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Abstract

In this work, we study the photon spectrum produced by the Hawking radiation from
a primordial black hole (PBH). We focus on the last stages before full evaporation. The
spectrum is estimated using the black body approach and Hawking’s emission formula. The
connection between both descriptions is discussed. Furthermore, through analytical approx-
imations for the greybody factors at the high and low energy limits, we time-integrate the
primary spectrum along the PBH lifetime. As a result, we obtain a correction to the primary
photon time-integrated spectrum commonly used in the literature. In addition, due to the
BH emission of free quarks, we estimate, under rough approximations, the pion production
from quark hadronization. As a consequence, a secondary photon spectrum is obtained
through π0 → γγ decay. These calculations for the spectral emission are compared with
spectra obtained with simulations using BlackHawk. Based on the previous analysis, we
estimate the number of photons per km2, within a certain detection energy interval, and
during a fixed observation time, that eventually reach the Earth’s atmosphere. Finally, with
the help of Corsika, we run simulations of very high energy gamma rays to study the basic
features of the electromagnetic showers that are produced in the atmosphere.
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”An expert is a person who has
found out by his own painful
experience all the mistakes that
one can make in a very narrow
field.”

N. Bohr
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1 Introduction

1.1 Black Hole temperature

Black holes are solutions of Einstein’s field equations for a point-like mass source in
the theory of general relativity. These solutions describe a region of spacetime delimited
by an event horizon, inside of which nothing can escape. The simplest solution is for the
Schwarzschild metric, which applies to a nonrotating and uncharged object of mass M . The
corresponding event horizon is:

rs =
2GM

c2
, (1)

which is called Schwarzschild radius. Here, G is the gravitational constant and c the speed
of light in vacuum. There are other solutions with angular momentum and electric charge.
Today we know that these compact objects exist. Indeed, we can measure the effects they
produce in their proximity. For example, measuring orbits of stars near the center of our
galaxy, we can estimate the mass of the super massive BH located at that center, resulting
in 4 million of solar masses. Although general relativity allows for BHs of any mass, stellar
evolution leads to collapse into BHs only for objects heavier than a few solar masses. How-
ever, there is a scenario where BH masses can be arbitrarily small, even down to the Planck
mass scale (∼ 10−5 g). Such scenario would be at early stages of the Universe, where fluctu-
actions could cause mass overdensities in regions inside the Schwarzschild radius, resulting
in a compact object called primordial black hole (PBH) [23] [6]. PBHs have gained interest
in recent years because they are good candidates for partial or even total component of dark
matter [7, 20].

Thermodynamics describes a system from a macroscopic approach using a few state
variables. These quantities are averages of fundamental physics quantities. However, there
is an underlying microscopic description, called statistical mechanics, which is based on
quantum mechanics. For example, a cavity with a certain temperature radiates photons
because the material of its walls contains electrons that can interact electromagnetically with
photons. This is how quantum electrodynamics explains the black body radiation. Following
this line of reasoning, the thermodynamics of black holes, with mass (M), angular momentum
(J) and electric charge (Q) as state variables, should also have a quantum description. This
is related to the problem of a quantum theory of gravity. A first try for this description
is the work of S. Hawking in 1974 [12]. He applied quantum field theory in curved spaces,
but holding the metric classical. Hawking found that an external observer should measure
a radiation coming out from a BH1.

1This phenomenon is similar to the bath of thermal radiation that an accelerated observer experiences
falling into a black hole. This is called the Unruh effect.
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Such radiation follows a Planckian spectrum with temperature given by

kT =
ℏc3

8πGM
= 1.06

(
1010 kg

M

)
GeV, (2)

where ℏ is the reduced Planck constant and k is the Boltzmann constant. An intuitive way
to understand the origin of this radiation comes from the particle-antiparticle pair creation.
If the Compton wavelength of created particles is less than the BH radius (Equation (1)),
particles with negative energy fall into the hole, whereas particles with positive energy escape
to infinity. The reverse process is not allowed because energy conservation demands that
real particles with negative energy must have a decreasing radial coordinate, a condition
that is satisfied for particles inside the event horizon (see Ref. [18] for details). The BH
temperature defined in Equation (2) encodes a deep physical meaning. First, it provides a
consistent unification of gravity and thermodynamics. Consider a Schwarzschild black hole
with an area

A = 4πr2s

=
16πG2M2

c4
.

(3)

Under a change in mass dM , the area changes accordingly:

dA =
32πG2M

c4
dM. (4)

In terms of BH temperature

dM =
ckT

4ℏG
dA

d(Mc2) = T d

(
Akc3

4ℏG

)
.

(5)

Using the first law of thermodynamics in the form dE = T dS, we obtain the entropy for
black holes

S =
kc3

4ℏG
A. (6)

Altough J. Beckenstein derived an approximate value of the BH entropy years earlier [4],
Hawking obtained the 1/4 factor of the BH entropy formula.

5



According to the second law of thermodynamics, the entropy never decreases for a closed
system. Therefore we should have

dA

dt
≥ 0. (7)

Second, Hawking’s theory allows for the possibility that BHs can dissapear. The energy loss
in radiation causes the decrease of its mass and consequently its downsizing. This process
increases the temperature, accelerating this emission towards the end until full evaporation.
One might think that Hawking radiation violates the second law of thermodynamics given
the area downsizing (A ∝ r2s ∝ M2). This is not correct, because a radiating BH cannot be
regarded as an isolated system. As we shall demonstrate later, the rate of mass loss given
by this radiation mechanism is:

dM

dt
= − α

M2
, (8)

where α is

α =
ℏc4

15360πG2
= 4× 1015 kg3s−1. (9)

After integrating Equation (8), we obtain

M3(t)−M3
0 = −3 α (t− t0) t > t0. (10)

Here, M0 is the initial mass at time t0 and M(t) is the mass after a time interval (t − t0).
If M(t) = 0, the BH has evaporated after lifetime τ ≡ t − t0. Therefore a relation between
lifetime and respective initial mass is found:

τ ≈ M3
0

3α
≈ 10−24

(
M

kg

)3

yr. (11)

The time needed for a BH to decrease its mass by half is:

tM/2 =
1

3α

(
M3

0 − M3
0

8

)
=

7

8
τ. (12)

This result gives us an idea of how accelerated the phenomenon becomes in its last stages
before full evaporation. For example, a BH of 1 solar mass ∼ 1030 kg has a lifetime of ∼ 1066

yr (much larger than the age of the Universe), and a temperature of about 10−7 K. As a
consequence, all known BHs are colder than the Universe, so they absorb instead of emitting
radiation. However, for PBHs with masses of the order of M0 ≲ 2× 1011 kg, their lifetimes
are comparable to the age of the Universe (τ ∼ 1010 yr), and therefore they should have
evaporated by now.
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1.2 The black body approximation

As a first approximation, the rate of particle emission can be estimated treating the BH
radiation like a boson/fermion gas. While black body radiation usually refers to thermal
emittion of photons only, we emphasize that a BH radiates all Standard Model particles,
with relative rates depending of BH temperature and particles masses. We shall call this
approach the black body approximation. The states of a particle can be specified by its
momentum and spin. The average number of particles of species i, per unit volume with
momentum in the range [ p⃗, p⃗+ dp⃗ ], and gi degrees of freedom (polarizations) is

dni =
gi
h3

d3p f (i)
p , (13)

where f
(i)
p is the occupation number (number of particles in a given state of momentum p⃗)

f (i)
p =

1

e(Ep−µ)/kT ± 1
, (14)

where the sign − (+) holds for bosons (fermions). Here, T is the temperature and µ the
chemical potential. For photons, gγ = 2, µ = 0 and Ep = pc. Then we write

nγ =
2

h3

∫
dΩp

∫ ∞

0

dp
p2

e pc/kT − 1

=
8π

h3

∫ ∞

0

dp
p2

e pc/kT − 1
.

(15)

Using x = pc/kT

nγ = 8π

(
kT

2πℏc

)3 ∫ ∞

0

dx
x2

ex − 1

=
2

π2

(
kT

ℏc

)3

ζ(3),

(16)

where in the last line we have used the identity

∫ ∞

0

dx
xn−1

ex + a
=

{
Γ(n) ζ(n) a = −1

Γ(n) η(n) a = +1
(17)
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where ζ(n) is the Riemann zeta function, and η is the Dirichlet eta function. Both functions
are related through

η(n) = (1− 21−n) ζ(n). (18)

Using the same procedure, assuming massless electrons, their number density is

ne =
3

2π2

(
kT

ℏc

)3

ζ(3). (19)

Now, let us consider the flux through an area A due to outgoing particles from a thermal
cavity, of particles with momentum p⃗, in a time interval ∆t as Figure 1 shows.

Figure 1: Emission of particles from a cavity through a hole of area A. The particles
considered are inside a skewed cylinder of base A and height c cos θ∆t.

Of the particles with momentum p⃗ (that we have assumed massless), only those inside the
cylinder of Figure 1, can cross a hole of area A in time ∆t. This can be written as

dNA = dn× (A c cos θ∆t). (20)

The spectral flux density ji (number of particles with energy E = pc, in the range [E, E+dE ]
that cross the section per unit area and time) is obtained by integrating the contributions
of all momentum directions. Note that to cover all directions of outgoing particles, the
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integration in θ is over one hemisphere only.

dji =

∫
all dir

dNA

A∆t

= gi
c

h3
dp p2f (i)

p

∫ 2π

0

dϕ

∫ 1

0

d(cos θ) cos θ

= gi
πc

h3
dp p2f (i)

p

=
c

4
dni.

(21)

From the last line it is clear that the flux density is a factor c/4 of the average number of
particles per unit volume. The spectral emission can be obtained by inserting the spectral
form of dni (Equation (13)). Then we write

dṄi = Adji

= A
gic

4h3
d3p f (i)

p .
(22)

Here, A corresponds to the BH event horizon area

A =
16πG2M2

c4
=

ℏ2c2

4πk2T 2
. (23)

Using

p2dp =
p

c2
EdE , p =

√
E2 − (mic2)2/c, (24)

and inserting the area in Equation (22), the spectral emission rate is:

dṄi =
gi
h
Γ(M,E)f (i)

p dE

⇒ dṄi

dE
=

gi
h

Γ(M,E)

eEp/kT ± 1
,

(25)

where we have defined the absorption coefficient Γ(M,E) as

Γ(M,E) =
4G2M2pE

ℏ2c5
, p =

√
E2 − (mic2)2/c. (26)
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We must remark that this expression for absorption coefficient is only aplicable to large size
black body emitters (cavities much large than the usual wavelengths, i.e, the geometrical
optics limit). For BHs, Γ(M,E) function is different, as we will see below.

For massless particles (p = E/c) the absorption coefficient is

Γ(M,E) =
4G2M2E2

ℏ2c6
. (27)

Inserting in Equation (25), and setting gi = 2 for photons, we obtain the spectral emission
rate of a black body with temperature TBH (in the approximation of geometrical optics
limit)

dṄγ

dE
=

4G2M2E2

πℏ3c6
1

eEp/kTBH − 1
. (28)

1.3 Hawking’s emission formula

According Hawking’s theory, the radiation coming from a BH can be understood by
means of creation of particle-antiparticle pairs near the event horizon [13]. This is due to
vacuum quantum fluctuations. Particles with negative energy can enter the horizon and fall
into the hole, decreasing the BH energy as a result. Particles with positive energy escape
to infinity being observed as radiation. Nevertheless, the intense gravitational field of a BH
could absorb a large amount of them, reducing the spectral emission. Therefore, in compar-
ison with a black body of temperature TBH , the Hawking spectrum is less intense.

