UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Repositorio Digital USM

https://repositorio.usm.cl

Tesis USM

TESIS de Pregrado de acceso ABIERTO

2020-08

MODELACIÓN Y SIMULACIÓN COMPUTACIONAL PARA LA EVALUACIÓN NO-INVASIVA DE PROPIEDADES MECÁNICAS EN TEJIDOS BLANDOS MEDIANTE ELASTOGRAFÍA

LEÓN HERRERA, CLAUDIA VALENTINA

https://hdl.handle.net/11673/49704 Repositorio Digital USM, UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE INGENIERÍA CIVIL MECÁNICA SANTIAGO – CHILE

Modelación y Simulación computacional para la evaluación no-invasiva de propiedades mecánicas en tejidos blandos mediante Elastografía

Claudia Valentina León Herrera

MEMORIA DE TITULACIÓN PARA OPTAR AL TÍTULO DE INGENIERO CIVIL MECÁNICO

> Profesor Guía: Dr. Ing. Joaquín Mura Mardones Profesor Correferente: Dr.(c) Ing. Hernán Mella

Agosto de 2020

Agradecimientos

Agradezco a todos quienes creyeron en mí y mis capacidades para afrontar esta etapa universitaria en mi vida, quienes me inspiraron a seguir mejorando. Particularmente a mis padres que me permitieron una educación y sustento económico, a mis cercanos que brindaron apoyo moral cuando era crucial y a aquellos que, sin intención, me enseñaron a afrontar de una u otra forma, la realidad que me espera. Agradezco a quienes me brindaron herramientas y conocimiento para formarme como profesional, a aquellos profesores con vocación de enseñar y de formar personas. Por último, agradezco a mi pareja, quien representa un pilar fundamental en mi vida.

Dedicatoria

Para quienes dudan de sí mismos, para que sigan su camino afrontando las adversidades, que vean que con esfuerzo y perseverancia se pueden lograr todas las metas que se quieran.

Resumen

Dentro de la amplia variedad de métodos de diagnósticos médicos, es importante destacar aquellos que sean más precisos y menos invasivos para las personas que requieran someterse a estos. La Elastografía es una alternativa a lo anterior, trabajando con parámetros de rigidez, los cuales derivan de las deformaciones que sufre el tejido ante vibraciones controladas.

El caso de estudio busca involucrarse en estos temas de diagnóstico no invasivo para promover su implementación, dando a conocer su utilidad y que pueda inspirar a desarrollar mejores alternativas, puesto que la problemática actual es que, para poder detectar cuerpos anómalos en un tejido sano, muchas veces los métodos de diagnósticos clínicos implican una alta inversión y pueden resultar complejos e invasivos.

Por medio del método de elementos finitos, se lleva a cabo una simulación computacional de vibraciones sobre un tejido viscoelástico lineal e isotrópico a partir de un modelo de elasticidad lineal mixto, bajo la implementación de los modelos reológicos de Voigt y Zener. Con esto, es posible recuperar valores de los desplazamientos nodales, los cuales son traducidos a parámetros de rigidez por medio de algunos algoritmos de inversión directa correspondientes al método Helmholtz, HMDI, y los nuevos métodos no publicados FV y FV-H, cuyo objetivo es determinar los módulos de corte para cada punto del tejido estudiado, a partir de una matriz de desplazamientos. Esto permite comprobar si los métodos implementados arrojan resultados acordes a los empleados en la simulación.

Los valores de módulo de corte obtenidos son graficados en función de las frecuencias utilizadas y fueron calculados los errores asociados a las magnitudes de módulo de corte y la tendencia de las curvas. Con ello, se determinó que los métodos siguen un comportamiento más acorde a las curvas asociadas al modelo Voigt. Además de esto, se observó que el método con mejores resultados en cuanto a la magnitud de los módulos de corte es el método de Helmholtz puesto que es el que más se acerca a los valores de la curva real. Y, por último, el método que obtuvo un mejor desempeño con respecto a la forma de la curva real fue el método FV-H, determinado a partir del bajo valor de error diferencial que este método obtuvo con respecto a los demás.

Abstract

The wide variety of medical diagnostic methods, it is important to highlight those that are more accurate and less invasive for people who need to undergo these medical diagnostic methods. Elastography is an alternative to this, working with stiffness parameters, derived from deformations in the tissue under controlled vibrations.

The case of study seeks to get involved in these non-invasive diagnostic issues to promote their implementation, making known their usefulness and that may inspire the development of better alternatives, since the current problem is that, in order to detect abnormal bodies in healthy tissue, Clinical diagnostic methods often involve a high investment and can be complex and invasive.

Using the finite element method, a computational simulation of vibrations is carried out on a linear and isotropic viscoelastic tissue from a linear elasticity model using a mixed formulation, under the implementation of the Voigt and Zener rheological models. With this, it is possible to recover values of the nodal displacements, which are translated into stiffness parameters by means of some direct inversion algorithms corresponding to the Helmholtz method, HMDI, and the new unpublished methods FV and FV-H, whose objective is determine the shear modulus for each point of the tissue studied, from a matrix of displacements. That allows to verify if the implemented methods results are according to those used in the simulation.

The shear modulus values obtained are plotted as a function of the frequencies used and the errors associated with the shear modulus magnitudes and the trend of the curves were calculated. With this, it was determined that the methods follow a behavior more in line with the curves associated with the Voigt model. In addition to this, it is realized that the method with the best results in terms of the magnitude of the shear modulus is the Helmholtz method, since it is the one that is closest to the values of the real curve. And, finally, the method that obtained the best performance with respect to the shape of the real curve was the FV-H method, determined from the low differential error value that this method obtained with respect to the others.

Glosario

Fantoma: El término "fantoma" se utiliza para describir un material cuya estructura modela las propiedades de un el tejido humano de interés (Papp, 2012).

Reología: Rama de la física que estudia el comportamiento de los fluidos sometidos a diferentes tipos de esfuerzos. El campo de la reología se extiende desde la mecánica de los fluidos Newtonianos, por una parte, hasta la elasticidad de Hooke por otra (Rojas G., 1999).

Método de Elementos Finitos: Es un método por aproximación numérica cuya idea general es la división de un continuo en un conjunto de pequeños elementos interconectados por una serie de puntos llamados nodos. Las ecuaciones que rigen el comportamiento del continuo regirán también el del elemento. De esta forma se consigue pasar de un sistema continuo (infinitos grados de libertad), que es regido por una ecuación diferencial o un sistema de ecuaciones diferenciales, a un sistema con un número de grados de libertad finito cuyo comportamiento se modela por un sistema de ecuaciones, lineales o no (Carnicero, 2001).

FV: *Finite Volume based on the elasticity equation.*

FV-H: Finite Volume based on the Helmholtz method.

HMDI: Heterogeneous Multifrequency Direct Inversión.

