γ − |||(xk(w), uk(w))− (xn, un)|||τ,γ
≤ |||(xn, un)− (x, u)|||τ,γ . (1.19)

Therefore, for every n ∈ N, we obtain

−|||(xn, un)− (x, u)|||τ,γ ≤ lim inf
k→∞

|||(xk(w), uk(w))− (x, u)|||τ,γ − lim
k→∞

|||(xk(w), uk(w))− (xn, un)|||τ,γ

= lim inf
k→∞

|||(xk(w), uk(w))− (x, u)|||τ,γ − ϕ(xn,un)(w)

≤ lim sup
k→∞

|||(xk(w), uk(w))− (x, u)|||τ,γ − ϕ(xn,un)(w)

= lim sup
k→∞

|||(xk(w), uk(w))− (x, u)|||τ,γ − lim
k→∞

|||(xk(w), uk(w))− (xn, un)|||τ,γ

≤|||(xn, un)− (x, u)|||τ,γ . (1.20)

Therefore, taking the limit as n → ∞, we obtain that (|||(xk, uk) − (x, u)|||τ,γ)k∈N converges P-a.s.
and

(∀w ∈ ΩZ) lim
k→∞

|||(xk(w), uk(w))− (x, u)|||τ,γ = lim
n→∞

ϕ(xn,un)(w), (1.21)

which yields the results.

The following lemma is an especial case of [12, Theorem 3.2] and is the main tool to prove the
convergence of Stochastic Quasi-Fejér sequences.

Lemma 1.4 [22, Theorem 1] Let F = (Fn)n∈N be a sequence of sub-sigma algebras of F such that
(∀n ∈ N) Fn ⊂ Fn+1. Let (an)n∈N ∈ `+(F ) and (bn)n∈N ∈ `+(F ) be such that

(∀n ∈ N) E(an+1 | Fn) + bn ≤ an P − a.s. (1.22)

Then (bn)n∈N ∈ `1+(F ) and (an)n∈N converges P-a.s. to a [0,∞[-valued random variable.
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Chapter 2

Random binary projections in convex
optimization

In this chapter, we explore an extension of primal-dual algorithm proposed in [7], which includes
random binary alternating projections, i.e., given an order of the sets (Ci)

m
i=1 onto which projections

take place at each iteration, the method “flips a coin” and decide to project or not.

Theorem 2.1 Consider the setting of Problem 1.2. Let τ ∈]0, 2µ[, let γ > 0, let (x0, x0, u0) ∈
H × H × G be such that x0 = x0, and let (εk)k∈N be a sequence of independent {0, 1}−Bernoulli
random variables satisfying P(ε−1

k ({1})) = πk. Let (Dk)
∞
k=1 be a sequence of nonempty closed convex

subsets of H and consider the following routine

(∀k ∈ N)


uk+1 = proxγg∗(u

k + γLx̄k)

pk+1 = proxτf (xk − τ(L∗uk+1 +∇h(xk)))

xk+1 = pk+1 + εk+1(PDk+1
pk+1 − pk+1)

x̄k+1 = xk+1 + pk+1 − xk.

(2.1)

Moreover, assume that the following hold:

(i) For every k ≥ 1, Dk ∈ {C1, ..., Cm} and C =
⋂m
i=1Ci =

⋂+∞
k=1Dk.

(ii) (∃N ∈ N)(∀i ∈ {1, ..,m})(∀k ∈ N)(∃lk(i) ∈ {k, ..., k +N − 1}) such that Dlk(i) = Ci.

(iii) 0 < infk∈N πk and ‖L‖2 < 1
γ

(
1
τ −

1
2µ

)
.

Then ((xk, uk))k∈N converges weakly P-a.s. to a Z-valued random variable (x, u).

Proof.
Let (x̂, û) ∈ Z. Let X = (Xk)k∈N and (Ek)k∈N be sequences of sub-sigma-algebras of F such that,
for every k ∈ N, Xk = σ(x0, ..., xk) and Ek = σ (εk). It follows from (2.1) that

E(‖xk+1 − x̂‖2 | Xk)
= E(〈pk+1 − x̂+ εk+1(PDk+1

pk+1 − pk+1) | pk+1 − x̂+ εk+1(PDk+1
pk+1 − pk+1)〉 | Xk)

= E(‖pk+1 − x̂‖2 | Xk) + E(2εk+1〈pk+1 − x̂ | PDk+1
pk+1 − pk+1〉 | Xk)

+ E(ε2k+1‖PDk+1
pk+1 − pk+1‖2 | Xk). (2.2)
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Since (εk)k∈N are independent, Xk and Ek+1 are independent. Moreover, from the firm- nonexpan-
siveness of (PDk)k∈N [3, Proposition 4.16] and x̂ = PDk x̂, for every k ∈ N, we obtain, P-a.s.,

E(‖xk+1 − x̂‖2 | Xk) = ‖pk+1 − x̂‖2 + 2πk+1〈pk+1 − x̂ | PDk+1
pk+1 − pk+1〉+ πk+1‖PDk+1

pk+1 − pk+1‖2

= (1− πk+1)‖pk+1 − x̂‖2 + πk+1‖PDk+1
pk+1 − x̂‖2

≤ (1− πk+1)‖pk+1 − x̂‖2 + πk+1‖pk+1 − x̂‖2 − πk+1‖PDk+1
pk+1 − pk+1‖2,

(2.3)

which yields, P-a.s.

E(‖xk+1 − x̂‖2 | Xk) + πk+1‖PDk+1
pk+1 − pk+1‖2 ≤ ‖pk+1 − x̂‖2. (2.4)

It follows from Proposition 1.3 (i) applied to Gk+1(pk+1, εk+1) = pk+1 + εk+1(PDk+1
pk+1 − pk+1)

and (2.4) that

‖xk − x̂‖2

τ
+
‖uk − û‖2

γ
≥ 1

τ
E(‖xk+1 − x̂‖2 | Xk) +

(
1

τ
− 1

2µ

)
‖xk − pk+1‖2 +

‖uk+1 − û‖2

γ

+
‖uk+1 − uk‖2

γ
+ 2〈L(pk+1 − xk) | uk+1 − û〉

− 2〈L(pk − xk−1) | uk − û〉 − 2‖L‖ · ‖pk − xk−1‖ · ‖uk+1 − uk‖

+
πk+1

τ
‖PDk+1

pk+1 − pk+1‖2 P-a.s.

≥ 1

τ
E(‖xk+1 − x̂‖2 | Xk) +

(
1

τ
− 1

2µ

)
‖xk − pk+1‖2 +

‖uk+1 − û‖2

γ

+ 2〈L(pk+1 − xk) | uk+1 − û〉 − 2〈L(pk − xk−1) | uk − û〉

+

(
1

γ
− 1

ν

)
‖uk+1 − uk‖2 − ν‖L‖2‖pk − xk−1‖2

+
πk+1

τ
‖PDk+1

pk+1 − pk+1‖2 P-a.s., (2.5)

where ν > 0. In particular, if we set ν = 2
(

1
γ + 2µτ‖L‖2

2µ−τ

)−1
, and ρ = 1

2( 1
γ −

2µτ‖L‖2
2µ−τ ) > 0, we have

ν‖L‖2 =
(

1
τ −

1
2µ

)
(1− νρ). Hence, from (2.5) we obtain, P-a.s.