The spectral emission rate of particles of species i emitted by a BH of mass M , electric
charge Q, and angular momentum J is:

dṄi

dE
=

gi
h

Γsi(M,E)

ex ± 1
, x =

E − JΩ−QΦ

kT
, (29)

where si is the particle spin, Ω and Φ are the angular velocity and electric potential. The
sign − (+) holds for bosons (fermions). The coefficient Γsi(M,E) measures the probability
that a particle of species i and spin s, could escape to infinity instead of being absorbed
by the BH. This absorption coefficient does not have an analytical expression. However, for
massless particles emitted by nonrotating uncharged BHs, analytical approximations of the
absorption coefficient at asymptotic values of energy can be found [16]. In the limit E ≪ kT

10



it holds:

Γs(M,E)E≪kT =



16G2M2E2

ℏ2c6 s = 0

2G2M2E2

ℏ2c6 s = 1
2

64G4M4E4

3ℏ4c12 s = 1

256G6M6E6

45ℏ6c18 s = 2,

(30)

whereas in the limit E ≫ kT this factor approaches to:

Γ(M,E)E≫kT =
27G2M2E2

ℏ2c6
(31)

for all species. This limit is called the geometrical optics limit because λ ≪ rs. In this en-
ergy regime, the black body radiation should be recovered. Given that Γs(M,E) deviates the
BH spectrum from a thermal spectrum (black body), this coefficient is also called greybody
factor. Notice that using both approximations for the greybody factor, the BH spectrum
(Equation (29)) preserves the invariance with respect to the quantity E/kT . This feature
leaves the maximum of the spectral emission rate equal for all BH temperature, as we will
see in Section 4.

We are interested in Schwarzschild BHs, which are nonrotating and uncharged. Then,
Hawking’s formula for the spectral emission rate can be written as

dṄi

dE
=

gi
h

Γsi(M,E)

eE/kT ± 1
. (32)

If we focus on particles with energy E ≫ kT , the Γsi(M,E) factor can be approximated by
Equation (31). Thus

dṄi

dE
=

gi
h

27G2M2

ℏ2c6
E2

eE/kT ± 1
for E ≫ kT. (33)

In comparison with the black body approach (Equation (25)), for massless particles we find

dṄi

dE

(H)

=
27

4

dṄi

dE

(BB)

for E ≫ kT, (34)
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where superscript (H) is for Hawking’s approximation and (BB) for the black body approx-
imation. This result is very interesting because the spectrum for photons with energies
Eγ ≫ kTBH is 27/4 ≈ 7 times more intense than a black body with temperature TBH .
This fact can be attributed to the coefficient Γs(M,E). From Equations (27) and (31) it is
satisfied:

Γ(H) =
27

4
Γ(BB) for E ≫ kT. (35)

This unexpected result raises questions about the correct values of greybody factors at the
geometrical optics limit, where black body radiation is valid. This result may induce us to
think that black holes would emit more than a black body of same temperature. However,
as we shall see in Section 4, BHs emit less at lower energies.

1.4 Rate of mass loss

The mass-temperature relation can be used to obtain a dynamical Equation for the BH
mass loss. Let us suppose that BH emits like a black body. Applying the Stefan-Boltzmann
law, the total radiated power per unit surface (total energy flux) is

I = σT 4 =
σ

k4

(
ℏc3

8πGM

)4

, (36)

where σ is the Stefan-Boltzmann constant. Inserting its value and multiplying by the BH
horizon area A (Equation (23)), we obtain the total power radiated

P = A I

=
16πG2M2

c4
π2

60ℏ3c2

(
ℏc3

8πGM

)4

=
ℏc6

15360πG2

1

M2
.

(37)

This expression is often found in literature. However, as stated above, it considers the
Γ(M,E) factor as a usual black body cavity, which is not applicable to BH radiation. De-
spite this caveat, let us continue the calculation for pedagogical reasons. Using energy
conservation, the total power radiated P is equal to the rate of mass-energy loss according
to

P = − d

dt
Mc2. (38)
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In comparison with Equation (37) we obtain

dM

dt
= − α

M2
(39)

with

α =
ℏc4

15360πG2
= 4× 1015

kg3

s
. (40)

This expression for α would correspond to a BH emitting photons only, and with the as-
sumption of a black body absorption coefficient. In the general case, α depends on the BH
temperature and the masses of all kinds of emited particles. Let us find the contributtion to
α for the emission of bosons and fermions. The energy density (the average energy per unit
volume) of particle species i with momentum in the range [p⃗, p⃗+ dp⃗] can be defined as

dui = dni Ep

=
gi
h3

d3p f (i)
p Ep,

(41)

where dni is the spectral number density, Equation (13). Just as the flux density ji is c/4
times the number density (Equation (21)), the irradiance I (energy per unit area and time)
is

dIi =
c

4
dui

=
c

4

gi
h3

d3p f (i)
p Ep.

(42)

The total power emitted by a BH is the sum over all species and integration over all momenta,
multiplied by the BH horizon area A,

P = A
∑
i

∫
dIi. (43)

Inserting Equation (42) and the value of A (Equation (23)) we obtain

P =
∑
i

gic
2

h

∫ ∞

0

dp pΓ(M,E)f (i)
p , (44)
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where Γ(M,E) is the absorption coefficient. Using Equation (38) to write

dM

dt
= − α(M)

M2
, (45)

we find a general form for α(M)

α(M) =
∑
i

M2 gi
h

∫ ∞

0

dp pΓ(M,E)f (i)
p . (46)

Here, depending on the form of Γ(M,E) we can calculate α(M) for a black body with
temperature TBH , as well as for a BH emission through the Hawking formula. Let us calculate
both of them. For a black body we use Γ(M,E) obtained in Equation (26). Inserting the
dimensionless parameters

m̃i =
8πGM

ℏc
mi , x =

8πGM

ℏc2
p, (47)

we can write

Ep

kT
=

8πGM

ℏc3
√
(mic2)2 + (pc)

=
√
m̃2

i + x2.

(48)

Using

Ep = kT
√

m̃2
i + x2 = c

ℏc2

8πGM

√
m̃2

i + x2, (49)

We obtain

α(M) =
ℏc4

211π5G2

∑
i

gi

∫ ∞

0

dx x2
√

m̃2
i + x2 fp(m̃i, x), (50)

where the sum is over all Standard Model particles. Figure 2 shows α as a function of the
BH temperature (or BH mass). With α(M), we can obtain a better value of the BH lifetime.
However, the integration cannot be done analytically due to the complicated depence of α
on M . We must emphasize that Equation (50) is the α value using Γ(M,E) of a black body
emission with temperature TBH .
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Figure 2: α(M) vs kT according to Equation (50). Each particle mass acts as a threshold. For
mi below kTBH , the emission of particle i is supressed. As TBH increases, new particles begin
to contribute significantly to α. Notice that α(M) stabilizes at αSM = 2.25× 1017 kg3s−1.

Now, let us calculate α(M) using Hawking’s emission formula, which is the correct emis-
sion for a BH. This means that we must use the correct expression for the absorption coef-
ficient. According to Equation (29) we use

Γ(M,E) ≡ Γsi(M,E). (51)

Inserting Γsi(M,E) in Equation (46)

α(M) =
∑
i

M2 gi
h

∫ ∞

0

dp pΓsi(M,E)f (i)
p , (52)

and assuming that all emitted particles are massless (E = pc) we obtain

α(M) =
M2

c2

∑
i

∫
dE

dṄi

dE
E, (53)
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where the sum is over all Standard Model particles for which the BH temperature has crossed
the particle mass threshold. For a Schwarzschild BH, we use Equation (32) for the spectral
emission rate. Then

α(M) =
M2

c2

∑
i

gi
h

∫
dE

Γsi(M,E)

eE/kT ± 1
E, (54)

but now we are forced to solve the last integral numerically, given that we do not have an
analytical expression for the absorption coefficient Γsi(M,E). The function α(M) found in
the literature using Equation (54) is shown in Figure 3.

Figure 3: Value of α(M) obtained by Ref. [21]. When the BH has reached a temperature
close to 102 GeV (a lifetime less than 5 days), all Standard Model particles are emitted, and
the α value stabilizes at αSM = 8.0× 1017 kg3s−1.
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2 Primary spectrum

In order to calculate the time-integrated spectrum, we need to deal with the absorption
coefficient Γs(M,E). This function (also called greybody factor) measures the probability
that particles could escape to infinity under the strong gravitational field of the BH, after
being emitted in the event horizon vicinity. As the field of the emitted particle is decomposed
in spherical harmonics, the Γs(M,E) factor is obtained as the sum in all angular modes (see
Ref. [16] for details). This function can only be calculated numerically. The greybody factor
can be written as [21]

Γs(x) = 27
( x

8π

)2
γs(x) , x =

E

kT
. (55)

Here, γs(x) is obtained by numerical calculations. In the geometrical optics limit x ≫ 1,
γs(x) → 1 for all species. Figure 4 shows γs(x) for different spin s.

Figure 4: γ(x)s as a function of x = E/kT , for particles with spin s = 0, 1/2, 1.
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One of the purposes of our work is to obtain an identifiable gamma ray signal of a PBH
in the last months before total evaporation. To achieve this, we shall time-integrate the
primary photon spectrum (directly emitted by the BH) along the PBH leftover lifetime.
Then, we will obtain the total spectrum distribution of photons emitted from the present
time until the PBH extinction. For a Schwarzschild BH, we use Equation (32) to write the
spectral number of photons emitted by the PBH during its lifetime τ

dNi

dE
=

∫ τ

0

dt
dṄi

dE
=

gi
h

∫ τ

0

dt
Γsi(x)

ex ± 1
. (56)

To solve this integral, we need x as function of t, i.e, the BH temperature as a function of
time. To obtain this, we must solve the differential Equation (45) for the BH mass. This is a
complicated task given the dependence of α on M . However, we can use the approximation
α(M) ≈ α(M0), where M0 is the initial mass of a BH with lifetime τ , because most of the
lifetime τ occurs in the regime where M is close to M0. Then, as α(M0) is constant, the
approximate solution for Equation (45) is

M3
0 ≈ 3α(M0) τ. (57)

Actually, for a BH with mass less than M0 ≈ 3× 108 kg (τ ≲ 130 days), α is indeed fixed at
the asymptotic value αSM = 8.0 × 1017 kg3s−1 (see Figure 3). In this temperature regime,
the BH radiates all Standard Model particles. Using Equation (2), we can write the BH
temperature as a function of lifetime as

1

kT
= Λ τ 1/3, (58)

where we have defined Λ as

Λ =
8πG (3αSM)1/3

ℏc3
. (59)

Notice that Λ has units of GeV−1 s−1/3. Then, we can write the adimensional variable x as
a function of t:

x =
E

kT
= ΛEt1/3. (60)

Therefore, Equation (56) can be written as

dNi

dE
=

3gi
Λ3h

1

E3

∫ xτ

0

dx
x2 Γs(x)

ex ± 1
. (61)
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Here xτ = E/kTτ = EΛτ 1/3 corresponds to the beginning of a BH evaporation with a life-
time τ , while x = 0 corresponds to the instant when the BH evaporation has been completed
(kTτ → ∞). We should be careful to notice the last instants of evaporation (τ ≤ tPl ∼ 10−44

s) are in a regime where physics is not known (the Planck scale).