Tabla de contenido

Agradecimientos	I
Dedicatoria	II
Resumen	III
Abstract	IV
Glosario	V
Tabla de contenido	VI
Lista de Figuras (Índice de Figuras)	VIII
Lista de Tablas (Índice de Tablas)	IX
Lista de Gráficos (Índice de Gráficos)	X
1. Estado del Arte	XI
2. Objetivos	XIV
2.1. Objetivo general	XIV
2.2. Objetivos específicos	XIV
3. Metodología	1
3.1. Modelo de Elasticidad	1
3.1.1. Modelo de Elasticidad lineal	2
3.1.2. Modelo de Elasticidad lineal mixto	
3.2. Modelación y simulación computacional	4
3.2.1. Modelo Voigt	6
3.2.2. Modelo Zener	6
3.2.3. Implementación de Matlab	7
3.2.4. Campo de desplazamientos	7
4. Resultados y análisis	10
4.1.1. Paraview	10
4.1.2. Matlab	17
4.2. Proceso de inversión	18
5. Conclusiones	
6. Recomendaciones y propuestas a futuro	
7. Bibliografía	
8. Apéndice	
8.1. Tablas de velocidad de corte y longitud de onda	
8.2. Tablas de promedio y desviación estándar	30
8.3. Gráficos magnitud módulo de corte vs frecuencia	

8.4.	Muestra de gráficos con barras de error	36
8.5.	Pruebas variación de parámetros modelo Voigt	37

Lista de Figuras (Índice de Figuras)

Figura 1: Boceto de matriz con presencia de cuatro inclusiones distribuidas en su centro, con
respectivas consideraciones de borde (modelo de elasticidad lineal mixto). Elaboración propia 5
Figura 2: Modelo Voigt (Zhu, y otros, 2014)
Figura 3: Modelo Zener (Zhu, y otros, 2014)
Figura 4: Representación gráfica de la adaptación del modelo empleado7
Figura 5: Modelación de Figura 1, donde la matriz y las inclusiones son representadas por
regiones; 0 inclusión superior derecha, 1 inclusión inferior derecha, 2 inclusión superior izquierda, 3
inclusión inferior izquierda y 4 la matriz propiamente tal 10
Figura 6: Mallado establecido a modelo computacional, donde la matriz y las inclusiones son
representadas por regiones; 0 inclusión superior derecha, 1 inclusión inferior derecha, 2 inclusión
superior izquierda, 3 inclusión inferior izquierda y 4 la matriz propiamente tal 11
Figura 7: Comportamiento del campo de desplazamiento real (con el valor de magnitud de los
vectores) para modelo Voigt a una frecuencia de 30 , 60 y 100 [<i>Hz</i>]12
Figura 8: Comportamiento del campo de desplazamiento real (con el valor de magnitud de los
vectores) para modelo Zener a una frecuencia de 30 , 60 y 100 [<i>Hz</i>]13
Figura 9: Comportamiento del campo de desplazamiento imaginario (con el valor de magnitud de
los vectores) para modelo Voigt a una frecuencia de 30 , 60 y 100 [<i>Hz</i>]14
Figura 10: Comportamiento del campo de desplazamiento imaginario (con el valor de magnitud
de los vectores) para modelo Zener a una frecuencia de 30 , 60 y 100 [<i>Hz</i>]15
Figura 11: Magnitud del campo de desplazamiento real e imaginario para modelo Voigt a 30, 60
y 100 [<i>Hz</i>]16
Figura 12: Magnitud del campo de desplazamiento real e imaginario para modelo Zener a 30, 60
y 100 [<i>Hz</i>]16
Figura 13: Magnitud campo de desplazamiento real e imaginario modelo Voigt y Zener a 30 [<i>Hz</i>].
Figura 14: Magnitud módulo de corte entregados por los métodos de inversión para modelo Voigt
y Zener a 60 [<i>Hz</i>]23

Lista de Tablas (Índice de Tablas)

Tabla 1: Valores a parámetros requeridos para simulación
Tabla 2: Valores de parámetros a implementar en el modelo Voigt
Tabla 3: Valores de parámetros a implementar en el modelo Zener
Tabla 4: Dimensión de los segmentos (bordes e inclusiones) 8
Tabla 5: Dimensión de lados aproximados de los elementos 8
Tabla 6: Valores calculados de GV * para modelo Voigt
Tabla 7: Valores calculados de <i>GZ</i> * para modelo Zener9
Tabla 8: Número aproximado de puntos por λ de cada segmento (bordes e inclusiones) modelo
Voigt9
Tabla 9: Número aproximado de puntos por λ de cada segmento (bordes e inclusiones) modelo
Zener
Tabla 10: Tiempo de procesamiento de cada método de inversión modelo Voigt y Zener 18
Tabla 15: Cuantificación del error presente en xG respecto a los valores reales para modelo Voigt
Tabla 16: Cuantificación del error presente en xG respecto a los valores reales para modelo Zener
Tabla 13: Valores calculados de <i>cs</i> para modelo Voigt
Tabla 14: Valores calculados de λ para modelo Voigt
Tabla 15: Valores calculados de cs para modelo Zener
Tabla 16: Valores calculados de λ para modelo Zener
Tabla 17: <i>xG</i> por región para cada método de inversión modelo Voigt
Tabla 18: σ por región para cada método de inversión modelo Voigt
Tabla 19: <i>xG</i> por región para cada método de inversión modelo Zener
Tabla 20: σ por región para cada método de inversión modelo Zener
Tabla 21: Errores presentes en el módulo de corte al modificar los parámetros de las regiones para
FV del modelo Voigt
Tabla 22: Errores presentes en el módulo de corte al modificar los parámetros de las regiones para
FV-H del modelo Voigt
Tabla 23: Errores presentes en el módulo de corte al modificar los parámetros de las regiones para
Halmholtz dal modelo Voigt

Lista de Gráficos (Índice de Gráficos)

Gráfico 1: Curvas de los módulos de corte experimentales y real para inclusión 0 modelo Voigt.
Gráfico 2: Curvas de los módulos de corte experimentales y real para matriz modelo Voigt 19 Gráfico 3: Curvas de los módulos de corte experimentales y real para inclusión 0 modelo Zener. 19
Gráfico 4: Curvas de los módulos de corte experimentales y real para matriz modelo Zener 20 Gráfico 5: Curvas de los módulos de corte experimentales y real para inclusión 1 modelo Voigt.
Gráfico 6: Curvas de los módulos de corte experimentales y real para inclusión 2 modelo Voigt.
Gráfico 7: Curvas de los módulos de corte experimentales y real para inclusión 3 modelo Voigt.
Gráfico 8: Curvas de los módulos de corte experimentales y real para inclusión 1 modelo Zener.
Gráfico 9: Curvas de los módulos de corte experimentales y real para inclusión 2 modelo Zener.
Gráfico 10: Curvas de los módulos de corte experimentales y real para inclusión 3 modelo Zener.
Gráfico 11: Curva de módulo de corte y su desviación estándar para inclusión 0 en método FV.
Gráfico 12: Curva de módulo de corte y su desviación estándar para matriz en método HMDI. 36 Gráfico 13: Curva de módulo de corte y su desviación estándar para inclusión 2 en método FV-H.
Gráfico 14: Curva de módulo de corte y su desviación estándar para inclusión 3 en método Helmholtz