‖xk − x̂‖2

τ
+
‖uk − û‖2

γ
≥
(

1

τ
− 1

2µ

)
‖xk − pk+1‖2 +

‖uk+1 − û‖2

γ
+

1

τ
E(‖xk+1 − x̂‖2 | Xk)

+ 2〈L(pk+1 − xk) | uk+1 − û〉 − 2〈L(pk − xk−1) | uk − û〉

+ ρ‖uk+1 − uk‖2 −
(

1

τ
− 1

2µ

)
(1− νρ) ‖pk − xk−1‖2

+
πk+1

τ
‖PDk+1

pk+1 − pk+1‖2. (2.6)

Moreover, since Xk = σ(x0, . . . , xk), we have, P-a.s.,

1

τ
E
(
‖xk+1 − x̂‖2

∣∣∣∣Xk)+

(
1

τ
− 1

2µ

)
‖pk+1 − xk‖2 + 2〈L(pk+1 − xk) | uk+1 − û〉+

‖uk+1 − û‖2

γ

= E
(
‖xk+1 − x̂‖2

τ
+

(
1

τ
− 1

2µ

)
‖pk+1 − xk‖2 + 2〈L(pk+1 − xk)|uk+1 − û〉+

‖uk+1 − û‖2

γ

∣∣∣∣Xk)
(2.7)
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and, defining

ak =

(
1

τ
− 1

2µ

)
‖pk − xk−1‖2 + 2〈L(pk − xk−1) | uk − û〉+

‖uk − û‖2

γ
, (2.8)

we deduce from (2.6), (2.7), and (2.8) that, P-a.s.,

ak +
‖xk − x̂‖2

τ
≥E

(
ak+1 +

‖xk+1 − x̂‖2

τ
| Xk

)
+ ρ‖uk+1 − uk‖2 + νρ

(
1

τ
− 1

2µ

)
‖pk − xk−1‖2

+
πk+1

τ
‖PDk+1

pk+1 − pk+1‖2. (2.9)

Note that from (iii) we have, for every k ∈ N,

ak ≥ γ‖L‖2‖pk − xk−1‖2 + 2〈L(pk − xk−1) | uk − û〉+
‖uk − û‖2

γ

≥ 1

γ
(‖γL(pk − xk−1)‖2 + 2γ〈L(pk − xk−1) | uk − û〉+ ‖uk − û‖2)

≥ 1

γ
(‖γL(pk − xk−1)‖2 − 2γ‖L(pk − xk−1)‖‖uk − û‖+ ‖uk − û‖2)

=
1

γ

(
‖uk − û‖ − ‖γL(pk − xk−1)‖

)2
≥ 0. (2.10)

Thus, for every k ∈ N, ak+ ‖x
k−x̂‖2
τ is a [0,∞[-valued Xk-measurable random variable. On the other

hand, we have

bk := ρ‖uk+1 − uk‖2 + νρ

(
1

τ
− 1

2µ

)
‖pk − xk−1‖2 +

πk+1

τ
‖PDk+1

pk+1 − pk+1‖2 ∈ `+(X ) (2.11)

and Lemma 1.4 imply that there exists a set Ω1 ∈ F such that P(Ω1) = 1 and for every w ∈ Ω1,(
ak(w) + ‖xk(w)−x̂(w)‖2

τ

)
k∈N

converges to a [0,∞[-valued random variable and (bk)k∈N ∈ `1+(X ).

Therefore, since 0 < infk∈N πk we have that, P − a.s.

∞∑
i=1

‖uk+1 − uk‖2 < +∞,
∞∑
i=1

‖pk − xk−1‖2 < +∞, and

∞∑
i=1

‖PDk+1
pk+1 − pk+1‖2 < +∞. (2.12)

It follows from (2.10), (2.12) and the convergence of (ak + ‖xk−x̂‖2
τ )k∈N that (uk − û)k∈N is bounded

P − a.s., and, from (2.12), we have that

(∀w ∈ Ω1) lim
k→∞

‖xk(w)− x̂(w)‖2

τ
+
‖uk(w)− û(w)‖2

γ
= lim

k→∞
ak(w) +

‖xk(w)− x̂(w)‖2

τ
. (2.13)

Then ‖x
k−x̂‖2
τ + ‖u

k−û‖2
γ converges P-a.s. to a [0,∞[-valued random variable. It follows from Propo-

sition 1.3 (ii) with Gk+1(pk+1, εk+1) = pk+1 + εk+1(PDk+1
pk+1 − pk+1) that there exists ΩZ such

that P(ΩZ) = 1 and, for every ω ∈ ΩZ and for every (x̂, û) ∈ Z,
(
‖xk(w)−x̂‖2

τ + ‖uk(w)−û‖2
γ

)
k∈N

converges.

It remains to prove that, for every w ∈ Ω̃ := Ω1 ∩ ΩZ , we have that W(xk(w), uk(w))n∈N ⊂ Z.
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Let (x(w), u(w)) ∈W(xk(w), uk(w))n∈N, say (xkn(w), ukn(w)) ⇀ (x(w), u(w)). Note that, for every
w ∈ Ω1 and (xjn)n∈N such that kn + 1 ≤ jn ≤ kn +N ,

∑∞
n=1 ‖xjn(w)− xkn(w)‖2 < +∞. Indeed,

‖xjn(w)− xkn(w)‖2 ≤ N
jn−1∑
i=kn

‖xi+1(w)− xi(w)‖2

≤ N
jn−1∑
i=kn

(
‖pi+1(w) + εi+1(w)

(
PDi+1p

i+1(w)− pi+1(w)
)
− xi(w)‖2

)
≤ 2N

kn+N−1∑
i=kn

(
‖pi+1(w)− xi(w)‖2 + ‖PDi+1p

i+1(w)− pi+1(w)‖2
)

(2.14)

and, by suming (2.14) from n = 1 to infinity, it follows from (2.12) that

∞∑
n=1

‖xjn(w)− xkn(w)‖2 ≤ 2N
∞∑
n=1

kn+N−1∑
i=kn

(
‖pi+1(w)− xi(w)‖2 + ‖PDi+1p

i+1(w)− pi+1(w)‖2
)

≤ 2N
∞∑
n=1

n+N−1∑
i=n

(
‖pi+1(w)− xi(w)‖2 + ‖PDi+1p

i+1(w)− pi+1(w)‖2
)

≤ 2N2
∞∑
i=1

(
‖pi+1(w)− xi(w)‖2 + ‖PDi+1p

i+1(w)− pi+1(w)‖2
)

< +∞ (2.15)

and the result follows.

The assumption (ii) imply that, for every i ∈ {1, ...,m} and n ∈ N, there exists jn(i) ∈
{kn + 1, ..., kn + N} such that Djn(i) = Ci. Since PCi is nonexpansive, Id − PCi is maximally
monotone operator [3, Example 20.29] and therefore, it has weak-strong closed graph [3, Propo-
sition 20.38]. Hence, it follows from (2.12), (2.15), and (xkn(w), ukn(w)) ⇀ (x(w), u(w)) that
(Id−PDjn(i)

)pjn(i) = (Id−PCi)pjn(i) → 0 and pjn(i)(w) ⇀ x(w) and, hence, x(w) ∈ Fix(PCi) = Ci,
for every i ∈ {1, ...,m}, which yield x(w) ∈

⋂m
i=1Ci = C.

Note that (1.13) can be written equivalently as:

(yk, vk) ∈ (M +Q)(pk+1, uk+1), (2.16)

where

M : (p, η) 7→ (∂f(p) + L∗η)× (∂g∗(η)− Lp)
Q : (p, η) 7→ (∇h(p), 0) (2.17)

.
are maximally monotone [5, Proposition 2.7(i)] and

yk :=
xk − pk+1

τ
+∇h(pk+1)−∇h(xk)

vk :=
uk − uk+1

γ
+ L(xk − pk+1 + pk − xk−1). (2.18)
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It follows from [3, Corollary25.5] that M + Q is maximally monotone. Since (2.12) and
(xkn(w), ukn(w)) ⇀ (x(w), u(w)) yields, (ykn(w), vkn(w)) → 0 and (pkn+1(w), ukn+1(w)) ⇀
(x(w), u(w)), from the weak-strong closedness of the graph of M+Q we deduce that (x(w), u(w)) ∈
Z. The weak convergence and the measurability results follows from follows from [3, Lemma 2.47]
and [21, Corollary 1.13], respectively.

Remark 2.2 If argminx∈H(f(x) + g(Lx) + h(x)) ⊂ C we have that W(xk, uk)n∈N ⊂ C ×G P-a.s.,
therefore, it is not necessary to prove that x ∈ C P-a.s. and the conditions (i) and (ii) in Theorem
2.1 are not needed.

Remark 2.3 From theorem 2.1, we obtain several methods in the literature, as we detail below:

1. Primal-dual with random cyclic projections: Conditions (i) and (ii) holds if N = m
and, for every k ∈ N, Dk := Ci(k), where i(k) = (k mod m) + 1. This case corresponds to the
primal-dual method with binary random Cyclic projections.

2. Primal-dual with deterministic cyclic projections In the case when, for every k ∈ N,
Dk := C1 and ε−1

k ({1}) = Ω, the algorithm reduces to the method proposed in [7]. We
can also allow for deterministic cyclic projections by setting m > 1 and, for every k ∈ N,
ε−1
k ({1}) = Ω, Dk := Ci(k), where i(k) = (k mod m) + 1.