To solve the integral in Equation (61), we will use the approximations for greybody
factors in the high and low energy limits, defined in Equations (30) and (31). In terms of x,
we can write for x ≪ 1 (E ≪ kT )

Γs(x)x≪1 =


16
(

x
8π

)2
s = 0

2
(

x
8π

)2
s = 1

2
64
3

(
x
8π

)4
s = 1

256
45

(
x
8π

)6
s = 2,

(62)

and for x ≫ 1 (E ≫ kT ), Γs(x) approaches to the geometrical optics limit

Γ(x)x≫1 = 27
( x

8π

)2
(63)

valid for all species.

2.1 The case xτ ≥ 1

As the PBH evaporates, x decreases from xτ to 0. If we consider energies E where initially
E ≥ kTτ , we will have xτ > 1 at early stages, and then as the PBH evaporates we will move
to x < 1 until full evaporation. Thus, the integral over x covers regions where x > 1 and
x < 1. For x ≫ 1 (E ≫ kTτ ), we must use the high energy limit approximation for the
greybody factor (Equation (63)), while for x ≪ 1 (E ≪ kTτ ) we shall use the low energy
expression for the greybody factor (Equation (62)). Then, the integral 61 can be written as

dNi

dE
=

3gi
Λ3h

1

E3

(∫ 1−δ

0

dx
x2 Γ

(l)
s (x)

ex ± 1
+

∫ 1+δ

1−δ

dx
x2 Γs(x)

ex ± 1
+

∫ xτ

1+δ

dx
x2 Γ(h)(x)

ex ± 1

)
, (64)

where the superscripts l and h hold for low and high energy limit respectively. The parameter
0 < δ < 1 is written to use the approximations of the greybody factors in their corresponding
interval.
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Also, it is convenient to write the greybody factor approximations as

Γ(l)
s (x) = C(l)

s xm

Γ(h)(x) = C(h)x2,
(65)

where m = 2, 2, 4, 6 for s = 0, 1/2, 1, 2 respectively. We shall use the approximation δ = 0.
Then, Equation (64) takes the form

dNi

dE
≈ 3gi

Λ3h

1

E3

(
C(l)

s

∫ 1

0

dx
xm+2

ex ± 1
+ C(h)

∫ xτ

1

dx
x4

ex ± 1

)
. (66)

Using ∫ xτ

1

dx
x4

ex ± 1
=

∫ xτ

0

dx
x4

ex ± 1
−
∫ 1

0

dx
x4

ex ± 1
, (67)

we can write

dNi

dE
≈ 3gi

Λ3h

1

E3

(
C(l)

s

∫ 1

0

dx
xm+2

ex ± 1
+ C(h)

∫ xτ

0

dx
x4

ex ± 1
− C(h)

∫ 1

0

dx
x4

ex ± 1

)
. (68)

These integrals have the general form

In(X, a) =

∫ X

0

ds
sn

es + a
∀n ∈ N (69)

and a = ±1. This integral can be solved using the Method of Brackets. This is a powerful
method of integration based on techniques used to evaluate Feynman diagrams [10]. This
method solves definite integrals in one or several dimensions over the interval [0,∞[. The
procedure introduces the notion of a bracket and converts the integrand in a series of brackets.
The method contains a small number of heuristic rules which transform the evaluation of
an integral into the solution of a small linear system of equations. To solve the integral in
Equation (69) with the Method of Brackets, we introduce the change of variable y = s/(X−s)
to set the integral limits at the interval [0,∞[. The full calculations are shown in Ref. [9],
where a new series expansion for this integral was found. Therefore, using the Method of
Brackets, the integral In(X, a) can be written as the following finite series:

In(X, a) = −Γ(n+ 1)

a

(
Lin+1(−a)−

n∑
k=0

Lin+1−k(−ae−X)
Xk

k!

)
. (70)
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Here, Lin(z) is the polylogarithm function plotted in Figure 5

Lin(z) =
∞∑
k=1

zk

kn
, (71)

for all complex n and z such that |z| ≤ 1. Some important properties are

Lin(1) = ζ(n) , Lin(−1) = −η(n) = −(1− 21−n) ζ(n). (72)

Figure 5: Plot of polylogarithm functions.

Therefore, the solution of Equation (68) by means of Equation (70) is

dNi

dE
≈ 3gi

Λ3h

1

E3

(
C(l)

s Im+2(1,±1) + C(h)I4(xτ ,±1)− C(h)I4(1,±1)
)
. (73)

Let us examine this solution for photons and quarks. For photons in the low energy limit
(l) we set m = 4, gγ = 2 and the coefficients C according to Equation (62). Then,
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C
(l)
1 I6(1,−1) =

Γ(7)

192π4

(
ζ(7)−

6∑
k=0

Li7−k(e
−1)

1

k!

)
≈ 10−6

C(h) I4(1,−1) =
27Γ(5)

64π2

(
ζ(5)−

4∑
k=0

Li5−k(e
−1)

1

k!

)
≈ 10−3

C(h) I4(xτ ,−1) =
27Γ(5)

64π2

(
ζ(5)−

4∑
k=0

Li5−k(e
−xτ )

xk
τ

k!

)
.

(74)

These results tell us that the contribution in the interval x ∈ [0, 1] is negligible. Using

ℏ = 6.582× 10−25 GeVs

ΛSM =
8πG(3αSM)1/3

ℏc3

= 1.264× 10−4 GeV−1s−1/3,

(75)

and inserting the expression for C(h) I4(xτ ,−1) in Equation (73), the approximate time-
integrated spectrum of primary photons with energies E ≥ kTτ is:

dNγ

dE
≈ 7× 1035

(
E

GeV

)−3
[
27 Γ(5)

64π2

(
ζ(5)−

4∑
k=0

Li5−k(e
−E/kTτ )

(E/kTτ )
k

k!

)]
GeV−1,

(76)

where we have used xτ = E/kTτ . The expression inside square parentheses, approaches 1
for E/kTτ ≳ 10 as shown in Figure 6. This means that the time-integrated spectrum does
not depend on the initial BH temperature kTτ for photons with energies E ≳ 10 kTτ . Notice
that Refs. [15,17,21] consider the approximation

dNγ

dE
≈ 9× 1035

(
E

GeV

)−3

GeV−1 for E ≥ kTτ . (77)

However as we just saw, this is not valid for all E ≥ kT , but only for E ≳ 10 kT . Indeed, in
the range E ∼ kT , the expression inside square parentheses is smaller than unity by a factor
10−3: The spectrum is sizable only for E ≥ 10 kT . This is clearly different from the black
body radiation.
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Proceeding as in the previous case, the emission of a given flavor of quarks (gq = 12)
with energies E > kTτ the time-integrated spectrum is:

dNq

dE
≈ 4× 1036

(
E

GeV

)−3
[

27

64π2
Γ(5)

(
15

16
ζ(5) +

4∑
k=0

Li5−k(−e−E/kTτ )
(E/kTτ )

k

k!

)]
GeV−1.

(78)

The expression inside square parentheses is also plotted in Figure 6.

Figure 6: Contribution of the expressions inside square parentheses in Equations (76)
and (78) for xτ = E/kTτ ≥ 1.

2.2 The case xτ < 1

For particles with energies below the initial BH temperature (E < kTτ ), we can time-
integrate the spectrum using the approximation for the greybody factor in the low energy
limit only (Equation (62)). This is because the condition x < 1 remains valid in the full
integration range. Therefore, the time-integrated spectrum in this case (Equation (56)), can
be written as

dNi

dE
≈ 3gi

Λ3h

1

E3

∫ xτ

0

dx
x2 Γ

(l)
s (x)

ex ± 1
. (79)

23



Inserting the expression for Γ
(l)
s (x) defined in Equation (65), this integral can be written as

dNi

dE
≈ 3gi

Λ3h

1

E3
C(l)

s

∫ xτ

0

dx
xm+2

ex ± 1

≈ 3gi
Λ3h

1

E3
C(l)

s Im+2(xτ ,±1),

(80)

where in the last line we used the integral definition Equation (69). According to Equa-
tion (62), for photons (s = 1) we set m = 4. Therefore, we need

C
(l)
1 I6(xτ ,−1) =

Γ(7)

192π4

(
ζ(7)−

6∑
k=0

Li7−k(e
−xτ )

xk
τ

k!

)
. (81)

Then, the time-integrated spectral emission of primary photons with energies E < kTτ is:

dNγ

dE
≈ 7× 1035

(
E

GeV

)−3
[
Γ(7)

192π4

(
ζ(7)−

6∑
k=0

Li7−k(e
−E/kTτ )

(E/kTτ )
k

k!

)]
GeV−1.

(82)

Similarly, for a given flavor of quarks (s = 1/2) we set m = 2 according Equation (62).
Then, the time-integrated spectral emission of quarks with energies E < kTτ is:

dNq

dE
≈ 4× 1036

(
E

GeV

)−3
[
Γ(5)

32π2

(
15

16
ζ(5) +

4∑
k=0

Li5−k(−e−E/kTτ )
(E/kTτ )

k

k!

)]
GeV−1.

(83)

The contribution of the terms in the square parentheses of Equations (82) and (83) are shown
in Figure 7.
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Figure 7: Contribution of the terms in the square parentheses in Equations (82) and (83)
for xτ ≤ 1.

Notice that this part of the spectrum (E < kTτ ) becomes negligible towards the end of the
BH evaporation. Indeed, the functions plotted in Figure 7 can explain why the emissions
of particles with energies below the initial BH temperature are suppressed as we will see in
Section 4.

Let us plot the time-integrated spectral emission of primary photons obtained in Equa-
tions (76) and (82) for several BH lifetimes below 100 seconds. To calculate the corresponding
BH masses, we use Equation (57) with αSM . Then

τ = 100 s M = 6.2× 109 g kTτ = 1.7 TeV
τ = 10 s M = 2.9× 109 g kTτ = 3.7 TeV
τ = 1 s M = 1.3× 109 g kTτ = 8 TeV
τ = 0.1 s M = 6.2× 108 g kTτ = 17 TeV
τ = 0.01 s M = 2.9× 108 g kTτ = 37 TeV,

where we have used Equation (2) to compute the corresponding initial BH temperatures
kTτ . The time-integrated spectra of primary photons are shown in Figure 8
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Figure 8: Time-integrated spectrum of primary photons for xτ ≥ 1 (E ≥ kTτ ) and xτ < 1
(E ≤ kTτ ), as a function of the photon energy, for different BH lifetimes in the last 100
seconds before full BH evaporation.

In Figure 8, spectra in the low (dashed line) and high energy limit (solid line) seem
to be shifted with respect to each other, i.e, we cannot extrapolate the dashed curves to
the solid ones without a considerable slope change. This is not correct, as we shall see in
the simulations chapter (Section 4). The relative energy shifting between both parts of the
spectrum is given by an overestimation of primary photons in the regime E ∼ kTτ . This
overestimation comes from the approximate interval of x = E/kTτ that we considered to do
the integration using the greybody factor approximations (see Equation (66)).
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3 Secondary spectrum

According to the Standard Model of particle phyisics, a distant observer of a BH evapo-
rating should detect the following particles: γ, ν, e±, p±. Any other particle will decay into
these species. As we are interested in photon detection, the main factory that produces
them, apart from those directly emitted by the BH, is the π0 decay through the process
π0 → γγ, that occurs with a 98% of the cases [22]. These photons constitute the secondary
photon spectrum of a BH evaporation.

