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Abstract

In this thesis we theoretically investigate the electronic energy spectra of vertically
stacked transition metal dichalcogenides structures, focusing in the electron charge and
spin degrees of freedom. These structures are molybdenum disulphide MoS2 bilayers
with molybdenum (Mo) impurities in the interlayer region, and hybrid systems such
as zigzag-terminated molybdenum ditelluride MoTe2 nanoribbons on europium oxide
EuO ferromagnetic substrate, forming MoTe2-EuO finite size heterostructures. We
also study zigzag- and armchair-terminated MoTe2 nanoribbons on antiferromagnetic
(AFM) substrates, forming diverse MoTe2-AFM heterostructures.

We model MoS2 bilayers with different stackings and incorporating Mo impurities
in the interlayer region in diverse locations in a diluted regime, by means of density
functional calculations including van der Waals interactions. We find that the ground
state is for impurities located in hollow sites in between the layers, following octahedral
crystal fields for the Mo impurities. The impurity electronic states are located in the
midgap energy region with high density of states. Other less stable configurations are
for impurities situated on top of a sulfur atom, following spin-polarized tetrahedral
crystal fields. In these latter systems, we find larger bulk band gaps associated with
larger interlayer distances, giving account of a weak van der Waals interaction due to
the impurities. We reveal a stacking change from the pristine MoS2 bilayer to a doped
bilayer, driven by interstitial Mo impurities.

Zigzag- and armchair-terminated MoTe2 nanoribbons on magnetic substrates are
modeled by considering a suitable low energy three-orbital tight-binding approach,
which considers realistic parameters as input, and respects the symmetries dictated
by the transition metal dichalcogenide monolayers close to the band gap. We gen-
eralized this tight-binding model in order to reliably describe magnetic proximitized
nanoribbons. As such, we include exchange and Rashba field terms into the pristine
dichalcogenide Hamiltonian, giving account of the induced magnetism in the nanorib-
bons.

In the case of the hybrid MoTe2-EuO finite-size zigzag structure, we demonstrate
that strong spin-polarized edge modes arise in the midgap energy region due to the
competition of spin-orbit coupling and exchange interaction. The edge modes exhibit
out-of-plane as well as in-plane spin polarization because of the induced Rashba cou-
pling, and they are spatially confined to the zigzag edges. We show that zigzag edges
act as one-dimensional conducting channels that carry spin-polarized currents while the
bulk is insulating. The edge spin currents are acquired by the proximity to the mag-



netic substrate. By gating the sample to shift the Fermi energy through the optical
gap, the resulting spin currents can be activated at tunable values and polarizations.

MoTe2 zigzag nanoribbons on AFM substrates reveal enhanced parameters such
as Rashba strength and spin-orbit spin splitting along the edge modes, which lie in
the two-dimensional bulk energy gap. Armchair nanoribbons on AFM substrates show
either, gapped or gapless midgap edge modes, which depend on the ribbon width. The
edge modes carry either, charge currents or pure spin currents along the armchair edges
of the sample, for different AFM ordering of the substrate.

Our results, obtained from reliable modelling and experimentally realistic param-
eters, suggest a pathway for effectively implementing systems with diverse function-
alities. Doped MoS2 bilayers suggest possible applications such as traps for elec-
trons/excitons and an efficient way to control the stacking of the bilayers by Mo im-
purities in the growth process. MoTe2 nanoribbons deposited on magnetic substrates
may be useful for spin filters with tunable edge spin currents. We believe this work to
be of general interest to researchers working on efficient solid-state electronic devices,
magnetic proximity 2D materials, spin-polarized vertical structures and spintronics.
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Resumen

En esta tesis investigamos teóricamente los espectros de enerǵıa electrónicos en estruc-
turas de dicalcogenuros de metales de transición verticalmente apiladas, enfocándonos
en los grados de libertad de carga y de esṕın del electrón. Estas estructuras son bi-
capas de disulfuro de molibdeno MoS2 con impurezas de molibdeno (Mo), y sistemas
h́ıbridos como nanocintas de ditelenuro de molibdeno MoTe2 con bordes zigzag so-
bre un sustrato ferromagnético de óxido de europio EuO, formando heteroestructuras
MoTe2-EuO de tamaño finito. También estudiamos nanocintas de MoTe2 con termi-
nación zigzag y brazo de silla sobre sustratos antiferromagnéticos (AFM) formando
varias heteroestructuras de tipo MoTe2-AFM.

Modelamos las bicapas de MoS2 con diferentes tipos de apilamiento, incluyendo
impurezas de Mo en la región intercapa en diversas posiciones y en un régimen diluido
a través de cálculos de densidad funcional, incorporando interacciones tipo van der
Waals. Encontramos que el estado fundamental es para impurezas localizadas en sitios
vacios entre las capas, siguiendo campos cristalinos octaedrales para las impurezas de
Mo. Los estados electrónicos de impureza están localizados en la región de enerǵıa
dentro del bulto con gran densidad de estados. Otras configuraciones menos estables
son para impurezas situadas sobre un átomo de azufre, siguiendo campos cristalinos
tetraedrales polarizados en esṕın. En estos últimos sistemas encontramos brechas de
enerǵıa del bulto más grandes, asociados con grandes distancias intercapa, dando cuenta
de una débil interacción van der Waals debido a las impurezas. Demostramos un cambio
de apilamiento desde la bicapa de MoS2 pŕıstina hacia la bicapa dopada, conducido por
impurezas de Mo intersticiales.

Las nanocintas de MoTe2 terminadas en zigzag y brazo de silla sobre sustratos
magnéticos son modeladas considerando una aproximación adecuada de baja enerǵıa,
el modelo de enlace fuerte de tres orbitales. Este modelo considera parámetros realistas
como entrada y respeta las simetŕıas dictadas por las monocapas de dicalcogenuro de
metal de transición cerca de la brecha de enerǵıa del bulto bidimensional. Para describir
realmente las nanocintas sujetas a proximidad magnética, generalizamos el modelo de
enlace fuerte. Como tal, incluimos términos de campo de intercambio y Rashba en el
Hamiltoniano pŕıstino, dando cuenta aśı del magnetismo inducido en las nanocintas.

En el caso de la estructura h́ıbrida finita con bordes zigzag MoTe2-EuO, demostramos
que los modos de borde están fuertemente polarizados en esṕın, y surgen en la región
de la brecha de enerǵıa bidimensional debido a la competencia entre el acoplamiento
esṕın-órbita e interacción de intercambio. Los modos de borde exhiben polarización



de esṕın fuera y dentro del plano debido al acoplamiento Rashba inducido, y están
espacialmente confinados en los bordes zigzag. Mostramos que los bordes zigzag actúan
como canales conductores unidimensionales, los que llevan corrientes de esṕın polar-
izadas mientras el bulto es aislante. Las corrientes de esṕın en la nanocinta con bordes
zigzag son adquiridas por la proximidad con el sustrato magnético. A través de un
potencial de puerta sobre la muestra para sintonizar la enerǵıa de Fermi dentro de
la brecha de enerǵıa óptica, las corrientes de esṕın resultantes pueden ser activadas a
valores y polarizaciones sintonizables.

Las nanocintas zigzag de MoTe2 sobre sustratos AFM revelan parámetros Rashba
mejorados, tales como fuerza Rashba y separación de esṕın tipo esṕın-órbita a lo largo
de los modos de los bordes, los que caen en la brecha de enerǵıa del bulto bidimensional.
Las nanocintas brazo de silla sobre sustratos AFM muestran ya sea modos de borde
con una brecha de enerǵıa o sin brecha de enerǵıa, lo que depende del ancho de la
nanocinta. Estos modos de borde llevan ya sea corrientes de carga o corrientes puras
de esṕın a lo largo de los bordes de la muestra, para diferentes órdenes AFM de los
sustratos.

Nuestros resultados obtenidos de modelamientos confiables y parámetros experi-
mentalmente realistas, sugieren un camino para implementar efectivamente sistemas
con diversas funcionalidades. Las bicapas dopadas de MoS2 sugieren posibles apli-
caciones como trampas para excitones y una manera eficiente para controlar el tipo
de apilamiento de las bicapas en el proceso de crecimiento, a través de impurezas de
molibdeno. Las nanocintas de MoTe2 depositadas sobre sustratos magnéticos podŕıan
ser útiles para aplicaciones como filtros de esṕın llevando corrientes de esṕın sintoniz-
ables en los bordes de la muestra. Confiamos en que este trabajo será de interés general
para investigadores trabajando en dispositivos electrónicos eficientes de estado sólido,
materiales bidimensionales sujetos a proximidad magnética, estructuras verticales po-
larizadas en esṕın y espintrónica.
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Chapter 1

Introduction

The understanding about the behavior and manipulation of electronic degrees of free-
dom (DoF), such as charge, valley and spin in the diverse nature of available materials,
is a fundamental task which is in constant evolution, as new materials with different
electronic and structural properties continue to arise [1]. Stable and high quality two-
dimensional (2D) materials have emerged to complement and add functionalities to
the already available nanostructures in three-dimension (3D) (e.g., vertically stacked),
quasi one-dimension (1D) (e.g., nanotubes) and quasi zero-dimension (0D) (e.g., cage
molecules and quantum dots). As such, Novoselov et al. [2] in 2004, successfully ex-
foliated for the first time one atom-thick crystal from graphite: graphene, which is a
semimetal conductor material that can be seen as a 2D layer compound of carbon atoms
in a honeycomb (or hexagonal) arrangement highly flexible. Electrons in graphene have
high mobility and always conduct electricity, so graphene can be considered as a good
conductor. However, field effect transistors (FETs) based on graphene show a modest
on-off resistance ratio due to the lack of a band gap. This can be a fundamental limi-
tation in modern electronics because devices with controllable band gaps are required.

Conveniently, other 2D materials were reported in 2005 [3], satisfactorily isolated
to individual crystal planes from the 3D bulk: boron nitride (BN) and transition metal
dichalcogenides (TMDs), such as niobium diselenide NbSe2 and molybdenum disulphide
MoS2. All these exfoliated materials have diverse electronic properties, ranging from
metallic (NbSe2), semiconducting (MoS2) to insulator (BN). It is worth mentioning
that MoS2-based FETs have been already created in the monolayer limit [4, 5], as well
as in the bilayer form [5, 6]. The common characteristic among those layered materials
such as graphene, TMDs and BN, is that single layers are the building blocks of their
3D bulk. Adjacent single layers are vertically stacked and held together through weak
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van der Waals (vdW) forces, while strong covalent bonds hold the atoms together in
the plane.

Among these vertically stacked materials, semiconductor TMDs have received enor-
mous scientific interest due to their numerous exciting physical properties. By means of
typical synthesis procedures in the lab, such as mechanical exfoliation, chemical vapor
deposition (CVD) or molecular beam epitaxy (MBE), experimental samples of TMDs
can be obtained either, as a monolayer or as several number of layers, such as bilayers,
trilayers, and so on [2, 7]. Those experimental samples can vary in thickness, stacking
type, shapes and boundaries. For example, TMD bilayers with several stacking types
[8], wide and ultranarrow nanoribbons with defined boundaries such as zigzag [9, 10] or
armchair terminations [11, 12], and flakes with defined shapes such as triangles [13, 14]
and snowflakes [15] have been synthesized. Depending on the growth procedure, the
samples can be obtained on a substrate [8, 9, 16, 17], in pristine form (free of defects or
without substrate interaction) [18, 19] or defective (with impurities, adatoms and/or
vacancies, among others) [20, 21, 22, 23, 24]. Nevertheless, substrates and defects can
effectively add properties and functionalities to those materials.

Given the abundant availability of experimental samples (such as the aforemen-
tioned), theoretical modeling needs to account accurately for these structures, also by
considering the existence of defects/substrates. Theoretical approaches, such as density
functional theory (DFT), tight-binding (TB) models and effective low-energy Hamil-
tonians can reliably construct and model these diverse TMD samples, allowing us to
calculate their electronic energy spectra, that is, the band structure; which provide fun-
damental information to construct solid-state devices. Interestingly, the band structure
in TMDs have a direct dependence on the number of layers: a transition from an in-
direct to a direct band gap occurs when the bulk is thinned to the single layer limit,
making them attractive for optoelectronic applications [25, 18]. The direct band gap in
the electronic spectrum of TMD monolayers (∼ 1− 2 eV) is an intrinsic characteristic
of the material, coming from the crystal-field splitting of the transition metal atom.
TMD monolayers lack of inversion symmetry, allowing two degenerate (yet inequiva-
lent) valleys in the momentum-space electronic band structure. The valleys called K

and K ′ are of special interest in TMDs because the main electronic and optical prop-
erties occur therein [26, 27]. Moreover, due to the heavy metal atoms in the TMD
lattice, spin-orbit coupling (SOC) arises strongly around the K and K ′ valleys. These
properties lead to the unique physics of TMDs, such as the emergence of the spin-valley
coupling phenomenon, giving unprecedented independent or simultaneous control for
both, the valley and electron spin DoF [26, 27].
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Another attractive property which is present in pristine multilayer TMDs such
as bilayers, is the layer pseudospin DoF, associated with electrical polarization [28,
29]. Pristine TMD bilayers with several stacking types can induce modifications on
the electronic and optical properties [8, 30]. The most notable changes can occur
along the band edges (the valleys K, K ′ and Γ), giving rise to stacking-induced band
structure engineering. However, to further exploit the physics of bilayers, external
potentials such as strain, twisting, electric field, or doping, are necessary. In particular,
experimentally doped MoS2 bilayers increase the interlayer separation between adjacent
two MoS2 layers, which is attributed to the presence of MoS2 nanoparticles between
the individual layers [31]. By controlling the size of the nanoparticles trapped in-
between, the interlayer distance and interlayer coupling of bilayer MoS2 structures can
be engineered over a wide range, resulting in different bandgap behaviors, interesting
for modern electronic devices such as FETs. As the spin DoF is largely unexplored in
doped MoS2 bilayers, it is expected that their spin-polarized band structures due to
the broken inversion symmetry, would result in novel and yet unexplored phenomena.

Spintronics is a branch of physics concerned with the storage and transfer of in-
formation by means of electron spins in addition to electron charge as in conventional
electronics, defines the Oxford English Dictionary. In recent years, spintronics has
emerged as one of the most exciting areas of condensed matter physics, partially due
to the quick development of the control of low dimensional materials as previously de-
scribed, which possess controllable band structures by means electrical, optical and/or
magnetic external fields. Contrary to conventional electronics, nowadays spintronics al-
lows the information to be injected, transferred and manipulated by means of the spin
rather than the charge DoF, with greatly reduced energy dissipation [32, 33]. Spin-
tronic devices exploiting the spin of electrons for information processing and storage,
are a key emerging technology in modern electronics [34].

In TMDs, the charge, spin and valley DoF can be manipulated by magnetic fields
from induced and/or external sources. Furthermore, the spin can be controlled by
means of SOC, such as the Rashba effect [35, 36]. Induced magnetic sources on TMDs,
can come from the magnetic proximity effect (MPE), which allows for the transfer or
sharing of fundamental magnetic properties from a material A with magnetic properties
(a substrate, for example) to a material B initially non-magnetic (e. g., a TMD), giving
rise to modifications in the combined electronic states, as seen in the band structure
responses. One could argue that proximity is a new way to create new “bulk 2D”
materials with complex properties/behavior.

Recent experimental demonstrations for the MPE in proximitized vertical TMD

3



structures constructed with magnetic substrates, have measured large induced magnetic
exchange fields (MEF) (9 - 20 T), and sizable valley splittings (' 2.5 - 18 meV/T)
[17, 37, 38, 39, 40]. MPE would take some advantages over applied external magnetic
fields [41, 42, 43], since valley splittings can be two orders of magnitude larger than
the valley splittings obtained through external magnetic fields. Furthermore, theory
predicts a giant and tunable valley splitting, together with a sizable Rashba field in a
2D MoTe2 layer when in proximity to a ferromagnetic (FM) substrate such as EuO due
to the induced MEF [35, 44].

The focus of this thesis is to study the electronic and magnetic proximity properties
in vertically stacked TMD-based structures, such as MoS2 bilayers with impurity atoms
in the interlayer region, and TMD nanoribbons with defined zigzag and armchair edges
on magnetic substrates, the latter forming magnetic proximitized vertical heterostruc-
tures. In order to study the electronic band structures and the magnetic proximity
properties in the systems, we use two different theoretical approaches: DFT and gen-
eralized TB models. Both approaches capture the relevant bands and symmetries, and
allow us to reliable describe realistic TMD-based vertical structures.

In Chapter 2, we provide a general description for TMDs, by including illustrative
and useful examples related to our vertical structures. We also incorporate the theoret-
ical models and concepts used throughout the work, together with several theoretical
and experimental achievements based on TMDs.

In Chapter 3, through a vdW-DF approach, we study the electronic spectrum for
MoS2 bilayers with diverse stacking orders with molybdenum Mo atoms as impurities in
the interlayer region. We show that the Mo atoms are capable of changing the stacking
order in the MoS2 bilayer due to stability processes related to the crystal field for the
impurity Mo atoms in the structure. Moreover, we also demonstrate that the interlayer
distance and the electronic band gaps are modified in the presence of Mo impurities,
as seen in the energy spectra and density of states.

In Chapter 4, we perform band structure and spin current calculations for MoTe2

zigzag nanoribbons on a FM substrate such as EuO using a magnetized three-orbital
tight-binding (3OTB) model. We demonstrate that zigzag edges act as 1D conducting
channels that carry tunable spin currents acquired by the proximity to the magnetic
substrate, even in the presence of moderate defect concentration in the sample.

In Chapter 5, employing an AFM-adapted magnetized 3OTB, we describe zigzag
and armchair MoTe2 nanoribbons on AFM substrates. When the ribbon is zigzag-
terminated, our results show enhanced and tunable Rashba-type SOC (in comparison
to the free-standing case). Armchair MoTe2 ribbons show intriguing behavior when
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on a AFM substrate, where gapped and gapless edge modes appear depending on the
ribbon width, probably related to parity laws in low-dimensional systems.

Finally, in Chapter 6, we give conclusions and perspectives, including future work
projects related with our work.
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Chapter 2

Theoretical and Conceptual
Background

Summary

This Chapter is devoted to describing TMD structures used throughout this work, as
well as the theoretical framework to model it. In Section 2.1, TMDs as monolayers,
finite-size structures, and bilayers are presented. Particular attention is given to the
structural environment and electronic properties for each system. In Section 2.2 and
2.3 we describe the low energy Hamiltonians used in our calculations, emphasizing on
how we use and modify them to model our vertical structures. Section 2.4 is a brief
description of the intrinsic and extrinsic Rashba effect because both are present in our
vertically stacked structures. Lastly, in Sections 2.5 and 2.6, we briefly introduce some
useful concepts such as magnetic proximity effect and spin current, which are applied
in our work.

2.1 Transition Metal Dichalcogenides

Transition metal dichalcogenides (TMDs or TMDCs, as alternately used in the liter-
ature) are a class of layered materials which can be experimentally obtained in the
laboratory in their minimal atomically thin form, which is a 2D layer, referred as sin-
gle layer or monolayer. Apart from mechanical exfoliation, other synthesis techniques
used to obtain TMD samples are bottom-up methods, such as chemical vapor deposi-
tion (CVD) on metal substrates [45, 7], and molecular beam epitaxy (MBE) [46]. The
former allows uniform and large-area sheets of TMDs, while the lower growth temper-
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ature typically used in MBE allows for the growth of vertical structures with minimal
degradation or intermixing interaction among the different materials. From the first
experimental exfoliation in 2005, the interest in TMDs has been growing rapidly.

TMDs can form a variety of materials with diverse electronic characteristics, such
as metals (e.g., NbS2, NbSe2, TaS2, among others) and semiconductors (e.g., MoS2,
MoTe2, WS2, among others). Charge density waves (CDW) were predicted in 2001
in group V dichalcogenide (e.g., NbS2, TaS2, NbSe2 and TaSe2), where CDW order
coexists with superconductivity at low temperatures [47].

Concerning to the crystallographic structure of these laminated materials, TMDs
crystallizes in four natural or synthetic typical phases (also referred to as polytypes in
the literature), varying in stacking type and electronic properties. The phases are: 2H,
3R, 1T and 1T’ (the numbers 1, 2 and 3 refer to the number of layers in each unit cell
of the corresponding phase). 2H and 3R phases are more common and energetically
stable than 1T and 1T’ phases, which are unstable and possess metallic character.
In Fig. 2.1 we present TMDs together with their typical phases. The upper panel in
(b) shows the top view of TMD phases, while the lower panel shows layered TMDs
have different stacking order in their vertical bulk form. The out-of-plane interaction
between the layers is vdW-like coupling, while strong in-plane covalent bonds occur
in each constituent layer (monolayer) of the bulk. Each monolayer is of the form X-
M-X, that is a M plane in between two X planes, with formula MX2, where M is
the transition metal atom, and X is the chalcogen [X = S (sulfur), Se (selenium),
Te (tellurium)] as shown in Fig. 2.1(a) top panel. Layers of MX2 have M centers
coordinated with six chalcogen ligands in a trigonal prismatic (2H and 3R phases) or
octahedral (1T phase) arrangement, as shown in Fig. 2.1(c) [51, 27, 49, 50], following a
hexagonal lattice of alternating chalcogen-metal-chalcogen planes as seen from above.
Figure 2.1(a) also shows the position in the periodic table for the transition metal
atoms, as well as for the chalcogens, which form the TMD compounds [48]. Atoms from
group VI such as molybdenum (Mo) and tungsten (W) in combination with chalcogens,
constitute the semiconducting TMD family. Semiconducting character for MoS2 (one
of the most studied TMD in the literature) was confirmed in 2010 [25, 18]. By optical
spectroscopy techniques, the experiments revealed a crossover from an indirect to a
direct-gap semiconductor in the monolayer limit. Other semiconducting TMD shows
lower direct gaps, for instance, MoTe2 ' 1 eV [16, 52], extending the range of direct
gaps accessible in 2D semiconducting TMDs. The values of these gaps lie in the visible
spectrum, important for FETs and optoelectronic devices [45, 27].