1. Estado del Arte

Para la detección médica de anomalías físicas, la palpación manual está claramente restringida a regiones accesibles manualmente del cuerpo humano y sufre de una resolución espacial reducida. Para solucionar esta problemática se han desarrollado nuevas técnicas para mapear propiedades biomecánicas de forma cuantitativa y con mayor resolución espacial, es decir que la base de la detección estaría en el análisis de datos en vez del simple tacto, y no se estaría limitando a zonas superficiales, sino que se podría llegar mucho más profundo en el tejido (Braun, Buntkowsky, Bernarding, Tolxdorff, & Sack, 2001). El problema de estas técnicas de detección desarrolladas para mejorar la ambigüedad de la detección manual es que no miden las propiedades mecánicas directamente, por lo tanto, solo proporcionan un indicador incompleto de la distribución de rigidez real, llegando así a valores imprecisos para una correcta evaluación. La identificación de las propiedades del material a partir de los conjuntos de datos relacionados indirectamente (por ejemplo, la deformación observada) se conoce como el problema inverso de la reconstrucción del material (Guo, You, Wan, & Bićanić, 2010). Esto quiere decir que, una vez que el desplazamiento se mide a partir de alguna técnica de imagen, la relación entre el desplazamiento, la tensión y el estrés, permite la estimación no invasiva de las propiedades elásticas. Se considera comúnmente la ecuación de Navier-Lamé para la conservación del momento lineal en medios viscoelásticos lineales isotrópicos sin fuerzas de volumen (Taber, 2004).

Las propiedades del tejido elástico, como el aumento de la rigidez, se designan físicamente como módulos elásticos que describen la resistencia del material a las deformaciones. La Elastografía de resonancia magnética dinámica (MRE), ofrece una de las técnicas más prometedoras para las mediciones de elasticidad in vivo (Braun, Buntkowsky, Bernarding, Tolxdorff, & Sack, 2001). MRE combina la sensibilidad al movimiento inherente de la imagen de MR de contraste de fase con vibraciones armónicas inducidas externamente. Las vibraciones en el régimen acústico de baja frecuencia representan una forma suave de estimular mecánicamente el tejido al que no se puede acceder por deformación desde la superficie del cuerpo (Papazoglou, Hirsch, Braun, & Sack, 2012).

Existen varios enfoques de reconstrucción para materiales elásticos disponibles, basados en el marco de soluciones de problemas inversos. Uno de los enfoques actuales comienza con la suposición de una solución de prueba inicial de la distribución de rigidez del material, que luego se toma como el inicio de una serie iterativa de soluciones utilizando el método de elementos finitos (FEM) del problema directo. Tal enfoque requiere un tiempo de computación considerable, y la convergencia de este enfoque no siempre está garantizada (Guo, You, Wan, & Bićanić, 2010). Estudios anteriores han demostrado el potencial del análisis de elementos finitos (FEA) para evaluar el algoritmo de inversión, así como validar el modelo matemático de MRE, el módulo de corte recuperado y las condiciones de excitación (Tomita, y otros, 2018).

El objetivo de la Elastografía es reemplazar el examen de palpación manual con una imagen cuantitativa de la rigidez al corte (McLaughlin, Renzi, Yoon, Ehman, & Manduca, 2006). Desde un punto de vista matemático, el problema inverso de la Elastografía consiste en identificar el parámetro variable de Lamé μ en un sistema de elasticidad lineal (Cahill, Jadamba, Khan, Sama, & Winkler, 2013). En MRE, el desplazamiento del vector de una onda armónica en el tiempo se mide en función del espacio y el tiempo. Debido a que la propagación de ondas acústicas en el cuerpo es demasiado rápida para ser detectada, su componente longitudinal puede despreciarse y considerar únicamente la parte cortante de la onda, lo cual es conocido como el modelo del Helmholtz (caso particular de modelo de elasticidad lineal). El módulo de corte o la velocidad de onda de corte se obtiene por inversión de esta ecuación (McLaughlin, Renzi, Yoon, Ehman, & Manduca, 2006).

MRE se ha usado para identificar una serie de enfermedades a partir del módulo de corte, no obstante, se ha demostrado que la viscosidad del tejido también aporta información importante del estado de este (Papazoglou, Hirsch, Braun, & Sack, 2012). Fung (2013) consideró la viscoelasticidad como el mejor indicador de las propiedades mecánicas de los tejidos blandos, que pueden modelarse mediante una combinación de componentes elásticos y viscosos para caracterizar el comportamiento reológico del tejido (Joseph, 2013). Sin embargo, la determinación cuantitativa de los parámetros viscoelásticos requiere un modelo reológico apropiado que describa el tejido blando. El módulo de corte complejo está relacionado con la elasticidad y la viscosidad de varios modelos reológicos (Zhu, y otros, 2014). Análisis previos como el realizado por Klatt, Hamhabe, Asbach, Braun, & Sack (2007), el de Sinkus, y otros (2007) y el de Fabry, y otros (2003), han demostrado que el módulo de corte complejo sigue aproximadamente a una ley de potencia en función de la frecuencia (Citado en Testu, y otros, 2017). Esto con el fin de visualizar más claramente los resultados obtenidos a partir de los algoritmos de inversión.

Generalmente en la mayoría de los estudios biomecánicos de los tejidos blandos, estos han sido caracterizados bajo los modelos de comportamiento material viscoelástico (Maurel, Thalmann, Wu, & Thalmann, 1998). Debido a que poseen características propias de los materiales elásticos, generalmente sólidos, y a su vez también se comportan como un fluido viscoso (Palomares, Rodríguez, & Castro, 2017). Motivo por el cual se determinó que el material a simular presentase propiedades viscoelásticas, lo cual implica trabajar con términos complejos, más precisamente hablando, el módulo de corte complejo.

A pesar de que los modelos de potencia describen mejor a las características de los tejidos, se comenzará el análisis con modelos más simples como el modelo Voigt y Zener, de los cuales se hablará más a detalle en **Capítulo 3.2.1** y **3.2.2**.

Se han desarrollado muchos métodos para resolver problemas inversos de la elasticidad. Estos métodos son directos o iterativos (Honarvar, Sahebjavaher, Rohling, & & Salcudean, 2017). Para el presente caso, serán empleados cuatro métodos de inversión directa; método de inversión de Helmholtz, FV, FV-H y HMDI.

El método de inversión de Helmholtz, como bien indica su nombre, surge a partir del modelo de Helmholtz, que a su vez deriva de un caso particular de ecuación de elasticidad lineal al implementar la descomposición de Helmholtz – Hodge, donde el campo vectorial de desplazamientos se compone de una parte con divergencia nula y otra con rotacional nula.

El método FV consiste en reformular la ecuación de elasticidad en base a escala de volumen más pequeño (vóxel).

Por su parte, el método FV-H consiste en reformular la ecuación de Helmholtz en base a escala de volumen más pequeño (vóxel).

Y, por último, el método HMDI entrega soluciones suavizadas debido a la implementación de mínimos cuadrados para la resolución de un problema discretizado.