When kTBH reaches the quark-gluon confinement energy scale (ΛQCD ∼ 200−300 MeV),
the BH emits free quarks and gluons. When this happens, practically all of them will
fragment into all kinds of hadrons such as neutrons, protons, pions, kaons, B mesons, D
mesons, etc. This phenomenon is similar to the jets produced in the high-energy collisions
at colliders. Nevertheless, through the different decay modes, these hadrons will end as up
decaying into the stable species mentioned above. For example, let us examine theK± meson.
The main decay channel is the leptonic K± → µ±νµ that occurs with a 64% of the cases, and
the non-leptonic K± → π±π0 with a 20% of the cases [22]. Both modes, after the µ± and
π±,0 decays, will end up in electrons, neutrinos and photons. The estimation of π production
is a complicated task, given the complexity of the quark hadronization phenomenon. This
calculation is usually obtained using programs based on Monte Carlo simulations [5, 19].
However, using some crude approximations, we can calculate the π emission analytically,
and then the secondary photon emission. The purpose of this section is to obtain the time-
integrated spectrum of the secondary photons from the π0 decay to complement the photon
signal from a BH evaporation.

3.1 Fragmentation function

To estimate the π production, we shall use an empirical fragmentation function usually
used in the literature [11,21]

Dh/q(z) =
15

16

(1− z)2

z3/2
, z =

Eh

E
. (84)

This function represents the probability that a quark q with energy E fragments into a hadron
h with energy Eh. Here, z is the quotient between the energy Eh carried by the resultant
hadron and the energy E of initial quark. The function Dh/q(z) is shown in Figure 9. This
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function has the following properties:

∑
q

∫ 1

0

dz Dh/q(z) = nh

∑
h

∫ 1

0

dz zDh/q(z) = 1,

(85)

where the sum over q is the contribution of all parent quark flavors. The first property
expresses that the average number of hadrons of type h, is equivalent to the sum of all
probabilities to obtain a hadron h along all possible fractions of energy of the parent quarks.
The second property states that the sum of all energies of hadrons of type h is equivalent to
the energy of the parent quark.

Figure 9: Dh/q(z) as a function of z = Eh/E defined in Equation (84).

The quark spectral emission rate of a given flavor quark q, according Hawking’s emission
formula (Equation (32)) is:

dṄq

dE
=

gq
h

Γ1/2(x)

ex + 1
, (86)

where x = E/kTτ and gq is the number of degrees of freedom. Notice that we have assumed
massless quarks. Proceeding as we did for the primary spectrum, we shall use the approxi-
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mations of the greybody factors in the low and high energy limits defined in Equations (62)
and (63). Using gq = 12, the quark spectral emission rate can be written as:

dṄq

dE
=


3

16π3ℏ
x2

ex+1
≡ C(l)f(x) , E ≪ kT

81
32π3ℏ

x2

ex+1
≡ C(h)f(x) , E ≫ kT,

(87)

where

f(x) ≡ x2

ex + 1
. (88)

A pion is a meson (a boson made of two quarks) composed of u, d quarks. As a conse-
quence, the pion spectral emission rate due to the u, d hadronization can be obtained through
the product of the u, d quark spectral emission rate (Equation (87)) and the probability that
they get hadronized into pions, i.e, the Dπ/q(z) fragmentation function (Equation (84)). As
the resultant pion carries a fraction of the quark energy Eπ = zE, the pion spectral emission
rate can be written as:

dṄπ

dEπ

=
∑
q=u,d

∫ ∞

0

dE

∫ 1

0

dz
dṄq

dE
Dπ/q(z) δ(Eπ − zE). (89)

Here, the sum accounts for all quark flavors, but in the case of c, s, t, b quarks, we must
calculate their respective decays to the u, d quarks.

3.2 Hadronization from u and d quarks

Let us calculate the hadronization into pions due to the u, d quarks that are directly
emitted by the BH. For this purpose, let us count the number of particles per unit time
(hereafter the number) emitted in a certain range of energy. The number of u quarks emitted
in the energy range [Eu, Eu + dEu] is dṄu. Similarly, the number of d quarks emitted in the
energy range [Ed, Ed + dEd] is dṄd. Then,

dṄu = dṄd. (90)

This means that the quark hadronization into pions given the primary u and d quarks are
equal. Therefore, the fragmentation functions for each flavor satisfy

Dπ/u(z) = Dπ/ū(z) = Dπ/d(z) = Dπ/d̄(z) , z =
Eπ

E
, (91)
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where E is the energy of the u or d quark. Then, using Equation (89) the quark hadronization
into pions given the primary u, d quarks can be written as:

dṄπ

dEπ

(u,d)

= 2

∫ ∞

0

dE
dṄu

dE

∫ 1

0

dz Dπ/u(z) δ(z E − Eπ)

= 2

∫ ∞

0

dE
dṄu

dE

1

E
Dπ/u

(
Eπ

E

)
.

(92)

Using the change of variable x = E/kT , and inserting Equation (87)

dṄπ

dEπ

(u,d)

= 2

(
C(l)

∫ 1

0

dx
f(x)

x
+ C(h)

∫ ∞

1

dx
f(x)

x

)
Dπ/u

(
Eπ

E

)

= 2

(
(C(l) − C(h))

∫ 1

0

dx
f(x)

x
Dπ/u

(
Eπ

x kT

)
+ C(h)

∫ ∞

0

dx
f(x)

x
Dπ/u

(
Eπ

x kT

))
.

(93)

Notice that for the integration, we have used the same approximation of Section 2.1 (Equa-
tion (66)). Therefore, the integral on the interval [0, 1] gives a negligible contribution. Then,

dṄπ

dEπ

(u,d)

≈ 2
15

16
C(h)

∫ ∞

0

dx
f(x)

x

[(
x kT

Eπ

)3/2

− 2

(
x kT

Eπ

)1/2

+

(
Eπ

x kT

)1/2
]
. (94)

Inserting the value for C(h) defined in Equation (87) and use 1/3 for neutral pions, the π0

spectral emission rate, given the primary u, d quarks is:

dṄπ0

dEπ0

(u,d)

≈ 1

3

(
1215

256π3ℏ

) [
I(7)

(
kT

Eπ0

)3/2

− 2 I(5)

(
kT

Eπ0

)1/2

+ I(3)

(
Eπ0

kT

)1/2
]
, (95)

where we have used the identity

I(s) =

∫ ∞

0

dx
xs/2−1

ex + 1
= Γ(s/2)η(s/2) = Γ(s/2)(1− 21−s/2)ζ(s/2). (96)

We must warn that the contribution of Dπ/ū and Dπ/d̄ are already included in the degrees

of freedom of dṄ/dE. It is remarkable that the π0 spectral emission rate depends on E and
kT only through the rate E/kT , just as in the primary spectrum.
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3.3 Heavy quark hadronization

In order to estimate the pion production due to c, s, b, t quark hadronization, we must
estimate the u, d production through the decay of the heavy quarks. However, given the
complexity of the phenomenon, we shall use some rude approximations:

1. The quark mixing matrix is diagonal, so the flavor change is either in the same gener-
ation or to the nearest generation. Note that in the t quark decay, the W+ boson is
real (see Figure 10).

2. We ignore the contribution of the W+.

3. The production of quarks is by primary emission (directly emitted from the BH) and
by the flavor quark changing. Any other mode of production is ignored.

4. We do not consider the leptonic mode q → q′ l± ν.

5. All quarks hadronize into pions instead any other hadron.

6. Energy equipartition for each decay process. This means that for each process shown
in Figure 10, the final particles have the same energy.

Figure 10: Approximate model of secondary u, d quark production given the flavor quark
changing.

For convenience, we shall refer to u, d quarks as u-type quarks, because their hadroniza-
tion into pions are equal (see Section 3.2). For a q quark with energy Eq that decays in n
u-type quarks, the energy of these u-type quarks will be Eq/n. For example, the process
s → u+ ū+ d, the s quark with energy Es decay in three u-type quarks such that each one
has energy Es/3. Then, the number of u-type quarks in the energy interval [Eu, Eu + dEu]
is related to the number of s quarks in the energy interval [Es, Es + dEs] through

dṄu(Eu) = 3 dṄs(Es)

= 3 dṄs(3Eu).
(97)
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According to Equation (94), quark hadronization into pions comes from the term with the
coefficient C(h) only, i.e, C(l) is neglected. Then, using Equation (87) we can write

dṄs(3Eu) = C(h) (3Eu/kT )
2

e3Eu/kT + 1
3dEu. (98)

Inserting Equation (98) in Equation (97), we obtain the spectral emission rate for the sec-
ondary u-type quarks coming from s quark decay

⇒
dṄu/s

dEu

= 9C(h) (3Eu/kT )
2

e3Eu/kT + 1
. (99)

Now, inserting this result in Equation (89) we can obtain an approximation to the s quark
hadronization into pions. To obtain the complete quark hadronization into pions, we must
estimate the u-type quark production for each quark decay process of figure Figure 10. Given
the extension, the full calculation is available in the appendix in Section 9.

According to our calculations (available in the appendix in Section 9), the approximate
spectral emission rate of neutral pions from the hadronization of all quark flavors is:

dṄπ0

dEπ0

=
405

512π3ℏ

[
I(7)F−3/2

(
Eπ0

kT

)
− 2I(5)F−1/2

(
Eπ0

kT

)
+ I(3)F 1/2

(
Eπ0

kT

)]
, (100)

where we have defined Fm(E/kT ) as

Fm

(
E

kT

)
= 2

(
E

kT

)m

+ 21

(
3E

kT

)m

+ 12

(
6E

kT

)m

+ 45

(
9E

kT

)m

+ 36

(
18E

kT

)m

+ 81

(
27E

kT

)m

+ 162

(
54E

kT

)m

.

(101)

This spectrum is shown in Figure 11.
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Figure 11: Spectral emission rate of neutral pions as a function of the pion energy, due
to quarks hadronization, for different BH lifetimes in the last 100 seconds before full BH
evaporation.

3.4 π0 → γγ

The main source of secondary photons is the π0 decay. Now that we have an estimation
of the π0 production, we can calculate the secondary photon spectrum from the π0 → γγ
process. In the π0 rest frame, both photons have equal energy and opposite momenta. In
the detector frame, the pion is moving towards the detector with velocity vπ and energy
Eπ0 = γmπc

2, where γ is the Lorentz factor and mπ is the π0 mass (see Figure 12). In this
reference frame, the photons have energy E ′ as a function of the θ angle according to:

E ′
1,2 = γ

mπc
2

2
(1± β cos θ)

γ =
1√

1− β2
, β =

vπ
c
.

(102)
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Figure 12: Diagram of π0 → γγ viewed from the detector frame.

As we have done rough approximations to estimate the π0 production, we shall assume
that both photons go forward with the same energy Eγ = Eπ0/2. In this picture, the number
of photons in the energy interval [Eγ, Eγ + dEγ] is related to the number of π0 in the energy
interval [Eπ0 , Eπ0 + dEπ0 ] through

dṄγ/π0(Eγ) = 2 dṄπ0(2Eγ) , Eγ =
Eπ0

2
, (103)

where

dṄπ0(2Eγ) =
dṄπ0

dEπ0

(2Eγ) dEπ0

= 2
dṄπ0

dEπ0

(2Eγ) dEγ

⇒ dṄγ

dEγ

= 4
dṄπ0

dEπ0

(2Eγ).

(104)

Using Equation (100) we obtain the spectral emission rate of secondary photons due to π0

decay

dṄγ/π0

dEγ

=
405

128π3ℏ

[
I(7)F−3/2

(
2Eγ

kT

)
− 2I(5)F−1/2

(
2Eγ

kT

)
+ I(3)F 1/2

(
2Eγ

kT

)]
, (105)

where the Fm(2Eγ/kT ) function is read from Equation (101). This spectrum is plotted in
Figure 13.
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Figure 13: Spectral emission rate of secondary photons (due to the π0 decay) as a function
of the photon energy, for different BH lifetimes in the last 100 seconds before full BH evap-
oration.