Illustrative breakthrough on TMDs are: the transition of indirect band gap in
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(a)

Octahedral 
1T phase

Trigonal prismatic 
2H and 3R phase

(b) (c)

Figure 2.1: (a) A typical TMD structure, where the transition metal (dark green sphere)
is sandwiched between two chalcogens (orange sphere). Transition metals are shown in
dark green and chalcogens in orange in the periodic table [48]. (b) Schematic crystal
structures for three typical TMD phases: 1T, 2H, and 3R, the dashed lines show how
the top views and the lateral views match with each other [49]. (c) Trigonal prismatic
(2H and 3R phases) and octahedral (1T phase) coordination for the metal atoms in
each TMD monolayer. Yellow spheres in (c) represent the chalcogens [50].

multilayer to direct band gap in the monolayer in 2010 [25, 18]; the prediction of
giant spin-orbit-induced spin splitting in 2011 [53] and observation in 2014 [54]; the
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2.1 Transition Metal Dichalcogenides

demonstration of the first single-layer MoS2 FET in 2011 [4]; the prediction of coupled
spin and valley physics in semiconducting TMD monolayers in 2012 [26]; prediction of
quantum spin Hall state in distorted phases in 2014 [55] and observation in 2017 [56];
observation of WSe2 as single photon emitters in 2015 [57]; and observation of charge
density waves in twinning boundaries of MoSe2 in 2016 [58].

Lately, research is focused on exploring the combination of different 2D materials
for creating new tailored properties. TMD monolayers can be combined with either,
the same TMD or different 2D or 3D materials, in such a way that lateral or vertical
structures can be obtained. In this work we focus on Mo atoms in combination with
either S or Te chalcogens, to build realistic vertical structures such as: (i) MoS2 bilayers
in 2H and 3R phase with several stackings, and (ii) zigzag and armchair-terminated
MoTe2 ribbons in 2H phase on FM and AFM substrates.

2.1.1 Pristine TMD Monolayers

The 2D single layer is the basic building block for TMD vertical structures, which
possesses hexagonal lattice, as shown in Fig. 2.2(a). The 2D unit cell consists of a single
metal atom and two chalcogens, as shown by the red rhomboid in Fig. 2.2(a). Pristine
TMD monolayer possesses the D3h point-group symmetry (threefold in-plane rotation
symmetry and out-of-plane mirror symmetry). By taking the transition metal atom
as the inversion center, the inversion symmetry is explicitly broken in-plane, because a
chalcogen atom will be mapped onto an empty location [26]. On the other hand, the
reflection symmetry in the z direction (σh) maps a chalcogen atom onto a chalcogen
location, preserving the symmetry [see Fig. 2.1(c) upper panel] [59]. These general
symmetry considerations determine the explicit form of the low-energy Hamiltonians
[26, 59, 60, 35] which we use later in Sections 2.2 and 4.2.

In the monolayer limit, the corresponding reciprocal space is hexagonal, where the
first Brillouin zone (BZ) has several symmetry k points: Γ = (0, 0), M = π

a (1,
√

3
3 ),

Q± = ±π
a (2

3 , 0), K = π
a (4

3 , 0) and K ′ = π
a (−4

3 , 0), as shown in Fig. 2.2(b). In 2011 Zhu
et al. [53] predicted a large spin splitting of the energy bands along the lines Γ−K and
Γ−K ′, associated to the strong SOC from the heavy transition metal atoms and from
missing inversion symmetry in TMD monolayers. In presence of SOC, K and K ′ points
are related each other by time reversal symmetry (TRS) [E(k, ↑) = E(−k, ↓)], and both
valleys are fundamental symmetry points in the TMD BZ. The direct TMD energy gaps
are located at the K and K ′ points, opening the field of light-valley interactions in 2D
TMDs [18, 61]. Furthermore, strong SOC [53], spin-valley coupling and optical selection
rules arise in these 2D materials [26, 27]. The consequences of the spin-valley coupling
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(a)

x

y

M
X (b)

Q-Q

Figure 2.2: (a) Top view for the MX2 TMD monolayer, the red rhomboid indicates
the unit cell with lattice constant a (M-M distance), the green triangle stands for the
trigonal prismatic coordination. Blue (yellow) spheres indicate M (X) atoms. (b) The
hexagonal Brillouin zone in reciprocal 2D space with vectors ~b1 and ~b2 (red arrows).
High symmetry points Γ, ±Q, M , K and K ′ are shown.

effect are the valley Hall effect (a longitudinal electron current I drives a transverse
valley current IV ) [62] and the spin Hall effect (a longitudinal electron current drives a
transverse spin current IS) [55, 33, 63] can coexist in doped regimes. Valley-dependent
optical selection rules become spin dependent; that is, carriers with combination of
valley and spin indices can be selectively excited by polarized optical fields [26]. The
valley Hall effect was experimentally observed in a MoS2 monolayer transistor by shining
circularly polarized light onto the device [64]. Undoubtedly, all these effects have the
potential to convert TMDs in a new class of electronic and optical devices by exploiting
their rich physical properties.

As one can elucidate until now, the electrons in TMDs possess diverse DoF. In
addition to their electric charge, valley, layer and real electron spin also are considered
as DoF [29]. The valley and layer are pseudospins, the former coming from intrinsic
symmetry breaking, the latter coming from the symmetry of bilayer structures. The
electron spin coming from strong SOC in TMD monolayers.

In this thesis, we explore the charge and spin DoF, as we describe throughout the
work.

2.1.2 Finite Size Structures

When a 2D monolayer is cut into finite structures, which is the usual experimental case,
it can show regular or irregular edges. As such, nanoflakes and/or nanoribbons can be

10



2.1 Transition Metal Dichalcogenides

obtained, which are good candidates for studying because quantum confinement and
edge states are expected to give rise to new electronic, magnetic, transport and optical
properties. TMD nanoflakes are crystals with different shapes and boundaries, and can
be found when typical growth techniques such as micromechanical cleavage [3], CVD
[65, 15], MBE [14] and reconstructed substrates [13] are employed. Two dimensional
nanoflakes can show high crystallinity and defined edges, they can be found in a variety
of forms such as triangles (MoS2) [13, 65], rhomboids (MoS2) [66], snowflakes (MoSe2)
[15], among others.

As nanoflakes, TMD nanoribbons with regular edges —which are usually along two
high symmetry directions, the zigzag and the armchair— are of special interest because
they possess fascinating 1D properties at its edges, as we describe later. Beautiful sam-
ples with atomically sharp edges can be obtained through diverse experimental tech-
niques. By bottom-up growth procedures on prepatterned surfaces, ultranarrow (< 1
nm) or wide (≥ 3 nm) zigzag MoSe2 ribbons are clearly observed by scanning tunneling
microscopy (STM) [9]. By thermal annealing in vacuum, clean zigzag edges are seen
in a MoS2 ribbon, revealing unique Mo zigzag terminations [10]. Laser unzipping also
is a versatile method for the production of high-quality nanoribbons with controllable
width, edge states, and defects [67].

Concerning to the electronic properties in the TMD edges of nanoribbons, 1D metal-
licity has been predicted to universally occurring at the zigzag edges, related to the
polar discontinuity across the zigzag direction (along the armchair direction) [68]. Chu
et al. [69] predicted a well isolated single-edge band with strong SOC energy for the
chalcogen-terminated zigzag edge, while multiple bands are found for the metal edges
in semiconducting TMD ribbons. These edge bands possess strong Rashba-type SOC
and are well separated from the bulk bands. Interestingly, 1D metallic edge states were
experimentally revealed in MoSe2 ribbons with zigzag edges by means spectroscopic
techniques such as scanning tunneling spectroscopy [9]. Peculiar half-metallic states in
MoS2 zigzag ribbons [70] and spin currents along the MoTe2 zigzag edges are predicted
to occur when the ribbons are in close proximity to magnetic substrates [36], interesting
for spintronics applications as spin filters.

Necessary for the study of the electronic structure in finite size systems, are the real
and corresponding reciprocal spaces. Figure 2.3(a) shows a schematic nanoribbon repre-
sentation, obtained when a 2D monolayer finite structure is synthesized, thus obtaining
defined shape and edges. The unit cells are marked for zigzag- (green rhomboid) and
armchair-terminated (magenta rectangle) ribbons. Panel (b) shows the corresponding
rectangular BZ for zigzag and armchair-terminated ribbons, where we also show the
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Figure 2.3: (a) Top view of a schematic 2D TMD monolayer square ribbon, with
representative zigzag and armchair edges as shown. N and H are the dimensions for
the ribbons when defined edges are considered. R1 through R6 are the lattice vectors
connecting metal-metal (M-M) NN, shown by red arrows. Green rhomboid and magenta
rectangle stand for the zigzag and armchair unit cells, respectively. (b) BZ for the 2D
monolayer (black), as well as the reduced BZ for the ribbon with defined zigzag and
armchair edges (brown). The high symmetry points are marked in the BZ as indicated.

hexagonal BZ of the 2D monolayer for comparison, with reciprocal symmetry points
K = π

a (4
3 , 0) and K ′ = π

a (−4
3 , 0). For the zigzag case, the band structure is projected

along the horizontal kx-axis. One can see along the path X ′ −K − Γ −K ′ − X, the
valleys K and K ′ are decoupled, while for the armchair case, the band projection is
along the vertical ky-axis, and K, K ′ points are both mapped onto Γ = (0, 0) due to
the larger unit cell for the armchair direction.

A detailed description that aims specifically to our study for armchair ribbons is in
Appendix C, while zigzag ribbons are explained in Chapters 4 and 5.

2.1.3 Molybdenum Disulphide Bilayers

MoS2 bilayers have been converted in an exciting field of research because of its intrinsic
inversion symmetry and structural phases [27, 71, 72]. Interestingly, bilayers offer an
unprecedented platform to realize a strong coupling between the spin, valley and layer
pseudospin DoF, giving rise to the spin Hall effect and spin-dependent selection rules
for optical transitions [28, 27]. Some representative experimental achievements based
on MoS2 bilayers include electrical tuning of valley magnetic moment [73], intrinsic
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2.1 Transition Metal Dichalcogenides

electronic transport properties [5], and electrical control of the valley Hall effect [74].
Unlike TMD monolayers, which lack an inversion center, bilayers with 2H phase

possess an inversion center located in the middle plane between the two TMD layers,
as shown in Fig. 2.1(b). TMD bilayers can crystallize more probably in 2H and 3R
phases, as is demonstrated experimentally [3, 5, 75, 8, 76] and by DFT calculations
[30, 49, 77]. The stacking order is an important structural characteristic in TMD
bilayers as electronic transport [78], electronic and optical properties [27, 79] can be
tuned. For instance, ultra flat bands at the valence band edge in twisted MoS2 bilayers
have been predicted, which are comparable to that of twisted bilayer graphene near
“magic” angles [80]. The band gap size, the valence band splitting at the K points
together with their relative energy with respect to Γ, and electron-hole binding energy
vary with the stacking configuration in TMD bilayers [30].

In this work, we use DFT calculations to model our MoS2 bilayers. The DFT
approach is based on the idea that any property of the ground state of a system can
be described as a functional of the ground state electron density, which is a function
of the electron position. The functionals that can be used include the local-density
approximation (LDA), generalized-gradient approximation (GGA), vdW functionals,
among others. The MoS2 bilayers we model in the next example and in Chapter 3 are
based on the vdW-DF approach, this is density functional calculations with vdW-type
functionals. This allows us to obtain the ground state of the systems, giving account
for the vdW interactions present in the MoS2 bilayer structures. More information
about the details for the vdW-DF calculations within the SIESTA method [81] for
MoS2 bilayers can be found in Appendix A.

As a clear example of how it works vdW-DF within the SIESTA method, we have
calculated the band structures for pristine bilayers with several stackings. We first
consider the most stable phases of pristine MoS2 bilayers, namely the 2H and 3R phases
[82, 83, 84]. The MoS2 layers in these natural phases have different stacking orders.
The bilayer in the 2H-phase has inversion symmetry [85, 86], and shows the AA’ and
AB’ stacking related each other by rotating the MoS2 layers, as shown schematically in
Fig. 2.4 panel (b) and (c). In AA’ stacking, the hexagons in each layer are superposed
in such a way that the molybdenum atoms of the bottom layer are located just below
the sulfur atoms of the top layer, and vice-versa. For AB’ stacking the hexagons in each
layer are shifted with the sulfur atoms of the bottom layer beneath the hollow sites of
top layer, and the molybdenum atoms in the top layer over the molybdenum atoms in
the bottom layer [30]. In our calculations we found an energy difference between these
stackings of EAA′ - EAB′ = 2.6 meV per atom, in good agreement with previous DFT
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2.1 Transition Metal Dichalcogenides

calculations [30, 87, 76]. The AB stacking in Fig. 2.4(a) with no rotation between the

Figure 2.4: Diverse stackings for MoS2 bilayers with low energy: (a) 3R-AB, (b) 2H-
AA’ and (c) 2H-AB’, which refers to different stacking types in the bilayer with 2H
phase. Mo atoms are shown as cyan (Mo top) and purple (Mo bottom) spheres, sulfur
atoms are shown as yellow spheres. Inset shows the Mo impurity location as red crosses
relative to the bottom layer in B (bridge), H (hollow), T (top over Mo) and T’ (top
over S).

  

(a) (b) (c)

Figure 2.5: Band structures along high symmetry points in the BZ for the most stable
MoS2 pristine bilayers (in stability order in these calculations): (a) 3R-AB, (b) 2H-AA’
and (c) 2H-AB’. The layer orientation for the different stackings can be seen in Fig.
2.4. The Fermi energy is set to zero eV.

two MoS2 layers belongs to another kind of phase, the 3R-phase. The top layer slides
on the bottom layer in the armchair direction so that some Mo and S atoms in different
layers match.
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2.2 Two-Bands k · p Model

In Fig. 2.5 we show the band structure calculations for pristine MoS2 bilayers for the
most stable stacking configurations. In panel (a), 3R-MoS2 bilayer with AB stacking;
in panel (b) and (c), 2H-MoS2 bilayers with AA’ and AB’ stackings respectively, all the
systems without SOC. Clearly, there is an indirect gap along the line Γ−K for all the
bilayers, as is demonstrated experimentally [88] and through other DFT calculations
[6, 31]. Furthermore, the valence splitting for the AB’ bilayer closes at K and K ′ points,
while it opens for AB and AA’ bilayers, indicating stacking-induced band structure
changes.

In Chapter 3 we report how the stacking, the interlayer distance and the band gaps
change in these MoS2 bilayers when Mo impurities are located in the interlayer region
[77]. These effects suggest that doped bilayers can add functionalities to the pristine
bilayer systems.

2.2 Two-Bands k · p Model

The band structure near the K and K ′ band edges (or valleys) in semiconducting TMD
monolayers can be well described through a suitable k · p model, introduced by Xiao et
al. [26]. They showed that intrinsic inversion symmetry breaking together with strong
SOC originated from the heavy metal d orbitals leads to coupled spin and valley physics
in TMD monolayers. This combined effect is evidenced by means of a term proportional
to λvτsz in the pristine TMD Hamiltonian, where λv is the strength of the SOC at the
valence band (∼ 75− 250 meV for different TMDs), τ is the valley index and sz is the
spin index. This simple and widely used two-bands k · p model is also versatile because
allows one to add magnetic proximity effects [35, 44, 89], exciton effects [90], Rashba
effect [59], among others to the pristine 2D TMD monolayer. This Hamiltonian has
also been successfully used as a theoretical background in many experiments, where the
control of the valley and spin DoF lies at the core of interest, expanding valleytronics
and spintronics research.

Under the general symmetry considerations described in Subsection 2.1.1, the group
of the wave vectors at the valleys is C3h, and the basis functions are

|φc〉 = |dz2〉, |φτv〉 = 1√
2

(
|dx2−y2〉+ iτ |dxy〉

)
, (2.1)

where c (v) is the conduction (valence) band, τ = ±1 is the valley index, (+) for K,
(−) for K ′. Approximating the SOC by intra-atomic contribution L · S, the total k · p
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2.2 Two-Bands k · p Model

Hamiltonian to first order in k = (kx, ky) has the form

H(k) = at(τkxσx + kyσy) + ∆
2 σz − λvτ

σz − 1
2 sz. (2.2)

The first term refers to orbital interactions, the second term reflects the band gap, and
the last term is the SOC-induced spin splitting in the 2D TMD lattice, which reflects
the spin-valley coupling. σα (α = x, y, z) are the Pauli matrices acting on the orbital
pseudospin in Eq. 2.1. This Hamiltonian can be written in a 4 × 4 matrix form as
[26, 27]

H(k) =


∆
2 at(τkx − iky) 0 0

at(τkx + iky) −∆
2 + λvτ 0 0

0 0 ∆
2 at(τkx − iky)

0 0 at(τkx + iky) −∆
2 − λvτ

 . (2.3)

Equation 2.3 is projected to the orbital pseudospin basis of Eq. 2.1 as
{|φc, ↑〉, |φτv , ↑〉, |φc, ↓〉, |φτv , ↓〉}, with spin sz =↑, ↓. Here the momenta kx and ky are
measured from the K points, a is the TMD lattice constant, t is the hopping between
sites, ∆ is the energy gap at the K points, and 2λv is the spin splitting at the valence
band due to SOC and inversion symmetry breaking. Because of TRS, the spin splitting
is opposite at the K and K ′ valleys. We can note that near the valleys, the electrons in
clean 2D TMD monolayers can be well described as massive Dirac fermions with strong
SOC.

All the parameters can be obtained by fitting to first-principles calculations band
structures in the neighborhood of K points for different TMDs. This model correctly
captures the low-energy physics close to the valleys, including the SOC at the valence
band, valley dependent Berry curvature, and valley dependent optical selection rules
[26, 27]. To quadratic order in k, electron-hole asymmetry and anisotropic dispersion
(trigonal warping) in the band structure can be captured [91, 92].

More accurate approaches such as the six-band k · p model have been developed to
account for the effective masses, Landau levels and the effective exciton g-factor in the
K valleys for different TMDs [93]. The Γ [91], Q and M valleys [94] (which can be
important for transport properties of hole- or electron-doped samples), as well as the
spin splitting of the conduction band, are well described by effective-mass k · p models
[94]. Real-space modifications to the TMD can also be considered in the k · p model,
for example by deriving boundary conditions for zigzag or armchair edges [95].
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2.3 Transition Metal Dichalcogenide Tight-Binding Hamiltonians

In Chapter 4, we use the two-bands k · p model of Eq. 2.3 as starting point to
construct a magnetized tight-binding Hamiltonian, accounting for magnetic proximity
effects in 2D and finite size TMD-based vertical heterostructures.

2.3 Transition Metal Dichalcogenide Tight-Binding Hamil-
tonians

Unlike the k·p method described in the previous section, where the representation of the
electronic structure for monolayer TMDs is only in the neighborhood of high symmetry
points in the BZ, tight-binding (TB) models have the advantage that can reproduce
the electronic band structure in the whole BZ. Tight-binding models also offer a real
space description, suitable for studying finite size systems such as ribbons, flakes and
quantum dots, as well as for describing defects such as vacancies, adatoms and twin
grain boundaries. Tight-binding models have been constructed for TMD monolayers
in various approximation levels, which depend on the number of bands involved, with
multiple orbitals in the TMD unit cell. Later, we describe in more detail the three-
orbital tight-binding (3OTB) Hamiltonian, which we use in Chapter 4 and 5 to model
TMD ribbons. Now we briefly describe the main features of some TMD TB models
reported in the literature with different number of bands and accuracy (by including
the 3OTB model). In the following, the spinless cases are presented, but note that the
number of bands in TMD TB models will double because of SOC.

• 3-bands TB model [60]. Contains only three M (M = Mo, W) d-orbitals
{dz2 , dxy, dx2−y2}. Symmetry-based M-M hoppings for nearest neighbor (NN)
and M-M-M next-nearest-neighbors (NNN) interactions. This model is not Slater-
Koster (SK)-like but fully based on the TMD symmetry. Accuracy around the
K, K ′ valleys within the NN approximation, better fit is found in the entire BZ
when NNN are included.

• 5-bands TB model [92]. Derived from a 7-bands TB model, contains three Mo-d
orbitals and two X (X = S) p orbitals in a symmetric and antisymmetric linear
combination: {dz2 , dx2−y2 + idxy, dx2−y2 − idxy} for the M atoms and {px +
ipy, px − ipy} for the X atoms. Accurate for energies around the K and K ′

valleys.

• 7-bands TB model [92]. Contains three Mo-d orbitals {dz2 , dxy, dx2−y2} and two
chalcogen p orbitals, {px, py} for each chalcogen atom, only Mo-X (X = S) NN
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2.3 Transition Metal Dichalcogenide Tight-Binding Hamiltonians

in the SK approach for the hopping and overlap integrals are used. Accurate for
energies around the K and K ′ valleys.

• 11-bands TB model [96, 97]. Contains all the M (M = Mo, W) d-orbitals
{dz2 , dx2−y2 , dxy, dxz, dyz} and the top (t) and bottom (b) p X orbitals (X =
S) {px,t(b), py,t(b), pz,t(b)}. NN SK hoppings of M-M, M-X, and X-X. The fitted
bands agree qualitative well with the first principles band structure around the
valleys, but a quantitative discrepancy can be seen away from the K and Γ points.
An accurate parametrization is found for the MoS2 band structure within the 11-
bands TB model [98]. A recent improve scheme in the SK approach is found for
M = Mo, W and X = S, Se, Te; which considers M-M-M and X-X-X NNN [99].

• 27-bands TB model [100]. Contains the complete set of sp3d5 orbitals for the Mo
atom and the two chalcogen atoms. SK approach for the NN hopping and overlap
integrals. Accurate for energies in the range -3 to 3 eV in the entire BZ.

2.3.1 Three-Orbital Tight-Binding Hamiltonian

The successful 3OTB Hamiltonian by Liu et al. [60] is fully based on symmetry con-
siderations of the trigonal prismatic coordination of the pristine TMD monolayer. The
essence behind this approach is twofold: first, exploit the fact that at low energies
and near the fundamental gap, the Bloch states around the valence and conduction
band edges mostly consist of three M (M = Mo, W) d-orbitals {dz2 , dxy, dx2−y2} of
the transition metal atoms, which contribute the most to the electronic states for the
TMD monolayers, with almost no p-orbital weight from the chalcogen atoms. Second,
the crystal symmetry of 2D TMDs belongs to the D3h space group, and the trigonal
prismatic coordination of the metal atoms splits the d orbitals into three groups {dz2},
{dxy, dx2−y2} and {dxz, dyz}. The σh symmetry (mirror reflection by the x− y plane)
allows hybridization only between {dz2} and {dxy, dx2−y2}, leaving {dxz, dyz} decou-
pled from the other d-orbital groups. Therefore, in the low-energy regime, it is suitable
to describe 2D TMD monolayers within the d-orbital basis given by {dz2 , dxy, dx2−y2},
and by only considering metal d-d hoppings in the lattice (i.e., a triangular lattice of
metal atoms, as explained later).