En el presente estudio se buscará la forma de implementar la Elastografía desde la perspectiva ingenieril, por medio de una simulación computacional de un tejido viscoelástico sometido a vibraciones. Esto permitiría visualizar la propagación de ondas mecánicas a través de dicho tejido y posteriormente, se extraerían los datos de campos de desplazamientos, dando paso a la utilización de

cuatro métodos de inversión ya existentes para recuperar el mapa de elasticidad (en este caso, el módulo de corte).

2. Objetivos

2.1. Objetivo general

Modelar y simular computacionalmente la respuesta de un tejido viscoelástico bajo una carga a una frecuencia conocida, para recuperar parámetros mecánicos mediante Elastografía. Más precisamente, a partir del campo de desplazamientos, estimar el módulo dinámico de corte y comprobar si se acerca al realmente empleado en la simulación.

2.2. Objetivos específicos

- Comprender el comportamiento viscoelástico de ondas mecánicas en tejidos vivos.
- Definir los requerimientos y parámetros a considerar, para la simulación.
- Desarrollar un modelo en elementos finitos para simular la propagación de ondas mecánicas en un medio viscoelástico heterogéneo.
- Uso de algoritmos ya existentes para la estimación de parámetros (problema inverso).

3. Metodología

3.1. Modelo de Elasticidad

Como se ha mencionado a modo introductorio, se pretende simular la perturbación de un medio viscoelástico producto de vibraciones, con la finalidad de obtener propiedades mecánicas que permitan identificar si existen o no rasgos anómalos presentes en este. Para ello se provocan deformaciones reversibles sobre el medio, lo que posibilita asociar este comportamiento a un modelo matemático de elasticidad.

Entiéndase σ como tensor de esfuerzos (de Cauchy) que considera todas las posibles fuerzas que ocurren en la vecindad de un punto (elemento material que ocupa un volumen de lemento diferencial $\mathbb{U} \subset \mathbb{R}^d$). Aplicando la segunda ley de Newton, considerando el balance de fuerzas en el volumen f(x) y tensiones superficiales en las paredes del elemento $\mathbb{U} \ni x$, se encuentra que la fuerza total aplicada en \mathbb{U} es:

$$F = \int_{\mathsf{W}} f dx + \int_{\partial \mathsf{W}} \sigma n dS$$

En equilibrio F = 0.

Aplicando el teorema de divergencia (o de Gauss), se tiene:

$$\int_{\mathfrak{W}} f \, dx + \int_{\mathfrak{W}} \operatorname{div}(\sigma) \, dx = 0$$

Con $-\operatorname{div}(\sigma) = f$ para todo $\mathbb{U} \subset \mathbb{R}^d$.

Donde:

$$\sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \qquad \text{div}(\sigma) = \begin{bmatrix} \frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} \\ \frac{\partial \sigma_{21}}{\partial x_1} + \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_3} \\ \frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} \end{bmatrix}$$

O escrito en notación indicial:

$$[\operatorname{div}(\sigma)]_i = \sum_{j=1}^3 \frac{\partial \sigma_{ij}}{\partial x_j}$$

El desplazamiento es $u = x - x_0$, con $x \in \mathbb{R}^d$ la posición actual y $x_0 \in \mathbb{R}^d$ la posición inicial.

Las propiedades del material y las condiciones que se pretenden implementar en la simulación permiten el uso de un modelo lineal de elasticidad.

Se considerará un dominio acotado ($\Omega \not\subseteq \mathbb{R}^d$), donde sea posible alcanzar a la región $\partial \Omega$ e imponer un valor para u o para las derivadas de u.

Para el borde de un dominio Ω , que usualmente es denotado como $\partial \Omega$, se asume lo suficientemente suave para permitir definir un vector normal *n* que apunte hacia el exterior del dominio (Mura, 2019).

3.1.1. Modelo de Elasticidad lineal

Bajo la suposición de pequeños gradientes del desplazamiento, la medida de tasa de deformación (strain), viene dada por el tensor de deformaciones lineal:

$$e(u) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})$$

O en notación indicial:

$$e_{ij}(u) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Observación: Las componentes diagonales de *e* corresponden al cambio relativo de longitud a lo largo de una dirección determinada, mientras que los elementos fuera de la diagonal se asocian al cambio (a primer orden) en el ángulo del elemento diferencial.

La ecuación constitutiva relaciona las deformaciones y los esfuerzos. Si es lineal, entonces:

$$\sigma(u) = Ce(u)$$

O en notación indicial:

$$\sigma_{ij} = \sum_{k,l}^d C_{ijkl} e_{kl}$$

A esta forma se le llama ley constitutiva lineal o Ley de Hooke. El tensor de elasticidad C es de cuarto orden y puede tener hasta 36 componentes (o módulos elásticos) para describir un material. Sin embargo, ciertas suposiciones de simetría permiten rebajar este número.

Si además se asume que se tiene un material isótropo (cuyas propiedades no físicas son iguales en todas direcciones) y lineal, entonces la Ley de Hooke toma la forma:

$$\sigma(u) = \lambda \operatorname{div}(u)I + 2\mu e(u)$$

Donde *I* es la matriz identidad de $d \times d$.

Los módulos elásticos λ y μ se conocen como los módulos de Lamé, se definen como:

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \qquad \qquad \mu = \frac{E}{2(1+\nu)}$$

Con E > 0 es el módulo de rigidez o módulo de Young, y $\nu \in [-1, 1/2]$ es el coeficiente de Poisson.

De este modo:

$$\rho \frac{\partial^2 u}{\partial t^2} - \operatorname{div}(\sigma(u)) = \mathbf{f}$$

Para el caso de régimen armónico permanente (dinámico), el movimiento se puede describir como:

$$u(x,t) = \mathbb{R}e(\hat{u}(x)e^{i\omega t})$$

Donde ω representa la frecuencia en que oscila la onda y el tiempo $t \in (0, T)$ (Mura, 2019).

Debido a la naturaleza viscoelástica del tejido a simular, es decir, de carácter fácilmente incompresible, λ tiende a infinito. Con esto presente, no es posible determinar el módulo de corte solo a partir del desplazamiento, sin tener que obligadamente encontrarse con el llamado bloqueo numérico (locking) en el esquema numérico. Por lo tanto, se requiere introducir una incógnita adicional en el problema que caracterice la condición de incompresibilidad del material. Un enfoque que permite formular tales problemas con dos o más variables de interés es el que da la formulación variacional mixta.

Los métodos mixtos que modelan la incompresibilidad del material y donde el interés principal es la variable desplazamiento, son los llamados tipo Stokes o métodos mixtos-primales, donde se busca la solución (u, p), con la variable p actuando como una presión hidrostática y que fundamentalmente permite caracterizar la condición de incompresibilidad del material (Gatica, 2005).