3. Projections onto convex sets: In the case when f = g = h = L = 0 ∈ Γ0(H), and
C :=

⋂m
i=1Ci 6= ∅, where Ci is a nonempty closed convex subset of H, for every i = 1, ...,m.

If we define for every k ≥ 1, Dk := Ci(k), where i(k) = (k mod m) + 1, and set ε−1
k ({1}) = Ω,

then (i), (ii), and (iii) holds.

Let x0 = x0 = u0 ∈ H and set γ = τ = 1. Then, the algorithm (2.1) reduces to

(∀k ∈ N) xk+1 = PCi(k+1)
xk (2.19)

which is the method proposed in [3, Corollary 5.26] and its convergence follows from Theo-
rem 2.1.

4. Kaczmarz method: Let R be a full rank m× n matrix such that m ≤ n, and b ∈ Rm. We
denote the rows of R by r1, ..., rm and let b = (b1, ..., bm)>. A special case of (2.19) is when
H = Rn and C = {x ∈ H| Rx = b} =

⋂m
i=1Ci 6= ∅, where Ci = {x ∈ H | 〈ri, x〉 = bi}. It is

clear that Ci is a nonempty closed convex subset of H for every i = 1, ...,m. If we define for
every k ≥ 1, Dk := Ci(k), where i(k) = (k mod m) + 1, and set ε−1

k ({1}) = Ω, then (i), (ii),
and (iii) holds.

Let x0 = x0 = u0 ∈ H and let γ = τ = 1. It follows from proxf (x) = x, proxg∗(x) =
x− proxg(x) = 0 [3, Proposition 24.8(ix)], and (2.1) reduces to

(∀k ∈ N) xk+1 = PCi(k+1)
xk = xk +

bi(k+1) − 〈ri(k+1) | xk〉
‖ri(k+1)‖2

ri(k+1) (2.20)

which is the Kaczmarz method proposed in [19] and its convergence follows from Theorem 2.1.
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Chapter 3

Randomized Kaczmarz projections in
convex optimization

In this chapter, we present an extension of the primal-dual algorithm proposed in [7] which, inspired
by Randomized Kaczmarz method, at each iteration chooses randomly a set in {H, C1, . . . , Cm} and
projects on it. A difference with respect to the method in Chapter 2 is that in Theorem 3.1 there is
no pre-determined order onto which the algorithm projects. Roughly speaking the algorithm “roll
a dice” to choose a set onto which it projects at each iteration.

Theorem 3.1 Consider the setting of Problem 1.2. Let τ ∈]0, 2µ[, let γ > 0, let (x0, x0, u0) ∈
H×H×G, be such that x0 = x0 and, set I = {0, 1, ...,m}. Let (εk)k∈N be a sequence of independent
I-valued random variables. Consider the following routine

(∀k ∈ N)


uk+1 = proxγg∗(u

k + γLx̄k)

pk+1 = proxτf (xk − τ(L∗uk+1 +∇h(xk)))

xk+1 = PCεk+1
pk+1

x̄k+1 = xk+1 + pk+1 − xk.

(3.1)

and assume that the following hold:

(i) C0 = H and ‖L‖2 < 1
γ

(
1
τ −

1
2µ

)
.

(ii) (∀i ∈ I\{0}) 0 < infk∈N π
i
k, where (∀i ∈ I)(∀k ∈ N) πik = P(ε−1

k ({i})).

Then ((xk, uk))k∈N converges weakly P-a.s. to a Z-valued random variable (x, u).

Proof.
Let (x̂, û) ∈ Z and let X = (Xk)k∈N be a sequence of sub-sigma-algebras of F such that, for every
k ∈ N, Xk = σ(x0, ..., xk). It follows from (3.1), the linearity of conditional expectation, and the
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independence of (εk)k∈N that

E(‖xk+1 − x̂‖2 | Xk) = E(
∑
i∈I

1{εk+1=i} · ‖PCipk+1 − x̂‖2 | Xk)

=
∑
i∈I

E(1{εk+1=i} · ‖PCipk+1 − x̂‖2 | Xk)

=
∑
i∈I

E(1{εk+1=i} | Xk)‖PCipk+1 − x̂‖2

=
∑
i∈I

πik+1‖PCipk+1 − x̂‖2. (3.2)

Now set I0 := I\{0}, since
∑

i∈I π
i
k, for every k ∈ N, x̂ = PCi x̂, and the firm-nonexpansiveness of

PCi , for every i in I0, we obtain, P-a.s.

E(‖xk+1 − x̂‖2 | Xk) = π0
k+1‖pk+1 − x̂‖2 +

∑
i∈I0

πik+1‖PCipk+1 − x̂‖2

≤
∑
i∈I

πik+1‖pk+1 − x̂‖2 −
∑
i∈I0

πik+1‖PCipk+1 − pk+1‖2, (3.3)

which yields, P-a.s.

E(‖xk+1 − x̂‖2 | Xk) +
∑
i∈I0

πik+1‖PCipk+1 − pk+1‖2 ≤ ‖pk+1 − x̂‖2. (3.4)

It follows from Proposition 1.3 (i) applied to Gk+1(pk+1, εk+1) = PCεk+1
pk+1 and (3.4) that

‖xk − x̂‖2

τ
+
‖uk − û‖2

γ
≥ 1

τ
E(‖xk+1 − x̂‖2 | Xk) +

(
1

τ
− 1

2µ

)
‖xk − pk+1‖2 +

‖uk+1 − û‖2

γ

+
‖uk+1 − uk‖2

γ
+ 2〈L(pk+1 − xk) | uk+1 − û〉

− 2〈L(pk − xk−1) | uk − û〉 − 2‖L‖ · ‖pk − xk−1‖ · ‖uk+1 − uk‖

+
∑
i∈I0

πik+1

τ
‖PCipk+1 − pk+1‖2 P-a.s.

≥ 1

τ
E(‖xk+1 − x̂‖2 | Xk) +

(
1

τ
− 1

2µ

)
‖xk − pk+1‖2 +

‖uk+1 − û‖2

γ

+ 2〈L(pk+1 − xk) | uk+1 − û〉 − 2〈L(pk − xk−1) | uk − û〉

+

(
1

γ
− 1

ν

)
‖uk+1 − uk‖2 − ν‖L‖2‖pk − xk−1‖2

+
∑
i∈I0

πik+1

τ
‖PCipk+1 − pk+1‖2 P-a.s., (3.5)
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where ν > 0, in particular if we set ν = 2
(

1
γ + 2µτ‖L‖2

2µ−τ

)−1
, and ρ = 1

2( 1
γ −

2µτ‖L‖2
2µ−τ ) > 0, we have

ν‖L‖2 =
(

1
τ −

1
2µ

)
(1− νρ) and by (3.5) we obtain, P-a.s.

‖xk − x̂‖2

τ
+
‖uk − û‖2

γ
≥
(

1

τ
− 1

2µ

)
‖xk − pk+1‖2 +

‖uk+1 − û‖2

γ
+

1

τ
E(‖xk+1 − x̂‖2 | Xk)

+ 2〈L(pk+1 − xk) | uk+1 − û〉 − 2〈L(pk − xk−1) | uk − û〉+ ρ‖uk+1 − uk‖2

+ ρ‖uk+1 − uk‖2 −
(

1

τ
− 1

2µ

)
(1− νρ) ‖pk − xk−1‖2

+
∑
i∈I0

πik+1

τ
‖PCipk+1 − pk+1‖2. (3.6)

Moreover, since Xk = σ
(
x0, . . . , xk

)
, we have, P-a.s.,

1

τ
E
(
‖xk+1 − x̂‖2

∣∣∣∣Xk)+

(
1

τ
− 1

2µ

)
‖pk+1 − xk‖2 + 2〈L(pk+1 − xk) | uk+1 − û〉+

‖uk+1 − û‖2

γ

= E
(
‖xk+1 − x̂‖2

τ
+

(
1

τ
− 1

2µ

)
‖pk+1 − xk‖2 + 2〈L(pk+1 − xk)|uk+1 − û〉+

‖uk+1 − û‖2

γ

∣∣∣∣Xk)
(3.7)

and, defining

ak =

(
1

τ
− 1

2µ

)
‖pk − xk−1‖2 + 2〈L(pk − xk−1) | uk − û〉+

‖uk − û‖2

γ
, (3.8)

we obtain, P-a.s.