The 3OTB model preserves the lattice symmetries and has been proved to reliably
describe TMDs flakes and ribbons in diverse situations [101, 102, 103, 104]. The 3OTB
model also has been used to depict twin grain boundaries in MoSe2 2D monolayers
[105] and combined systems such as lateral [106] or vertical [36] heterostructures in real
space.
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2.3 Transition Metal Dichalcogenide Tight-Binding Hamiltonians

The 3OTB Hamiltonian originally is represented in continuous momentum space
up to first neighbors as

H0(k) =


h0 h1 h2

h∗1 h11 h12

h∗2 h∗12 h22

 , (2.4)

with basis
{
|dz2〉, |dxy〉, |dx2−y2〉

}
, and matrix Hamiltonian elements of the form

h0 = 2t0 (cos 2α+ 2 cosα cosβ) + ε1, (2.5a)

h1 = −2
√

3t2 sinα sin β + 2it1 (sin 2α+ sinα cosβ) , (2.5b)

h2 = 2t2 (cos 2α− cosα cosβ) + 2
√

3it1 cosα sin β, (2.5c)

h11 = 2t11 cos 2α+ (t11 + 3t22) cosα cosβ + ε2, (2.5d)

h22 = 2t22 cos 2α+ (3t11 + t22) cosα cosβ + ε2, (2.5e)

h12 =
√

3 (t22 − t11) sinα sin β + 4it12 sinα (cosα− cosβ) , (2.5f)

where α = kxa/2 and β =
√

3kya/2, ε1 and ε2 are the onsite energies for dz2 , and
(dxy, dx2−y2) orbitals, respectively. t0, t1, t2, t11, t22 and t12 are the symmetry based
d-d metal hopping integrals. With this minimal set of parameters (eight in total), and
then by fitting with DFT band structure calculations, the values for the parameters
can be obtained, which are listed in Table II of Ref. [60] for all 2D TMD monolayers of
group-VIB. The 3OTB model up to first neighbors in Eq. 2.4 is sufficient to describe
the physics of conduction and valence bands around the valleys. Inclusion of next
nearest-neighbor d-d hoppings for M atoms improves the agreement for momenta away
from the valleys, especially near the Γ and M points in the valence band [60]. Note
that by using Taylor expansion for the 3OTB Hamiltonian of Eq. 2.4 in the vicinity of
a given wave vector (K or K ′) up to first order in momentum k, the k · p model in Eq.
2.2 can be obtained, giving the expected close relation between both approaches for 2D
TMD monolayers.

Spin-orbit coupling in monolayers MX2 is due to the heavy transition metal M
atoms. Within the 3OTB model, SOC is approximated by considering only the onsite
contribution from the M atoms as HSOC = λvLzSz, where λv characterizes the strength
of the SOC at the valence band, Lz and Sz are the z components of the orbital and
spin angular momentum, respectively.

Using the basis
{
|dz2 , ↑〉, |dxy, ↑〉, |dx2−y2 , ↑〉, |dz2 , ↓〉, |dxy, ↓〉, |dx2−y2 , ↓〉

}
with spin
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2.3 Transition Metal Dichalcogenide Tight-Binding Hamiltonians

sz =↑, ↓, the SOC contribution to the Hamiltonian is

HSOC = λv
2

(
Lz 0
0 −Lz

)
, in which Lz =


0 0 0
0 0 2i
0 −2i 0

 . (2.6)

Then, the full 3OTB Hamiltonian is written as

H(k) = I2 ⊗H0(k) +HSOC =
(
H0(k) + λv

2 Lz 0
0 H0(k)− λv

2 Lz

)
, (2.7)

where I2 is the 2×2 identity matrix. Note that the full 3OTB is block diagonal, therefore
the spin z component is not mixed by the SOC. At the K, K ′ points in Eq. 2.7, the
SOC interaction splits the valence band maximum (VBM) by ∆v

SOC = 2λv. The spin
splitting (∆v

SOC) can be numerically fitted with DFT band structures, and the SOC
coupling (λv) can be analytically obtained by second-order perturbation theory. Both
parameters are listed in Table IV of Ref. [60] for all TMD monolayers of group-VIB.

As an instructive and useful example as we will use later in this work, we solve the
3OTB for molybdenum ditelluride MoTe2 monolayer. By diagonalizing Eq. 2.7 and
taking the MoTe2 parameters, the band structure for the 2D MoTe2 monolayer with
SOC is obtained along high symmetry points in the first BZ, as shown in Fig. 2.6(a).
Clearly, the two valleys K and K ′ are time-reversal related, the gap opens at the valleys
and the spin splitting is seen for the valence bands due to SOC. Therefore, the 3OTB
Hamiltonian is a suitable model to reproduce the low-energy spectra around the valleys
in TMD monolayers as in comparison to density functional calculations [60].

2.3.1.1 Three Orbital Tight Binding Hamiltonian in Real Space

The 3OTB model also allows for a description in real space. The hexagonal lattice in
the monolayer can be effectively modeled as a triangular metal M lattice, where the
hoppings are only between metal atoms with multiple d-orbitals due to the symmetry
of the structure. The metal atoms are connected through lattice vectors R, as shown
by the red arrows in Fig. 2.3(a). Up to first neighbors, the 3OTB Hamiltonian for the
pristine TMD lattice in real space is

H3OTB = Ho +Ht(Rj) +HSOC. (2.8)
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Figure 2.6: (a) Band structure within the 3OTB model for MoTe2 2D monolayer with
SOC given by Eq. 2.7. Blue (red) colors correspond to spin up (down) conduction
and valence bands, green color stand for conduction bands with higher energy. The
MoTe2 gap at the valleys is ' 1 eV, while the SOC splitting of the valence band is
∆SOC = 0.215 eV. The VBM is set to zero energy. (b) Discrete energy levels for a
MoTe2 square ribbon with Nsites = 1600 Mo sites, modeled with Eq. 2.8. The discrete
spectrum as black dots shows midgap states with metallic character. The midgap levels
are 1D-like extended states localized at the sample edges. Note that here we show the
sorted eigenenergies, with the horizontal axis just listing the increasing electronic states.

The onsite TB Hamiltonian Ho can be written as

Ho =
Nsites∑

l

∑
sz=↑,↓

∑
α,α′

εαα′,szd
†
α,l,szdα′,l,sz , (2.9)

where εαα′,s are the onsite energies and dα,l,sz (d†α,l,sz) annihilates (creates) an electron
with spin-sz in orbital α ∈

{
dz2 , dxy, dx2−y2

}
on site l = l1R1 + l2R2, with l1 and

l2 integers. R1 = a(1, 0), R2 = a(1/2,
√

3/2) are lattice vectors of the triangular M
lattice, with a the TMD lattice constant. In a matrix form, the onsite Hamiltonian for
each metal atom (or site) is diagonal Ho =

(
ε1, ε2, ε2

)
.
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The NN hopping Hamiltonian Ht is given by

Ht(Rj) =
∑
l,Rj

∑
sz=↑,↓

∑
α,α′

t
(Rj)
αα′ d

†
α,l,sdα′,l+Rj ,s + H.c., (2.10)

where t(Rj)
αα′ are hopping parameters in three different directions, Rj , j = 1, 2, 3, with

R3 = R2−R1. Starting along the R1 direction [see Fig. 2.3(a)], there are nine allowed
hoppings, which are written in a 3× 3 matrix form as

Ht(R1) =


t0 t1 t2

−t1 t11 t12

t2 −t12 t22

 = Ht(R4)T . (2.11)

Along direction R5, the hopping Hamiltonian is constructed by considering the rotation
by 2π/3 around the z axis as

Ht(R5) =


t0

1
2 t1 +

√
3

2 t2
√

3
2 t1 −

1
2 t2

−1
2 t1 +

√
3

2 t2
1
4 t11 + 3

4 t22
√

3
4 t11 − t12 −

√
3

4 t22

−
√

3
2 t1 −

1
2 t2

√
3

4 t11 + t12 −
√

3
4 t22

3
4 t11 + 1

4 t22

 = Ht(R2)T ,

(2.12)
and in a similar way for the R3 (and R6) direction (see e.g., Eqs. (4-6) from Ref. [101]).
The SOC Hamiltonian HSOC is the same as the one described in Eq. 2.6. Then, due to
the symmetry of the system, the total amount of parameters is reduced to two onsite
energies and six hoppings for the TMD monolayers, which can be taken from Ref. [60].

The 3OTB model in real space described above also allows for finite size systems de-
scription through appropriate treatment of periodic boundary conditions (PBC) along
the symmetry directions of the structures, by modelling e.g., periodic nanoribbons. As
we described in Subsection 2.1.2, when a 2D monolayer is cut into finite structures, it
can show regular or irregular edges, the regular edges are usually along two high sym-
metry directions, the zigzag and the armchair. Figure 2.3(a) shows a 2D monolayer
where the zigzag edges are along the x direction, while the armchair edges are along
the y direction. Taking a MoTe2 ribbon with zigzag edges as an example, their energy
spectrum is shown in Fig. 2.6(b). Here the eigenenergies are fully discrete, exhibit-
ing both bulk- and edge-like states. Comparing the continuous and discrete electronic
spectrum in panels (a) and (b) of Fig. 2.6, one can see that the edge-like states lie in
the MoTe2 2D bulk gap, between zero and ' 1 eV, signaling 1D-like extended states
localized near the borders of the sample. These midgap states have metallic character
and are strongly localized along the zigzag edges of the ribbon [69, 9].
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2.4 Rashba Spin Orbit Coupling in a 2D Electron Gas

Later in Chapters 4 and 5, we construct TMD nanoribbons with zigzag and armchair
terminations when they are placed onto FM and AFM substrates, by augmenting the
pristine TMD 3OTB Hamiltonian in Eq. 2.8 by exchange and Rashba fields. The edge
states are expected to have a deep impact on the properties of the magnetic proximitized
nanoribbons, especially for the electron spin DoF.

2.4 Rashba Spin Orbit Coupling in a 2D Electron Gas

In our work, we deal with two kinds of Rashba interactions, where each one of them
has different origin and meaning. Then, it becomes necessary to elucidate the different
physical meaning of: (i) the Rashba-type SOC (with strength α), coming from broken
lattice symmetry in the crystal, e.g., at the zigzag edges of TMD ribbons [69, 107],
and (ii) the extrinsic Rashba field (with strength λR) coming from an interface field
generated by the proximity interaction with a substrate, for example [108, 109, 110,
59, 35, 111, 36]. We will start by defining the Rashba-type SOC α in a 2D electron
gas (2DEG), then for a 1D electron gas (1DEG) Rashba systems, which applies for the
zigzag edges of TMD ribbons. Then, we will apply the analysis to the extrinsic Rashba
field λR.

The basic requirements for Rashba systems are uniaxial symmetry and absence of
inversion symmetry [112]. Whenever these conditions are fulfilled, Rashba-type SOC
contributes to the electron Hamiltonian as HR = α(s × k) · êz, where s = (sx, sy, sz)
are the Pauli matrices associated with the real spin and êz is a unit vector along the
symmetry axis, associated with an electric field perpendicular to the 2D momentum
k = (kx, ky) [113, 114, 109]. The Rashba term in 2D homogeneous lattices locks electron
spin s to momentum k [109, 112], and can be written as a Bychkov-Rashba Hamiltonian
of the form [113, 112, 33, 115]

HR = α(sxky − sykx). (2.13)

The effective single-particle Hamiltonian for 2D electrons with the Rashba term (Eq.
2.13) is then

H2D
R = ~2k2

2m∗ ⊗ Is + α(sxky − sykx), (2.14)

where ~ is the Planck’s constant, ⊗ denotes the tensor product of two operators acting
in the orbital (HO)– and spin Hilbert space (Hs). Is is the unit operator in the spin
space (sz =↑, ↓), and m∗ is the effective electron mass. This Hamiltonian commutes
with the momentum operator p̂ and time-reversal operator (T̂ ) [114]. Its eigenenergies
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2.4 Rashba Spin Orbit Coupling in a 2D Electron Gas

are Eλ(k) = ~2k2/2m∗ ± α|k|, which are labeled by the 2D momentum k and the
chirality eigenvalues λ = ±1. Because k enters into HR linearly, in a lower order
than into the kinetic energy ~2k2/2m∗, the topology of the energy spectrum changes.
There appear two E(k) parabolic surfaces with a self-crossing conical (Dirac) point at
k = 0, as shown in Fig. 2.7(a) [112]. The corresponding eigenstates for the Rashba
Hamiltonian in Eq. 2.14 are

ψk,± = 1√
2

(
1

∓ ieiθ

)
, (2.15)

where θ is defined as θ = tan−1
(
ky
kx

)
. Due to TRS invariance [Ĥ, T̂ ] = 0, the two

eigenstates of opposite momenta and spins are degenerate. The expectation value of
the spin operator S = ~s/2 projected in the eigenstates Eq. 2.15 are

〈
ψk,±

∣∣ sx ∣∣ψk,±
〉

= ± ky
|k|
, (2.16a)

〈
ψk,±

∣∣ sy ∣∣ψk,±
〉

= ∓ kx
|k| , (2.16b)〈

ψk,±
∣∣ sz ∣∣ψk,±

〉
= 0, (2.16c)

which can be written in a compact form as

〈
ψk,±

∣∣ s ∣∣ψk,±
〉

= ± ky
|k| x̂∓

kx
|k| ŷ, (2.17)

where x̂ and ŷ are the unit vectors within the xy-plane of the 2D crystal. Equation 2.17
demonstrates that no common spin quantization axis can be found for all eigenstates
of a 2D Rashba system.

2.4.1 Rashba Spin Orbit Coupling in a 1D Electron Gas

In a 1D Rashba system with unit vector êz, the Rashba Hamiltonian in Eq. 2.14 reduces
to

H1D
R (kx) = ~2k2

x

2m∗ − αkxsy. (2.18)

Its eigenvalues, which define the 1D energy-momentum dispersion are Eλ(kx) = ~2k2/2m∗±
α|kx|, with the corresponding eigenvectors

ψkx,± = 1√
2

 1
∓i kx|kx|

 . (2.19)
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2.4 Rashba Spin Orbit Coupling in a 2D Electron Gas

As in the 2D case, the eigenstates in 1D Rashba systems are labeled by the momentum
operator eigenvalue ~kx and the chirality operator eigenvalue λ = ±1. The expectation
value of the spin operator is then,

〈ψkx,±| sy |ψkx,±〉 = ∓ kx
|kx|

. (2.20)

From Eq. 2.20 we see that the y-component of spin in the eigenstate |ψkx,λ〉 is ↑
for λ = 1 and kx < 0, and is ↓ for λ = 1 and kx > 0; the opposite is true for the
other branch [Eλ=−1(kx)], as is shown in Fig. 2.7(d). Equation 2.20 means that each
spin-split parabolic subband has a well-defined spin. Thus, the eigenvalues of spin sy

are good quantum numbers because in 1D, sy commutes with the Hamiltonian in Eq.
2.18 [H1D

R , sy] = 0. Following the analysis above, it is straightforward to understand
the relative spin orientations of the states along each of the dispersions branches for
Rashba systems, where a SO induced-Rashba spin splitting arises [113, 116, 117, 114].

  

R

R

(a) (b) (c) (d)

Figure 2.7: (a) The energy-momentum dispersion E(kx, ky) of the Rashba spin-split
2DEG. The states at the Fermi level lie on two concentric Fermi circles, E+(k) = EF
for the inner circle and E−(k) = EF for the outer circle. The 1D energy-momentum
dispersion for: (b) infinite clean 1DEG, (c) 1DEG in magnetic field with Zeeman split-
ting ∆Z, and (d) 1DEG with Rashba-type SOC. The SO-induced spin splitting in (d)
is significant by the energy separation ∆R at a given kx, kR is the Rashba momentum
associated to the Rashba-type SOC [114].

It is important to note the difference between the familiar Zeeman spin-splitting
(∆Z) [Fig. 2.7(c)] and the Rashba-type spin-splitting (∆R) [Fig. 2.7(d)] in 1DEG sys-
tems. In the case of Zeeman splitting –when a magnetic field is present in the system–
the spin-↑ and spin-↓ subbands are shifted vertically with respect to each other by
a Zeeman energy ∆Z ∝ µBB, with µB the Bohr magneton and B the momentum-
independent magnetic field. As one can infer from the single-particle energies in 1D
Rashba systems Eλ(kx) = ~2k2/2m∗±α|kx|, the Rashba spin-splitting depends linearly
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on momentum as
∆R(kx) = E+(kx)− E−(kx) = 2α|kx|, (2.21)

then, when the energy dispersion is projected along a single momentum direction (kx
in this case), the branches E+(kx) and E−(kx) are shifted horizontally along the mo-
mentum axis rather than along the energy axis (as in the Zeeman case). Diverse exper-
iments such as angle-resolved photoemission [118, 109, 119] and optical spectroscopy
[120] probe either, ∆R or the Rashba SO momentum associated kR.

2.4.2 Extrinsic Rashba field

If the inversion symmetry is explicitly broken in 2D monolayers, by the interaction with
a substrate for example, then an extrinsic Rashba field λR, arise [108, 109, 110, 59, 35].
The Hamiltonian term manifesting the extrinsic Rashba field has been written in a
modified Bychkov-Rashba [113] form

HR = λR(τσxsy − σysx), (2.22)

here τ is the valley index, σβ and sβ (β = 0, x, y, z) are the Pauli matrices acting on the
orbital space and real spin space, respectively. Contrary to the conventional Rashba-
type SOC observed in materials with absence of inversion symmetry and uniaxial sym-
metry (see Eq. 2.13), the extrinsic Rashba field can be considered as a modified Rashba
term in the low-energy Hamiltonians, accounting for the valley DoF seen in hexagonal
2D monolayers with broken lattice symmetry. Diverse works which include the extrinsic
Rashba field in their models are based on proximity-induced interactions effects com-
ing from substrates or vertically stacked structures. If the materials break inversion
symmetry, a Rashba field of the form Eq. 2.22 effectively can arises [108, 35, 111, 36].
The possibility of positioning crystals in very close proximity to one another allows for
the study of additional electronic effects such as the Rashba field. In general terms,
the Rashba field can produce canted spin projections when acting on 2D hexagonal
materials. The canted spins projections can be manifested in magnetic proximitized
systems, as we show in Chapter 4 and 5 for MoTe2 ribbons deposited on FM and AFM
substrates.

2.5 Magnetic Proximity Effects

The proximity effect refers to the influence that an ordered state (i.e., superconductivity
or magnetism) has on a nearby material [121]. Lately, the proximity effect term has
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been applied to also include proximity-induced SOC and/or topological properties in
vertical heterostructures. For instance, a TMD monolayer can effectively transfer SOC
to a graphene monolayer [122] and bilayer [104]. Protected edge states in graphene
flakes with defined edges on TMDs are seen in the energy spectrum, which carries pure
spin currents [111].

In the case of the magnetic proximity effect, a magnetization from a ferromagnet
penetrates a neighboring nonmagnetic region, effectively inducing magnetism. Nowa-
days, 2D layers of vdW materials are widely used as the nonmagnetic region due to
the successful combination with magnetic substrates, forming vertical heterostructures
[123, 124, 125, 17, 37, 39, 40]. This has opened interesting possibilities to exploit
material properties and create novel functionalities [32, 126].

Interactions between spins in a non-magnetic material and those from a FM or
AFM crystal in close proximity have expanded spintronics research [127]. The inter-
actions may be due to non-vanishing wave-function overlap of localized moments in
the magnetic crystal with electrons in a 2D layer [128, 129, 130]. The first 2D obvious
candidate for study magnetic proximity-induced interactions was graphene, where a
spin splitting of 5 meV was predicted when graphene was deposited on an insulating
FM EuO substrate [129, 131], motivating the successful epitaxial growth of EuO on
graphene [123, 132]. Experiments with different FM substrates have reported magnetic
exchange fields (MEF) induced on graphene of ∼14 T (when on EuS) [124], and ∼0.2
T (on YIG) [125]. Magnetic-proximitized interactions clearly allow for the effective
control of the spin DoF in 2D materials, a fundamental element in spintronic devices.

Contrary to graphene, semiconducting TMDs possess a sizable band gap and in-
trinsic spin valley coupling due to SOC and broken inversion symmetry, allowing extra
couplings when TMDs are in proximity to other materials. TMD valleytronics appli-
cations require the lifting of valley degeneracy, which has been achieved only by the
application of large magnetic fields [121], so that magnetic proximity effects may pro-
vide more practical alternatives [17, 37]. Indeed, proximity effects on TMD monolayers
when on a FM insulator substrate [35, 133, 134, 89, 135, 130, 38] are predicted to lift val-
ley degeneracy due to broken time reversal symmetry and exchange fields [35, 44, 134].
Experiments found a few meV valley splitting in a WSe2 monolayer on a EuS FM
substrate [17]. WSe2 on another FM substrate, CrI3, [37, 38] was found to exhibit a
slightly larger valley splitting (' 3.5 meV). A giant splitting of 300 meV, equivalent
to a magnetic field of 3000 T was predicted for a MoTe2 monolayer on EuO [35, 44],
together with a sizable Rashba field (. 100 meV). Moreover, the manipulation of exci-
tons has been proposed in the same heterostructure by rotating the magnetization of
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the substrate [90].
Magnetic proximity interactions from AFM crystals have been less explored than

the FM case. Only a few theoretical works report proximity effects considering AFM
substrates and TMDs [135, 130, 136]. However, it is predicted that Mn-based com-
pounds such as manganese chalcogenophosphates MnPX3 (X = S, Se) may have an
AFM order commensurate with their hexagonal unit cell in the monolayer limit, which
couples to the valley DoF [137]. This is an important fact because AFM order would be
active in the monolayer limit, allowing AFM proximity effects in vdW heterostructures
with honeycomb lattices.