3.1.2. Modelo de Elasticidad lineal mixto

Las condiciones asociadas a la implementación de un material incompresible corresponden a:

$$\sigma(u,p) = -pI + 2\mu e(u)$$
$$div(\sigma(u,p)) = -\nabla p + 2\mu div(e(u))$$
$$\rho \frac{\partial^2 u}{\partial t^2} - div(\sigma(u,p)) = 0$$
$$div(u) = 0$$

Para el caso de régimen armónico permanente (dinámico), el movimiento y la presión se pueden describir como:

$$u(x,t) = \mathbb{R}e(\hat{u}(x)e^{i\omega t})$$
$$p(x,t) = \mathbb{R}e(\hat{p}(x)e^{i\omega t})$$

Donde ω representa la frecuencia en que oscila la onda y el tiempo $t \in (0, T)$.

De esta forma:

$$-\rho\omega^{2}\hat{u} - div(\sigma(\hat{u},\hat{p})) = 0$$
$$-\rho\omega^{2}\hat{u} - (-\nabla\hat{p} + 2\mu div(e(\hat{u}))) = 0$$
$$-\rho\omega^{2}\hat{u} - 2\mu div(e(\hat{u})) + \nabla\hat{p} = 0$$

Entonces, la formulación fuente queda:

$$-\rho\omega^{2}\hat{u} - 2div(\mu e(\hat{u})) + \nabla \hat{p} = 0, \text{ en }\Omega$$
$$div(\hat{u}) = 0, \text{ en }\Omega$$
$$\hat{u} = 0, \text{ en }\Gamma_{D}$$

$$-\hat{p}n + 2\mu e(\hat{u})n = g_s, \text{ en }\Gamma_{N_s}$$
$$-\hat{p}n + 2\mu e(\hat{u})n = 0, \text{ en }\Gamma_{N_o}$$

Luego, la formulación variacional para el problema mixto, dado que se tiene (u, p), está dada por:

$$\int_{\Omega} \rho \omega^{2} \hat{u} \cdot v dx + \int_{\Omega} 2 div \left(\mu e(\hat{u}) \right) \cdot v dx - \int_{\Omega} \nabla \hat{p} \cdot v dx = 0, v \in V$$
$$\int_{\Omega} \rho \omega^{2} \hat{u} \cdot v dx - \int_{\Omega} 2 \mu e(\hat{u}) : e(v) dx + \int_{\Omega} \hat{p} div(v) dx = -\int_{\Gamma_{N_{S}}} g_{s} \cdot v dx, v \in V$$
(1)

Para este caso, al emplearse un material casi incompresible, será considerado un penalizador de modo que:

$$div(\hat{u}) \approx 0$$
, en Ω

Siendo este:

$$div(\hat{u}) = \varepsilon \hat{p}, \, \mathrm{en} \, \Omega$$

Donde ε representa la penalización, cuyo valor corresponde a $1 \cdot 10^{-4}$. De este modo:

$$\int_{\Omega} div(\hat{u}) q dx = \int_{\Omega} \varepsilon \hat{p} \cdot q dx, \forall q \in Q$$
⁽²⁾

Sumando (1) y (2):

$$\begin{aligned} \int_{\Omega} \rho \omega^{2} \hat{u} \cdot v dx - \int_{\Omega} 2\mu e(\hat{u}) : e(v) dx + \int_{\Omega} \hat{p} div(v) dx + \int_{\Omega} div(\hat{u}) q dx - \int_{\Omega} \varepsilon \hat{p} \cdot q dx = \\ - \int_{\Gamma_{NS}} g_{s} \cdot v dx, \, \forall (v,q) \in V x Q \end{aligned}$$

No obstante, como en lugar de una carga oscilante se planea utilizar una deformación:

 $g_s = 0$

Y una nueva condición de borde surge:

$$\hat{u} = (0, \delta), \text{ en } \Gamma_{N_{SS}}$$

Donde se considerará $\delta = -0.01[m]$.

3.2. Modelación y simulación computacional

Respecto a la simulación, se considera un paralelepípedo infinito, lo cual permite simplificar el análisis a un modelo bidimensional. Dicho modelo estará compuesto por una matriz con cuatro inclusiones en su interior, restringido a condiciones de borde como se muestra a continuación:

Figura 1: Boceto de matriz con presencia de cuatro inclusiones distribuidas en su centro, con respectivas consideraciones de borde (modelo de elasticidad lineal mixto). Elaboración propia.

Anteriormente se planteó la formulación variacional del modelo de elasticidad mixto, esto es debido a que se hará uso del software *FreeFEM*++, que requiere de dicha formulación para aplicarlo.

Las dimensiones del modelo a utilizar en el software, esbozados en **Figura 1.** se encuentran tabulados en la siguiente tabla:

Inclusión 0 Inclusión 1]	[<mark>nclusión</mark>	2	Ι	nclusión	3		Matriz	1			
Ø ₀	0.02	[m]	\emptyset_1	0.012	[m]	Ø ₂	0.015	[m]	Ø ₃	0.01	[m]	<i>x</i> ₄	0.128	[m]
												y_4	0.08	[m]

Tabla 1: Valores a	parámetros re	queridos para	simulación

Donde la matriz queda representada por un rectángulo de $x_4 \times y_4$ [m^2].

Se condiciona un mallado en *FreeFEM*++ definiendo el grado de finura de la malla a partir de los segmentos que componen el modelo computacional (vale decir, bordes e inclusiones), estableciéndose una cantidad de 120 elementos para cada segmento.

Ya que el comportamiento reológico de materiales viscoelásticos es difícil de visualizar, a menudo se suelen emplear modelos mecánicos para su representación. En esos modelos se suele representar el comportamiento de un fluido de Newton como un amortiguador, mientras que un comportamiento elástico como el de un sólido de Hooke se suele representar como un resorte. El amortiguador representa el la disipación de energía en forma de calor mientras que el resorte representa la energía almacenada en el cuerpo (García Q., 2008).

En un régimen armónico permanente, el módulo de corte se describe bien como un coeficiente de valor complejo. Los valores de módulo de corte complejo G^* que se van a utilizar, serán descritos por medio de dos modelos; Voigt y Zener, lo cual implica que la simulación tendrá que ser dividida en dos casos.

3.2.1. Modelo Voigt

El modelo Voigt se representa por medio de un amortiguador (asociado a la viscosidad η) y un resorte (asociado a la elasticidad *E*) conectado en paralelo:

De este modo G^* se describe de la siguiente forma (Zhu, y otros, 2014):

$$G_V^*(\omega) = E + i\omega\eta \qquad (3)$$

Figura 2: Modelo Voigt (Zhu, y otros, 2014).

Donde los parámetros estarán dados por:

Tejido	E	η
Inclusión 0	1644	4.06
Inclusión 1	1616	4.443
Inclusión 2	170	4.625
Inclusión 3	991	4.023
Matriz	618	3.379

Tabla 2: Valores de parámetros a implementar en el modelo Voigt

3.2.2. Modelo Zener

El modelo Zener consta de dos componentes en paralelo. El primer componente es el modelo Maxwell, que incluye un resorte E_2 y un amortiguador η , y el segundo componente es un resorte E_1 :

De este modo G^* se describe de la siguiente forma (Zhu, y otros, 2014):

$$G_Z^*(\omega) = \left(E_1 + \frac{\omega^2 \eta^2 E_2}{E_2^2 + \omega^2 \eta^2}\right) + i \frac{\omega \eta E_2^2}{E_2^2 + \omega^2 \eta^2} \quad (4)$$

Figura 3: Modelo Zener (Zhu, y otros, 2014).