ak +
‖xk − x̂‖2

τ
≥E

(
ak+1 +

‖xk+1 − x̂‖2

τ
| Xk

)
+ ρ‖uk+1 − uk‖2 + νρ

(
1

τ
− 1

2µ

)
‖pk − xk−1‖2

+
∑
i∈I0

πik+1

τ
‖PCipk+1 − pk+1‖2. (3.9)

Note that from (i) we have, for every k ∈ N,

ak ≥ γ‖L‖2‖pk − xk−1‖2 + 2〈L(pk − xk−1) | uk − û〉+
‖uk − û‖2

γ

≥ 1

γ
(‖γL(pk − xk−1)‖2 + 2γ〈L(pk − xk−1) | uk − û〉+ ‖uk − û‖2)

≥ 1

γ
(‖γL(pk − xk−1)‖2 − 2γ‖L(pk − xk−1)‖‖uk − û‖+ ‖uk − û‖2)

=
1

γ

(
‖uk − û‖ − ‖γL(pk − xk−1)‖

)2
≥ 0. (3.10)

Thus, for every k ∈ N, ak+ ‖x
k−x̂‖2
τ is a [0,∞[-valued Xk-measurable random variable. On the other

hand, by definition of `+(X ), we have

bk := ρ‖uk+1 − uk‖2 + νρ

(
1

τ
− 1

2µ

)
‖pk − xk−1‖2 +

∑
i∈I0

πik+1

τ
‖PCipk+1 − pk+1‖2 ∈ `+(X )

(3.11)
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and Lemma 1.4 imply that (ak + ‖xk−x̂‖2
τ )k∈N converges P − a.s. to a [0,∞[-valued random variable

and (bk)k∈N ∈ `1+(X ). Therefore, since 0 < mini∈I0 infk∈N π
i
k, we have that, P − a.s.∑

k∈N
‖uk+1 − uk‖2 < +∞,

∑
k∈N
‖pk − xk−1‖2 < +∞, and (∀i ∈ I)

∑
k∈N
‖PCipk+1 − pk+1‖2 < +∞.

(3.12)

It follows from (3.10), (3.12), and the convergence of (ak + ‖x
k−x̂‖2
τ )k∈N that (uk− û)k∈N is bounded

and from (3.12) there exists a set Ω1 ∈ F such that P(Ω1) = 1 and, for every w ∈ Ω1, we have that

lim
k→∞

‖xk(w)− x̂(w)‖2

τ
+
‖uk(w)− û(w)‖2

γ
= lim

k→∞
ak(w) +

‖xk(w)− x̂(w)‖2

τ
. (3.13)

Then ‖x
k−x̂‖2
τ + ‖u

k−û‖2
γ converges P-a.s. to a [0,∞[-valued random variable. It follows from Propo-

sition 1.3 (ii) with Gk+1(pk+1, εk+1) = PCεk+1
pk+1 that there exists ΩZ such that P(ΩZ) = 1 and,

for every ω ∈ ΩZ and for every (x̂, û) ∈ Z,
(
‖xk(w)−x̂‖2

τ + ‖uk(w)−û‖2
γ

)
k∈N

converges.

It remains to prove that, for every w ∈ Ω̃ := Ω1 ∩ ΩZ , we have that W(xk(w), uk(w))n∈N ⊂ Z.
Let (x(w), u(w)) ∈W(xk(w), uk(w))n∈N, say (xkn(w), ukn(w)) ⇀ (x(w), u(w)). Note that, for every
w ∈ Ω1 and (xkn)n∈N,

∑∞
n=1 ‖xkn+1 − xkn‖2 < +∞ P − a.s. Indeed, it follows from (3.12) that

∞∑
n=1

‖xkn+1(w)− xkn(w)‖2 =
∞∑
n=1

(
‖PCεkn+1

(w)p
kn+1(w)− xkn(w)‖2

)
≤ 2

∞∑
n=1

(
‖pkn+1(w)− xkn(w)‖2 + ‖PCεkn+1

(w)p
kn+1(w)− pkn+1(w)‖2

)
≤ 2

∞∑
n=1

(
‖pkn+1(w)− xkn(w)‖2 +

∑
i∈I

(
‖PCi+1p

kn+1(w)− pkn+1(w)‖2
))

< +∞ (3.14)

and the result follows.

On the other hand, since PCi is nonexpansive, Id−PCi is maximally monotone operator [3, Example
20.29] and, therefore, it has weak-strong closed graph [3, Proposition 20.38]. Hence, it follows from
(3.12), (3.14), and (xkn(w), ukn(w)) ⇀ (x(w), u(w)) that, for every i in I, (Id− PCi)pkn+1(w)→ 0
and pkn+1(w) ⇀ x(w) and, hence, x(w) ∈ Fix(PCi) = Ci, for every i ∈ I, which yields
x(w) ∈

⋂m
i=1Ci = C. Moreover

(yk, vk) ∈ (M +Q)(pk+1, uk+1), (3.15)

where M , Q, and (yk, vk) are defined in the same way as in (2.17) and (2.18), respectively.
Since (3.12), (3.14), and (xkn(w), ukn(w)) ⇀ (x(w), u(w)) yields (ykn(w), vkn(w)) → 0 and
(pkn+1(w), ukn+1(w)) ⇀ (x(w), u(w)), we deduce from the weak-strong closedness of the graph
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of M +Q that (x(w), u(w)) ∈ Z. The weak convergence and the measurability results follows from
[3, Lemma 2.47] and [21, Corollary 1.13], respectively.

Remark 3.2 From theorem 3.1, we recover Randomized Kaczmarz and [7], as we detail below:

1. Randomized Kaczmarz: Let R be a full rank m× n matrix such that m ≤ n, and b ∈ Rm.
We denote the rows of R by r1, ..., rm and let b = (b1, ..., bm)>. Consider the case when
H = Rn, f = g = h = L = 0 ∈ Γ0(H), and C = {x ∈ H| Rx = b} =

⋂m
i=1Ci 6= ∅, where, for

every i ∈ I := {1, . . . ,m}, Ci = {x ∈ H | 〈ri, x〉 = bi}. It is clear that (Ci)i∈I are nonempty
closed convex sets. Let (εk)k∈N be a sequence of independent I-valued random variables, with
π0
k = 0, and for every i ∈ I, πiK is proportional to ‖ri‖2 for all k ∈ N .

Let x0 = x0 = u0 ∈ H and set γ = τ = 1. It follows from proxf (x) = x, proxg∗(x) =
x− proxg(x) = 0 [3, Proposition 24.8(ix)], and (3.1) that

(∀k ∈ N) xk+1 = PCεk+1
xk = xk +

bεk+1
− 〈rεk+1

, xk〉
‖rεk+1

‖2
rεk+1

. (3.16)

which is the method proposed in [23], whose convergence is deduced by Theorem 3.1. Note
that in [23] there is a convergence in expectation with expected exponential rate, instead, with
the algorithm presented in this section, convergence is obtained P-a.s.

2. Constrained primal-dual method: In the case m = 1, Algorithms (3.1) and (2.1) are
equivalent. Additionally by Remark 2.2.3 if ε−1

k ({1}) = Ω, for every k ∈ N, we recover the
Algorithm proposed in [7].
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Chapter 4

Application to the arc capacity
expansion problem of a directed graph

In this chapter we apply the stochastic algorithms developed in chapter 2 and 3 to the arc capacity
expansion problem of a directed graph. The goal is to obtain the Wardrop equilibrium, along with
a expansion vector in each arc. The latter is a positive vector representing the expansion capacity
at each arc.

4.1 Arc capacity expansion problem

Consider a directed graphs, where A is the set of arcs of the graph, O is the set of origin nodes, D
is the set of destination nodes, Ro,d is the set of routes from o ∈ O to d ∈ D, R :=

⋃
(o,d)∈O×D

Ro,d is

the set of all routes. Consider the incidence matrix N ∈ R|A|×|R| defined by

(∀a ∈ A)(∀r ∈ R) Na,r :=

{
1 if a belongs to r
0 otherwise.

(4.1)

and we denote the rows of N by Na, for every a ∈ A.