To obtain the complete photon signal, we need to add to Equations (76) and (82), the time-
integrated spectral emission of secondary photons (Equation (105)) along the BH lifetime.
As we proceed in Section 2

dNγ/π0

dEγ

=

∫ τ

0

dt
dṄγ/π0

dEγ

. (106)

Let us write Equation (105) in the following abbreviated way:

dṄγ/π0

dEγ

∝
∑
{m}

(
n 2Eγ

kT

)m

, (107)

where n is a fixed number for each term of Fm(E/kT ) function according to Equation (101).
As usual, we use the change of variable x = Eγ/kT = ΛEγt

1/3, where Λ is defined in
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Equation (59) (see Section 2 for the details). Then, Equation (106) can be written as

dṄγ/π0

dEγ

∝
∑
{m}

∫ τ

0

dt

(
n 2Eγ

kT

)m

∝
∑
{m}

3 (2n)m

(ΛE)3

∫ xτ

0

dx x2+m

∝
∑
{m}

3 (2n)m

(ΛE)3
xm+3
τ

m+ 3
.

(108)

Replacing the corresponding terms of Fm(E/kT ) with their respective m and n values (see
Equation (101)), we found that the time-integrated spectrum of secondary photons due to
the π0 decay is:

dNγ/π0

dEγ

=
1215

32π3Λ3ℏ

[
I(7)

3
F−3/2(2Eγ kT )−

2I(5)

5
(kT )

−5/2 F−1/2(2Eγ) +
I(3)

7
(kT )

−7/2 F 1/2(2Eγ)

]
(109)

where Fm functions are read from Equation (101). The spectrum is shown in Figure 14.

Figure 14: Time-integrated spectrum of secondary photons as a function of the photon
energy, for different BH lifetimes in the last 100 seconds before full BH evaporation.
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3.5 Photon spectrum discussion

We have calculated the time-integrated spectrum for photons which are directly emit-
ted by the BH (primary photons) and for those coming from the π0 decay after quarks
hadronization (secondary photons) using some approximations. Both mecanisms contribute
to the total photon spectrum of the BH evaporation phenomenon. We know a priori that
the time-integrated photon spectrum is dominated by secondary photons at low energies
Eγ < kTτ , and dominated by primary photons at high energies Eγ ≥ kTτ [15, 17, 21]. How-
ever, from Figures (8) and (14), the reader cannotice that secondary photons dominate even
in the high energy limit (Eγ ≥ kTτ ). The reason of this is an overestimation of high energy
pions. As a consequence, the secondary photon spectrum is overestimated, exceeding the pri-
mary photon spectrum. This overestimation is caused by the crude approximations that we
have used to calculate the quark hadronization process. We are replacing the leptonic mode
of W± decay for the hadronization into pions. Secondly, we are replacing the hadronization
into D,B,K, etc., mesons by the hadronization into high energetic pions only. Additionally,
the term I(3)F1/2(Eπ0/kT ) in Equation (100) becomes dominant for Eπ0 ≥ kTτ . This is
due to the form of the fragmentation function (Equation (84)). An alternative to reduce the
photon overestimation is to aproximate the Fm(E/kT ) function of the secondary spectrum
(Equation (109))

Fm

(
E

kT

)
≈ 2

(
E

kT

)m

, (110)

such that the spectral emission rate of secondary photons (Equation (105)) is

dṄγ/π0

dEγ

≈ 405

64π3ℏ

[
I(7)

(
2Eγ

kT

)−3/2

− 2I(5)

(
2Eγ

kT

)−1/2

+ I(3)

(
2Eγ

kT

) 1/2
]
, (111)

and the time-integrated spectrum (Equation (109))

dNγ/π0

dEγ

≈ 1215

16π3Λ3ℏ

[
I(7)

3
(2Eγ kT )

−3/2 − 2I(5)

5
(kT )

−5/2 (2Eγ)
−1/2 +

I(3)

7
(kT )

−7/2 (2Eγ)
1/2

]
.

(112)

Furthermore, taking the leading term of Equation (112) we obtain

dNγ/π0

dEγ

≈ 1215

16π3Λ3ℏ
I(7)

3
(2Eγ kT )

−3/2

≈ 2× 1036
(

Eγ

GeV

)−3/2 ( kT

GeV

)−3/2

GeV−1.

(113)
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This approximation decreases the time-integrated secondary spectrum in the high energy
limit (Eγ ≥ kT ) allowing that the primary spectrum dominates slightly in this energy limit.
Using Equations (76) and (113) we can write the total time-integrated photon spectrum of
a BH evaporation as

dNγ

dEγ

≈ 7× 1035


(

Eγ

GeV

)−3

GeV−1 for Eγ ≳ 10 kTτ Primary

3
(

Eγ

GeV
kTτ

GeV

)−3/2
GeV−1 for Eγ < kTτ Secondary,

(114)

which is shown in Figure 15. This result differs slightly from the total spectrum found in
Refs. [15, 17,21] which is

dNγ

dEγ

≈ 9× 1035


(

Eγ

GeV

)−3

GeV−1 for Eγ ≥ kTτ Primary

(
Eγ

GeV
kTτ

GeV

)−3/2
GeV−1 for Eγ < kTτ Secondary.

(115)

Notice that the main difference between our estimation and the value used in the literature
is the energy limit for which the primary spectrum is valid.

Figure 15: Total time-integrated photon spectrum from a BH evaporation, for different BH
lifetimes in the last 100 seconds before full BH evaporation.
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4 BlackHawk simulations

The essential part of our work is to understand and to identify the photon signal from
a PBH evaporation. To achieve this, we calculated the photon spectrum treating the phe-
nomenon as a blackbody emission and using Hawking’s emission formula (see Section 1.2).
In Hawking’s theory, we must deal with greybody factors Γs(x), that can only be obtained
numerically. However, for a Schwarzschild BH, and assuming that emitted particles are rela-
tivistic (massless), we can use the approximations for Γs(x) when E ≪ kT (low energy limit)
for each spin species (Equation (62)), and E ≫ kT (high energy limit) for all species (Equa-
tion (63)), where E is the emitted particle energy. In the high energy limit, the energies of
the emitted particles are much higher than the BH temperature, such that the particle wave-
lengths are much smaller than the BH radius. In this limit (also called the geometrical optics
limit), the spectrum is dominated by particles that are directly emitted by the BH (primary
spectrum). Indeed, this primary radiation reaches the black body radiation except for a
27/4 factor as we have discussed in Section 1.3. For the secondary spectrum, we assumed
that the main source of photons is the neutral pion decay through the process π0 → γγ.
Given the complexity of the quark hadronization into pions, we have been forced to do crude
approximations to calculate the neutral pion production. To test our calculations, we shall
use BlackHawk v2.0 [2, 3], which is a public program to simulate spectra due to Hawking’s
radiation from a distribution of BHs. This program allows us to simulate the spectra using
numerical calculations for the greybody factors Γs(x). Furthermore, we can estimate the
secondary spectra due to the quark hadronization and the respective decay modes, using
codes of hadronic physics programs such as PYTHIA and HERWIG [5,19] that are incorporated
in BlackHawk.

The instructions for the use of BlackHawk are well documented in its manual, which is
available in its website [2, 3]. Briefly, the code runs two programs called BlackHawk inst

and BlackHawk tot with parameter settings given in a .txt file, called parameters. The
first routine gives the instantaneous spectrum for a mass distribution of BHs, and the sec-
ond one gives the same quantity for each time interval (customized previously by the user)
until almost full BH evaporation (the physics of the last instants close to Planck time is not
known). Both routines calculate the primary and secondary spectrum for each species.

The output of BlackHawk is the spectral emission rate per comoving volume unit of
species i defined as

dṅi

dE
=

∫ Mmax

Mmin

dM
dṄi

dE

dn

dM
[GeV−1s−1cm−3], (116)

where dṄi/dE is defined in Equation (29). Here, n is the total number of BHs per comoving
unit volume (hereafter the BH number density). The comoving volume is defined as the
volume for which a number density fixed to the Hubble flow, remains constant with redshift.
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The quantity dn/dM is the mass distribution given the BH masses. Then, n can be written
as a function of the mass distribution as

n =

∫ Mmax

Mmin

dM
dn

dM
, Mmin < M < Mmax. (117)

The mass density (total BH masses per comoving unit volume) is

ρ =

∫ Mmax

Mmin

dM M
dn

dM
, Mmin < M < Mmax. (118)

In this work we are interested in isolated BHs. Therefore, for a single BH of mass MBH , the
number of BHs in the comoving volume interval [V, V + dV ] is

dn = Aδ(M −MBH) dM (119)

where A has units of cm−3. After inserting dn in Equation (116) we notice that output of
BlackHawk is the spectral emission rate of species i per comoving unit volume

dṅi

dEi

= A
dṄi

dEi

, (120)

but for a single BH per comoving cm3, A = 1 cm−3. In order to simulate the primary and
secondary photon spectrum with BlackHawk, we chose different PBH lifetimes in the range
of 5 years to 0.01 seconds. These PBHs are shown in Table 1 with their respective temper-
atures and masses. Each simulation considers a single PBH. To calculate the corresponding
lifetime τ due to the PBH mass, we have used the approximation of Equation (57). The
lifetimes were calculated using the α(M0) values found in Ref. [21] (see Figure 3). For PBHs
with kT < 100 GeV we used α(M0) ≈ 7.0 × 1026 g3 s−1, while for kT > 100 GeV we used
the asymptotic value αSM(M0) = 8.0× 1026 g3 s−1.
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Primordial black holes simulated on BlackHawk

τ M [g] kTτ

5 years 7.0×1011 15 GeV
1 year 4.0×1011 26 GeV
3 months 2.5×1011 42 GeV
1 week 1.0×1011 106 GeV
1 day 5.9×1010 179 GeV
6 hours 3.7 ×1010 286 GeV
30 min. 1.6×1010 660 GeV
100 sec. 6.2×109 1.7 TeV
10 sec. 2.9×109 3.7 TeV
1 sec. 1.3×109 8 TeV
0.1 sec. 6.2×108 17 TeV
0.01 sec. 2.9×108 37 TeV

Table 1: Lifetime, mass and temperature of PBHs chosen to simulate the primary and
secondary spectrum with BlackHawk.

4.1 Primary spectrum

The simulations of the primary photon spectrum are compared with the spectral emis-
sion rate of primary photons that we obtained using Hawking’s emission formula with the
approximation of the greybody factors Γs(x) in the high energy limit for all species (see
Section 1.3). This is

(
dṄγ

dE

)(H)

=
2

h

Γ(h)(E/kT )

eE/kT − 1

=
27

32π2h

(E/kT )2

eE/kT − 1
, E ≫ kT,

(121)

where the H superscript stands for Hawking’s approximation. Additionally, we compare
the simulations with the primary photon spectrum obtained with the black body approxi-
mation (BB), which according to the calculations in Section 1.3 it is related to Hawking’s
approximation as (

dṄγ

dE

)(H)

=
27

4

(
dṄγ

dE

)(BB)

, E ≫ kT. (122)

Figures 16 to 18 show the simulations, Hawking’s approximation, and the black body ap-
proximation of the primary photon spectra for PBHs of Table 1.

41



Figure 16: Primary photon spectrum of a PBH evaporation of lifetimes τ = 5 years, 1 year,
3 months and 1 week, obtained with simulations in BlackHawk, Hawking’s approximation in
the high energy limit (for E ≥ 6kT ), and the black body approximation.
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Figure 17: Primary photon spectrum of a PBH evaporation of lifetimes τ = 1 day, 6 hours,
30 minutes, 100 seconds, obtained with simulations in BlackHawk, Hawking’s approximation
in the high energy limit (for E ≥ 6kT ), and the black body approximation.
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Figure 18: Primary photon spectrum of a PBH evaporation of lifetimes τ = 10, 1, 0.1 and
0.01 seconds, obtained with simulations in BlackHawk, Hawking’s approximation in the high
energy limit (for E ≥ 6kT ), and the black body approximation.
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The maximum of the spectral fluxes (peak heights) and the energy at the peak, are
summarized in Table 2, for spectra obtained with simulations in BlackHawk, and with the
black body approximation.