Donde los parámetros estarán dados por:

Tabla 3: Valores de parámetros a implementar en el modelo Zener							
Tejido	<i>E</i> ₁	E ₂	η				
Inclusión 0	1605	3404	4.972				
Inclusión 1	1284	962	4.829				
Inclusión 2	1311	561	4.947				
Inclusión 3	688	921	4.212				
Matriz	452	1507	3.499				

Para ambos modelos se considerará lo siguiente:

- Se llevarán a cabo una serie de simulaciones donde se varía la frecuencia de 10 en 10, en un rango de 30 a 100 [*Hz*].
- $\rho = 1000 [Kg/m^3]$, tanto para matriz como inclusiones.
- $\delta = -0.01 \ [m]$ como ya fue mencionado.

3.2.3. Implementación de Matlab

Posterior a la resolución del problema de elasticidad en *FreeFEM*++, fueron almacenados y guardados los parámetros relevantes en un archivo de texto para todo el rango de frecuencias. Dicho archivo fue empleado en Matlab, donde los valores que contiene (campo de desplazamientos y regiones del tejido) son adaptados, por medio de interpolaciones, a una matriz bidimensional con un reticulado acorde al mallado establecido en *FreeFEM*++. Con el fin de simular un tejido, vale decir, que cuente con volumen, se establece cierto número de capas (10) de la matriz bidimensional a lo largo del eje z, como se muestra a continuación:

Figura 4: Representación gráfica de la adaptación del modelo empleado.

Cada capa en **Figura 4**, contiene datos de los desplazamientos de cada punto del tejido, los parámetros μ presentes en cada capa, representan la propiedad mecánica que define cada región del tejido; matriz e inclusiones.

El modelo adaptado, junto a otros parámetros son almacenados en un archivo *Matlab*, dando paso a los algoritmos de inversión ya existentes, correspondientes a FV, FH-H, Helmholtz y HMDI.

3.2.4. Campo de desplazamientos

Para asegurar una buena interpolación en *Matlab*, el mallado establecido en *FreeFEM*++ debe contener suficientes puntos por longitud de onda (fueron establecidos entre 5 a 8 para cada frecuencia), con el fin de seguir bien una sinusoide. Se procederá a describir paso a paso cómo funciona esta medida.

Como primer paso, se necesita saber cuánto miden los lados de los elementos del mallado para cada uno de los segmentos (bordes e inclusiones). Para el caso de las inclusiones, que son circulares, se procede a calcular el perímetro P a partir de los datos que adjunta **Tabla 1**. De este modo se tiene:

Tabla 4: Dimensión de la	os segmentos	(bordes e inclusiones)

Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz		
$P_0[m]$	$P_1[m]$	$P_2[m]$	$P_3[m]$	x [m]	y [m]	
0.0628	0.0377	0.0471	0.0314	0.128	0.080	

Sabiendo que, por cada segmento, la malla contiene 120 elementos, se puede deducir cuánto mide cada lado de los elementos d de forma aproximada:

	Tabla 5:	Dimensión	de lados	aproximados	de los	elementos
--	----------	-----------	----------	-------------	--------	-----------

Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz	
$d_0[m]$	$d_1[m]$	$d_2[m]$	$d_3 \left[m ight]$	$d_x [m]$	$d_{y}[m]$
0.000524	0.000314	0.000393	0.000262	0.001067	0.000667

Con lo anterior, se da paso al cálculo de la longitud de onda.

La velocidad de propagación en un medio con ondas de corte está dada por:

$$c_s = \sqrt{\frac{|G^*|}{\rho}}$$

Mientras que:

$$\omega = 2\pi f = \frac{2\pi}{T}$$

Con f como frecuencia en [Hz] y T como periodo en [s].

La longitud de onda está representada:

$$\lambda = \frac{c_s}{f} = c_s T$$

Se procede a calcular el valor absoluto de los módulos de corte aplicando las ecuaciones (3) para el modelo Voígt y (4) para el modelo Zener, aplicando los valores de **Tabla 2** y **Tabla 3** respectivamente. Estos serán considerados como valores de referencia debido a su origen teórico, y serán utilizados como punto de comparación para analizar los resultados de los métodos de inversión que entregan los resultados de módulos de corte para cada región.

Teniendo los valores absolutos del módulo de corte para cada modelo, y los valores de c_s (tablas disponibles en **Apéndice**) y λ (tablas disponibles en **Apéndice**), para cada frecuencia y región del tejido (matriz e inclusiones), se tabulan los parámetros de la siguiente forma:

Modelo Voigt:

Tabla 6: Valores calculados de $|G_V^*|$ para modelo Voigt

$ G_V^* $ [Pa]							
<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz		
30	1813.397	1820.120	1911.393	1247.849	887.468		
40	1934.924	1964.270	2060.231	1415.763	1050.297		
50	2080.770	2135.355	2237.090	1606.060	1228.332		
60	2246.202	2327.442	2435.875	1811.702	1415.848		
70	2427.219	2535.763	2651.659	2028.025	1609.534		

80	2620.594	2756.640	2880.624	2251.953	1807.409
90	2823.789	2987.289	3119.871	2481.429	2008.234
100	3034.831	3225.615	3367.207	2715.046	2211.205

Modelo Zener:

Tabla 7: Valores calculados de $|G_Z^*|$ para modelo Zener

$ G_Z^* $ [Pa]							
<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz		
30	2040.197	1803.548	1740.642	1172.703	887.904		
40	2291.227	1932.408	1789.506	1295.162	1061.723		
50	2547.957	2017.581	1816.187	1377.854	1210.834		
60	2795.398	2074.428	1831.997	1433.992	1334.343		
70	3025.431	2113.395	1842.030	1472.963	1434.953		
80	3234.419	2140.919	1848.756	1500.749	1516.399		
90	3421.489	2160.926	1853.469	1521.089	1582.334		
100	3587.360	2175.851	1856.893	1536.341	1635.911		

Finalmente se puede saber la cantidad de puntos aproximados presentes por longitud de onda, haciendo la división entre λ y *d* calculados en **Tabla 5**. Quedando tabulado de la siguiente forma:

Modelo Voigt:

Tabla 8: Número aproximado de puntos por λ de cada segmento (bordes e inclusiones) modelo Voigt

	Matriz				
Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Х	у
86	143	117	142	29	47
66	112	91	114	24	38
55	93	76	97	21	33
48	81	66	86	19	30
43	72	59	78	17	27
39	66	54	72	16	25
36	61	50	67	15	24
33	57	47	63	14	22

Modelo Zener:

Tabla 9: Número aproximado de puntos por λ de cada segmento (bordes e inclusiones) modelo Zener

	Matriz				
Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Х	у
91	142	112	138	29	47
72	111	85	109	24	39
61	90	69	90	21	33
53	76	57	76	18	29
47	66	49	66	16	26
43	58	43	58	14	23
39	52	39	52	13	21
36	47	35	47	12	19

Así, se puede saber que el modelo cuenta con la suficiente cantidad de puntos (superando el rango de 5 a 8 puntos), para representar correctamente la forma de una sinusoidal.