We will consider a stochastic approach introducing a finite set of scenarios Ξ. We denote by
xξ := (xa,ξ)a∈A ∈ R|A| and fξ := (fr,ξ)r∈R ∈ R|R| to the vectors that represents the expandability of
each arc and the flow of each route respectively, in every scenario ξ ∈ Ξ. In a similar way we define
x := (xξ)ξ∈Ξ ∈ R|A||Ξ| and f := (fξ)ξ∈Ξ ∈ R|R||Ξ|.

The demand for every pair (o, d) ∈ O × D and ξ ∈ Ξ is denoted by hod,ξ ∈ R. The capacity
for every arc a ∈ A and ξ ∈ Ξ is denoted by ca,ξ ∈ R+. We denote by uξ := Nfξ = (ua,ξ)a∈A the
vector of flows in arcs in the scenario ξ ∈ Ξ, where ua,ξ :=

∑
r∈RNa,rfr,ξ.

Let M :=
�

a∈A[0,Ma] ⊂ R|A| be the set of constraints for the expansion capacities, where Ma ∈ R
represents the expansion capacity limit of the arc a ∈ A. The constraint set on the demands for
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each scenario is the following affine subspace

(∀ξ ∈ Ξ) V 0
ξ :=

f ∈ R|R|
∣∣∣∣ ∀(o, d) ∈ O ×D

∑
r∈Ro,d

fr = hod,ξ

 . (4.2)

We denote by V +
ξ := V 0

ξ ∩ R|R|+ the set that restricts flows only to positive values. The set of
constraints on the flows of each arc in every scenario is

(∀ξ ∈ Ξ) Hξ =

{
(x, u) ∈ R|A| × R|A|

∣∣∣∣ (∀a ∈ A) ua − xa ≤ ca,ξ
}

(4.3)

or equivalently, considering the flows on routes

(∀ξ ∈ Ξ) Hξ =
⋂
a∈A

Pξ (Ca,ξ) , (4.4)

where

(∀ξ ∈ Ξ)(∀a ∈ A) Ca,ξ :=
{

(x, f) ∈ R|A||Ξ| × R|R||Ξ| | Nafξ − xa,ξ ≤ ca,ξ
}
, (4.5)

and Pξ : R|A||Ξ| × R|R||Ξ| 7→ R|A| × R|R| is the orthogonal projection Pξ : (x, f) 7→ (xξ, fξ).

Suppose now that the expandability vector does not depends on the scenario ξ ∈ Ξ. That is,
we consider the following Nonanticipativity condition

(∀ξ, ξ′ ∈ Ξ) xξ = xξ′ , (4.6)

we denote by W the set of x ∈ R|A||Ξ| such that (4.6) is satisfied.

4.2 Formulation

Let C :=
⋂m
i=1Ci 6= ∅, where, for every i in {1, ...,m}, Ci is a nonempty closed convex subset of

R|A||Ξ| × R|R||Ξ|, and define the function

ϕξ : R|A| 7→ R (4.7)

u 7→
∑
a∈A

∫ ua,ξ

0
ta,ξ(z)dz, (4.8)

where ta,ξ : R 7→ R+ is an increasing βa,ξ-Lipschitz function representing the travel time in the arc
a ∈ A for the scenario ξ ∈ Ξ. Consider the following optimization problem

min(
(M |Ξ|∩W)×R|R||Ξ|+

)
∩C

∑
ξ∈Ξ

pξ

[
1

2
x>ξ Qxξ + ϕξ(Nfξ)

]
s.t. ∑

r∈Ro,d

fr,ξ = hod,ξ (∀ξ ∈ Ξ) (∀(o, d) ∈ O ×D)

∑
r∈R

Na,rfr,ξ − xa,ξ ≤ ca,ξ (∀ξ ∈ Ξ) (∀a ∈ A) (4.9)
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where, for every ξ ∈ Ξ, pξ > 0, P is the probability of occurrence of Ξ, and Q ∈ R|A| × R|A| is
a positive definite symmetric matrix which represents the cost of expansion. In the deterministic
case when Ξ is a singleton and Q = 0 any vector flow solution f = (f∗r )r∈R to (4.9) is a Wardrop
equilibrium satisfying

(∀(o, d) ∈ O ×D) (∀r ∈ Ro,d) f∗r > 0⇒ cr = min
r′∈Ro,d

cr′ , (4.10)

where cr =
∑
a∈r

ta(u
∗
a) is the cost of the route r ∈ Ro,d and, for every a ∈ A, u∗a =

∑
r∈RNa,rf

∗
r .

Therefore in a Wardrop equilibrium, for every origin-destination pair, all used paths have minimal
cost [4]. Therefore, the optimization problem in (4.9) aims to finding a Wardrop equilibrium with
minimum expansion cost in arcs. Note that we can write (4.9) equivalently as

min
(x,f)∈C

δ(M |Ξ|∩W)×
�
V +
ξ

(x, f) + δ�Hξ(xξ, Nfξ) +
∑
ξ∈Ξ

pξ

[
1

2
x>ξ Qxξ + ϕξ(Nfξ)

]
. (4.11)

Under the assumption that is not empty we denote by Z1 the set of solutions of (4.11).

Proposition 4.1 Consider the following operators

F : R|A||Ξ| × R|R||Ξ| 7→ R
(x, f) 7→ δ(M |Ξ|∩W)×

�
ξ∈Ξ

V +
ξ

(x, f)

G : R|A||Ξ| × R|A||Ξ| 7→ R
(x, u) 7→ δ�

ξ∈Ξ
Hξ(xξ, uξ)

H : R|A||Ξ| × R|R||Ξ| 7→ R

(x, f) 7→
∑
ξ∈Ξ

pξ

[
1

2
x>ξ Qxξ + ϕξ(Nfξ)

]
L : R|A||Ξ| × R|R||Ξ| 7→ R|A||Ξ| × R|A||Ξ|

(x, f) 7→ (xξ, Nfξ)ξ∈Ξ . (4.12)

Set µ = maxξ∈Ξ p
2
ξ

(
max

{
‖N‖4 maxa∈A β

2
a,ξ, ‖Q‖2

})− 1
2
, set G = R|A||Ξ| × R|A||Ξ|, and set H =

R|A||Ξ| × R|R||Ξ|. Then the following hold:

(i) F ∈ Γ0(H) and G ∈ Γ0(G).

(ii) L is a nonzero bounded linear operator and ‖L‖2 ≤ max{1, ‖N‖2}.

(iii) H is a convex and differentiable function with µ−1- Lipschitzian gradient.

Moreover, (4.11) can be written as

min
(x,f)∈C

F (x, f) +G (L (x, f)) +H (x, f) , (P1)

which is a particular instance of Problem 1.1.

Proof.
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(i) F ∈ Γ0(H): The convexity of W , M and V +
ξ (∀ξ ∈ Ξ) follows directly from the definition of

every set. Define the function φ1 : R|A||Ξ| 7→ R : x 7→
∑

(ξ1,ξ2)∈Ξ2 ‖xξ1 − xξ2‖2, we have that

W = φ−1
1 (0) is closed. Similarly, if we define

φ2ξ : R|R||Ξ| 7→ R|O||D| : f 7→

 ∑
r∈R(o,d)

fr,ξ


(o,d)∈O×D

, (4.13)

then, for every ξ ∈ Ξ we have that V +
ξ = φ−1

2ξ ((hod,ξ)(o,d)∈O×D) is closed.

Finally,
(
M |Ξ| ∩W

)
×
�
ξ∈Ξ

V +
ξ is a nonempty closed convex set and the result follows.

(ii) G ∈ Γ0(G): Define the function φ3ξ : R|A||Ξ| × R|A||Ξ| 7→ R|A||Ξ| : (x, u) 7→ u − x then
Hξ = φ−1

3ξ (
�

a∈A]−∞, ca,ξ]) is closed for every ξ ∈ Ξ. Let (x1, u1), (x2, u2) ∈ Hξ and λ ∈ [0, 1]
we have that

(∀ξ ∈ Ξ) λ(u1 − x1) + (1− λ)(u2 − x2) ≤ λcξ + (1− λ)cξ = cξ, (4.14)

where cξ = (ca,ξ)a∈A. Since
�
ξ∈Ξ

Hξ is the product of nonempty closed convex sets, we have

that G ∈ Γ0(G).