A nearly unexplored field is related with the behavior for electrons in magnetic
proximitized finite-size samples with defined edges in the nonmagnetic region, as those
experimentally available and described in Section 2.1.2. The results we will describe
in Chapter 4 reveal electrons acquires out-of-plane as well as in-plane spin polarization
when a MoTe2 zigzag ribbon is in proximity to a EuO substrate. The electronic states
lie in the 2D bulk energy gap and they are extended along the zigzag edges of the
finite-size system. By turning on an electrostatic gate in the combined system, tunable
spin-polarized edge currents are predicted to occur due to the proximity to the EuO
substrate. Additionally, different and intriguing effects such as augmented Rashba
parameters and pseudohelical edge states that carry pure spin currents are predicted in
zigzag and armchair-terminated MoTe2-AFM hybrids, respectively, as we will explain
in Chapter 5.

2.6 Spin Currents

The flow and control of electron spin rather than the electron charge was first pro-
posed by the seminal Datta and Das spin field-effect transistor (SFET) in narrow-gap
semiconductors, arguing that a current modulation arises from spin precession due to
SOC in the structure [138]. The SFET of Datta and Das consist of FM electrodes
as spin injector and spin detector, source and drain respectively, and a narrow-gap
semiconductor as the central channel, where the spins precess due to SOC. The SOC-
induced spin precession is of the form of the Rashba Hamiltonian term in 2D systems
[Eq. 2.13], which can come from intrinsic sources, such as broken inversion symmetry,
as explained in Section 2.4. Interestingly, the spin-dependent device (SFET) opera-
tions do not depend on external magnetic fields, but on an electrode (gate bias), which
control the spin precession rate [32].

Spintronic devices promise enhanced performance over conventional electronics by
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simultaneously exploiting the flow of electric charge and the magnetic moment (spin)
in a material [139, 140]. Spin-based electronic devices such as transistors (SFET for
example) require spin currents, just as conventional electronic devices require charge
currents [139]. Spin currents have the advantage that they can be pure, that is, the
flow of spin angular moment is not accompanied by any net charge transport, allowing
more efficient transfer information, as schematically shown in Fig. 2.8(c). In traditional
electronic circuits, electrons propagate with an equal number of spin up and spin down
along the same direction, so that the total charge current in that direction I = I↑+I↓ is
spin unpolarized, as shown in Fig. 2.8(a). Spin currents are substantially different from
the more familiar charge currents because spin currents transport a vector quantity. On
the other hand, spin-polarized charge currents also are different from pure spin currents
because they transport charge and can be accompanied by a net spin current, as shown
in Fig. 2.8(b) [114]. Generating spin currents have converted in an emergent topic in

  

Figure 2.8: The classification of spin IS and charge I currents in metal and semi-
conductor spintronic systems corresponding to spatial propagation of spin up (white
arrows) and spin down (black arrows) electronic wave packets carrying spin-resolved
currents I↑ and I↓: (a) conventional charge current I = I↑+ I↓ 6= 0 is spin-unpolarized
IS = ~

2e(I
↑ − I↓) ≡ 0; (b) spin-polarized charge current I 6= 0 is accompanied also by

spin current IS 6= 0; and (c) pure spin current IS = ~
2e(I

↑ − I↓) 6= 0 arising when spin
up electrons move in one direction, while an equal number of spin down electrons move
in the opposite direction, so that total charge current is I ≡ 0 [114].

spintronics field since the prediction of dissipationless spin currents in 2004 [33]. In a
2D system with substantial Rashba-type SOC due to structure inversion asymmetry,
spin currents are intrinsic and always accompany charge currents [141, 33].

The novel spin currents we will describe in Chapter 4 follow the Bloch equation
of spin-1/2 particle for eigenstates in a Rashba-type SOC system [33], such as zigzag-
terminated TMD ribbons. The spin currents along the zigzag edges of a TMD ribbon
(MoTe2) acquire external Rashba and exchange fields from a FM substrate (EuO) due
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to the induced MEF, and they are polarized both, in-plane as well as out-of-plane,
where the former case is due to the extrinsic Rashba field as in Eq. 2.22, and the
latter is due to the competition of intrinsic SOC and exchange field. Our finite-size
MoTe2-EuO combined system complements recent spin current experiments on devices
containing EuO and/or 2D materials [142, 143, 144], bringing TMDs to this exciting
area.
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Chapter 3

Stacking Change in MoS2
Bilayers Induced by Interstitial
Molybdenum Impurities

Summary

In this Chapter, we use the vdW-DF approach to reveal the electronic and structural
properties of molybdenum impurities between MoS2 bilayers. We find that interstitial
Mo impurities are able to reverse the well-known stability order of the pristine bilayer,
because the most stable form of stacking changes from AA’(undoped) into AB’ (doped).
The occurrence of Mo impurities in different positions shows their split electronic lev-
els in the energy gap, following octahedral and tetrahedral crystal fields. The energy
stability is related to the accommodation of Mo impurities compacted in hollow sites
between layers. Other less stable configurations for Mo dopants have larger interlayer
distances and band gaps than those for the most stable stacking. Our findings sug-
gest possible applications such as exciton trapping in layers around impurities and the
control of bilayer stacking by Mo impurities in the growth process.

This part of the work was done in collaboration with Dr. Jhon González and Dr.
Andrés Ayuela from Donostia International Physics Center (DIPC), San Sebastián,
Spain. A report of these results is published in Ref. [77].
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3.1 MoS2 bilayers with Mo Impurities

3.1 MoS2 bilayers with Mo Impurities

The MoS2 bilayer systems are described by using density functional of vdW (vdW-DF)
calculations within the SIESTA method [81]. To include impurities, the structures of
the MoS2 bilayers were extended to a 3× 3 MoS2 supercell, using PBC. We are dealing
with a diluted regime corresponding to one impurity every 54 atoms in the unit cell,
around 2% doping reasonable in experimental setups [23]. Further technical details are
included in Appendix A.

Our results for the stability order of the pristine bilayers show that the stacking
AB is the most stable nearly degenerated with the AA’ stacking at a total energy
of 0.7 meV per atom, followed by the AB’ stacking with 3.3 meV per atom. Note
that depending on the details of different calculations the ground energy stacking can
exchanging between AB and AA’ [145], and the AB’ stacking remains as the third state
in stability. [145, 30, 87, 76].

We then include Mo atoms as intrinsic impurities within the interlayer region for
MoS2 bilayers at different inequivalent positions, as shown in Fig. 2.4. The Mo impurity
is labeled as Moimp. The initial absorption sites for Moimp within the MoS2 bilayer are
assumed to follow Mo absorption sites as in MoS2 monolayers [146, 147]. The Mo
impurity position is then labeled relative to the bottom layer in B (bridge), H (hollow),
T (top over Mo) and T’ (top over S). The MoS2 bilayer structures with the impurity
in the interlayer region are fully relaxed, to allow the optimized lattice parameters
and atomic coordinates to be obtained. More detailed information on the relaxed
geometries is included in Appendix A. The binding energy can then be calculated
using Ebinding = ETotal − Ebilayer − Eimp, where ETotal is the total energy of the MoS2

bilayer with the impurity, Ebilayer is the energy of the corresponding final pristine MoS2

bilayer (either AA’ or AB’), and Eimp is the energy for the isolated Moimp atom.

3.1.1 Energy and Geometry

Because the most stable configuration with Moimp belongs to the 2H-phase, here we
discuss the impurity properties between bilayers focusing on the AA’ and AB’ stacking.
The discussion on the 3R-phase is in Appendix A.

Figure 3.1 shows the total and binding energies for the different 2H stacking and
impurity positions. The binding energies are negative, which indicates that the Mo
impurity atoms are indeed adsorbed in the interlayer region of the MoS2 bilayer. The
binding and total energies exhibit the same trend in terms of stability. The results
in increasing order of stability shows that in the presence of the interlayer Moimp, the
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Figure 3.1: Total and binding energy as a function of the structural configurations of
Mo impurities within the MoS2 bilayer. The red spheres indicate the Mo impurity in
each configuration. The relaxed structures are included, grouped in octahedral (T-AB’
and H-AA’) and tetrahedral (T’-AB’ and T’-AA’) structures of sulfur atoms around Mo
impurities. The zero energy point is set for the most energetically favorable structure,
namely, the T-AB’ configuration. The top insets show the octahedral and tetrahedral
configurations for the Moimp atom, and the relaxed side and top views structures are
given for each configuration.

T-AB’ bilayer configuration is the most energetically favorable. This configuration has
AB’ stacking with the Moimp superposed with two Mo atoms as seen from above. Note
that the T-AB’ configuration is reached from the input that has the Moimp placed at
the bridge (B) position in the AA’ stacking.

The next most favorable configuration is H-AA’, with the Moimp in the hollow
position, in which the bilayer structure maintains the AA’ stacking. The H-AA’ case
is less stable than T-AB’ by about 1.5 eV. On the right hand side, the configurations
labeled T’-AB’ for AB’ stacking and T’-AA’ for AA’ stacking are energetically close,
and the least stable.

We classify the relaxed configurations according to how the Moimp is related struc-
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turally to its neighboring sulfur atoms [148, 149]. The T-AB’ and H-AA’ configurations
form octahedral sites around the Moimp. These configurations have a coordination num-
ber of six, corresponding to the six neighboring sulfur atoms. The T’-AA’ and T’-AB’
configurations for the Moimp form a tetrahedral structure with a coordination number
of four, then, the sulfur atoms in the top and bottom layers form a tetrahedral site for
the Moimp. These octahedral and tetrahedral environments are shown schematically at
the top of Fig. 3.1. It is noteworthy that regardless of the final stacking, octahedral
configurations are the most stable.

3.1.2 Electronic Properties

Results showing the band structures and the local density of states (LDOS) projected in
real space for some of the considered configurations are presented in Fig. 3.2. We focus
on the impurity in-gap states near the Fermi energy introduced by the Moimp atom,
indicated by the areas enclosed by orange rectangles. The band structures of the most
stable configurations show three distinctive in-gap states, joined in two groups, labeled
as regions 1 and 2 with degeneracies of one and two, respectively. Although the Moimp

in these two configurations presents an octahedral sulfur environment, the in-gap bands
present slightly different dispersive behavior. In region 1, the band for the T-AB’ case
is more dispersive than the corresponding band for the H-AA’ configuration, which
is almost flat. The states in region 1 mainly have dz2 orbital character, as shown in
the LDOS of panels (d) and (e). Note that in region 1, the surrounding region of the
impurity for the T-AB’ case has some hybridization with bilayer orbitals, which is not
observed for the H-AA’ case. In region 2 of the T-AB’ case, there are two energy bands
which are mainly non-bonding Moimp d orbitals with the neighboring sulfur atoms,
as shown in the LDOS in panels (d) and (e). By comparing the T-AB’ and H-AA’
configurations, the stability order can be associated with the widening of the bands in
regions 1 and 2 and to the displacement of the bands in region 2 to lower energies in
the T-AB’ configuration. The band structures in the T-AB’ and H-AA’ configurations
are spin-compensated and related to the impurity in an octahedral sulfur environment.
We now focus on the T’-AA’ and T’-AB’ cases. These two configurations have similar
energy band structures and are found to have close energies. Both systems exhibit spin
polarized behavior with a total magnetic moment of 2µB, which is determined by a
similar Moimp tetrahedral environment. In particular for the T’-AA’ configuration, the
spin up and spin down components of the spatial resolved LDOS are shown in Fig.
3.2 panel (f). The state in region 1 has a dz2 orbital character; however, it is above
the Fermi level. The LDOS of the lower impurity states, the up states in region 3
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Figure 3.2: (a-c) Band structures for the given configurations. GS in T-AB’ configu-
ration indicates the ground state. The Fermi energy is set to 0 eV. Orange rectangles
enclose the Moimp bands separated into several different energy regions, labeled as 1,
2 and 3. (d-f) Local density of states (LDOS) projected in space for the Moimp bands
in the band gap region of the MoS2 bilayer.

and the spin down component in region 2 are nearly equal, depleting the LDOS in the
Moimp-S bond direction as in the T-AB’ case. However, the states responsible for the
spin polarization in the T’-AB’ and T’-AA’ configurations are the spin up d-orbitals in
region 2, which are along the Moimp-S bonds.

We also find that the LDOS is localized not only on the Moimp, but also on one
of the MoS2 layers. This layer asymmetry indicates that doping by electrons or holes
could spatially differentiate between the two layers in the MoS2 bilayer, a finding that
could be of use in optoelectronic applications [150, 85].

The electronic structure for the impurity level states is best understood using crystal
field theory. We analyze the ligand field splitting for the Moimp d-orbitals produced by
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the interactions with the sulfur ligands for the octahedral and tetrahedral sites. The
bonding and non-bonding interactions of d-orbitals for octahedral and tetrahedral sites
are in agreement with the energy level scheme shown in Fig. 3.3. We consider the z-axis
perpendicular to the layers and the x and y axes in the in-plane layer. In the octahedral
environment for the T-AB’ and H-AA’ configurations, the sulfur ligands overlap less
with the in-plane dxy and dx2−y2 orbitals, these orbitals are therefore non-bonding and
have the lowest energy. The dz2 orbital remains non-bonding at an intermediate energy,
interacting less with the sulfur atoms. We next find that the dxz and dyz orbitals are
more strongly directed and interact with the sulfur atoms along Moimp-S bonds, lying
at higher energies, as is showed in Fig. 3.3(a). In the case of tetrahedral environment for
T’-AB’ and T’-AA’, shown in Fig. 3.3(b), the dxy and dx2−y2 orbitals behave similarly
to the octahedral structure; however, the dxz and dyz orbitals exchange roles with the
dz2 orbital. Thus, the dz2 orbital in the tetrahedral environment interacts more with
the sulfur ligands increasing its energy, as shown for region 1 of Fig. 3.2(c) and (f) in
the T’-AA’ case. The level filling help to explain why the tetrahedral cases have spin
polarization, and a total magnetization of 2µB, as shown by the arrow counting.

Figure 3.3: Ligand field splitting for Moimp d-orbitals produced by the neighboring
sulfur atoms in (a) octahedral and (b) tetrahedral environments.

The main effect in our calculations is the interaction of the Mo impurity with the
MoS2 layers in the order of electron volts. The effect of SOC in the stacking stability
is expected to be minimal although it would split bands near the Fermi level [26, 86].
Since the SOC is particularly noticeable in materials without inversion symmetry [151],
we can expect the following effects. On the one hand, the pristine bilayers in the
2H-phase present point-center inversion symmetry, and the band structure remains
spin degenerate even in the presence of SOC [51, 82]. SOC can change the pristine
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bilayer bands in the 3R-phase because the lack of inversion symmetry would breaks
the spin degeneracy and could lead to valley dependent spin polarization [152]. On
the other hand, we can expect a splitting of the Moimp-bands due to the presence of
spin-orbit and the lack of inversion symmetry in the tetrahedral configurations [see
Fig. 3.3(b)]. However, the impurity in the tetrahedral arrangement is not the most
stable configuration by an energy difference of 1.7 eV, much large than values typically
associated to the SOC energies in TMD structures.

We now consider the gap changes in the bulk bands, shown in light-color in Fig. 3.2,
and induced by the Moimp. It is important to mention that the indirect gap along Γ−K
direction of 1× 1 unit cell becomes a direct band gap at the Γ-point due to the k-space
folding of large 3×3 unit cell. The calculated pristine band structure with 1×1 unit cell
for the MoS2 bilayers and diverse stackings are showed in Subsection 2.1.3. It is well
known that band gaps calculated using both, GGA and LDA infra-estimate the values
produced in experiments, so we discuss differences in magnitude gaps. The layer-gap
is indicated by the energy difference between the valence bulk band maximum and the
conduction bulk band minimum at the Γ-point. The bulk energy gaps of the pristine
MoS2 layers are correlated with the interlayer distances. In Table 3.1 we present the
interlayer distances and layer-gaps for pristine and Moimp MoS2 bilayers configurations.
We check that the gap and distances for the AB’ pristine stacking are ' 0.1 eV smaller
and 0.03 Å shorter than the values for the AA’ pristine case. The layer-gaps and
the interlayer separation including Moimp show larger values in comparison with the
pristine cases. Among the Mo doped systems, the most stable T-AB’ case has the
smaller layer-gap and the shortest interlayer separation. The layer-gap is ' 0.2 eV
above the AB’-pristine, and the interlayer separation is 0.03 Å larger than that of AB’-
pristine. The layer-gap values for the H-AA’ and the T’-AB’ (T’-AA’) increase from
the T-AB’ case by ' 0.2 eV and by 0.3 (0.42) eV respectively. These gap differences are
somewhat correlated with the difference between MoS2 layer-layer distances, ∼ 0.56 Å,
between the T-AB’ and H-AA’ case, a value that increases up to ' 0.4 (' 0.75) Å for
the T’-AB’ (T’-AA’) configurations. The increase in the layer-bandgap with interlayer
distance is explained by a weaker interlayer coupling.

The interlayer distances in the proximity of the impurity are larger than those
far from it, which indicates the role of local strain. Furthermore, experiments prove
than the band gap can be controlled by strain [153, 154, 155]. We propose that the
electronic and structural modifications around the impurity could be used in a simi-
lar way to electronic confinement for embedded quantum dots. Current experimental
techniques employing cross-sectional scanning transmission electron microscope anal-
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3.1 MoS2 bilayers with Mo Impurities

Configuration ∆z (Å) Layer-gap (eV)
Pristine AB 6.02 0.88
Pristine AA’ 6.07 1.02
Pristine AB’ 6.04 0.93

T-AB’ 6.07∗ 1.12
H-AA’ 6.63∗ 1.34
T’-AB’ 6.45∗ 1.42
T’-AA’ 6.83∗ 1.54

Table 3.1: Relaxed parameters for MoS2 pristine bilayers and Moimp bilayers, given
in the order of stability. The interlayer Mo-Mo distance is given by ∆z. For doped
configurations, (∗) indicates distances measured near the Moimp. Layer-gap is defined
by the energy difference between the valence bulk band maximum and the conduction
bulk band minimum at the Γ point.

ysis in encapsulated TMD materials can provide evidence of impurity species being
trapped in the interstitial region [156, 24]. This effect thus has potential applications
for optoelectronic devices as exciton traps around Mo-doped bilayers. A number of dif-
ferent experimental techniques can be used to corroborate our theoretical predictions,
for instance angle-resolved photoemission spectroscopy and cross-sectional scanning
transmission electron microscope analysis [157, 156]. Interestingly, the interlayer dis-
tance increase and the bandgap changes in realistic MoS2 bilayer samples when MoS2

nanoparticles are trapped in the interlayer region [31].

3.1.3 Stacking Change

Another possible implication of our results is that transition metal ions could be used
to engineer the stacking between TMD bilayers and to tune their electronic properties.
In the T-AB’ and H-AA’ configurations, the Moimp is located within sulfur ligands
forming octahedral sites. In these two configurations, the Moimp presents structural
differences in the relative position respect to the nearest Mo atoms, belonging to the
top and bottom MoS2 layers. The Moimp bonding produces a stacking change in T-
AB’ related to the total energy decrease. The interlayer Mo-Mo distance around the
impurity is smaller around 0.1 Å than the interlayer distance away from the impurity.
The shorter distance promotes the hybridization of the impurity states with the layer
states increasing the dispersion of the in-gap impurity states.

A scheme for the stacking change it is shown in Figure 3.4. Starting from the
AB’ stacking, the AA’ stacking is found by shifting a layer in the armchair direction.
The maximum sliding coordinate correspond to the distance of the Mo-atom to the
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3.1 MoS2 bilayers with Mo Impurities

center of the hexagon, a0 ≈ 1.86 Å. The energy profile along the sliding coordinate
is calculated shifting the top layer, then fixing the in-plane coordinates for the Moimp

and a MoS2 unit far from the impurity and relaxing. Figure 3.4(a) shows the total
energy along the above discussed sliding route. Away from the T-AB’ configuration the
energy increases smoothly passing through an energy maximum before reaching the
final T’-AA’ configuration. The maximum energy is found for a displacement of 1.76
Å (≈ 0.95 a0) being 5 meV above the T’-AA’ value. It is noteworthy that the total
energy as a function the sliding coordinate shows an inflexion point corresponding to
the point where the slip force is maximum. That point corresponds to a displacement
of 0.69 Å (≈ 0.37 a0) in the armchair direction. The slipping force calculated as the
derivative of the total energy as a function of displacement shows a maximum force
around 2.1 eV/Å, similar to the forces calculated with DFT. The Mo-Mo interlayer

Figure 3.4: (a) Energy profile and (b) interlayer distance (∆z) by sliding between the
2H stackings. The sliding coordinate goes along the armchair direction. Full lines are
just guiding to the eyes. Energies and distances shown are referenced with respect to
the most stable configuration, that is, the T-AB’.

distance denoted as ∆z [Fig. 3.4(a)] follows a similar trend as the total energy. For
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the T’-AA’ configuration, the interlayer distance is 0.48 Å larger than the value for the
most stable configuration T-AB’. The maximum ∆z is found for a displacement of 1.76
Å ≈ 0.95 a0 where the separation ∆z is 10 mÅ higher than in T’-AA’.

3.2 Final Remarks

We have studied the structural and electronic properties of MoS2 bilayers with Mo
impurities in the interlayer region. We find that the most stable configuration is T-
AB’, with an energy gain above the vdW interaction because the Mo impurity levels
strongly hybridize with the nearest atoms. A change in the stacking stability order
from AA’ to AB’ is observed to be induced by Mo impurities, with the corresponding
variation in energy gap. Thus, it is possible to engineer the stacking between TMD
bilayers during the growth process, enabling their electronic properties to be fine-tuned.
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Chapter 4

Tunable Spin-Polarized Edge
Currents in Proximitized
Transition Metal Dichalcogenides

Summary

Motivated by the successful combination of 2D materials with magnetic insulator sub-
strates [123, 124, 125, 17, 37, 38, 39, 40], and the prediction of a giant splitting (300
meV) and a sizable Rashba field (. 100 meV) due to the induced magnetism when a
MoTe2 monolayer is deposited on a EuO substrate [35, 44], here we provide the missing
piece on how TMD edges are affected by proximitized magnetism.