Con esto, se da pie a las visualizaciones de los campos de desplazamientos.

4. Resultados y análisis

4.1.1. Paraview

Para una mejor visualización, las imágenes son exportadas a un archivo en formato vtk, y se hace uso del software *Paraview*, donde se podrá observar el comportamiento del desplazamiento tanto vectorialmente como a modo de magnitud.

A.Oe+00 - 3.5 - 3 - 2.5 - 2 - 2 - 1 - 0.5 - 0.0e+00 - 3.5 - 3 - 2.5 - 2 - 0 - 0.5 - 0.0e+00 - 3.5 - 3 - 2.5 - 0 - 0 - 0.5 - 0.0e+00 - 0.5 - 0.0e+00 - 0.5 - 0.0e+00 - 0.5 - 0.5 - 0.0e+00 - 0.5 - 0

El modelo computacional, para el modelo de elasticidad lineal mixto, está dado por:

Figura 5: Modelación de Figura 1, donde la matriz y las inclusiones son representadas por regiones; 0 inclusión superior derecha, 1 inclusión inferior derecha, 2 inclusión superior izquierda, 3 inclusión inferior izquierda y 4 la matriz propiamente tal.

Como bien se mencionó con anterioridad, fue condicionado un mallado en *FreeFEM*++ con el comando *buildmesh*, definiendo el grado de finura de la malla a partir de los segmentos que componen el modelo computacional (vale decir, bordes e inclusiones). Se estableció una cantidad determinada de elementos (120 para cada segmento), lo cual generó que, de forma autónoma, el programa enlazara los elementos adyacentes hasta formar el mallado completo. De este modo, la malla en los contornos es de carácter regular, mientras que en la interfaz con las inclusiones resulta ser más fina, implicando un mallado irregular que se ve reflejado a continuación:

Figura 6: Mallado establecido a modelo computacional, donde la matriz y las inclusiones son representadas por regiones; 0 inclusión superior derecha, 1 inclusión inferior derecha, 2 inclusión superior izquierda, 3 inclusión inferior izquierda y 4 la matriz propiamente tal.

Posteriormente, se muestra el comportamiento vectorial del campo de desplazamiento (parte real) para tres de las frecuencias a simular:

Modelo Voigt:

Figura 7: Comportamiento del campo de desplazamiento real (con el valor de magnitud de los vectores) para modelo Voigt a una frecuencia de **30**, **60** y **100** [*Hz*].

Modelo Zener:

Figura 8: Comportamiento del campo de desplazamiento real (con el valor de magnitud de los vectores) para modelo Zener a una frecuencia de 30, 60 y 100 [*Hz*].

Posteriormente, se muestra el comportamiento vectorial del campo de desplazamiento (parte imaginaria) para tres de las frecuencias a simular:

Modelo Voigt:

Figura 9: Comportamiento del campo de desplazamiento imaginario (con el valor de magnitud de los vectores) para modelo Voigt a una frecuencia de 30, 60 y 100 [Hz].

Modelo Zener:

Figura 10: Comportamiento del campo de desplazamiento imaginario (con el valor de magnitud de los vectores) para modelo Zener a una frecuencia de 30, 60 y 100 [*Hz*].

Con ello, se adjunta la magnitud del campo desplazamiento real e imaginario para dichas frecuencias:

Voigt:

Figura 11: Magnitud del campo de desplazamiento real e imaginario para modelo Voigt a 30, 60 y 100 [Hz].

Figura 12: Magnitud del campo de desplazamiento real e imaginario para modelo Zener a 30, 60 y 100 [Hz].

Es posible apreciar que, para ambos modelos, los vectores del campo de desplazamiento se originan en la zona de deformación asignada, con una amplitud de 0.01 [m]. Posterior a esto, es de señalar que se genera una propagación de los desplazamientos en todas direcciones a través del tejido, disminuyendo a medida que se alejan del punto de emisión, por la pérdida de energía que sufre la

propagación a lo largo del tejido. Para frecuencias altas, el perfil de onda es más sencillo de apreciar, sin embargo, en frecuencias bajas, se aprecia una distorsión en la imagen. Si la transmisión de la onda es más intensa, habrá mayores desplazamientos en los bordes de la matriz y, ya que el borde inferior es fijo y los bordes laterales libres, se aprecia un efecto de rebote que distorsiona el perfil de onda para el resto del tejido. El borde fijo no es capaz de transmitir el movimiento por el carácter estático de los nodos en él, provocando así, que la energía transmitida deba retornar hacia la matriz, mientras que los bordes laterales al no tener una restricción se mueven con mayor facilidad pudiendo alejarse de la matriz o acercándose al centro debido a la elasticidad del tejido. En cualquiera de los dos casos, existirá un efecto de rebote que distorsione el perfil de onda en el resto de la matriz, generando lo que se aprecia en las imágenes a 30 [Hz] y en menor medida, a 60 [Hz].

4.1.2. Matlab

Para comprobar que la adaptación del modelo a *Matlab* es acorde a las simulaciones anteriormente vistas, se procede a mostrar el comportamiento de la magnitud de campo de desplazamientos por medio de este mismo programa.

Se seleccionó una capa intermedia del modelo señalada en el **Capítulo 3.2.3** y se procederá a mostrar el campo de desplazamientos real para una frecuencia de 30 [Hz]:

Modelo Voigt:

Figura 13: Magnitud campo de desplazamiento real e imaginario modelo Voigt y Zener a 30 [Hz].

Las imágenes obtenidas por *Matlab* demuestran que la interpolación funciona correctamente. Para los casos de 60 y 100 [*Hz*] ocurre lo mismo, pero para efectos prácticos, se omitirá la visualización de la magnitud de sus campos de desplazamientos.

Por ello es posible afirmar que ambos softwares trabajan en concordancia, llegando a resultados muy similares, validando así el modelo computacional de Matlab para los pasos siguientes.

4.2. Proceso de inversión

Para este punto, fue empleado *Matlab* para los cuatro métodos de inversión mencionados con anterioridad. A cada método se le ingresa un arreglo que contiene los datos de desplazamiento de todo el tejido estudiado, incluyendo las diferentes frecuencias a evaluar, el tamaño de vóxel el cual define la unidad tridimensional más pequeña que el método debe calcular (asociado a la resolución de imagen) y las variables dimensionales que el método de inversión debe considerar para evaluar la tridimensionalidad del tejido analizado. Los métodos permiten arrojar arreglos que presentan valores de módulo de corte para cada región del tejido, para las diferentes frecuencias utilizadas. El arreglo obtenido debe dividirse entre las cinco regiones del tejido (inclusiones y matriz), para poder hacer un cálculo del promedio de los módulos de corte de cada región, para así no mezclar los datos.