(iii) L is a nonzero bounded linear operator: Clearly L is a nonzero linear operator. It follows
from (4.12) that

(∀(x, f) ∈ G) ‖L(x, f)‖2 = ‖x‖2 +
∑
ξ∈Ξ

‖Nfξ‖2

≤ (‖x‖2 + ‖N‖2
∑
ξ∈Ξ

‖fξ‖2)

≤ max{1, ‖N‖2}(‖x‖2 + ‖f‖2)

= max{1, ‖N‖2}‖(x, f)‖2 (4.15)

and the result follows. Moreover, the conditions (iii) of Theorem (2.1) is satisfied.

(iv) H is a convex and differentiable with µ−1- Lipschitzian gradient function: Using The Funda-
mental Theorem of Calculus and the Chain Rule respectively, we obtain

(∀(x, u) ∈ H) ∇H(x, f) =
(
pξQxξ, pξN

>∇ϕξ(Nfξ)
)
ξ∈Ξ

=
(
pξQxξ, pξN

>(ta,ξ(Nafξ))a∈A

)
ξ∈Ξ

. (4.16)
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Using the last results, we have that for every (x1, f1), (x2, f2) ∈ H

‖∇H(x1, f1)−∇H(x2, f2)‖2 =
∑
ξ∈Ξ

(
‖pξN t((ta,ξ(Naf

1
ξ )− ta,ξ(Naf

2
ξ ))a∈A)‖2 + ‖pξ(Qx1

ξ −Qx2
ξ)‖2

)
≤
∑
ξ∈Ξ

p2
ξ

(
‖N‖2‖((ta,ξ(Naf

1
ξ )− ta,ξ(Naf

2
ξ ))a∈A)‖2 + ‖Q‖2‖x1

ξ − x2
ξ‖2
)

≤
∑
ξ∈Ξ

p2
ξ

(
‖N‖2

∑
a∈A

(
β2
a,ξ‖Na‖2‖f1

ξ − f2
ξ ‖2
)

+ ‖Q‖2‖x1
ξ − x2

ξ‖2
)

≤
∑
ξ∈Ξ

p2
ξ

(
‖N‖4 max

a∈A
β2
a,ξ‖f1

ξ − f2
ξ ‖2 + ‖Q‖2‖x1

ξ − x2
ξ‖2
)

≤
∑
ξ∈Ξ

p2
ξ

(
max

{
‖N‖4 max

a∈A
β2
a,ξ, ‖Q‖2

}(
‖f1
ξ − f2

ξ ‖2 + ‖x1
ξ − x2

ξ‖2
))

≤ max
ξ∈Ξ

p2
ξ

(
max

{
‖N‖4 max

a∈A
β2
a,ξ, ‖Q‖2

})(
‖f1 − f2‖2 + ‖x1 − x2‖2

)
≤ µ−2

(
‖(x1, f1)− (x2, f2)‖2

)
(4.17)

Since each ta,ξ is an increasing function we have that∇2φξ(uξ) = diag((t′(ua,ξ))a∈A) is positive
semi-definite matrix, therefore, φξ ◦N is convex, for every ξ ∈ Ξ. Then, since H is the sum of
convex functions we obtain that H is convex.

Finally, it follows from (4.12) that (4.11) can be written equivalently as (P1).

In what follows we assume that the Slater condition holds, i.e., there exists (x, f) ∈
(
M |Ξ| ∩W

)
×

R|R||Ξ|+ , satisfying the constraints in (4.9) such that

(∀ξ ∈ Ξ) (∀a ∈ A)
∑
r∈R

Na,rfr,ξ − xa,ξ < ca,ξ. (4.18)

Then by [3, Proposition 27.21] the qualification condition (1.10) is satisfied.
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4.3 Alternating and Random binary projections into the arc ca-
pacity expansion problem of a directed graph.

In this section, we use the Theorem 2.1 to solve the problem (P1).

Corollary 4.2 Consider the setting of Problem (P1). Let γ > 0, let τ ∈]0, 2µ[, where µ =

maxξ∈Ξ p
2
ξ

(
max

{
‖N‖4 maxa∈A β

2
a,ξ, ‖Q‖2

})− 1
2
, let (u0, v0) ∈ G, let (x0, f0), (x0, f

0
) ∈ H2 be such

that (x0, f0) = (x0, f
0
) and, let (εk)k∈N be a sequence of independent {0, 1}−Bernoulli random

variables such that P(ε−1
k ({1})) = πk, for every k ∈ N. Consider the following routine

(∀k ∈ N)



(
ũk+1, ṽk+1

)
=
(
ukξ + γx̄kξ , v

k
ξ + γNf̄kξ

)
ξ∈Ξ(

uk+1, vk+1
)

=
((
ũk+1
ξ , ṽk+1

ξ

)
− γPHξ

(
γ−1

(
ũk+1
ξ , ṽk+1

ξ

)))
ξ∈Ξ

(p̃k+1, g̃k+1) =
(
xkξ − τu

k+1
ξ − τpξQxkξ , fkξ − τN>v

k+1
ξ − τpξψξ(fkξ )

)
ξ∈Ξ

(pk+1, gk+1) =
(
Pξ
(
PM |Ξ|∩W

(
p̃k+1

))
, PV +

ξ

(
g̃ξ
k+1
))

ξ∈Ξ

(xk+1, fk+1) =
(
pk+1, gk+1

)
+ εk+1

(
PCi(k+1)

(
pk+1, gk+1

)
−
(
pk+1, gk+1

))
(x̄k+1, f̄k+1) =

(
xk+1, fk+1

)
+
(
pk+1, gk+1

)
−
(
xk, fk

)
,

(4.19)

where (∀ξ ∈ Ξ) ψξ : R|R| 7→ R|R| : f 7→ N>(ta,ξ(Naf))a∈A and i(k) := (k mod |A||Ξ|) + 1. Assume
that the following hold:

(i) 0 < infk∈N πk and max{1, ‖N‖2} < 1
γ

(
1
τ −

1
2µ

)
.

Then ((xk, fk))k∈N converges P-a.s. to a Z1-valued random variable (x, f).

Proof.

It follows from Proposition 4.1, [3, Proposition 24.11 & Proposition 24.8(ix)], and (4.19) that(
ũk+1, ṽk+1

)
=
(
uk, vk

)
+ γL

(
x̄k, f̄k

)
(4.20)

(
uk+1, vk+1

)
=
(
ũk+1, ṽk+1

)
− γP�

ξ∈Ξ
Hξ

(
γ−1

(
ũk+1, ṽk+1

))
=
(
ũk+1, ṽk+1

)
− γ proxγ−1G

(
γ−1

(
ũk+1, ṽk+1

))
= proxγG∗

((
ũk+1, ṽk+1

))
= proxγG∗

((
uk, vkξ

)
+ γL

(
x̄k, f̄k

))
(4.21)
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(p̃k+1, g̃k+1) =
(
xk, fk

)
− τL∗

(
uk+1, vk+1

)
− τ∇H

(
xk, fk

)
(4.22)

(pk+1, gk+1) = P(M |Ξ|∩W)×
�
ξ∈Ξ

V +
ξ

(
p̃k+1, g̃k+1

)
= proxτF

(
p̃k+1, g̃k+1

)
= proxτF

((
xk, fk

)
− τL∗

(
uk+1, vk+1

)
− τ∇H

(
xk, fk

))
.

(4.23)

Note that (4.19) can be written equivalently

(∀k ∈ N)


(
uk+1, vk+1

)
= proxγG∗

((
uk, vk

)
+ γL

(
x̄k, f̄k

))
(pk+1, gk+1) = proxτF

((
xk, fk

)
− τL∗

(
uk+1, vk+1

)
− τ∇H

(
xk, fk

))
(xk+1, fk+1) =

(
pk+1, gk+1

)
+ εk+1

(
PCi(k+1)

(
pk+1, gk+1

)
−
(
pk+1, gk+1

))
(x̄k+1, f̄k+1) =

(
xk+1, fk+1

)
+
(
pk+1, gk+1

)
−
(
xk, fk

)
.

Finally using Proposition 4.1, Remark 2.2.3, and (i) the conditions (i)-(iii) of Theorem (2.1) holds
and we conclude that ((xk, fk))k∈N converges P-a.s. to a Z1-valued random variable (x, f).