In this chapter we explore proximity-induced ferromagnetism on TMDs, focusing
on MoTe2 ribbons with zigzag edges deposited on FM EuO. A magnetized 3OTB model
incorporates exchange and Rashba fields induced by proximity to EuO or similar sub-
strates, allowing us to explore the electronic eigenstates and associated spin-polarized
currents in the proximitized MoTe2 ribbon. The magnetized 3OTB Hamiltonian uses
first principles and experimental parameters as input, allowing us to model realistic sys-
tems where effective Rashba and exchange fields are transfer onto the TMD. We find
that for in-gap Fermi levels, electronic modes in the nanoribbon are localized along
the edges, acting as 1D conducting channels that carry tunable out-of-plane as well as
in-plane spin-polarized edge currents.

The Chapter is organized in the following way: first, we briefly introduce pristine
MoTe2 zigzag ribbons. Here, note that the edge modes are in close relation with 1D
Rashba systems as described in Subsection 2.4.1. Then in Section 4.2 we introduce our
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4.1 Pristine MoTe2 Zigzag Ribbons

magnetized 3OTB model in order to account for the proximity effects on the ribbon.
The magnetized 3OTB allows us to obtain the spin projections, as explained in Section
4.3. With the magnetized Hamiltonian and spin projections in hand, we calculate both,
pristine and defective edge spin currents. As we will see in Subsection 4.4.2, we report
that although vacancies (the most common type of defects in MoTe2 flakes) do indeed
affect the spin currents in the MoTe2-EuO system, they do so strongly only at high
defect concentration. Our calculations show that reasonable defect concentrations (less
than about 3% on-edge) reduce the spin currents by at most a factor of two, and do
not totally suppress them until higher concentrations.

This part of the work has been done in collaboration with Dr. O. Ávalos-Ovando
and Dr. S. E. Ulloa from Ohio University, Athens, Ohio, USA. A report of these results
is published in Ref. [36].

4.1 Pristine MoTe2 Zigzag Ribbons

The hexagonal lattice in TMDs allows clean edges to be labeled as zigzag or armchair-
terminated (as in graphene), with the first being much more common and stable in
the laboratory [67, 9, 158, 20, 10, 159]. Zigzag-terminated TMD structures reveal rich
1D behavior, such as metallic edge modes [68, 160, 69, 161, 9], and helical states that
host Majorana bound states at the ends of a ribbon [69]. Twin boundaries have also
been shown to host 1D charge density waves [58]. Non-magnetic 1D edge states have
also been reported recently in topological superconductors [162], graphene superlattices
[163], and for graphene on TMDs [111].

The intrinsic lack of inversion symmetry in the pristine 2D MoTe2 monolayer yields
two different terminations of zigzag edges, with outer Mo or Te atoms [69], as shown
in Fig. 4.1(a). The zigzag-terminated MoTe2 ribbons are constructed in such a way
that PBC are along the x direction (both armchair edges are stitched together), hence
the zigzag terminated PBC ribbon is acquired; at y = 0 we obtain the Mo-zigzag edge,
while at y = H the Te edge is obtained [106]. This intrinsic edge asymmetry produces
different edge state dispersions and allows Rashba-type SOC along the edges of the
ribbons [69].

We first model pristine MoTe2 zigzag ribbons with dimensions of N = 40 and
H = 40, that is Nsites = N × H = 1600 Mo sites, equivalent to a ribbon with width
of ∼125 Å, and length of ∼144 Å. After numerically diagonalization of the pristine
3OTB Hamiltonian in Eq. 2.8 and Fourier transform the states to extract the respective
discrete momenta along the ribbon length, we obtain the energy spectrum for the
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4.1 Pristine MoTe2 Zigzag Ribbons
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Figure 4.1: (a) Top view of a free-standing pristine MoTe2 ribbon with zigzag Te and
Mo-edges. N is the length and H is the width of the ribbon. For this example, N = 5
and H = 5, so that the ribbon have Nsites = N × H = 25 Mo sites. (b) Schematic
representation of the MoTe2 ribbon in proximity to a FM substrate such as EuO. Eu
atoms are hidden directly below the Mo atoms (blue spheres).

pristine ribbon in Fig. 4.2(a). Here, the K and K ′ valleys are located at kx = −2π/3a
and k′x = 2π/3a, respectively, where a is the MoTe2 lattice constant. K and K ′ points
are indicated as dashed gray lines in Fig. 4.2. Note that both, the valence bulk maxima
and the conduction bulk minima are located at the K valleys and related each other
by TRS as in the 2D MoTe2 monolayer showed in Fig. 2.6(a). Due to the finite size
structure and the asymmetry at the edges, two Rashba-type spin-polarized edge modes
appear lying in the bulk gap, the Mo edge mode and the Te edge mode, which have
metallic character. The Mo mode has positive mass and resides at the Mo edge, while
the Te mode has negative mass residing at the Te edge, as is verified through the
projected wave functions in the ribbon real space [see Fig. B.1 of Appendix B]. For any
in-gap Fermi level and around kx = 0, the edge modes have opposite group velocity
and spin polarization because TRS and Rashba-type SOC [69].

As we show below, the energy dispersion is modified when the MoTe2 zigzag ribbon
is on the EuO substrate, specially for the edge modes, which are affected by proximity-
induced magnetism. For that, we introduce our magnetized 3OTB model accounting
for proximity interactions induced by the FM substrate, which is commensurate with
the 2D MoTe2 lattice.
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 zigzag ribbon MoTe
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Figure 4.2: Energy spectrum for the MoTe2 zigzag-terminated ribbon projected with
spin sz =↑, ↓, of size N = 40, H = 40 (1600 Mo sites) for the pristine case in panel
(a), when the MoTe2 ribbon is on the EuO substrate in panel (b). In both cases,
the Mo edge modes are shown as green symbols, while orange symbols stand for the
Te edge modes (see insets). Black (gray) dots characterize the bulk energy dispersion
for spin up (down). In (a), the Mo and Te edge modes as well as the valence and
conduction bulk states are TRS related. In (b), the spectrum shows TRS breaking,
associated with a valley splitting in the valence bulk bands, as well as to strongly
spin-polarized edge modes in the bulk gap. The pristine in (a), and the magnetic-
proximitized in (b) dispersions correspond to systems schematically shown in Fig. 4.1(a)
and (b) respectively.

4.2 Magnetized 3OTB Hamiltonian

To describe the low-energy spectrum of a commensurate FM-TMD heterostructure
over the entire Brillouin zone, as well as to model it in real space, we generalize the
symmetry based low-energy effective k·p Hamiltonian (LEH) of Ref. [35] (which includes
exchange and Rashba fields), into a successful magnetized 3OTB model, by including
the proximity-induced exchange and Rashba terms into the pristine 3OTB Hamiltonian,
which was described in Subsection 2.3.1.

The nearly commensuration of the MoTe2-EuO heterostructure [35, 44], as the EuO
(111) surface and TMD lattice have only a 2.7% mismatch, incorporates the substrate
effects into the pristine MoTe2 as onsite magnetic exchange and Rashba fields, as

HMoTe2−EuO = HMoTe2 + Hex + HR. (4.1)

Here, HMoTe2 is the pristine TMD Hamiltonian given in Eq. 2.8, which is written in the
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4.2 Magnetized 3OTB Hamiltonian

3O basis {|dz2 , s〉 , |dxy, s〉 ,
∣∣∣dx2−y2 , s

〉
}, with spin index s =↑, ↓ [60]. The magnetized

terms, the exchange (Hex) and the Rashba Hamiltonian (HR) are obtained under a
basis transformation from the LEH. Note that the electronic basis for the LEH is
{|d0, s〉 , |d±2, s〉}, the same as the effective k · p model described in Eq. 2.2 with

d0 = dz2 and d±2 = 1√
2

(dx2−y2 ± idxy). (4.2)

The exchange term in this basis is given by

Hex = −sz(Bcσ+ +Bvσ−), (4.3)

while the Rashba term is given by Eq. 2.22, which is

HR = λR(τσxsy − σysx).

σ± = 1
2 (σ0 ± σz). σβ, sβ (β = 0, x, y, z) are the Pauli matrices acting in the orbital and

real spin space, respectively, Bc = 206 meV and Bv = 170 meV are the effective ex-
change fields experienced in the conduction and valence band of the MoTe2 monolayer,
respectively, λR = 72 meV is the Rashba field parameter and τ is the valley index. The
exchange Hamiltonian is diagonal in spin representation, with matrix elements

〈d0, s|Hex |d0, s〉 = −sBc and 〈d±2, s|Hex |d±2, s〉 = −sBv . (4.4)

The Rashba field mixes spin and orbital components, with matrix elements

〈d0, ↑|HR |d±2, ↓〉 = 〈d±2, ↓|HR |d0, ↑〉† = −iλR(τ − 1), (4.5a)

〈d0, ↓|HR |d±2, ↑〉 = 〈d±2, ↑|HR |d0, ↓〉† = iλR(τ + 1). (4.5b)

In order to construct the magnetized 3OTB Hamiltonian, we unfold the electronic
states from Eq. 4.2 as

|d0, s〉 = |dz2 , s〉 , (4.6a)

|dxy, s〉 = −i√
2

(|d+2, s〉 − |d−2, s〉), (4.6b)∣∣∣dx2−y2 , s
〉

= 1√
2

(|d+2, s〉+ |d−2, s〉). (4.6c)

Then, with Eqs. 4.4, 4.5, and 4.6, we construct the exchange 〈φµ, s|Hex |φµ, s〉 and
Rashba 〈φµ, s|HR

∣∣φµ′ , s′
〉

(µ, µ′ = 1, 2, 3) matrix elements in the 3O basis, where φ1 =
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4.2 Magnetized 3OTB Hamiltonian

dz2 , φ2 = dxy and φ3 = dx2−y2 . Finally, the exchange and Rashba fields represented in
the 3O basis are

Hex,↑↑ = −Hex,↓↓ =


−Bc 0 0

0 −Bv 0
0 0 −Bv

 and HR,↑↓= H
†
R,↓↑=

√
2λR


0 −1 i

1 0 0
−i 0 0

 .
(4.7)

Figure 4.3 shows the continuous energy dispersion for the 2D MoTe2 monolayer on
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Figure 4.3: Band structure along high symmetry points of the BZ for the 2D MoTe2
monolayer on EuO. Blue and red bands stand for spin up and spin down, respectively.
In panel (a), they are obtained from the LEH near the K and K ′ valleys, that fits well
DFT band structure results in (b) [35]. Green (orange) solid lines indicates the band
structure obtained from the magnetized 3OTB model [Eq. 4.1] for spin up in blue and
spin down in red, which take into account the magnetized terms from Eqs. 4.7.

EuO, as blue (spin up) and red (spin down) colors, in panel (a) from the LEH, in
panel (b) from DFT calculations of Ref. [35]. Our magnetized 3OTB model (green and
orange solid lines) is in excellent agreement near the K and K ′ valleys with respect to
the LEH and DFT models for both, the valence and conduction bands. Inclusion of
second NN hoppings for Mo atoms from Ref. [60], improves the agreement for momenta
away from the valleys (especially near the Γ point), but in the valleys the fitting does
not change. Our magnetized 3OTB model provides excellent description for energies ∼
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300 meV from the valence band edge, corresponding to hole doping levels of the order
of 1012 cm−2, similar to experimental doping values [164]. Notice that this 3OTB
exchange field Hamiltonian, with the right choice of TMD-substrate parameters and
appropriate boundaries, could be used to study other heterostructures of interest, such
as WSe2-CrI3 and WS2-MnO [37, 135]. This provides an efficient and reliable approach
to study different properties and behavior of the proximity-induced magnetism.

The magnetic proximitized vertical heterostructure we model here with the mag-
netized 3OTB Hamiltonian include a MoTe2 zigzag ribbon with 1600 Mo-sites [the
same size as the free-standing pristine case presented in Fig. 4.2(a)], although different
sizes do not qualitatively change results or main conclusions here. The combined finite
size MoTe2-EuO system is schematically shown in Fig. 4.1(b). The discrete energy-
momentum spectrum for the MoTe2-EuO finite size system near the bulk bandgap,
projected along the ribbon zigzag edge, is shown in Fig. 4.2(b). Clear differences are
seen to appear in the energy dispersion with respect to the free-standing case [compare
Fig. 4.2(a) and (b)] as we describe in detail in the next Sections.

4.3 Spin Projections

The magnetized 3OTB Hamiltonian in Eq. 4.1 allows us to obtain the spin projections
for the MoTe2-EuO finite size system, for then to obtain the edge spin currents. For
states written as |Ψ〉 =

∑
l,α cl,α,↑|ψl,α,↑〉+cl,α,↓|ψl,α,↓〉, the sum includes all metal l sites

in the ribbon, as well as the three orbitals α ∈
{
dz2 , dxy, dx2−y2

}
; the spin projections

〈Sl〉 = 〈Ψ|Sl|Ψ〉 with Sl=~
2sl (l =X,Y,Z), are given by

〈SX〉 =
∑
l,α

c∗l,α,↑cl,α,↓ + c∗l,α,↓cl,α,↑, (4.8a)

〈SY〉 =
∑
l,α

i(c∗l,α,↓cl,α,↑ − c∗l,α,↑cl,α,↓), (4.8b)

〈SZ〉 =
∑
l,α
|cl,α,↑|2 − |cl,α,↓|2. (4.8c)

Figure 4.4 shows the spin projections of energy spectrum near bulk gap along the zigzag
edges of the MoTe2 ribbon on EuO. The large intrinsic SOC in MoTe2 competes with the
proximity exchange field from the FM substrate, and leads to giant valley polarization
in the 2D bulk [35], as well as to strongly spin polarized edge-modes in the finite ribbon.
The spectrum shows broken TRS due to exchange fields both in bulk bands, as well
as on edge states dispersing through the midgap and hybridizing with bulk bands.
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Figure 4.4: Spin projections of energy spectrum near bulk gap along the zigzag edges
of a MoTe2 ribbon on EuO. In (a)-(b) the exchange fields for EuO Bv and Bc are
100%. (a) Shows spin projections along the Y direction (SY); (b) along the Z direction
(SZ). In (b) Te±, Mo± label in-gap 1D edge modes located on the Te and Mo-edges
termination, respectively. (c)-(d) Spectrum and SY, SZ for weaker exchange fields as
shown; notice smaller (larger) SZ (SY) projection amplitudes than in (a) and (b). Gray
lines indicate selected midgap Fermi levels used in Fig. 4.5. Color bar indicates positive
(negative) spin projection as blue (red) gradient.

Panels 4.4(a)-(b) show the spin component content along SY and SZ, respectively, for
EuO exchange fields. For comparison, panels (c)-(d) show the SY-SZ projection of the
spectrum for weaker exchange fields (set to 25% of the EuO values). Different exchange
fields could be achieved by different substrate surfaces, biaxial strains, and/or van der
Waals engineering of FM heterostructures [37, 130]. For exchange fields shown, there
are clear edge modes with dispersion in the bulk bandgap, and residing on either the
Te-edge (labeled Te±) or the Mo-edge (labeled Mo±), where the subindex sign labels
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4.4 Edge Spin Currents

helicity, and states appear with significant SY projection, canting away from SZ. This
Rashba field mixes the spin components in the MoTe2 ribbon, which provides overall
canting of spins, especially for the edge states. For the EuO full MEF, Fig. 4.4(a)-(b)
show that the Mo+ mode is non-degenerate and hybridized with the bulk valence band
for small k, an effect not present for weaker exchange fields [Fig. 4.4(c)-(d)] when the
Mo-edge modes are fully decoupled from the bulk and located midgap. In contrast, Te-
modes are always hybridized to the bulk conduction bands for |k| ' 0.5 π/a, regardless
of the exchange field strength. Notice the opposite group velocity of the different Mo-
or Te-termination edge states at given k values.

The EuO substrate breaks inversion symmetry, allowing an external Rashba field
[HR in Eq. 4.1] that generates spin mixing and canted spins for the edge states [59].
Here, the Rashba field is along the y-axis, confining the spin dynamics to the YZ plane
[165, 33]. It is clear that weaker exchange fields result in reduced SZ polarization, as
evident in Fig. 4.4(b)-(d), with larger SY projection as the ratio of λR/Bv increases.
As λR is in principle tunable via gate fields for a given substrate-specific exchange field
Bv, it is reasonable to anticipate that the overall spin projection (or canting) could be
tunable in a given structure at specific Fermi energy.

Essential elements in spintronics include being able to inject, manipulate or detect
spin polarization [32, 166]. The Te- and Mo-edge modes are strongly spin-polarized
along SZ–see Fig. 4.4. Te± and Mo± modes with opposite momentum (k → −k)
propagate in opposite directions with the same SZ projection, while the SY component
reverses for opposite momentum, as in Fig. 4.4(a)-(c). This behavior is unchanged
for larger λR/Bv ratios, although with larger SY projection, as the Rashba field is
effectively stronger [see Fig. 4.4(c)].

As we discuss next, edge spin currents are predicted to appear for Fermi levels in
the bulk energy gap of the magnetic proximitized finite size MoTe2-EuO system.

4.4 Edge Spin Currents

Our spin current calculations follow the approach described by Sinova et al. [33, 115],
which considers a Hamiltonian with substantial intrinsic Rashba-type SOC (as de-
scribed in Section 2.4) and effective Zeeman terms, similar to our case. They show that
an effective torque produced by electric fields in the x̂ direction tilts the spins along the
ŷ direction when moving with momentum ~p, creating a spin current in the y direction
given by

jspin
y =

∫
annulus

d2p

(2π~)2
~
2nz,~p

py
m
, (4.9)
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where nz,~p is the z component of the spin for an electron in a state with momentum ~p,
and m is the electron effective mass. The integration is performed over the annulus of
momentum states contributing to the spin current.

In our case, where extrinsic Rashba and exchange fields from the EuO substrate
affect the midgap states near the Fermi level of interest, the spin current along the l
spin projection [Eqs. 4.8] can be rewritten as,

jspin
l =

∑
states in
EF± δ2

〈Ψ|Slvx|Ψ〉 , (4.10)

where ~vx = ∂ε(k)/∂k = ~kx/m(k) is the group velocity, and the summation is over
an energy window δ around the Fermi level EF for right movers (positive momentum
kx, i.e., the direction of the charge current).

In the following, we discuss how to use this expression for calculating spin currents
for midgap electronic states in the MoTe2-EuO finite-size system, in both, the pristine
case and when defects such as vacancies are present in the combined structure.

4.4.1 Pristine Spin Currents

For pristine MoTe2 ribbons on EuO, the full spin current expression in Eq. 4.10 reduces
to jspin

l = k Sl~/m, (l = Y, Z), as each wave function has well-defined k momentum along
the edge [see Fig. B.1 in Appendix B], and effective mass m(k) at the corresponding
Fermi level.

To characterize the propagation along the 1D Te- and Mo-edges, we select different
in-gap Fermi levels to calculate the spin currents. The Fermi level can be shifted by
an overall gate field perpendicular to the TMD layer, allowing for tunable spin current
values and polarizations [167, 168].

Figure 4.5 shows spin currents for the MoTe2 ribbon with Fermi levels in Fig. 4.4(c)-
(d), with jl = mjspin

l /~ = k Sl. Given that the bulk current vanishes for in-gap Fermi
levels, the non-vanishing spin currents for such levels are contributed by only the Mo-
and Te-edge states and propagate along the edges of the ribbon. A 1D spin current
along the Mo-edge is shown for right-movers (k > 0) at EF1 in Fig. 4.5(a). At this Fermi
level, both spin-split Mo-modes contribute to the spin current with jY and jZ pointing
to negative and positive directions, respectively–notice no Te-modes contribute yet at
this level. As higher Fermi levels are reached, as in the case of EF2 and EF3, the
spin-polarized Te-modes are turned on, and contribute to the spin currents, as shown
in Fig. 4.5(b)-(c).
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Figure 4.5: Spin currents j = (jY, jZ) = mjspin/~ for system in Fig. 4.4(c)-(d), for both
Mo (green arrows) and Te (orange arrows) ribbon edges. Results for different Fermi
levels, EF1 (a), EF2 (b) and EF3 (c). The spin current is along the zigzag direction
(k > 0). The arrow’s size (direction) indicates the magnitude (orientation) of the spin
current. The magnetic substrate is not shown and the ribbon size is only schematic.
EF4 yields similar results to EF3 (not shown).

The spin currents along the Mo-edge are small in magnitude, and have nearly the
same polarization for all chosen Fermi levels, as shown by the green arrows in Fig. 4.5,
because the spin projections for both spin-split Mo modes nearly cancel each other. The
current orientation and magnitude do not significantly change for any midgap Fermi
level. This suggests that the effect of the EuO substrate on pristine Mo-edges (as
those experimentally available [9, 158, 20]) might indeed result in strong spin current
measurements/devices. The spin currents along the Te-edge vary drastically with Fermi
level, orange arrows in Fig. 4.5. The spin current for EF2 has a large jZ component and
non-vanishing jY, as only the Te+ mode contributes. However, the Te-edge spin current
becomes small and with reverse polarization for EF3 (or EF4), as both Te± modes
contribute with nearly the same magnitude and opposite polarization. The orientation
and magnitude difference of these two regimes is clearly seen in Fig. 4.5(b) and (c),
where the spin current flip is evident, showing spin currents that are canting away from
the MoTe2 ribbon. All these regimes give a great deal of tunability for possible spin
current devices on both edges. Accordingly, one could modulate the spin-polarized
currents along the Mo-edge, or simultaneously along the Te-edge of the zigzag ribbon,
by tuning the Fermi level across the structure [167, 168]. Similar spin-polarization
in graphene nanoribbons has been proposed as spin injector device [131, 121], with

51



4.4 Edge Spin Currents

perhaps some practical advantages in the current TMD-based structure.
As we describe above, the bulk current vanishes for in-gap Fermi levels, where 1D

spin currents for such levels are found, which are contributed by only the Mo- and Te-
edge states and propagate along the edges of the ribbon. Therefore, we have constructed
an effective 1D Hamiltonian accounting for the edge spin currents.