τ
BlackHawk black body

Peak GeV−1s−1 Epeak Peak GeV−1s−1 Epeak

5 years 1.4×1021 87 GeV 2.0×1021 25 GeV
1 year 1.4×1021 148 GeV 2.0×1021 42 GeV
3 months 1.4×1021 236 GeV 2.0×1021 67 GeV
1 week 1.4×1021 554 GeV 2.0×1021 157 GeV
1 day 1.4×1021 1.0 TeV 2.0×1021 286 GeV
6 hours 1.4×1021 1.6 TeV 2.0×1021 454 GeV
30 min. 1.4×1021 3.7 TeV 2.0×1021 1.0 TeV
100 sec. 1.4×1021 9.7 TeV 2.0×1021 2.8 TeV
10 sec. 1.4×1021 20 TeV 2.0×1021 6.0 TeV
1 sec. 1.4×1021 45 TeV 2.0×1021 13 TeV
0.1 sec. 1.4×1021 97 TeV 2.0×1021 27 TeV
0.01 sec. 1.4×1021 208 TeV 2.0×1021 59 TeV

Table 2: Maximum of the spectral fluxes and their respective peak energies of primary photon
spectra obtained with simulations in BlackHawk and the black body approximation.

Spectra shown in Figures 16 to 18 plus the data summarized in Table 2 show us the following
interesting results:

� The maximum of the simulated spectral fluxes are shifted to higher energies compared
to the spectra of a black body.

� The photon spectrum obtained by Hawking’s approximation in the high energy limit
(E ≫ kT ), reproduces correctly the spectrum obtained with BlackHawk for E ≳ 7 kT .

These results clearly show that Hawking’s radiation spectrum is not the spectrum of a black
body (Planck), but is shifted to higher energies. This can be understood because a BH is
a very small emitter in size: rs ≪ hc/kTBH . We will analyze this in more detail in Section 4.4.

Other interesting primary spectra are those of electrons and neutrinos, and when the
PBH reaches temperatures kT ≳ ΛQCD, the spectrum of quarks. The maximum of the
spectral flux of each one of them is related to its statistics (Fermi-Dirac or Bose Einstein)
and its degrees of freedom. These spectra are shown in Figure 19 for a PBH of lifetime 100
seconds.
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Figure 19: Electron, (Dirac) neutrino and one quark flavor primary spectrum radiated by a
PBH of τ = 100 seconds, obtained with simulations in BlackHawk. For this BH temperature,
all emitted particles can be considered as massless particles.

Notice that, given to its larger number of degrees of freedom, electron, (Dirac) neutrino,
and one quark flavor spectral fluxes are higher than the photon spectrum. In addition,
according to Figure 19 the energy peak of photon spectrum is about Eγ ≈ 10 TeV ≈ 6 kT ,
while the energy peak for electrons, neutrinos and on flavor quarks, i.e, fermions is about
Ef ≈ 7 TeV ≈ 4 kT .
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4.2 Secondary spectrum

In the previous chapter, we considered the secondary photon spectrum obtained from
π0 → γγ decay. Nevertheless, given the complexity of quark hadronization, we made rough
assumptions that ended in an overestimation of pion production. This was corrected tak-
ing the leading terms of the spectral emission rate and the time-integrated spectrum (see
Section 3.5). Using the program BlackHawk inst we can obtain the secondary spectra for
γ, ν, e−, p+. These stable particles are expected to be produced mainly by the decay pro-
cesses of: neutrons and mesons (π, K, B, D, etc.), massive bosons H0,W±, Z0, and unstable
leptons (muons, tauons). Figures (20) and (21) show the proton spectrum and the secondary
photon spectrum respectively.

Figure 20: Proton spectrum from the evaporation of a PBH with lifetimes of τ = 100, 10,
1, 0.1 and 0.01 seconds, obtained with simulations in BlackHawk.
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Figure 21: Secondary photon spectrum obtained with BlackHawk for the PBHs considered
in Table 1. The dashed lines show the spectrum we predicted after corrected the π0 overes-
timation (see Equation (111)).
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4.3 Time-integrated spectrum

The program BlackHawk tot calculates the spectrum at different times. In other words,
lifetime τ is splitted on equal small intervals dtn = tn − tn−1 such that spectral emission is
evaluated at each time step tn (fixed by BlackHawk). This allows us to do a discrete time-
integration along a determined time interval. In order to compare our calculations of time-
integrated spectra for primary and secondary photons (Equations (76) and (109) summarized
in Equation (114)), we can obtain the time-integrated spectrum along the lifetime using:

τ = t1 + t2 + · · ·+ tn , dt = tn − tn−1

dNi

dEi

≈ dṄi

dEi

∣∣∣∣∣
t1

dt1 +
dṄi

dEi

∣∣∣∣∣
t2

dt2 + · · ·
(123)

It is important to remark that to run BlackHawk tot, the input parameters need a finite
BH mass remnant (mass leftover at the last instant before reaching the Planck mass), and
therefore, the simulations cannot reach the final burst instant. However, the finite mass
remnant can be very small, close to the Planck mass (mPl ∼ 10−5 g), which means lifetimes
near to tPl ∼ 10−44 s. For any BH with mass above mPl and times larger that tPl, BlackHawk
will compute the emission correctly. We set the BH mass relic equal to 10−4 g (τ ∼ 10−40 s)
indeed. The time-integrated spectra for primary and secondary photons of PBHs of Table 1
are shown in Figure 22.

Figure 22: Time-integrated spectrum of primary photons obtained with BlackHawk. The
dashed lines are the analytical approximation that we found using the Method of Brackets
(Figure 8). Notice that both energy limits Eγ ≫ kTτ and Eγ ≪ kTτ , are plotted.
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Figure 23: Time-integrated spectrum of secondary photons obtained with BlackHawk. The
dashed lines correspond the fragmentation model that we used for our estimation (Equa-
tion (114)).
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4.4 Small emitter

An interesting result that can be obtained analyzing the spectra simulated by BlackHawk

is the understanding of the absorption coefficient Γs(M,E), also called greybody factor.
This function suppresses the emission of particles with wavelengths λ ∼ hc/kT . These
wavelengths correspond to the typical emitted particles of a black body spectrum (particles
with energies similar to the maximum spectrum energy). We can show that λ is always much
larger than the BH radius, so a BH is a poor radiator of photons with λ ∼ hc/kT . From
Equations (1) and (2), the BH temperature can be written in terms of the BH radius as:

kT =
ℏc
4πrs

. (124)

Using the change of variable x = E/kT and Equation (124), we can write the energy of the
most typical particles E as:

E = x kT

=
ℏc
4πrs

x.
(125)

Using E = hc/λ in Equation (125) we obtain

λ

rs
=

8π2

x
. (126)

Let us consider a black body of temperature TBH (Equation (28)). This spectrum reaches
the maximum emission at x ∼ 1. Then,

λ

rs
∼ 8π2 ∼ 80. (127)

Therefore, a black hole is too small to emit the same spectrum as of a black body of temper-
ature TBH , because the most emitted photons are no longer in the geometrical optics limit.
Indeed, photons with wavelengths much larger than the Schwarzschild radius could not be
efficiently produced by particle-antiparticle pair creation near the event horizon.

As BlackHawk calculates correctly the values of the Γs(x) factors for all x, the spec-
trum obtained with simulations is correct. The simulated photon spectrum reaches its max-
imum at x ∼ 6 (see Figure 19). This fact agrees with the result found in Ref. [21].
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Then, for a Hawking photon spectrum, the ratio of the most typical wavelengths to the
BH radius is:

λ

rs
∼ 8π2

6
∼ 13. (128)

The Γs(x) factor suppresses the emission at lower energies, where the wavelengths of the
most typicial particles of a Planckian thermal spectrum are much larger than the BH size.
As a consequence, the Hawking spectrum shifts the emission to higher energies where the
geometrical optics limit is also satisfied, as Figures 16 to 18 show.
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4.5 Chapter discussion

The primary spectra obtained with BlackHawk simulations showed us that the Hawking’s
radiation spectrum is definitely not a Planck thermal spectrum (black body). The maximum
of a BH spectral flux is shifted to higher energies, supressing the typical photon wavelengths
of the black body spectrum which are much larger than the BH radius. Additionally, we
observed that approximations made in section 3.5 (Equations (110) and (113)) to correct for
the π0 overestimation were such that the secondary photon spectra are similar to spectra
produced by BlackHawk simulations, except for the bottom plot of Figure 23. We ignore the
reason behind this dissimilarity. The spectra in Figure 22 show that the time-integrated spec-
trum of primary photons obtained with BlackHawk does not have dependence on the initial
BH temperature kTτ for photons with energies E ≳ 10 kTτ as we predicted. This confirms
our correction to the primary spectrum parametrization commonly used in Refs [15, 17, 21].
Figure 24 shows the total time-integrated photon spectrum according to our prediction as
well as that obtained with BlackHawk.

Figure 24: Total time-integrated photon spectrum according to our prediction (Equa-
tion (114)) as well as that obtained with BlackHawk simulations, for PBHs of lifetimes
τ = 1 year, 3 months, 1 week, 1 day .

Now that we have estimated the total photon spectrum, we shall study the eventual
photon flux at the Earth’s atmosphere. Then, we will run simulations of the electromagnetic
cascades to obtain signatures of a PBH evaporation at a ground based detector level.
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5 Flux on Earth

To count photons from a PBH evaporation that collide with the Earth’s upper atmo-
sphere, we shall assume that: (1) The medium between the PBH and Earth is transparent.
We shall ignore other gamma ray sources such as gamma ray bursts (GRBs), supernova
explosions, gamma ray background, BH jets; (2) we consider that the spectrum is due to a
single PBH. We evaluate the emission of the PBH at the lifetimes of Table 1.

The photons (gamma rays) from a PBH evaporation can be detected using gamma ray
space telescopes (such as Fermi-LAT) or ground based gamma ray observatories. The former
captures gamma rays directly, while the latter reconstructs the electrons, positrons and pho-
tons cascade (the electromagnetic shower) produced by the interaction between the gamma
ray and the atmosphere. This shower can be reconstructed observing the Cherenkov radia-
tion pulse produced in the upper atmosphere by means of imaging air Cherenkov telescopes
(such CTA gamma ray observatory), or by means of an array of particle detectors on the
ground at sufficiently altitude. We shall assume that the gamma ray detection is through
Water Cherenkov Detectors (WCDs). Among the gamma ray observatories with this tech-
nology are HAWC and LHAASO in the northern hemisphere, and SWGO (under design
phase) in the southern hemisphere. The WCDs detection method consists in capturing the
Cherenkov radiation produced in the water using photomultipliers located inside the tank.
This radiation is produced by the shower particles that reach the ground. This detection
method has the advantage to have a wide field of view (almost the whole visible sky) and
observations with almost 100% of duty cicles (it observes all the time). Therefore, we shall
assume a continuous observation time of at least 5 years.