Remark 4.3 In order to implement the algorithm (4.2) we need to calculate the following projec-
tions:

1. It follows from [3, Proposition 24.11] that, for every (x, u) ∈ R|A| × R|A| and ξ ∈ Ξ

PHξ(x, u) =
(
PHa,ξ(xa,ξ, ua,ξ)

)
a∈A (4.24)

and applying [3, Example 29.20] we have that, for every a ∈ A and ξ ∈ Ξ,

PHa,ξ : R2 7→ R2 : (x, u) 7→

{ (
x+u−ca,ξ

2 ,
x+u+ca,ξ

2

)
if x− u+ ca,ξ < 0

(x, u) if x− u+ ca,ξ ≥ 0
(4.25)

2. It follows [3, Theorem 3.16] that

PM |Ξ|∩W : R|A||Ξ| 7→ R|A||Ξ| : x 7→
(
P

(∑
ξ∈Ξ xξ

|Ξ|

))
ξ∈Ξ

, (4.26)

where

P : R|A| 7→ R|A| : x 7→ (min (Ma,max (0, xa)))a∈A . (4.27)

3. Note that

(∀ξ ∈ Ξ) V +
ξ =

�
(o,d)∈O×D

{
f ∈ R|Ro,d|+

∣∣∣∣ ∑
r∈R(o,d)

fr = hod,ξ

}
︸ ︷︷ ︸

V +
od,ξ

(4.28)
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and it follows from [3, Proposition 24.11] that

PV +
ξ

: R|R| 7→ R|R| : f 7→ (PV +
od,ξ

(fRo,d))(o,d)∈O×D. (4.29)

What is left is to calculate PV +
od,ξ

for every (o, d) ∈ O × D, to do this, we use the algorithm

proposed in [15], which allows us to calculate the projection on sets of the form {x ∈ Rn |
btx = r ∧ l ≤ x ≤ u}, Formulacion in our case n = |Ro,d|, r = hod,ξ, b = 1|Ro,d|, l = 0|Ro,d|
and u = +∞.

On the other hand, let l ∈ {1, . . . , |Ξ|} and consider the following sets

(∀j ∈ {1, . . . , |A||Ξ|}) ∆l
j :=

j+l−1⋂
i=j

Ca(j),ξ(i,j), (4.30)

where a(j) := ((j−1) mod |A|) + 1 and ξ(i, j) =
((

(j−1)−((j−1) mod |A|)
|A| + i− j

)
mod |Ξ|

)
+ 1. The

next example illustrates the indexation of the sets ∆l
j for l = 2 and j = 118, 119, 120.

Example 4.4 Let A = {1, . . . , 7}, let Ξ = {1, . . . , 18} and set l = 2. Then, for j = 118, 119, 120
we have the following 3 sets

∆2
118 = C6,17 ∩ C6,18 ∆2

119 = C7,17 ∩ C7,18 ∆2
120 = C1,18 ∩ C1,1.

Consider the setting of the problem (P1) and set
(
x0, f0

)
=
(
x̄0, f̄0

)
= 0H,

(
u0, v0

)
= 0G . Consider

the following 10 instances of the algorithm (4.19).

The Algorithm 1 is the routine (4.19), in the case when, for every k ∈ N, ε−1
k ({0}) = Ω and

C = H. The Algorithms 2, 3, and 4 are the routine (4.19), in the case when, for every k ∈ N,
ε−1
k ({1}) = Ω and C = ∆α

1 , with α = 1, 9, and 18 respectively. Note that the algorithm 1 are the
algorithms proposed in [16, 24] and the algorithms 2-4 is the algorithm proposed in [7].

The Algorithms 5, 6, and 7 are the routine (4.19), in the case when, for every k ∈ N, πk = 0.5

and C =
⋂|A||Ξ|
i=1 ∆l

i, with l = 1, 9, and 18 respectively. The Algorithms 8, 9, and 10 are the

routine (4.19), in the case when, for every k ∈ N, ε−1
k ({1}) = Ω and C =

⋂|A||Ξ|
i=1 ∆l

i, with l = 1, 9,
and 18 respectively.

Remark 4.5

1. Note that

(∀j ∈ {1, . . . , |A||Ξ|}) δ∆l
j
(x, f) =

j+l−1⊕
i=j

δ(Ca(j),ξ(i,j))ξ(i,j)
(xξ(i,j), fξ(i,j)) (4.31)

and therefore P∆l
j
(x, f) =

(
T j,lξ1 (xξ1 , fξ1)

)
ξ1∈Ξ

, where

(∀ξ ∈ Ξ) T j,lξ1 :=

 P(Ca(j),ξ)ξ
if ξ1 ∈

j+l−1⋃
i=j

ξ(i, j)

Id otherwise.

(4.32)

which can be calculated using [3, Proposition 24.11].
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4.4 Randomized Kaczmarz projections into the arc capacity ex-
pansion problem of a directed graph.

In this section, we use the Theorem 3.1 to solve the problem (P1).

Corollary 4.6 Consider the setting of Problem (P1). Let γ > 0, let τ ∈]0, 2µ[, where µ =

maxξ∈Ξ p
2
ξ

(
max

{
‖N‖4 maxa∈A β

2
a,ξ, ‖Q‖2

})− 1
2
, let (u0, v0) ∈ G, let (x0, f0), (x0, f

0
) ∈ H2 be such

that (x0, f0) = (x0, f
0
) and, set I = {0, 1, ...,m}. Let (εk)k∈N be a sequence of independent I-valued

random variables. Consider the following routine

(∀k ∈ N)



(
ũk+1, ṽk+1

)
=
(
ukξ + γx̄kξ , v

k
ξ + γNf̄kξ

)
ξ∈Ξ(

uk+1, vk+1
)

=
((
ũk+1
ξ , ṽk+1

ξ

)
− γPHξ

(
γ−1

(
ũk+1
ξ , ṽk+1

ξ

)))
ξ∈Ξ

(p̃k+1, g̃k+1) =
(
xkξ − τu

k+1
ξ − τpξQxkξ , fkξ − τN>v

k+1
ξ − τpξψξ(fkξ )

)
ξ∈Ξ

(pk+1, gk+1) =
(
Pξ
(
PM |Ξ|∩W

(
p̃k+1

))
, PV +

ξ

(
g̃ξ
k+1
))

ξ∈Ξ

(xk+1, fk+1) = PCεk+1

(
pk+1, gk+1

)
(x̄k+1, f̄k+1) =

(
xk+1, fk+1

)
+
(
pk+1, gk+1

)
−
(
xk, fk

)
,

(4.33)

where (∀ξ ∈ Ξ) ψξ : R|R| 7→ R|A| : f 7→ N>(ta,ξ(Naf))a∈A and C0 = H. Assume that the following
hold:

(i) (∀i ∈ I\{0}) 0 < infk∈N π
i
k, where (∀i ∈ I)(∀k ∈ N) πik = P(ε−1

k ({i})) and

max{1, ‖N‖2} < 1
γ

(
1
τ −

1
2µ

)
.

Then ((xk, fk))k∈N converges P-a.s. to a Z1-valued random variable (x, f).

On the other hand, let l ∈ {1, . . . , |Ξ|} and let j a bijection from Dl ×Al to I\{0}, where

Dl = {(y1, . . . , yl) ∈ Ξl | (∀i, j ∈ {1, . . . , l}) if i 6= j ⇒ yi 6= yj}. (4.34)

Let’s define the following nonempty closed convex sets

(∀y ∈ Dl)(∀x ∈ Al) K l
j(y,x) =

l⋂
i=1

Cxi,yi (4.35)

Consider the setting of the problem (P1) and set
(
x0, f0

)
=
(
x̄0, f̄0

)
= 0H,

(
u0, v0

)
= 0G . Consider

the following 3 instances of the algorithm (4.33). The Algorithms 11, 12, and 13 are the routine
(4.33), in the case when C =

⋂
i∈I

K l
i , with l = 1, 9, and 18 respectively, and for every k ∈ N, εk is

I-valued random variable such that πk0 = 0, and for every i ∈ I, πki = 1
|I| .

Remark 4.7 In the case when C = H the routine (4.33) is the Algorithm 1.
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4.5 Numerical experience

Consider the following graph:

Figure 4.1: Graph of the arc capacity problem

Consider the Algorithms 4.19 and 4.33 in the case when |Ξ| = 18, pξ = 1
|Ξ| , ∀ξ ∈ Ξ. Accord-

ing to the Figure 4.1 we have that |A| = 19, |O| = |D| = 2, |R1,2| = 8, |R4,3| = |R1,3| = 6, |R4,2| = 5
and |R| = 25.