4.4.1.1 Effective 1D Model

The effective 1D Hamiltonian for the hybrid MoTe2-EuO edges is

Hα
eff(k) = εα − α[σ̂z + 1]tα↑ cos k + α[σ̂z − 1]tα↓ cos k

+σ̂z(tαSO sin k + bα)− σ̂ytαR sin k, (4.11)

H
β
eff(k) = εβ − β[σ̂z + 1]tβ↑ cos k + β[σ̂z − 1]tβ↓ cos k

+σ̂z(tβSO sin k + b)− σ̂ytR sin k + αRkσ̂z (4.12)

or in matrix form as

Hα
eff =

[
εα − α2tα↑ cos k + αtαSO sin k + αbα itαR sin k

−itαR sin k εα − α2tα↓ cos k − αtαSO sin k − αbα,

]
,

(4.13)
where α indicates Mo (α = 1) or Te (α = −1) edges, in terms of onsite energies
εα, effective bandwidths for the spin up/down tα↑/↓ bands, as well as Rashba tαR, and
diagonal SOC tαSO and exchange fields bα. The edge dispersion calculated from Eq.
4.12 is shown in Fig. 4.6(a). There is excellent agreement between numerical results
(symbols) and the fitted model (lines) 1 for all Mo- and Te-modes. This Hamiltonian
captures the spin content of the edge state dispersions and allows one to easily obtain
the spin currents for the system. Spin currents for Mo and Te modes, shown in Fig.
4.6(b)-(c), are sizable for Fermi levels in the bulk gap region. Notice the Mo+ mode
is never singly-populated, as bulk states in the valence band are also reached before
Mo− is populated, for EF . 0.1 eV. For EF ∼0.15 to 0.3 eV, both Mo-edge modes are
populated, and the spin current remains nearly constant and only present on that edge
throughout that EF -window. As the Te+ mode is reached only one spin branch at the
Te-edge is populated for EF ∼0.3 to 0.45 eV, with a correspondingly large spin current

1We obtain εMo = 550, tMo
↑ = 263, tMo

↓ = 254, tMo
SO = 16, tMo

R = 72 and bMo = 51 for the Mo modes,
and εTe = 1150, tTe

↑ = 407, tTe
↓ = 347, tTe

SO = 51, tTe
R = 72 and bTe = 51 for the Te modes, all in meV.
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Figure 4.6: (a) Analytical bands for Mo-edge (green lines) and Te-edge (orange lines)
from Eq. (4.12) and TB bands (gray dots and color triangles); Mo+,− and Te+,− bands
highlighted as up/down color arrows, for system in Fig. 4.4(c)-(d). (b) Spin current
components jZ (solid) and jY (dotted) obtained from analytical model for Mo-edge, and
(c) for Te-edge, for k > 0. Symbols in (b) and (c) are numerical values as seen in Fig.
4.5. The 1D effective analytical model captures the dispersions, wave functions and the
spin currents of the TB results.

on that border. The current drops when the Te− mode is reached for EF & 0.5 eV. The
spin current varies slowly, decreasing as the Fermi level reaches the conduction band.

4.4.2 Defective Spin Currents

Although nearly-perfect sections of both Te- and Mo-edges are found in experiments
[9, 158, 20], we have also studied the role of structural defects on the spin currents. We
find the spin currents fall with increasing defect concentration, but persist over realistic
ranges in experimental samples.

When the system contains defects such as vacancies (the most common type of de-
fects in MoTe2) along the edges (a detailed description for MoTe2 ribbons with defects is
in Appendix B), the associated midgap state wave functions exhibit oscillatory behav-
ior in space, produced by vacancy-induced backscattering. Consequently, momentum
is no longer a good quantum number, and each energy eigenstate can be written as
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4.4 Edge Spin Currents

|Ψ′〉 =
∑Nsites

l,α,k,s cl,α,k,s|ψl,α,k,s〉, such that the spin current can now be calculated as

jl =
∑

states in
EF± δ2

〈Ψ′|Slk̂x|Ψ′〉 , (4.14)

where k̂x is the momentum operator. In systems with defects, |Ψ′〉 for midgap states is
characterized through the properly normalized fast Fourier transform (FFT) complex
amplitudes for states obtained from the 3OTB model.

We have studied different vacancy configurations (number and location) at both
edges, including 1, 2, or 5 vacancies at either edge, corresponding to 2.5%, 5%, and
12.5% of vacancy concentration on the edge. We expect 2.5% to be a realistic upper
bound for the on-edge vacancy, as concentrations larger than 3% may seed crystalline
phase transitions [169, 170], not seen in stable ribbons/flakes. Two kinds of vacancies
are possible, from either the metal or chalcogen missing atom. When any edge vacancy
is present, the spin current along the opposite edge remains unaffected, since the pro-
jected orbital component (POC) of the defective edge is entirely decoupled from the
opposite ribbon edge. Similarly, when the vacancies are deep in the bulk, the edge spin
currents are not affected. Hence, in the following we only show results for defective
edges. As we will see, we find that at low concentration (. 2.5%) on either edge, the
spin current is smaller in magnitude but still sizable. Higher defect concentration, of
course, further suppressed the spin (and charge) currents associated with the midgap
states.

When analyzed in detail, we see that the presence of vacancies affects the jZ and jY
values the most at low energies, likely due to the high density of states there, and the
appearance of highly localized states in that energy range (EF ' 0.1-0.2 eV). For 2.5%
of either Mov or Tev present in the Mo-edge [Fig. 4.7(b)], we see that the magnitude
of jY decreases nearly by half, while in the Te-edge [Fig. 4.8(b)] remains nearly the
same as in the pristine edge. On the other hand, jZ remains qualitatively the same on
the Mo-edge for E & 0.5 eV [Fig. 4.7(c)], while on the Te-edge [Figs. 4.8(c)] it is only
sizable at energies when only the Te+ branch contributes to the DOS (≈ 0.3-0.5 eV),
and then drops to zero for higher energies.

When more impurities are present (5% and 12.5% on edge), Figs. 4.7 and 4.8 show
that the spin currents are strongly suppressed, as one would expect. We see that as
more vacancies are present on the edge, the spin currents exhibit stronger fluctuations
through the midgap. Ensemble averaging would be expected to yield strongly sup-
pressed spin currents, with perhaps large variations with Fermi energy, depending on
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Figure 4.7: Results for vacancies on the Mo-edge. (a) Pristine dispersion, (b) spin
current jY, and (c) jZ for midgap states obtained from magnetized 3OTB model calcu-
lations. In (b) and (c), the spin currents for pristine edges are shown as empty symbols,
while cases for different molybdenum (Mov) or tellurium (Tev) vacancy concentrations
are shown as indicated by different lines (1: 2.5%, 2: 5%, and 5: 12.5% on edge).

sample and current probe location in nanoscale systems.
We can further analyze the spin current decay as a function of vacancy concentra-

tion. Considering Mov on the Mo-edge as a representative example, the spin current is
averaged over the energy window 0.6-0.8 eV. We find that the spin current drop with
increasing defect concentration cMov and can be fit well with an exponential function,

jl(Mov) = Al +Ble
−cMov/tl , (4.15)

with l = Y, Z, and AY = −0.0177, BY = −0.19952, tY = 3.6%, AZ = 0.02927,
BZ = 0.10397, and tZ = 2.1%. This shows that the spin currents are relatively robust
for up to 2% (for jZ) or 3.5% (for jY) of on-edge vacancy concentrations. Similar
numbers are obtained for other vacancies and ribbon edges.

Figure 4.9 shows the numerical averaged spin current magnitudes (symbols) between
Fermi levels EF3 and EF4 –this is, in a energy range which is not subject to sudden
discontinuities– and fitted results for Eq. 4.15. One can see excellent agreement between
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Figure 4.9: Spin current along Mo-edge vs concentration of Mov on the Mo-edge.
Symbols are 3OTB averaged between 0.6 and 0.8 eV ( ' EF3 and EF4), and lines are
exponential fits, Eq. 4.15, with l = Y, Z as indicated.

numerical and analytical results. Spin current jY is seen to decrease nearly twice faster
than jZ, suggesting that as the concentration on Mov increases the spin current canting
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would be less appreciable as the vacancy concentration gets closer to 12.5% compared
to the spin flipping provided, until eventually the spin current is destroyed for very
irregular edges.

Further details depend on both the amount and the location of the vacancies. For a
large number of impurities is expected that the spin current will vanish, since backscat-
tering will play a larger role allowing no current to flow. All in all, we find that for
pristine edges or vacancy concentrations . 3%, strong and sizable spin currents are
found in the band gap so any Fermi level selection would account for a measurable spin
current. When more vacancies are present, the selection of the Fermi level would need
to be more careful in order to find a desired spin current magnitude/orientation. These
conclusion suggest that the effect of the spin current creation because of the EuO on
the MoTe2 ribbons, is a strong and measurable effect.

4.5 Final Remarks

The magnetized 3OTB Hamiltonian and the effective 1D description are able to incor-
porate the effects of magnetic proximity from a FM substrate onto the spin-polarized
states and currents at the zigzag edges of TMD monolayer ribbons. The broken in-
version and TR symmetries in a proximitized TMD ribbon lying on a FM substrate
splits the electronic edge modes residing in the bulk midgap and produce effective 1D
conducting channels with spin-polarized currents. Competition between the effective
exchange and Rashba fields generates canting of the spin orientation of the spin cur-
rents. The spin current polarization and onset could be modulated by tuning the Fermi
level [167, 168], and/or the effective exchange field by van der Waals engineering of het-
erostructures [37], or through biaxial strain [130], even when defects (< 3%) such as
vacancies are present in the system. The ready availability of samples and the flexibility
of this effect suggests that such proximitized TMD ribbons could be effectively used as
robust 1D spin injectors [121]. We also look forward to studies of electronic interactions
in these 1D channels, involving strong spin-orbit coupling and broken symmetry.

57



Chapter 5

MoTe2 Ribbons Proximitized to
Antiferromagnetic Substrates

Summary

In this Chapter we complement the FM proximity study based on MoTe2 ribbons
with AFM proximity, and show the main and unique results for the combined AFM
heterostructures. In Section 5.1 we describe commensurate finite-size MoTe2-AFM ver-
tical heterostructures with zigzag and armchair edges, where we consider two different
magnetic ordering in the AFM substrates, taking into account the zero net magnetic
moment condition that must have the AFM order. In Section 5.2 we model these
vertical heterostructures within the magnetized 3OTB model, by means an adapted
exchange field Hamiltonian term. In Section 5.3 we present the results for MoTe2-AFM
heterostructures with zigzag edges. Here we find that the Rashba intrinsic parameters
such as the spin-splitting and the Rashba strength (present along the edge modes in
free-standing TMD zigzag-terminated ribbons), respond to the external Rashba field
coming from one type of AFM order. On the other hand, our main results for armchair-
terminated ribbons on AFM substrates in Section 5.4, show that in-gap edge modes
are either, gapless or gapped, which depend on the parity of the ribbon width. These
are novel and intriguing results, which we expect may expand the study based on
proximity-induced AFM interactions.

This part of the work is done in collaboration with Dr. O. Ávalos-Ovando and Dr.
S. E. Ulloa from Ohio University, Athens, Ohio, USA. It is still ongoing work.
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5.1 System

5.1 System

We study vertical heterostructures formed by monolayer MoTe2 ribbons in close prox-
imity to AFM substrates. The selection of AFM materials should meet two crite-
ria. The AFM candidate materials have to be (i) semiconducting or insulating, with
a bandgap ∼ 1 eV in order to avoid extra electronic states in the bulk gap region;
and (ii), the lattice mismatch for the heterostructure, the substrate AFM surface and
the MoTe2 ribbon should be small (< 3%). Possible AFM candidates could be the
manganese chalcogenophosphates compounds with formula MnPX3 (X = S, Se), which
have hexagonal lattice and are semiconducting [137]. Other AFM candidates could be
manganese oxide (MnO) [135] or cobalt oxide (CoO) [136]. Although MnO and CoO
substrates have been studied when in proximity to 2D TMD monolayers, the study of
finite dimensionality structures such as edges and boundaries is still lacking.

Here we focus on AFM substrates (or AFM surfaces) satisfying both conditions
above. We have considered two types of AFM order for the substrates, which are
exactly below the TMD monolayer, labeled as either AFM1 and AFM2, as shown in Fig.
5.1(a) and (b) respectively. The magnetic moments within each AFM lattice surface
are consider in such a way that the net magnetic moment in both AFM systems is zero.
The magnetic moments of the prototype AFM substrates are projected on each Mo
atom of the MoTe2 ribbons, schematically shown in Fig. 5.1 as blue (up moments) and
red (down moments) arrows. In the MoTe2-AFM1 combined system, the up and down
moments alternate between them inside each row along the x direction; in the MoTe2-
AFM2 system, adjacent rows alternate between up moments and down moments. Both
configurations are also shown in Fig. 5.1. Our proximitized MoTe2 ribbons have zigzag
edges along the x direction and armchair edges along the y direction. Note that the
choice of x and y directions along the ribbons is totally arbitrary. As we saw in Chapter
4, the zigzag edges have two different terminations, with outer Mo and Te atoms due
to the lack of intrinsic inversion symmetry in the MoTe2 2D monolayer [26, 60, 69].
Armchair edges are combinations of Mo and Te atoms along the y direction [see Fig.
5.1].

The ribbon size in both systems MoTe2-AFM1 and MoTe2-AFM2, is an important
parameter to consider in order to satisfy the net zero magnetic moment condition
and the PBC in the ribbons. N has to be even in order to avoid creating pairs of
parallel moments (net magnetic moment 6= zero) when a zigzag-terminated ribbon is
constructed on the AFM1 substrate. If N is even on the AFM1 substrate, there is no
restriction for the armchair-ribbon construction because H can be both even or odd
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Figure 5.1: Schematic representation of MoTe2 ribbons when in proximity to AFM
substrates with different magnetic ordering, AFM1 in (a), AFM2 in (b). The AFM
substrates are not shown, the ribbon size and shape is only schematic. The zigzag
edges are along x direction (N), armchair edges are along y direction (H). At y = 0
we obtain the Mo-zigzag edge, while at y = H the Te edge is obtained. Conversely, at
x = 0 we obtain the left-armchair edge, while at x = N we obtain the right-armchair
edge. For this example, both MoTe2-AFM systems have dimension N = 4 and H = 4,
then Nsites = 16 Mo sites. The top views in (a)-(b) are slightly tilted for a better
visualization of the projected moments on the Mo atoms, shown as blue: up moment
and red: down moment arrows, where equal amount of red an blue arrows identifies a
net zero magnetic moment in either AFM system. Magenta (black) rectangles stand
for the magnetic (geometric) unit cells in the ribbon. In (a) the magnetic cell is twice
the geometric cell along the zigzag direction, in (b) both cells are the same.

[see Fig. 5.1(a)]. As show Fig. 5.1(b), the only restriction in the size of both zigzag
and armchair-terminated ribbons on the AFM2 substrate is that H must to be even in
order to satisfy the net magnetic moment zero condition; there is no restriction for N
if the even-H condition is fulfilled.

5.2 Tight-Binding Description

In a similar way as MoTe2 ribbons on FM substrates in Chapter 4, here in the AFM
case we augmented the pristine 3OTB Hamiltonian to account for the AFM substrates
as

HMoTe2−AFM = Ho + Hex,s + HR. (5.1)
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5.3 Zigzag-terminated Ribbons

Ho describes the pristine TMD lattice, which considers onsite energies, hoppings be-
tween transition metal atoms up to first neighbors and SOC, as described in Eq. 2.8.
The AFM substrate effects are incorporated into the pristine MoTe2 lattice as onsite
magnetic exchange and Rashba fields as Hex,s + HR, with s =↑, ↓ the spin index. The
induced AFM exchange field Hex,s is spin diagonal and onsite dependent, for AFM
magnetized upward can be written as

Hex,↑ =
[
Hex,↑↑ 0

0 Hex,↓↓

]
, Hex,↓ =

[
Hex,↓↓ 0

0 Hex,↑↑

]
. (5.2)

Note that the exchange matrices elements Hex,↑↑ and Hex,↓↓ are given in Eq. 4.7. Unlike
a FM substrate in proximity to a MoTe2 lattice, where the MEF on the Mo atoms has
the same contribution because all the moments are parallel between them [35, 44, 36],
here for the MoTe2-AFM systems, the exchange field in Eq. 5.1 is onsite dependent;
the exchange field for Mo atoms with up moments is Hex,↑, while the exchange field for
Mo atoms with down moments is Hex,↓, as indicated in Eq. 5.2. As in the FM case,
here we also consider the Rashba field arising from the broken symmetry generated by
the substrate in the TMD lattice, we use the 3O Rashba coupling as in Eq. 4.7. All
the parameters have been obtained from DFT calculations from a FM substrate [35],
which in principle should be similar for a AFM substrate.

5.3 Zigzag-terminated Ribbons

We study zigzag-terminated MoTe2 ribbons with 1600 Mo sites (N = 40 and H = 40)
on the AFM1 substrate in Fig. 5.1. Zigzag ribbons on the AFM2 substrate show very
similar behavior with respect to the MoTe2-FM case showed in Chapter 4, so here we
will discard the study of zigzag-terminated MoTe2-AFM2 heterostructures.

There is an important distinction related with the geometrical and magnetic unit
cells. As shown in Fig. 5.1(a) within the MoTe2-AFM1 system, the magnetic cell
accounting for the magnetic order (magenta rectangle) is twice the geometrical unit
cell (black rectangle) along the zigzag direction. On the contrary, as shows Fig. 5.1(b),
the magnetic and geometrical unit cells for the MoTe2-AFM2 system are the same.
Due to the 2 : 1 unit cells ratio in the MoTe2-AFM1 system, the k space is folded.
Consequently, the high symmetry points K and K ′ in reciprocal space are located at
kx = −π/3a and k′x = π/3a, respectively. The folded K and K ′ points are indicated as
vertical dashed gray lines in the energy spectra of Fig. 5.2.

By means DFT calculations, a six-orbital TB model [160, 171] and through the
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5.3 Zigzag-terminated Ribbons

3OTB model [69], an intrinsic Rashba-type spin-splitting has been obtained along the
edge modes of pristine zigzag-terminated ribbons, as is described in Subsection 2.4.1
by Eq. 2.21. Here the AFM1 substrate acting on the zigzag-terminated MoTe2 rib-
bon, leads to an augmented Rashba-type spin-splitting ∆R(kx) [114], which is linear
around kx = 0. Similar Rashba-type spin-splitting has been obtained from a graphene
layer on a Ni(111) substrate, seen by angle-resolved photoemission experiments [109].
Rashba-type spin-splittings around k = 0 have been theoretically predicted in diverse
vertical heterostructures, where one of the constituent materials is a TMD monolayer.
For instance, a 2D MoS2 monolayer on a topological insulator Bi(111) [172]; the semi-
conductor TMD family on a 2D monolayer of GaX (X = S, Se, Te) [173]. In Janus (or
polar) TMD monolayers also a Rashba-type spin-splitting around k = 0 is obtained due
to the intrinsic electric field generated by the broken symmetry along the out-of-plane
axis of the Janus 2D TMD [174, 175].

The Rashba splitting in zigzag-terminated TMDs has been associated to a combined
effect of intrinsic symmetry broken at the edges and intrinsic SOC [69]. Under the
combination of both effects, the effective 1D Hamiltonian for the chalcogen-edge mode
in the energy dispersion can be written as [69]

Heff (k′) = k′2

2m∗ + αk′sz + C, (5.3)

where k′ = k − π/a, α is the Rashba strength, sz is the z-Pauli matrix, and C is a
constant. Notice that this Hamiltonian has the same linear dependence in momentum
k as the Hamiltonian in Eq. 2.18 for 1D Rashba systems, but the second term changes
sign, spin component sy → sz, and the constant C here is associated with the eigenen-
ergies from the lateral confinement potential [114]. The difference in the second term
is related to the direction of the unit vector (electric field) in 1D Rashba systems. In
Eq. 5.3 the unit vector is along the y direction, which is perpendicular to the zigzag
direction, while in Eq. 2.18 the unit vector is along the z direction. However, both
1D Rashba Hamiltonians have the same eigenenergies. The low-energy spectra for the
zigzag-terminated pristine TMD ribbons is symmetric around momentum k = 0 be-
cause of TRS [see Fig. 4.2(a)]. For the MoTe2-AFM1 system we study here, augmented
effective Rashba strength α and Rashba-type spin-splitting ∆R along the edge modes,
both associated with the extrinsic Rashba field (λR) from the AFM1 substrate on the
ribbon are obtained, an effect not seen in the MoTe2-AFM2 system, as will be discuss
below.

In Fig. 5.2 we present the energy spectra for the MoTe2-AFM1 zigzag heterostruc-
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Figure 5.2: Spin projections of the energy spectrum for the zigzag-terminated ribbon
in the MoTe2-AFM1 system in Fig. 5.1(a). In (a) and (b) the extrinsic Rashba field λR
is 100%, (d) and (e) the Rashba field is set to 50%. (a) and (d) stand for SY projection,
(b) and (e) stand for the SZ projection. Note that SX projection vanishes due to the
Rashba symmetry of the system. Mo1, Mo2 and Te indicates the Rashba-type edge
modes in the bulk midgap. Green (orange) solid lines indicate Mo1 (Te) higher energy
bands EMo1

+ (ETe
+ ), respectively. (c) and (f) are the spin expectation values (or spin

projections) along the kx momentum for the EMo1
+ band (c) and ETe

+ band (f), indicated
with solid lines in panels (a)-(b). Color bar indicates positive (negative) spin projection
as blue (red) gradient.

ture, with two different values for the external Rashba field λR. Contrary to zigzag-
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5.3 Zigzag-terminated Ribbons

terminated ribbons on FM substrates, where the large intrinsic SOC competes with the
exchange field from the FM substrate, leading to TRS breaking in the whole dispersion,
and the exchange field conduct to a giant valley polarization in the 2D bulk [35], as
well as to strongly spin-polarized edge modes [36], here the AFM exchange field leads
to a zero valley polarization in the bulk, preserving TRS for the bulk as well as for the
edges modes in the MoTe2-AFM1 system. Clearly in the energy dispersion of Fig. 5.2
when the zigzag-terminated ribbon is in proximity to the AFM1 substrate, the whole
dispersion is symmetric around kx = 0 due to TRS.