Given that we solved the time-integrated photon spectrum, the signal of a PBH evapo-
ration of a certain lifetime, is the number of photons within a certain energy interval, during
a certain observation time interval. We must remark that we ignore the PBH lifetime, but
we can search for the signature emission of a determined PBH lifetime fixing the energy
interval and the observation time interval. In our case, we consider the PBH lifetimes shown
in Table 1. For example, the signature emission of a PBH of lifetime τ = 5 years, is the
number of photons observed during 4 years within a energy interval [E1, E2]. This number
of photons can be obtained as the difference between the time-integrated spectrum of a PBH
of lifetime τ = 5 years integrated in the energy interval [E1, E2], and the time-integrated
spectrum of a PBH of lifetime τ = 1 year integrated in the energy interval [E1, E2]. Notice
that if this difference is zero, there is no photon detection because the emission is due to a
PBH with a lifetime τ < 1 year.

This can be generalized for any PBH lifetime: the number of photons per km2 detected
during an observation time T , within the energy interval [E1, E2] given a PBH evaporation
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of lifetime τ , located at a distance d from Earth is:

N (τ)
γ (T ) ≈ 6× 104

(
d

pc

)−2 ∫ E2

E1

dE

[(
dNγ

dE

)(τ)

−
(
dNγ

dE

)(τ ′)
]

for T = τ − τ ′ > 0,

(129)
where (

dNγ

dE

)(τ)

=

∫ τ

0

dt
dṄγ

dE
, (130)

is the time-integrated spectrum, that we obtained analytically (Equation (114)) and using

simulations in BlackHawk (Section 4). Notice that dN
(τ)
γ /dE contains the primary and sec-

ondary photon spectrum.

Equation (129) can be integrated, either using our approximation for the total time-
integrated spectra, or using the one obtained with BlackHawk. Despite our prediction has
a good fit with simulated spectrum (see Figure 24), we shall use the total time-integrated
spectrum from BlackHawk to integrate Equation (129) numerically. However, according to
Figure 24 we need the spectrum in the energy interval [0.7kTτ , 10kTτ ] to do the integra-
tion. As the dependence on the initial BH temperature is lost in the primary spectrum for
photons with energies E ≳ 10kTτ , we shall assume that the secondary spectrum is valid
for photons with energies E ≤ 10kTτ . Figure 25 shows the numbers of photons per km2,
observed during fixed observation time intervals, within six energy intervals that cover low
to high energy photons, for PBH of lifetimes shown in Table 1. We consider three distances
for PBH locations.

Unlike other very high energy (VHE) gamma ray sources, such as GRBs and super-
nova explosions, the short duration of the VHE photon emission due to a PBH evaporation
in the last 100 s, can be a PBH photon signature. Additionally, from plots with energy
intervals [10, 100] TeV and [100, 500] TeV of Figure 25, we notice that emissions from a PBH
located at 1 pc from Earth are undetectable, i.e, VHE gamma rays from a PBH evaporation
can be detected locally (d < 1 pc), while GRBs can be detected at cosmological distances.
Despite the number of photons decreases when the detection energy interval is increased,
the higher energy intervals are sensitive to the last stages of PBH evaporation (τ < 30 min).
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Figure 25: Number of photons per km2 that collide with the atmosphere during different
observation times. We chose these observation times to detect photon signals from PBH of
lifetimes shown in Table 1. We consider six energy intervals, and three PBHs locations from
Earth: 0.01, 0.1 and 1 pc.
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6 Gamma ray detection

6.1 Electromagnetic shower

Now that we have an estimation on the number of photons that reach the Earth’s at-
mosphere within a certain energy interval during a fixed observation time, we want to know
the electromagnetic shower in the atmosphere produced by a photon of a given energy. In
particular, a high energy photon (GeV energies) can produce a high energy electron-positron
pair. The electrons and positron will lose energy by radiation due to the interaction with
the nuclei in the atmosphere (Bremsstrahlung). The resulting photons (with less energy
than the primary photon) will undergo pair production again or Compton scattering. This
cascade will stop when the energy of the resulting photons is below a critical energy. As a
result, a large amount of electrons, positrons and photons are produced. If a high energy
electron (E ≫ mc2) is moving through the atmosphere along X coordinate, its energy E
varies with the coordinate X according to:

dE

dX
≈ − E

X0

, (131)

where X0 is a constant called radiation length, and it depends on the material. For example,
X0 for water is about 36 cm, and air about 300 m under 20 ◦C and 1 atm. This quantity
is typically measured in g cm−2. This form to measure the radiation length expresses the
amount of matter that is passing per unit area. Integrating Equation (131) we find the
average energy distribution at distance X which is:

E(X) = E0 e
−X/X0 . (132)

One effective model that describes the electromagnetic shower is the Heitler model (late
1930s). In this approximation, it is assumed that each particle of the shower travels one
radiation length and then is split into two particles with equal energy (Figure 26). Also, it is
assumed that pair production and bremsstrahlung are the only processes that produce the
shower. As a consequence, this model predicts roughly 2n particles for n radiation lengths.
As the energy is equally distributed on the total number of particles at each splitting step,
we can write

En =
E0

2n
. (133)

Using the fact that X = nX0 and inserting in Equation (133) we obtain

X = X0 log2

(
E0

En

)
. (134)

57



When the rate of energy loss by radiation is equal to the rate of energy loss by ionization,
there is no longer particle creation, and therefore, the shower development stops. This occurs
when the energy reaches the critical value En = Ec , and the particle has reached the length
for which shower has reached the maximum particle multiplicity Xmax (for more details see
Ref. [1]). This can be written as:

Xmax = X0 log2

(
E0

Ec

)
. (135)

Indeed, given that particle production has stopped, the maximum number of shower sub-
particles can be obtained using Equation (133) such that

Nmax =
E0

Ec

. (136)

To have an idea of the actual distance comparatively to a given X, we assume that the
atmosphere is isothermal, so the amount of atmosphere matter per unit area, X (also called
the atmospheric thickness), varies with height h measured in km, according to

X = 1030 e−h/6.5 g cm−2. (137)

The amount of matter per unit area contained in the atmosphere (h = 0) is 1030 g/cm2,
which is the total vertical atmospheric depth.

Figure 26: Heitler model representation.
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6.2 Corsika simulations

We are interested in studying the basic features of the electromagnetic showers produced
by photons (hereafter γ-rays) coming from a PBH evaporation. To achieve this, we shall use
Corsika (version 7.7), a powerful program used to simulate extensive air showers produced
by cosmic rays [14]. Briefly, this program is equipped with many routines that incorporates
different models for shower development of hadrons, nuclei, neutrinos, and γ-rays. There
are two models that describe electromagnetic showers. One model is based on simulations
with Monte Carlo, called EGS4. The another, reconstructs the shower using the solutions of
Nishimura-Kamata-Greisen equations, so it is called NKG. To run simulations of an electro-
magnetic shower due to a γ-ray, we must define an input card with physical and programming
parameters. The main physical parameters that we need to fix are:

� The type of primary particle. For our case, we set photon.

� The energy range of the primary particle [Emin
0 , Emax

0 ]. We fixed the energy of primary
particle, instead of using an energy range.

� The azimuthal angle ϕ , and inclination angle θ measured between particle momentum
and vertical coodinate Z.

� Earth’s magnetic field at the event location. In this parameter we used a place near
to ALMA Observatory, over 4700 m.a.s.l located at (22.93◦ S, 67.68◦ W). The values
of the magnetic field for this location were calculated with IGRF model on the NOAA
webpage [8].

According to the results of Section 5, we shall simulate the shower of three gamma rays in
the low, medium and very high energy regime. Table 3 shows the energies and inclinations
chosen for Corsika simulations.

γ-ray E0 TeV (θ, ϕ) deg
γ1 300 (8,0)
γ2 12 (0,0)
γ3 0.5 (0,0)

Table 3: γ-rays chosen for Corsika simulations.

All simulations were run with the following models:

� High energy hadronic interaction model: QGSJET II

� Low hadronic interaction model: URQMD

� Horizontal flat detector located at 4700 m.a.s.l.

� Electromagnetic model: EGS + NKG
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Table 4 summarizes the main information extracted of each shower.

Gamma ray Zfirst km Xmax m.a.s.l Nγ Ne− Ne+ Nµ±

γ1 17 ≈4000 9×105 1× 105 9×104 179
γ2 17 ≈5000 4×104 5×103 3×103 6
γ3 17 ≈7000 9×102 93 52 0

Table 4: Parameters of electromagnetic shower of γ-rays shown in Table 3, simulated with
Corsika.

In Table 4, Nγ,e,µ are the number of γ, e± and µ± respectively counted at the detector
level. The parameter Zfirst is the height of the first interaction of the γ-ray with the upper
atmosphere. The parameter Xmax is the approximate height (measured from sea level)
for which the γ-ray shower reaches its maximum multiplicity. We used Equation (137) to
estimate this quantity in km. Notice that only the γ2 and γ3 showers reached their Xmax

before reaching the detector level. The shower signature printed at the ground depends on
the number and type of subparticles, and their energy distribution at the detector level.
Figures 27 to 29 show the spatial distribution of electromagnetic shower subparticles (γ, e±)
at the detector level.

Figure 27: Footprint of an electromagnetic shower produced by a γ-ray of energy E0 =
300 TeV, azimuthal angle ϕ = 0, and inclination θ = 8 degrees. In green (red) electrons
(positrons). Note that although this gamma ray collided the atmosphere with an inclination,
the development of the shower is symmetrical respect to the vertical axis.
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Figure 28: Footprint of an electromagnetic shower produced by a γ-ray of energy E0 = 12
TeV and inclination θ = 0 degrees.

Figure 29: Footprint of an electromagnetic shower produced by a γ-ray of energy E0 = 500
GeV and inclination θ = 0 degrees.

Although γ1 could not reach its Xmax, its footprint is a dense shower of photons, electrons
and positrons contained in a region of about 1 km2. The footprint of γ2 and γ3 are regions
of about 0.5 km2 and 0.03 km2, respectively.
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Figure 30 shows the momentum (energy) distribution of the electromagnetic shower par-
ticles (γ, e±) at the detector level. Figure 31 shows atmospheric development of the electro-
magnetic showers on the XZ plane of γ1, γ2, and γ3.

Figure 30: From top to bottom, momentum (energy) distribution of shower particles at the
detector level of γ1, γ2 and γ3. The number of entries for each plot are the total number
of particles at detector level (e+ + e− + γ). Notice that for a γ-ray of E0 = 300 TeV, a
significant number of particles (mainly photons) reach the detector level with E ∼ 1 GeV.
For γ2 and γ3 this number is negligible.
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(a) (b)

(c)

Figure 31: Atmospheric development of the electromagnetic shower on the XZ plane for a
γ-ray with energy: (a) E0 = 300 TeV and direction (ϕ, θ) = (0, 8) deg; (b) E0 = 12 TeV and
direction (ϕ, θ) = (0, 0) deg; (c) E0 = 500 GeV and direction (ϕ, θ) = (0, 0) deg. Notice that
unlike the shower (a), the showers (b) and (c) reached their Xmax.
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7 Discussion and Conclusions

The Hawking radiation spectrum is not a Planckian thermal spectrum. The BH evapo-
ration is a phenomenon where the emitter size is too small to emit the spectrum of a black
body with temperature TBH . Instead, a BH spectrum is characterized by the absorption
coefficient Γs(x), also called greybody factor. This function is the probability that the emit-
ted particle could escape to infinity under the gravitational field of the BH. The greybody
factor depends on the BH mass, the energy and the spin of the particle species i, and must
be calculated numerically to obtain the correct spectral emission rate of species i. Never-
theless, analytical approximations for Γs(x) have been found in the limit E ≫ kT [16]. In
this limit, the greybody factor converges to the geometrical optics limit for all spin species.
For photons, this limit corresponds to the black body radiation. However, we noticed that
the BH radiation spectrum exceeds the black body by a factor 27/4 at E ≫ kT . This fact
raises questions about the correctness of the asymptotic value of Γs(x) in this energy limit.
The disagreement between the BH radiation and the black body radiation demands to have
a better understanding of the phenomenon on a theoretical basis. This is left for future work.