Consider the following parameters

(i) Capacity of every arc:

cξ :=110 · (10 4.4 1.4 10 3 4.4 10 2 2 47 7 7 7 4 3.5 2.2 4.4 7)

+ (15 6.6 2.1 15 4.5 6.6 15 3 3 6 10.5 10.5 10.5 10.5 6 5.25 3.3 6.6 10.5)︸ ︷︷ ︸
c̄

·X1 (∀ξ ∈ Ξ).

(4.36)

(ii) Origin-Destination Demand:

dξ :=(300 700 500 350) + (120 120 120 120) ·X2 (∀ξ ∈ Ξ), (4.37)

where X1 ∼ Beta(20, 20) and X2 ∼ Beta(50, 10).

(iii) Arc expansion capacity limit: M = 200c̄.

(iv) Cost matrix: Q = Id |A|.
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α = 0

Alg Time [s] Iter

Alg 1 110.8630 34568

α = 1 α = 9 α = 18

Alg Time [s] Iter

Alg. 2 109.0810 34535

Alg. 5 107.7653 34236

Alg. 8 106.6755 33773

Alg. 11 107.0495 33752

Alg Time [s] Iter

Alg 3 109.6725 34115

Alg 6 99.0522 31311

Alg 9 92.0858 28742

Alg 12 94.0510 29236

Alg Time [s] Iter

Alg 4 101.7377 31234

Alg 7 91.7839 28618

Alg 10 82.2959 25080

Alg 13 84.4937 25703

Table 4.1: The average execution time and the average number of iterations of each method. In the
case of a graph with 25 routes, 19 arcs and 18 scenarios.

Consider the time travel function:

(∀ξ ∈ Ξ)(∀a ∈ A) ta,ξ(u) := ηa + τa
u

ca,ξ
, (4.38)

where

η := (7 9 9 12 3 9 5 13 5 9 9 10 9 6 9 8 7 14 11) (4.39)

and τ := 0.15η. Hence, for every ξ ∈ Ξ and α ∈ A, βa,ξ := τa
ca,ξ

.

We consider stop criteria when the relative error of every iteration is less than a tolerance equal to
10−10, where the relative error of every iteration is defined by

(∀k ∈ N) ek =

√
‖xk+1 − xk‖2 + ‖fk+1 − fk‖2 + ‖uk+1 − uk‖2 + ‖vk+1 − vk‖2

‖xk‖2 + ‖fk‖2 + ‖uk‖2 + ‖vk‖2
. (4.40)

We test each algorithm and show in the Table (4.1) the average execution time and the num-
ber of average iterations of each method, obtained by 20 random realizations of vectors (cξ)ξ∈Ξ and
(dξ)ξ∈Ξ. The random generated vectors are obtained via the random function of MATLAB, using
the same seed.

Note the algorithms that include randomized (Alg. 11, 12, and 13) and alternating projections
(Alg. 8, 9, and 10) are similar in terms of the execution time and the number of iterations, with
a small advantage for the Alternating algorithms. In addition, both algorithms have significant
improvements with respect to Algorithm 1. In Table 4.1, we can see that algorithms that include
random alternating projections (Alg. 5, 6, and 7) are more efficient than Algorithm 1 and fixed
projections (Alg. 2, 3, and 4). However, they are not faster than randomized and alternating pro-
jections. Similarly, fixed projections are more efficient than Algorithm 1.

In Table 4.1, we can see the number of projections on an inequality is directly related to the
efficiency of the algorithm with the exception of Algorithm 3. In the case of alternating projections
on 18 inequalities, there is an improvement about 35 % in the execution time and 38 % the number
of iterations, while the randomized algorithm there is an improvement of approximately 31 % in
the time of execution and 35% in the number of iterations.
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Arco maxξ(ua,ξ − ca,ξ) xa
1 -394.91 0.00

2 18.20 18.20

3 -6.95 0.00

4 -187.97 0.00

5 24.92 24.92

6 15.62 15.62

7 -633.86 0.00

8 -221.02 0,00

9 -73,31 0,00

10 -95,52 0,00

Arco maxξ(ua,ξ − ca,ξ) xa
11 -218.34 0.00

12 -164.31 0.00

13 36.20 36.20

14 -164.31 0.00

15 17.67 17.67

16 68.42 68.42

17 -126.34 0.00

18 -78.68 0.00

19 36.20 36.20

Table 4.2: The expression maxξ(ua,ξ − ca,ξ) represents the worst scenario in terms of arc flow. Note
that in total 7 arcs are expanded and the expansion capacity coincides with the extra flow needed
in the equilibrium for the worst scenario.

Origin

Origin

Destination

Destination

1

2

3

4 5 6 7 8

9 10 11

12

13

3 7 9

12 14

18

4

1 17

8 10 11

2

5

15

19

13

6

16

Figure 4.2: Graphical representation of the arcs with more flow according to the Table 4.2. The red
arcs represent the arcs that in one or more scenario the maximum arc capacity is reached
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Finally, in the Table 4.2 we can see that the expansion of each arc coincides with the worst scenario
in terms of flows results in test 20, note that 7 arcs were expanded since there was a scenario such
that the flow is greater than the capacity. In the Figure 4.2 the graphical representation of Table 4.2.
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Chapter 5

Conclusions and future work

In this work, we provide two new primal-dual algorithms for solving constraints optimization prob-
lems. The first algorithm includes a random activation step over a cyclic projection scheme, while
the second chooses a random element from the set of projection operators. We exploit the proper-
ties of Stochastic Quasi-Fejér sequences to prove the almost sure convergence of both algorithms.
As special case the algorithms reduces to the method proposed in [7], Kaczmarz [19], randomized
Kaczmarz [23], and cyclic projections [3, Theorem 16.47].

The importance of the alternating and randomized projections is illustrated with the arc capac-
ity expansion problem, where the algorithms that include randomized and alternating projections
are more efficient than the algorithms proposed in the literature (Alg. 1-4). The randomized Kacz-
marz and alternating projections are more efficient than algorithms that include random alternating
projections and both algorithms have similar execution time and number of iterations with an small
advantage no greater than 4% for the alternating algorithms. The random alternating projections
algorithms are more efficient than Alg. 2, 3, and 4. The number of projections on an inequality is
directly related to the efficiency of the algorithm with the exception of Algorithm 3. In the case
of alternating projections on 18 inequalities, there is an improvement about 35 % in the execution
time and 38 % the number of iterations, while the randomized algorithm there is an improvement
of approximately 31 % in the time of execution and 35 % in the number of iterations. We think
that by including a larger number of scenarios to the problem, the difference in execution time
and number of iterations will be greater. In test 20 of the algorithms we can see that 7 scenarios
were expanded since there was an scenario such that the flow is greater than the capacity and the
expansion is equal to the maximum between 0 and the worst flow minus capacity scenario.

Future work will consist in studying the following problem:

Problem 5.1 Let {Tk}mk=1 be a family of αk-averaged nonexpansive operators. Let L : H → G be
a nonzero linear bounded operator. Let A : H ⇒ H and B : G ⇒ G be two maximally monotone
operators, let C : H ⇒ H be an operator µ-cocoercive, and let D : G ⇒ G be an maximally
monotone operator and δ strongly monotone. The problem is to solve the primal-dual inclusions

find x ∈ C :=

m⋂
i=1

FixTi such that 0 ∈ Ax+ L∗(B�D)(Lx) + Cx (P2)
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Together with the dual inclusion

find u ∈ G such that ∃x ∈ C


0 ∈ Ax+ L∗u+ Cx

u ∈ (B�D)(Lx),
(D2)

under the assumption that solutions exist. Where (B�D) := (B−1 +D−1)−1.

In the case when A = ∂f , B = ∂g, C = ∇h with µ−1-Lipschitzian gradient, D = ∂δ{0}, and for all
i ∈ {1, . . . ,m} Ti = PCi , the problem 5.1 reduces to the problem 1.2.

The main idea is to extend the algorithms 2.1 and 3.1 to solve the problem 5.1 including a stochastic
composition step with α-averaged nonexpansive operator, this approach allows us to include new
operators, for example the composition of projections and/ or convex combination of projections.

Also, there are still several interesting questions, which need to be addressed in the future: (a) What
is the most efficient manner to make projections? (b) is it possible unify both algorithms? (c) how
to include the case when (εk)k∈N are continuous random variables? (d) how to include inconsistent
linear system?
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