When the AFM1 substrate enters into the Hamiltonian in Eq. 5.1, the exchange
field at the edges has an effective vanishing net magnetic moment because the moments
are antiparallel along the zigzag edges [see Fig. 5.1(a)]. As a result, the exchange field
effectively induces a vanishing contribution to the edge dispersion, while the induced
Rashba field modifies the Rashba splitting in the electronic dispersion, especially along
the edge modes, as shown in the energy spectrum of Fig. 5.2. Here, three distinctive
edge modes appear in the bulk midgap: Mo1, Mo2 and Te. Note that Mo1 and Te edge
modes have positive effective mass, while the Mo2 edge mode has negative effective
mass around kx = 0. These edge modes correspond to states that are highly localized
along the ribbon edges in real space, that is, the Mo1 and Mo2 edge modes reside on
the Mo edge, while the Te edge mode reside on the Te edge. The electrons propagate
along both, the Mo and the Te zigzag edges with momentum kx and characteristic spin
projection Sl (l = X,Y,Z). Each edge mode has two branches, EMo1

λ and EMo2
λ for

the Mo edge, and ETe
λ for the Te edge, where λ = ±1 labels chirality [114]. Around

momentum kx = 0, the E+ (E−) band for each edge mode correspond to the higher
(lower) energy spin split band. We can see a linear tendency for the Rashba splitting
∆R(kx) = E+(kx)−E−(kx) at each edge mode along the momentum |kx|. Note that the
edge modes in this system (MoTe2-AFM1) can be associated with 1D Rashba systems,
as is described in Section 2.4.1 and by Eq. 5.3.

In panels (a) and (b) of Fig. 5.2 the energy spectra are show for the full Rashba field
λR = 72 meV; in panels (d) and (e) we adjust the Rashba field to λR = 36 meV to study
the tunability of the Rashba field. Different Rashba fields could be achieved through
different surfaces of AFM substrates, or via gate fields for a given substrate-specific
exchange field Bv [129, 121]. Because the edge modes in the MoTe2-AFM1 system
have a similar behavior as the edge modes in pristine zigzag-terminated MoTe2 ribbons
1, we have calculated the effective Rashba parameters for the MoTe2-AFM1 system

1We have artificially folded the kx-space in the free-standing zigzag-terminated MoTe2 ribbon in
Fig. 4.2(a) in order to compare the energy dispersions to the MoTe2-AFM1 zigzag system.
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5.3 Zigzag-terminated Ribbons

with both Rashba fields λR = 36 meV and λR = 72 meV, as well as for the freestanding
case, as shown in Table 5.1. The effective Rashba strength parameter α is obtained as
∆R(kx)/2kx = α, we also calculated the effective Rashba splitting around the K ′ point
for the Mo1 and Te edge modes. We find that α for the Te edge mode agrees well with
other chalcogen bands when the TMD ribbon is freestanding with zigzag-terminated
edges [69]. We find α and ∆R(kx)/2 increase with respect to the freestanding case
because of the induced Rashba field λR from the AFM1 substrate, they have the same
values for both edge modes when the Rashba field is λR = 72 meV. Interestingly, when
λR = 72 meV, both α and ∆R/2 increase approximately 3 (3/2) times along the Mo1

(Te) edge mode in relation to the freestanding case. On the other hand, when λR = 36
meV, both α and ∆/2 increase approximately 3/2 times along the Mo1 edge mode in
relation to the Mo1 edge mode of freestanding zigzag-terminated ribbon.

Accordingly to the Rashba effect and exchange interactions in proximitized ver-
tical heterostructures where a linear Rashba-type spin-splitting in the energy disper-
sion around k = 0 is demonstrated [109], here we also find a linear behavior for the
Rashba splitting around kx = 0, most importantly, the Rashba splitting and the Rashba
strength along the edge modes respond to the extrinsic Rashba field λR.

α [eV Å/π] ∆R/2 [eV]

Mo1 Te Mo1 Te

Free-standing, λR = 0 0.089 0.17 0.031 0.060
AFM1, λR = 36 meV 0.14 0.19 0.048 0.067
AFM1, λR = 72 meV 0.27 0.27 0.095 0.095

Table 5.1: Calculated effective Rashba parameters α and spin-splitting ∆R(kx)/2 for
momentum kx = 0.35 π/a (around the K ′ point) for the Mo1 and Te edge modes
projected along the MoTe2 zigzag edges. The parameters are calculated for three cases,
the freestanding MoTe2 ribbon with λR = 0, and the MoTe2-AFM1 system when
λR = 36 meV and λR = 72 meV. α is obtained through a linear fitting in the curve
∆R(kx)/2kx = α in Fig. 5.2(a)-(b).

The spins play a crucial role in Rashba systems because they are linearly coupled
to the momentum [113, 109], or effectively coupled to the sublattice pseudospin [108,
110, 111] (as is graphene) or orbital pseudospin [59, 35, 36] (as in TMDs). When the
Rashba systems are coupled to the orbital pseudospin (as in the present case), small
in-plane spin projection content arise when the 2D MoTe2 monolayer is in proximity
to a FM substrate [35], but considerable canted spins projections are found when the
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5.3 Zigzag-terminated Ribbons

energy dispersion is projected along the 1D zigzag edges [36]. In the AFM systems
here, we also find electrons propagating with momentum kx and significant projection
along SY, as well as spin projection along SZ along the zigzag edges.

The energy spectra in Fig. 5.2 shows the spin components content SY and SZ

(indicated by the blue-red gradient) for both λR = 72 meV and λR = 36 meV Rashba
systems. We find a vanishing SX component for both systems along the Mo and Te
edge modes because here the Rashba field is along the y-direction of the ribbon. Figure
5.2(a)-(d) shows a significant SY projection due to the Rashba field is effectively stronger
along the y-direction. We also note that SZ projection increases in the valence bulk
states in both systems, indicating that SZ projection in the valence bulk states are less
affected by the induced Rashba field λR, as shown in Fig. 5.2 panel (b) and (e). SZ along
the Mo1 edge mode is nearly vanishing, while is significant along SY, independently
of the Rashba field value, as shown in Fig. 5.2 panel (a) and (d). Along the Te edge
mode, the SY projection increases and reduces along SZ when λR = 72 meV, as it is
clear in Fig. 5.2 panel (a) and (b). We can note slightly majority SZ projection along
the Te edge mode when λR = 36 meV. Along the Mo2 edge mode, the SY projection
increases, and reduces along SZ when λR = 36 meV and λR = 72 meV.

To elucidate how the spins are projected along the momentum in these 1D Rashba
systems, we have plotted the spin projections along kx in the full Rashba field system
(λR = 72 meV), EMo1

+ band of the Mo1 edge mode in Fig. 5.2(c) and ETe
+ band for

the Te edge mode in Fig. 5.2(f). EMo1
+ (ETe

+ ) bands are indicated by green (orange)
solid lines in Fig. 5.2 panel (a)-(b). The spin projection associated with the EMo1

+ band
are shown in panel (c) as green arrows. These spin projection are mostly SY polarized
when kx 6= 0 [notice the vanishing SZ projection at kx = 0 for all edge modes in panel
(a)]. For right movers (kx > 0), the spins along SY projection have ' +~/2 expectation
value, while for left movers, the spins along SY projection have ' −~/2 expectation
value. The opposite is true for the EMo1

− band. At kx = 0 the full spin projection
is along SZ because the spin degeneracy due to SOC [69]. Higher in energy is the
ETe

+ band, where the spin projections are shown in panel (f) as orange arrows. The
spin projections along momentum |kx| 6= 0 are polarized along both SY and SZ, with
SY > SZ. For right movers, along SY, the expectation value are ' +0.8 ~/2, while for
SZ the expectation value is ' +0.5 ~/2. For left movers, along SY, the expectation
value are ' −0.8 ~/2, while for SZ are ' −0.5 ~/2. The opposite is true for the ETe

−
band. As the EMo1

± bands, the projection along SY vanishes at kx = 0 for the ETe
± band.

If the Fermi level lies in the bulk midgap, the edge modes have equal number of left- and
right-moving modes (two left- and two right-moving modes for each edge mode), with
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5.4 Armchair-terminated Ribbons

opposite group velocity and opposite SY and SZ projection around kx = 0. The way
of electrons propagate along the edge modes here, is similar to the bands obtained in
the energy dispersion of graphene monolayer on Ni(111) [109], 2D monolayers of Janus
TMDs [174, 175], MoS2 2D monolayer on Bi(111) [172], among others [173], where in
all those works specially attention is given to the electron spin DoF.
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Figure 5.3: Spin projections of the energy spectrum for the zigzag-terminated ribbon in
the MoTe2-AFM2 system in Fig. 5.1(b). Panels (a)-(b) indicate SY-SZ projections when
the zigzag-terminated MoTe2 ribbon is on the AFM2 substrate. The zigzag-terminated
MoTe2 ribbon is on the AFM2 substrate with the exchange field reversed in panels (c)
and (d), which is indicated by the symbol (-).

5.4 Armchair-terminated Ribbons

Although TMD ribbons with zigzag terminations are mostly studied, it is demonstrated
that experimentally realistic samples with armchair edges and interfaces in 2D TMD
materials can be obtained [11, 12]. Diverse theoretical works which consider TMD rib-
bons with armchair edges have been done so far by means DFT, multiple-orbital TB
models, and the 3OTB model [176, 177, 178, 68, 160, 161, 171, 179, 106, 180]. For in-
stance, hydrogen [177, 178] and chalcogen passivation [178], the application of external
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5.4 Armchair-terminated Ribbons

electric fields along the transverse direction of the armchair edges [178], lateral TMD
heterostructures with armchair edges and interfaces [106, 180], and adatoms [179], gen-
erate diverse electronic effects in the energy dispersion of the ribbons. Most of these
studies consider free-standing armchair ribbons, and only a few analyze the electronic
effects in magnetic-proximitized structures with armchair edges of TMD semiconduc-
tors [171]. Here we describe the electronic properties of vertical heterostructures with
armchair-terminated MoTe2 ribbons in proximity to AFM substrates. The AFM sub-
strates must fulfill the conditions depicted in Section 5.1.

To study armchair ribbons on AFM substrates we have considered two different
ribbon sizes, noting the condition of net magnetic moment zero in the whole structure,
the systems size are: (i) N = 40, H = 42 (1680 Mo sites), which we call N40H42
hereafter; (ii) N = 41, H = 42 (1722 Mo sites) is N41H42 hereafter; N (H) is the
direction along the x (y)-axis, which is the width (length) of the armchair ribbon with
PBC along y-axis, as schematically shown in Fig. 5.1.

Figure 5.1 shows the magnetization of the AFM substrates alternates between up
and down along the armchair direction, as shown by blue (up) and red (down) arrows.
In pristine armchair MoTe2, as for the entire TMD armchair ribbon family, it is not
possible to distinguish one edge from the other, because both edges have a combination
of transition metal atoms and chalcogens. The armchair edges cannot be distinguished
either when on a FM substrate, because all the moments are parallel between them.
Here conversely, the armchair edges can be distinguished because the periodicity from
the AFM substrate can be the same or different at opposite armchair edges, which
depends on the ribbon width (N) [see Fig. 5.1]. The momentum space does not change
when the armchair ribbons are on both AFM substrates because the geometric and
magnetic unit cells have the same size along the y-axis. As we describe below, the
energy-momentum dispersion shows N -dependent behavior when the armchair ribbon
is on the AFM1 substrate and not on the AFM2 substrate. This effect is similar to
parity laws studied in graphitic ribbons [181]. We first describe the case for the armchair
ribbon N40H42 on the AFM2 substrate in Fig. 5.4 panels (c) and (f), because the
energy spectrum of this system does not show dependence on the ribbon width.

As in the zigzag case, when the armchair ribbons are on the AFM substrates, the
inversion symmetry is broken, allowing a Rashba field [108, 110, 59, 35, 111, 36] along
the x-axis due to the symmetry of the structure. The Rashba field is in Eq. 4.7 and here
also mixes the spin and orbital components. Figure 5.4 shows the dispersions for the
armchair cases N40H42 on the AFM1 [panels (a) and (d)], N41H42 on AFM1 [panels
(b) and (e)], and N40H42 on AFM2 [panels (c) and (f)], as well as their respective SX
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Figure 5.4: Spin projections of the energy spectrum for armchair-terminated ribbons
when on the AFM1 and AFM2 substrates as indicated. In panels (a-c) the spin projec-
tions are along SX, in panels (d-f) the spin projections are along SZ. The inset in each
panel schematizes the propagation for the electrons for the higher energy valence edge
modes (indicated with black arrows) along both armchair edges, the left and the right
(note in panel (d) the inset only shows the propagation for the negative SZ band). In-
sets: up (down) vertical gray arrows indicate +ky (−ky) momentum; green (magenta)
arrows indicate positive (negative) SX and SZ spin projections on the armchair edges.
Color bar indicates positive (negative) spin projection as green (magenta) gradient.

and SZ spin components content, where green (magenta) refers to positive (negative)
spin projection. For all the cases, there are in-gap edge modes, two of them close to
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the valence bulk states, while other two with higher energy around the conduction bulk
states. The spin projection is mainly along SX in the conduction bulk states, while the
valence bulk shows more SZ projection content around ky = 0, indicating the Rashba
field is effectively weaker in the valence bulk states.

When the armchair ribbon is on the AFM2 substrate (N40H42-AFM2 system),
in panels (c) and (f), there are two pairs of edge modes lying in the bulk gap and
non hybridized to the valence bulk states, creating a gap between them, other pair is
hybridized to the conduction bulk states for momentum |ky| > 0.3 π/a, and other pair
is completely hybridized to the conduction bulk states. The eigenergies of each pair of
edge modes are degenerate, behind each edge mode there is other with the same SX

projection in panel (c). On the contrary, behind each edge mode there is another with
opposite SZ polarization in panel (f). By inspecting the wave functions projected in the
ribbon real space, these edge modes are not mixed and propagate along the armchair
edges with momentum ky and characteristic spin as seen by the spin projections. The
AFM substrate also breaks the energy degeneracy seen along the valence edge modes in
free-standing armchair ribbons [a complete description for free-standing TMD armchair
ribbons is in Appendix C].

In order to characterize the spins and the propagation direction seen in the energy
spectrum, we have schematized the electron propagation along the left and the right
armchair edges for in-gap valence edge modes with higher energy, as is indicated by
black arrows in Fig. 5.4. In the insets, one can visualize the propagation direction for
the electrons as up (down) gray arrows, which indicates +ky (−ky) momentum; the
spins are represented as green (magenta) shorter arrows, indicating positive (negative)
spin projection. In panel (c), when the spins are along SX, the electrons propagate
with the same spin on opposite edges along the same direction. The opposite is true
for the other pair of valence edge modes with lower energy along SX. Similar behavior
for the edge states is seen in a proximitized graphene ribbon when on a TMD substrate
[122, 111]. In Ref. [111] the edge modes with this behavior are called pseudohelical
states, which leads to a pure spin current (with zero charge current). Along SZ, the
propagation is different as electrons propagate with different projection on opposite
edges along the same direction. This electron propagation polarizes the SZ spins along
the edges, namely, +SZ on the right-armchair edge and −SZ on the left-armchair edge
for AFM2.

In panels (b) and (e) of Fig. 5.4 we show the SX and SZ spin projections for the
armchair ribbon with size N41H42 when on the AFM1 substrate (N41H42-AFM1 sys-
tem). The energy dispersion exhibits similar behavior as the N40H42-AFM2 system
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[panels (c) and (f)]. Notice this is an intriguing behavior because the N41H42-AFM1
system has one more Mo site along the x direction (width) of the ribbon; furthermore,
the armchair ribbons are on different AFM substrates with different magnetic peri-
odicity. However, both systems have the same periodicity along the armchair edges
when the ribbon on AFM1 has odd number of Mo sites, as in the N41H42-AFM1 case.
The main difference between both systems is the energy dispersion around ky = 0 for
the valence edge modes. In panels (b) and (e) a larger gap between the valence edge
modes around ky = 0 is seen for the N41H42-AFM1 system (odd) with respect to
the N40H42-AFM2 system (even) –notice that even and odd refers to the number of
Mo sites across the width of the ribbon, regardless of the AFM substrate. In panel
(e), another evident difference takes place around |ky| ' 0.2 π/a, where SZ projection
is nearly vanishing and SX is significant as shown in panel (b); this behavior is not
apparent in the even system, panels (c) and (f). The electron propagation and spin
projections along both armchair edges for the higher valence edge mode in panel (b)
and (e) are of the same nature as the even system in panels (c) and (f), which would
indicate a parity property associated with the even-odd number of Mo sites across the
width of the armchair ribbon.

We have calculated the energy dispersion for the even case when the ribbon is on
the AFM1 substrate (N40H42-AFM1) in panels (a) and (d). Clearly here, the spin
degeneracy is broken along the valence and conduction edge modes. The edge modes
are non-degenerate (gapped for |ky| ' 0.3 π/a) along SX and SZ and are in contrast to
their odd counterpart (N41H42-AFM1) in panels (b) and (e), where the edge modes
are gapless. We also note an even-odd relation when the armchair ribbon is on the
AFM1 substrate, here associated with the ribbon width and the magnetic periodicity
along the armchair edges. We have checked that even-odd properties from the AFM2
substrates are not present. We tested armchair ribbons with odd number of Mo sites
across the width on the AFM2 substrate (N41H42-AFM2, not shown). The energy
dispersion does not show appreciable differences with respect to even Mo sites in panels
(c) and (f), especially for the edge modes that remain degenerate.

The propagation with SX projection on the armchair edges for N40H42-AFM1
(even) in panel (a) has the same nature as the N41H42-AFM1 system (odd) in panel
(b), but the projection along SZ is different. However, as we mention above, the edge
modes in the even (odd) system are gapped (gapless) when the armchair ribbon is on
the AFM1 substrate. At ky = 0, the wave functions projected in the ribbon real space
show that the armchair edges are mixed. We also note the mixing for the edges around
|ky| ' 0.3 π/a, and |ky| ' 0.45 π/a as in the free-standing case. We have checked that
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the edge mixing is only present in the even system (N40H42-AFM1), and not in the
odd systems when the ribbon is on either the AFM1 or AFM2 substrates. The electron
propagation for the negative SZ spin-projection band (as magenta color in the energy
dispersion) is shown in the inset of panel (d). Here the electrons propagate with the
same spins on opposite edges along the same (and opposite) direction, meaning that
at this energy range, the electrons have degenerate copies with spin −SZ along both
armchair edges.

5.5 Final Remarks

In this Chapter we have calculated the energy dispersion for zigzag and armchair MoTe2

ribbons when they are deposited on AFM substrates. Both, zigzag and armchair mag-
netic proximitized ribbons have unique behavior as seen in the electronic spectrum
when in comparison to their freestanding and/or FM proximitized counterpart. When
the proximitized ribbons have zigzag edges, the Rashba-type spin-splitting ∆R and the
Rashba SOC strength α are three times augmented for the edge modes–which lies in
the midgap region, associated with the external Rashba field from the AFM magnetic
order of the substrate. Most importantly, these Rashba characteristics can be modified
with the external Rashba field.

The electronic behavior along the edge modes when the proximitized ribbons have
armchair edges is unusual. There are pseudohelical edge modes with SX projection
propagating along the armchair edges, which are decoupled from the bulk states. The
electrons in these edge modes propagates with opposite SX projection on opposite
edges along opposite direction, carrying pure spin currents. On the other hand, elec-
trons propagate with opposite SZ projection on opposite edges along the same direction,
giving rise to spin-polarized armchair edges states in AFM2. Another intriguing charac-
teristic is found in AFM1-armchair edges, here the energy dispersion for the edge modes
depends on the ribbon width. We find gapped edge modes when the ribbon width has
even number of Mo sites, on the contrary, gapless edge modes are seen for odd number
of Mo sites across the ribbon width. Within this unusual behavior we would expect
a relation with parity laws seen in graphitic ribbons [181], and the edge states could
be associated to topological states [182], which may be of relevant importance in the
spintronics field.
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Chapter 6

Conclusions

The availability of transition metal dichalcogenides samples nowadays appeal to efficient
and reliable theoretical models to describe it and to predict functionalities. In this
thesis, we theoretically have studied the electronic structure and magnetic proximity
properties in functional vertically stacked TMD systems, as a fingerprint for charge
and spin degrees of freedom behavior. A complete description of TMD materials and
associated concepts, as well as the theoretical models used as a seed in our work are
explained in Chapter 2.

In Chapter 3, we obtained the band structures for MoS2 bilayers when molybdenum
impurities are trapped in the interlayer region in diverse positions. The calculations are
based on density functional theory, by including van der Waals interactions through the
SIESTA method [81], as explained in Appendix A. The results show that Mo impurities
are capable to modify the stable stacking seen in the pristine MoS2 bilayer to another
stacking type (within the same 2H phase), which accommodates the Mo impurities in
hollow sites between the MoS2 layers with high wave function weight around it. The
stacking change is related to low energy midgap states arising from the Mo impurity
bonding. A hybridization occurs for the impurity states with the MoS2 layer states
due to a small MoS2-Moimp-MoS2 distance in the bilayer. Furthermore, our results
show larger interlayer distances, as well as larger bulk band gaps for other Mo-doped
bilayers in comparison to the pristine case. Both effects can be associated with weaker
interlayer coupling as seen in experiments, in which MoS2 nanoparticles are located in
the interlayer region of MoS2 bilayers [31].

The generic existence of TMD edge states and ferromagnetic substrates that can be
accessed in the laboratory suggest that they could provide exciting systems to explore
proximity magnetism. In Chapter 4, we combined MoTe2 zigzag-terminated nanorib-
bons with a FM substrate such as EuO. We model the combined structure with a
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suitable magnetized three-orbital tight-binding model, which accounts for the induced
magnetism from EuO.