Using certain approximations (δ = 0 in Equation (64)), and using the Method of
Brackets to time-integrate the spectral emission rate along the BH lifetime, we found a new
expression of the time-integrated spectrum of primary photons. This result corrects the value
of the time-integrated primary spectrum used in Refs. [15,17,21]. Our result shows that the
spectral emission of primary photons decreases as a function of the photon energy according
to dNγ/dE ∝ E−3, for photons with energies Eγ ≳ 10 kTτ (see Equation (76)). To estimate
the secondary photon spectrum, we obtained the π emission doing crude assumptions about
quark hadronization, that ended in an overestimation of the secondary photons because we
considered all decays as hadronic, disregarding lepton emission. In addition, a term of the
fragmentation function produced an increase of pion emission with energies Eπ ≥ kTτ . Using
some approximations, and taking the leading term of the spectral emission, we reproduced
similar values as those used in Refs. [15,17,21] (see Section 3.5). As a consequence, we found
the total photon spectrum of a PBH evaporation (Figure 15).

The simulations with BlackHawk allowed us to have a better understanding of the
greybody factor Γs(x). This function suppresses the particle emission with wavelengths
much larger than the BH radius, i.e, the typical emitted particles of a Planckian thermal
spectrum. As a consequence, the Hawking spectrum shifts the emission to higher energies as
Figures 16 to 18 show. Indeed, most emitted photons from a BH have energies in the range
E ∼ 6 kT (see Figure 19), while the most typical photons of a black body spectrum with
temperature TBH have energies E ∼ kT . In order to compare our total photon spectrum
estimation, we used simulations with BlackHawk for the primary and secondary spectra,
for PBHs with several lifetimes τ ≤ 5 years (see Table 1). We found that our estimations
for the spectral emission rate and the time-integrated spectrum for photons are about the
same size as those obtained with BlackHawk. Moreover, the simulations showed that our
correction for the primary photon spectrum is correct, i.e, the spectral emission of primary
photons has no dependence on the initial BH temperature when Eγ ≳ 10 kTτ (see Figure 24).
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In order to identify a photon signature from a PBH evaporation, we obtained the
number of photons that arrive at the Earth’s atmosphere within certain energy intervals,
that covered low and very high energies, for fixed observation time intervals. We noticed
that a possible PBH signature is a VHE gamma ray burst of short duration, while gamma
ray bursts (GRB) have durations that can be extended to hours. Another feature, is that
VHE gamma rays from PBH evaporation can be detected locally, while GRBs and supernova
explosions can be detected at cosmological distances (see Figure 25). Assuming that one of
these photons could eventually reach the Earth, we did a basic study of the electromagnetic
shower produced by these γ-rays using simulations in Corsika. As a future work, we plan to
study the diffuse γ-ray signal due to other γ-ray sources to find a more accurate PBH photon
signature. Also, we expect to study more deeply the extensive air showers using Corsika

simulations, and including new techniques for reconstruction events such as machine learning.

Detecting photons from a PBH evaporation is a serendipitous task. However, a new
generation of γ-ray observatories are under design and construction phase (CTA, SWGO).
These instruments will bring us the opportunity to try new methods of detection, and to have
better energy sensitivity (CTA) and better field of view (SWGO). Therefore, we are in time
to prepare better strategies to detect PBH evaporation, or set new searching constraints.
Hawking radiation is a remarkable feature that connects gravitation, thermodynamics, and
quantum mechanics. However, there is still no experimental evidence, so it needs to be
proved or discarded.
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9 Appendix: Calculation of quark hadronization into

pions

To estimate the quark hadronization into pions, we need to obtain the total distribution
of (u, d) quarks after the flavor quark changing through the W± decay (see Figure 32).
The number per unit of time (hereafter the number) of q quarks in the energy interval
[Eq, Eq + dEq] is

dṄq = C(h) (Eq/kT )
2

eEq/kT + 1
dEq ≡ f

(
Eq

kT

)
dEq. (138)

Following the decay process shown in Figure 32, the number of quarks per each flavor can
be written as

dṄt = dṄ
(BH)
t

dṄb = dṄ
(BH)
b + dṄb/t

dṄc = dṄ (BH)
c + dṄc/b

dṄs = dṄ (BH)
s + dṄs/c

dṄu = dṄ (BH)
u + dṄu/s + dṄu/c + dṄu/b

dṄd = dṄ
(BH)
d + dṄd/s + dṄd/c + dṄd/b,

(139)

where dN
(BH)
q is the primary emission, i.e, the quarks that are directly emitted by the BH,

while dNq/q′ is the number of q quarks produced by q′ quark decay.

Figure 32: Approximate model of secondary (u, d) quark production given the flavor quark
changing through the W± decay.
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For convenience we shall define the following notation:

fm ≡ mf

(
mEq

kT

)
, (140)

that can be used only if the function f(Eq/kT ) is multiplied by the energy differential of the
energy that appears in the f argument, i.e, dEq. Thus, Equation (138) can be written now
as

dṄq = f1 dEq. (141)

Notice that under the change of variable Eq′ = Eq/n

fm dEq = mf

(
mEq

kT

)
dEq

= (m× n) f

(
(m× n)

Eq′

kT

)
dEq′

∴ fm dEq = fm×n dEq′ , Eq′ =
Eq

n
.

(142)

Let us calculate the number of each flavor quark of Equation (139):

� top quark: There is primary emission only. Thus

dṄt = dṄ
(BH)
t

= f

(
Et

kT

)
dEt

= f1 dEt.

(143)

� bottom quark: There is primary and secondary emission

dṄb = dṄ
(BH)
b + dṄb/t. (144)

The number of primary b quarks in the energy interval [Eb, Eb + dEb] is:

dṄ
(BH)
b = f

(
Eb

kT

)
dEb

= f1 dEb.

(145)
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The number of secondary b quarks (produced by t quark decay) in the energy interval
[Eb, Eb + dEb] is related to the number of t quarks in the energy interval [Et, Et + dEt]
through (see Figure 32)

dṄb/t(Eb) = 1 dṄt(Et) , Eb =
Et

2

= f

(
Et

kT

)
dEt

= f1 dEt

= f2 dEb,

(146)

where in the last line we have used the property of Equation (142) given the change of
variable Eb = Et/2, such that f1 dEt = f2×1 dEb. Inserting Equations (145) and (146)
in Equation (144), the total number of b quarks is:

dṄb = (f1 + f2) dEb. (147)

� charm quark: Proceeding in analogous way, for c quark we obtain

dṄc = dṄ (BH)
c + dṄc/b , Ec =

Eb

3

= dṄ (BH)
c + 1 dṄb

= f1 dEc + (f1 + f2) dEb

= (f1 + f3 + f6) dEc.

(148)

� strange quark:

dṄs = dṄ (BH)
s + dṄs/c , Es =

Ec

3

= dṄ (BH)
s + 1 dṄc

= f1 dEs + (f1 + f3 + f6) dEc

= (f1 + f3 + f9 + f18) dEs.

(149)
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� up quark:

dṄu = dṄ (BH)
u + dṄu/s + dṄu/c + dṄu/b , Eu =

Eq

3
, q = s, c, b

= dṄ (BH)
u + 2 dṄs + 1 dṄc + 1 dṄb

= f1 dEu + 2 (f1 + f3 + f9 + f18) dEs + (f1 + f3 + f6) dEc + (f1 + f2) dEb

= (f1 + 4f3 + f6 + 3f9 + f18 + 2f27 + 2f54) dEu.

(150)

� down quark:

dṄd = dṄ
(BH)
d + dṄd/s + dṄd/c + dṄd/b , Ed =

Eq

3
, q = s, c, b

= dṄ
(BH)
d + 1 dṄs + 1 dṄc + 1 dṄb

= f1 dEd + (f1 + f3 + f9 + f18) dEs + (f1 + f3 + f6) dEc + (f1 + f2) dEb

= (f1 + 3f3 + f6 + 2f9 + f18 + f27 + f54) dEd.

(151)

From Equations (150) and (151) we can write the spectral emission rate of total u and d
quarks. Using Equations (138) and (140) we obtain

dṄu

dEu

= C(h)

[
f

(
Eu

kT

)
+ 12f

(
3Eu

kT

)
+ 6f

(
6Eu

kT

)
+ 27f

(
9Eu

kT

)

+18f

(
18Eu

kT

)
+ 54f

(
27Eu

kT

)
+ 108f

(
54Eu

kT

)]
,

(152)

dṄd

dEd

= C(h)

[
f

(
Ed

kT

)
+ 9f

(
3Ed

kT

)
+ 6f

(
6Ed

kT

)
+ 18f

(
9Ed

kT

)

+18f

(
18Ed

kT

)
+ 27f

(
27Ed

kT

)
+ 54f

(
54Ed

kT

)]
.

(153)
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The total (u, d) quarks will hadronize into pions according to

dṄπ

dEπ

=
∑
q=u,d

∫ ∞

0

dE

∫ 1

0

dz
dṄq

dE
Dπ/q(z) δ(Eh − zE). (154)

This integral can be solved taking advantage that

dṄq

dEq

∝ mf

(
mEq

kT

)
. (155)

Then

dṄπ

dEπ

∝
∑
q=u,d

∫ ∞

0

dEq mf

(
mEq

kT

)∫ 1

0

dz Dπ/q(z) δ(Eπ − zEq)

∝
∑
q=u,d

m

∫ ∞

0

d(mEq)

mEq

f

(
mEq

kT

)
Dπ/q

(
mEπ

mEq

)
.

(156)

Inserting the change of variable x = mEq/kT , and the expression for the fragmentation
function Dπ/q(z) defined in Equation (84)

dṄπ

dEπ

∝
∑
q=u,d

m

∫ ∞

0

dx
f(x)

x
Dπ/q

(
mEπ

kT

1

x

)

∝ 15

16

∫ ∞

0

dx
x

ex + 1

[
m

(
mEπ

kT

1

x

)−3/2

− 2m

(
mEπ

kT

1

x

)−1/2

+m

(
mEπ

kT

1

x

)1/2
]

∝ 15

16

[
I(7)m

(
mEπ

kT

)−3/2

− 2I(5)m

(
mEπ

kT

)−1/2

+ I(3)m

(
mEπ

kT

)1/2
]
,

(157)

where we have used the identity

I(s) =

∫ ∞

0

dx
xs/2−1

ex + 1
= Γ(s/2)η(s/2) = Γ(s/2)(1− 21−s/2)ζ(s/2). (158)

71



Inserting all terms of Equations (152) and (153) we finally obtain

dṄπ

dEπ

=
1215

512π3ℏ

[
I(7)F−3/2

(
Eπ

kT

)
− 2I(5)F−1/2

(
Eπ

kT

)
+ I(3)F1/2

(
Eπ

kT

)]
(159)

where we have defined the function

Fm

(
E

kT

)
= 2

(
E

kT

)m

+ 21

(
3E

kT

)m

+ 12

(
6E

kT

)m

+ 45

(
9E

kT

)m

+ 36

(
18E

kT

)m

+ 81

(
27E

kT

)m

+ 162

(
54E

kT

)m

.

(160)

Therefore, the approximate π0 spectral emission rate given quark hadronization is:

dṄπ0

dEπ0

=
1

3

dṄπ

dEπ

. (161)
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