The EuO substrate induces two different fields: magnetic exchange and Rashba,
both directly related to the spin DoF. The MEF comes from the proximity-induced
magnetic interactions, as described in Section 2.5, while the Rashba field is from the
broken inversion symmetry that generates the EuO substrate on the MoTe2 ribbons, as
explained in Section 2.4.2. The effects of these fields, as well as the finite size effects of
the ribbon, are manifested in the band structure responses of the MoTe2-EuO hybrid
system. The strong SOC from MoTe2 competes with the exchange field, giving rise
to in-gap spin-polarized edge modes with metallic character, while the bulk remains
insulating. On the other hand, the Rashba field competes with the exchange field,
providing an important figure of merit that determines the behavior of such systems.
This means that depending on the strength of both induced fields, the whole electronic
structure can be modified, most importantly, the spin-polarized edge modes are also
affected. If the Fermi level lies in the midgap energy region of the bulk (by gating
for example), the spin-polarized edge modes are localized along the one-dimensional
zigzag edges of the ribbon, which carry spin information acquired by the proximity to
the magnetic substrate and act as 1D conducting channels with tunable spin-polarized
currents. The resulting edge spin currents can be canted at tunable directions, even in
the presence of moderate concentration of defects, which can be an attractive property
for experimentalists in the finite-sized/spintronics field. Current experiments in the area
consider 2D TMD monolayers (without defined edges) as the nonmagnetic material in
proximity to FM substrates and focusing in the valley DoF [17, 37, 38, 39, 40]. Here
with our work, we can expect these hybrid finite-size FM structures could be used as
robust tunable spin filters for use in diverse applications.

The magnetic proximity effect can also appear in antiferromagnetic combined sys-
tems [121]. In Chapter 5 we complement the FM study with MoTe2 nanoribbons
deposited on AFM substrates (with AFM1 and AFM2 labeling different magnetic or-
ders), forming several vertical heterostructures of the type MoTe2-AFM. We model
the systems by considering an adapted-magnetized 3OTB model, where the exchange
Hamiltonian term is adapted by alternating the direction of the magnetic moments
between individual sites, while the Rashba field is the same as in the FM case, as
described in Section 5.2.

Our results reveal remarkable differences depending on: the AFM order in the
substrate together with the edge-termination (zigzag/armchair), and the width for
armchair ribbons on AFM substrates. The band structure for zigzag-terminated MoTe2
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ribbons on the AFM1 substrate is similar to the free-standing TMD zigzag ribbon
case —as both systems are time-reversal invariant and the edge modes possess Rashba
SOC—, but the former exhibiting enhanced parameters such as Rashba-type SOC
and spin-splitting along the edge modes, while the bulk remains insulating. More
interestingly, the Rashba-type parameters respond to the interfacial Rashba field from
the AFM substrate. We have characterized the propagation for some edge modes in the
midgap region, where we see specific spin polarization direction (mostly perpendicular
to the propagation direction) for right movers, while reversing for left movers. This
behavior is typical for Rashba systems, as explained in Sections 2.4 and 2.4.1 and
Chapter 5. We note our findings for zigzag MoTe2 ribbons on AFM substrates are in
close relation with other 2D vertical heterostructures forming Rashba systems, such as
in the experiment of graphene-Ni(111) [109], and theoretically seen in MoS2-Bi(111)
[172] and GaX-MX2 (M=Mo, W; X=S, Se, Te) [173].

Armchair nanoribbons on AFM substrates are of special interest because the AFM
substrates break the spin degeneracy seen in pristine armchair TMD ribbons (as those
described in Appendix C); and the edge modes exhibit width dependence, both effects
are manifested along the edge modes of the band structure. When the armchair ribbons
are on the AFM1 substrate with even number of metal sites across the length, there
arise gapped edge modes. On the contrary, when the number of metal sites is odd,
there are gapless edge modes. The propagation characterization shows the edge modes
carry pure spin currents (with zero charge currents) with SX spin projection along the
armchair edges, independently of the AFM substrate and the ribbon width. Along SZ ,
the propagation varies with both, the AFM substrate and the ribbon width. All these
unusual behaviors are probably related to parity laws, as seen in graphitic ribbons [181]
and to topological states [182].

The proposed systems we study in this thesis would bring new functionalities and
versatile applications in low-dimensional solid-state systems, apart from providing in-
teresting scenarios to explore spin-polarized vertical structures, proximity magnetism,
and the role of electronic interactions in 1D systems with complex spin texture. We
conclude our vertically stacked TMD-based structures lie on reliable and realistic mod-
elling, which could be used as building blocks in the construction of novel devices with
diverse applications in electronics and spintronics fields. [183], [184], [185] [186] [187]
[188] [189]
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[79] A. Kormányos, V. Zólyomi, V. I. Fal’ko, and G. Burkard, “Tunable berry curva-
ture and valley and spin hall effect in bilayer MoS2,” Phys. Rev. B, vol. 98, no. 3,
p. 035408, 2018.

[80] M. H. Naik and M. Jain, “Ultraflatbands and shear solitons in Moiré patterns
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Appendix A

MoS2 Bilayers

In this Appendix we describe the technical details used in the band structure calcula-
tions for the MoS2 pristine bilayers with 1× 1 unit cell in Section 2.1.3, as well as for
the MoS2 Mo-doped bilayers with 3× 3 unit cell described in Chapter 3. We also show
the relaxed geometry and band structure results for the MoS2 Mo-doped bilayer in the
3R-phase with AB stacking.

A.1 Simulation Details

Within the density functional of vdW (vdW-DF) used in the calculations in Chapter
3, we consider norm-conserving relativistic ab-initio pseudopotentials in the Troullier
Martins form [190], including nonlinear core corrections for inner d-electrons [191].
The exchange and correlation energy are calculated by the non-local vdW-DF, using
the parametrization proposed by Dion et al. [192], taking into account the exchange
energy modification included by Cooper (C09) [193]. In the C09 parametrization, the
long-range dispersion effects are included as a perturbation to the local-density approx-
imation correlation term. The vdW parameterization was chosen after comparing the
band structure of the AA’ system for the 1×1 unit cell with the existing literature [85],
in particular the presence of an indirect band gap between the Γ and K points. Note
that the bottom of the conduction band can move away from the K point depending
on the chosen vdW functional. Basis set is double-ζ polarized (DZP) with numerical
atomic orbital with an energy shift of 30 meV, converged to have an extended basis
to describe long vdW bonds. The mesh cutoff energy for the integration grid was well
converged using 230 Ry. A k-grid of 10 × 10 × 1 Monkhorst-Pack is used to sample
the BZ. A vacuum region in the z-direction, of at least 20 Å avoids interactions with
periodic images. The structures were relaxed until the force in each atom was less than
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10−2 eV/Å.
We provide extra technical details to assure the reproducibility of the results. The

valence electronic configurations for the atoms in the pseudopotentials calculations were
5s1 4d5 and 3s2 3p4 for Mo and S atoms, respectively. The pseudopotentials core radii
and pseudocore radii are included in Table A.1.

rs rp rd rpc
Mo 2.30 2.46 1.67 1.20
S 1.63 1.76 1.94 1.20

Table A.1: Pseudopotentials core radii for s, p, d channels, and the pseudocore radii
rpc for the Mo and S atoms. All the radii are in Bohr.

A.2 Mo Impurities in 3R Phase

Another type of stacking labeled as AB is possible in MoS2 bilayers, which belongs to
the 3R phase. In this stacking type a layer just glides on the other layer. Although
our main results show that pristine AB MoS2 bilayer is slightly more stable than the
pristine AA’ bilayer, the presence of Moimp changes the stability order in the order of
electron volts. The AB stacking configurations are shown in Fig. A.1 for the MoS2

bilayer with Mo impurities, which are indicated by red spheres. Similar to the 2H-
phase, the Moimp in the 3R-phase prefers an octahedral environment, as shown in Fig.
A.1 for T-AB. The T-AB configuration has the lowest energy in the 3R-phase. Taking
the T-AB’ configuration (2H-phase) as the energy reference, the T-AB configuration
has a total energy of 0.75 eV, which is between the T-AB’ and H-AA’ configurations
of Fig. 3.1. The T’-AB configuration in Fig. A.1 with tetrahedral symmetry lies 1.82
eV above the most stable T-AB’, between the T’-AB’ and T’-AA’ configurations. The
band structure for the T-AB and T’-AB Moimp configurations in the 3R-phase are
shown in Fig. A.2. The total magnetic moment follows a similar trend according to
the specific site, zero for the T-AB configuration (octahedral) and 2µB for the T’-AB
configuration (tetrahedral).
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A.2 Mo Impurities in 3R Phase

Figure A.1: Top and side views for relaxed structures of MoS2 bilayer with Moimp in
the 3R phase with AB stacking. T-AB and T’-AB refers to Moimp on top of a Mo
and S atom in the AB stacking, respectively. Red spheres show the Moimp in each
configuration.

Figure A.2: Band structures for MoS2 bilayers with Moimp in the 3R phase and AB
stacking. The Fermi energy is set at 0 eV.
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Appendix B

MoTe2 Zigzag Ribbons with
Defects

A variety of defects in MoTe2 flakes such as single or double vacancies, chain vacancies,
adatoms, irregular edges, and grain boundaries, among others, can be present in realistic
MoTe2 flakes, and produce interesting effects [169, 194, 170]. For example, chalcogen
deficiency (Te-vacancies) may trigger a transition from the 2H to the 1T’ phase when
the chalcogen vacancy concentration is greater than ∼ 3% [169, 170], and twin-grain
boundaries [52, 21] may act as 1D channels in MoTe2. Similarly, a superconducting
state driven by Te-vacancies was seen at low temperatures [195]. Weak random bulk
and edge disorder has been shown to not affect significantly the edge modes lying in
the band gap, producing only slight deviations from the pristine-edge structure [69].
Here we focus on the effects that Mo and Te vacancies in the MoTe2 ribbon produce,
especially on midgap electronic states, paying special attention to Te-vacancies near
the zigzag edges.

By means the magnetized 3OTB Hamiltonian of Section 4.2, we model disorder
in the zigzag ribbon, such as Te- (Tev) and Mo-vacancies (Mov) using two different
approaches depending on the nature of the vacancy [161]: For Mov, one adds a large
onsite potential to the desired vacancy-site; for the Tev, one cuts the intermetallic
hoppings surrounding the vacancy-site. We have considered different vacancy configu-
rations, including Mov or Tev at either the Mo-edge or the Te-edge, vacancies in the
bulk, and random combinations of these. Note that the chalcogen-edge in this model
has an unambiguous single midgap state, unlike the multiple metal-edge states in a
representation with more orbitals [60, 69]. The results we present here study vacancy
configurations in the system with the weaker exchange field of Section 4.3, as the elec-
tronic Mo-modes are well decoupled from the bulk and located midgap. Similar results
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and conclusions are applicable for other values of the exchange field.
The probability density for different states can be projected in the ribbon real-space

for each orbital [101, 160], providing insightful information on the wave function be-
havior; we focus here in the range of midgap states. As the orbital composition of these
states shows a dz2 orbital majority, in the following we show the spatial dependence of
the projected orbital component (POC) for this orbital–as the other orbital components
show identical spatial structure.

It is instructive to first show the POC behavior for pristine MoTe2 zigzag ribbons.
Representative midgap eigenstates with energy E are shown in Fig. B.1 along both the
Mo- and Te-edges, for Fermi levels EF1 and EF3 , respectively. In both pristine edges,
each metal atom along the edge has the same POC, as expected. This is associated
with the well-defined k momentum at each energy, and extracted from the fast Fourier
transform (FFT) on the pristine ribbon states. As we will see in the next sections,
when the system has vacancy defects, the POC is not constant and oscillates near the
site where the vacancy is located, giving the many k momenta contained in each state
introduced by backscattering, and obtained after FFT decomposition.

  

(a) (b) POC

Figure B.1: Projected dz2 orbital component (POC) for midgap states in pristine MoTe2
ribbon on ferromagnetic substrate. Each circle corresponds to a Mo-atom site in the
ribbon, while the heat color associated to each atom indicates the POC there. The
ribbon is periodic along the x-direction so that the zigzag Mo-edge is at y = 0 and the
zigzag Te-edge is at y = H, where H is the ribbon width (here H = 40a

√
3/2). Selected

energy eigenstates have midgap energy close to Fermi level EF1 at the Mo-edge in (a),
and close to EF3 at the Te-edge in (b). Both eigenstates shown here have positive
k, and correspond to states with majority spin up and down along 〈SZ〉, respectively.
Fermi levels are indicated in Fig. 4.4(c-d).
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B.1 Vacancies

As described above, we simulate vacancies in the structure by either modifying the
onsite (for Mov) or the hopping parameters (for Tev). This approach has been validated
in detailed studies of defects [161], and is shown to produce reliable descriptions.

We have performed a systematic study of the effects of different concentrations and
locations of Mov and Tev at the Mo- and Te-edges, as well as in the interior (bulk), for
zigzag ribbons with 1600 Mo sites. We have also analyzed these effects for a narrower
MoTe2 ribbon with 400 Mo sites (20 Mo sites along the zigzag direction) and obtained
very similar results, ruling out finite size effects. We find comparable effects for Mov

and Tev configurations, as explained in detail in the following subsections.
As a general result, we find that energy eigenstates with weight near the defect

are slightly shifted with respect to the pristine case. Moreover, even when defects are
present in the bulk or opposite edge, the states in a clean edge remain with constant
POC as in the pristine case, and associated to a single k momentum. Those unaffected
1D edge modes are then obviously robust to distant perturbation (a few lattice constants
away) and accessible to Fermi levels in the bandgap.

  

(a) (b) (c) (d)

Mo
V

Te
V

Te
V Te

V

Te
V

POC

Figure B.2: Projected orbital component (POC) for different vacancy-configurations in
MoTe2 ribbon on a ferromagnetic substrate, and states with energies near the Fermi
levels of Fig. 4.4(c)-(d). (a) A single Mov on the Mo-edge for E ' EF1; (b) single
Tev on the Te-edge with E ' EF2; (c) two Tev on the Te-edge for E ' EF3; and (d)
state for single Tev in the bulk for E ' EF1. Red arrows indicate location and type of
vacancy present. For Tev, the red arrows point to the Mo-atom in the unit cell of the
vacancy site, which is (R1 + R2)/3 away.

B.1.1 Te Vacancies at the Edges

Te-vacancies are modeled by cutting the hoppings surrounding the vacancy-site in the
lattice. Due to the symmetry in the model, removal of hoppings around a Te-site
essentially eliminates a Te-pair above and below the metal plane; in the following we
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B.1 Vacancies

will refer to this as a Tev vacancy. At the Mo-edge, this requires cutting the hoppings
among the three Mo sites surrounding the vacancy. For a Tev at the Te-edge, only
hoppings in R1 and R4 directions are cut [see Fig. 2.3(a)].

As the formation energy for Tev is the lowest (according to DFT studies [194]), we
analyze in detail Tev configurations at the Te-edge. Figure B.2(b) shows a single Tev

at the ribbon first site, on the Te-edge (top row) and at energy E ' EF2 Fermi level.
The POC is non constant and has oscillating behavior, signaling the existence of more
than one k momentum component in these eigenstates, and the broken translational
invariance in the ribbon introduced by the vacancy. A Tev at other edge location,
such as x = 28a, naturally yields the same results. Additionally, we find electronic
states with midgap energy E ' 0.1 eV (below EF1), with POC highly localized around
the Tev-site. Such localized states on the Mo-edge are observed for Tev with energies
E ' 0.2 eV. We notice this energy range is associated with higher density of states of
the edge channels and near degeneracy with bulk states in the valence band, as seen
in Fig. 4.4(c-d), which should enhance the role of backscattering introduced by the
vacancies.

With two Tev located at different positions on the Te-edge, such as x = 28a and
x = 38a in Fig. B.2(c), the POC near EF3 is high around both Tev sites, and symmetric
with respect to the center site between both vacancies. Additional vacancies on the
edge produce more states with inhomogeneous POC and more spatial frequencies, as
one would expect. There is also a direct relation between the number of localized
electronic states below EF1 and the number of (non-adjacent) Tev vacancies on the
Te-edge. Each of the localized states is confined around each Tev, and with nearly
degenerate energies.

B.1.2 Mo Vacancies at the Edges

Mov vacancies are modeled by changing the onsite potential at the transition metal
atom of interest. The onsite potential is made large enough (' 103 eV), to create a
high energy barrier at the vacancy-site, as discussed in the literature [161].

As in the case of Tev, an Mov on the Te-edge produces electronic states with midgap
energies E ' 0.1 eV, with POC localized in the Mov vicinity. In Fig. B.2(a), a single
Mov is at the first site of the Mo-edge (bottom row); the state with E ' EF1 has
vanishing POC at the Mov-site, and oscillates along the edge with a combination of
several k momenta. Two Mov on the Mo-edge show similar vanishing POC around the
Mov sites, symmetric around the midpoint between the two vacancies.
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B.1.3 Vacancies in the bulk

For either a single Mov or Tev in the bulk, vacancy-associated electronic states are
found in the midgap, with highly localized POC around the vacancy site. However,
the POC for midgap states on both Mo and Te-edges remains uniform, showing a well-
defined single k momentum, as in the pristine case. Mov in the bulk produces localized
states in energy regions E < EF2 and E > EF4, while Tev localizes electronic states
with E < EF2. Figure B.2(d) shows a typical localized POC around a single Tev in
the bulk with E ' EF1. It is worth noting that our results are in full agreement with
early work on vacancies in the MoTe2 bulk [196].

The effect of two or more vacancies in the bulk is to produce more states in the
midgap, in the aforementioned energy regions. All these states have POC localized
around the vacancy, and although found in the midgap, they do not carry any current
and can not contribute to the spin currents along the Mo- and Te-edges.

We have also tested some other defect configurations: (i) a vacancy at the Mo or
Te edge, plus a vacancy near the edge. (ii) one vacancy at each edge plus a vacancy
in the bulk. As long as the vacancies are not in adjacent sites, there is no interaction
between defects in the bulk and vacancies at the edge, even when they result in midgap
states.

We have fully characterized the effects of experimentally realistic defective edges,
i.e. atomic vacancies in our MoTe2-EuO system, for realistic vacancy concentrations
seen in experiments [169, 194, 170, 52, 21, 195].
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Appendix C

Pristine Armchair Ribbons

In this Appendix we provide the band structure results for freestanding pristine arm-
chair MoTe2 ribbons constructed with the 3OTB Hamiltonian of Chapter 2. These
results are useful for comparing band structure results when the ribbons are on dif-
ferent AFM substrates, forming MoTe2-AFM vertical heterostructures, such as the
described in Chapter 5.

Figure C.1(a) shows a pristine TMD monolayer with defined zigzag and armchair
edges along the x- and y-direction, respectively. The unit cell for the zigzag/armchair
ribbon is shown as red/cyan colors. Pristine TMD armchair ribbons are constructed
considering PBC along the y-axis. If one stitches both horizontal edges, a N -wide
H-long PBC armchair-terminated ribbon is obtained.

The M-M distance projected along the y-axis is a
√

3/2, while the M-M distance
projected along the x-axis is a, where a = 3.56 Å is the MoTe2 lattice constant. Along
the y-axis, the length of the armchair unit cell is twice the M-M distance (a

√
3), conse-

quently, the BZ is folded along the momentum ky, generating a reduced BZ in compari-
son to the pristine BZ of zigzag ribbons and the 2D bulk [106], as shown in Fig. C.1(b).
Therefore, in armchair TMD ribbons, the K and K ′ symmetry points (or valleys) are
both mapped onto the one at Γ (ky = 0) in the reduced BZ [176, 160]. The band
structure for the armchair ribbons are obtained by Fourier transforming the real space
lattice results from the 3OTB model described in Section 2.3.1.1.

The energy spectrum of pristine TMD ribbons with armchair edges is in stark
contrast to that of zigzag-terminated ribbons. Pristine armchair ribbons have semi-
conducting character with gapped edge modes lying in the bulk gap. This electronic
behavior has been demonstrated through diverse approaches [176, 177, 178, 160, 161].
Rostami et al. [160] showed that valley mixing is required to open the gap seen at the
edges for each spin; accordingly, the origin of the gapped edge modes is attributed to
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Figure C.1: (a) Top view for a MX2 pristine monolayer, zigzag/armchair edges are along
the x/y-axis, their unit cells are showed as red rhomboid (zigzag) and cyan rectangle
(armchair). N , H indicates the size of the ribbon, in this example, N = 5 M sites,
H = 5 M sites, the total amount of M sites is then Nsites = N × H = 25 M sites.
(b) First BZ for the 2D monolayer (hexagonal), as well as for zigzag and armchair-
terminated ribbons (rectangular). The band structure for zigzag/armchair ribbons is
projected along the momentum kx/ky. The X ′ − K − Γ − K ′ − X path correspond
to kx momentum projection, while the Y − Γ − Y ′ path correspond to ky momentum
projection.

the mixing of the 1D valleys on the edges of armchair TMD ribbons.
The energy dispersions with SOC for the pristine MoTe2 armchair ribbon of size

N = 40, H = 42 (1680 Mo sites) with spin up/down projection are shown in Fig.
C.2(a)/(b). The semiconducting character is clear, with a direct band gap of 0.51 eV at
ky = 0. In both, the spin up and spin down dispersions, a pair of edge modes is close to
the valence bulk bands, other pair sits near the conduction bulk bands. By calculating
the wave functions associated to each edge state of the edge modes, we have checked
that the gapped edge modes are localized along the left and right armchair edges, as
is indicated by the symbols in Fig. C.2. The eigenenergies along the edge modes are
nearly degenerate around ky = 0, that is, each ky single value has two eigenenergies
(per spin) associated to the band folding, leading to gapped edge modes. Edge mixing
for some valence and conduction edge states is also seen for the corresponding ky value
associated, represented as green/dark-pink stars for spin up/down. The edge mixing is
attributed to energy states with wave functions distributed simultaneously along both
armchair edges (left and right). If we consider both spins in the dispersion, panel (c)
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(b)(a)

Bulk spin up
Left edge spin up
Right edge spin up
Both edges spin up

(c)

Bulk spin down
Left edge spin down
Right edge spin down
Both edges spin down

Figure C.2: Energy spectrum for the MoTe2 pristine armchair-terminated ribbon of
size N = 40 (width), H = 42 (length) (1680 Mo sites). In panel (a) spin up, panel (b)
spin down, panel (c) shows both, spin up and spin down [same legends as in panels (a)
and (b) apply for panel (c)].

shows that each spin up edge mode has a nearly degenerate spin down band copy. Then,
the energy dispersion for the edge modes in pristine armchair TMD ribbons with full
SOC, shows there are four eigenenergies associated to a single value of the momentum
ky due to the spin degeneracy and band folding.
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