Será considerado $\overline{x_G}$ como el promedio de módulo de corte y σ como la desviación estándar para cada región del tejido al rango de frecuencia establecido. Los resultados obtenidos para cada método se encuentran disponibles en **Apéndice**.

Respecto a los valores de σ puede observarse que, dentro de los métodos, los casos de Helmholtz y HMDI pueden destacarse debido a que sus desviaciones estándar no superan el valor de módulo de corte en ningún punto dentro del rango de frecuencias.

Los tiempos que tardaron en ejecutarse los métodos de inversión fueron los siguientes:

Método	Voigt	Zener	Unidad
FV	23.646	23.578	[<i>s</i>]
FV-H	19.284	19.163	[<i>s</i>]
Helmholtz	2.864	2.815	[<i>s</i>]
HMDI	9653.832	10466.703	[<i>s</i>]
Total	9699.626	10512.260	[<i>s</i>]

Tabla 10: Tiempo de procesamiento de cada método de inversión modelo Voigt y Zener

Considerando los valores obtenidos, se graficaron los resultados para cada región, en donde cada gráfico contiene la curva real (con los datos tabulados en **Tabla 6** y **Tabla 7**) y las curvas de módulos de corte para cada método de inversión. A modo de ejemplo, se mostrarán los gráficos de las regiones de matriz y la inclusión 0 (demás casos se encuentran en **Apéndice**):

Modelo Voigt:

Gráfico 1: Curvas de los módulos de corte experimentales y real para inclusión 0 modelo Voigt.

Gráfico 2: Curvas de los módulos de corte experimentales y real para matriz modelo Voigt.

Gráfico 3: Curvas de los módulos de corte experimentales y real para inclusión 0 modelo Zener.

Gráfico 4: Curvas de los módulos de corte experimentales y real para matriz modelo Zener.

Es importante mencionar que las curvas reales para el modelo Voigt siguen una tendencia creciente para todas las regiones, mientras que en el modelo Zener, solo dos curvas presentan este comportamiento (inclusión 0 y matriz) y las restantes siguen una tendencia creciente desacelerada. Visualmente esto no logra apreciarse por efecto de la distancia existente entre las curvas, asociado a las magnitudes de módulo de corte.

Con respecto a las magnitudes de los módulos de corte generados a través de los métodos de inversión, se observa que en general son bastante menores a los empleados en la simulación. Esto se aprecia fácilmente a través de los gráficos generados a partir de **Tabla 17** y **Tabla 19**. Además, es posible señalar que, a pesar de la distancia entre la curva real y a las correspondientes a los métodos de inversión, las referentes a los métodos resultan ser muy próximas entre sí, siendo la menos cercana la curva del método HMDI, siendo incluso la única curva que presenta un comportamiento decreciente a medida que aumenta la frecuencia. Enfatizando en este último punto, como fue mencionado con anterioridad, las curvas reales para el modelo Voigt siguen una tendencia creciente, mientras que en el modelo Zener, solo dos curvas presentan este comportamiento (inclusión 0 y matriz) y las restantes siguen una tendencia creciente desacelerada. Esto muestra que, las curvas provenientes de los modelos de inversión tienen una mayor similitud con el modelo Voigt, a excepción del método HMDI.

Para cuantificar los errores presentes en los datos simulados de módulo de corte, se hizo uso del error cuadrático medio RMS, error cuadrático medio relativo $RMS_{relativo}$ y el error diferencial $e_{diferencial}$, dados por:

$$RMS = \sqrt{\frac{\sum_{i=1}^{N} (x(i) - y(i))^2}{N}}$$
$$RMS_{relativo} = \sqrt{\frac{\sum_{i=1}^{N} \left(\frac{y(i)}{x(i)} - 1\right)^2}{N}}$$

$$e_{diferencial} = \sqrt{\frac{\sum_{i=1}^{N} \left(\frac{\partial x(i)}{\partial f} - \frac{\partial y(i)}{\partial f}\right)^{2}}{N}}$$

Con x(i) e y(i) como dato de simulación (valores reales) y datos de los modelos de inversión (experimentales) a frecuencia i-ésima respectivamente, y N el número de frecuencias estudiadas.

Dando como resultado:

Modelo Voigt:

Tejido	Método	RMS	RMS _{relativo}	<i>e</i> _{diferencial}
	FV	4852.458	0.904	12.940
Inclusión O	FV-H	4924.334	0.918	10.417
inclusion 0	Helmholtz	4553.326	0.849	19.642
	HMDI	5217.340	0.972	2.952
	FV	4692.711	0.927	9.193
In alugión 1	FV-H	4718.948	0.932	7.797
Inclusion 1	Helmholtz	4319.658	0.853	20.127
	HMDI	4922.817	0.972	2.865
	FV	4929.535	0.936	6.906
Inclusión 2	FV-H	4979.984	0.946	5.233
Inclusion 2	Helmholtz	4612.810	0.877	13.666
	HMDI	5144.896	0.977	2.688
	FV	3333.058	0.934	3.739
Inclusión 2	FV-H	3362.586	0.943	2.847
inclusion 5	Helmholtz	3014.554	0.847	10.727
	HMDI	3463.664	0.970	2.613
	FV	2632.370	0.812	10.544
Motriz	FV-H	2680.633	0.827	9.649
Mauriz	Helmholtz	2401.882	0.741	16.568
	HMDI	3091.496	0.952	1.671

Tabla 11: Cuantificación del error presente en $\overline{x_G}$ respecto a los valores reales para modelo Voigt

Modelo Zener:

Tabla 12: Cuantificación del error presente en $\overline{x_G}$ respecto a los valores reales para modelo Zener

Tejido	Método	RMS	RMS _{relativo}	e _{diferencial}
	FV	4135.108	0.893	8.430
Inclusión ()	FV-H	4204.519	0.908	6.547
inclusion 0	Helmholtz	Helmholtz 3823.790		12.822
	HMDI	4505.438	0.967	13.941
	FV	3925.918	0.918	8.587
Inclusión 1	FV-H	3946.997	0.923	7.212
Inclusion 1	Helmholtz	3578.595	0.838	16.213
	HMDI	4147.817	0.968	5.232

	FV	3734.290	0.918	7.992
	FV-H	3783.854	0.931	6.532
Inclusion 2	Helmholtz	3417.765	0.841	15.752
	HMDI	3945.455	0.970	1.166
T 1 1/ 0	FV	3384.814	0.935	3.920
	FV-H	3415.703	0.943	3.300
inclusion 5	Helmholtz	3066.405	0.849	9.263
	HMDI	3517.108	0.970	4.994
	FV	2620.018	0.813	6.236
Moteria	FV-H	2668.603	0.827	5.414
Mainz	Helmholtz	2385.374	0.743	12.662
	HMDI	3084.841	0.951	6.048

La cuantificación del error generado en los datos evidencia la alta diferencia entre los módulos de corte reales respecto a los obtenidos por medio de los métodos de inversión. En general, el método que presenta menor magnitud de error es el de Helmholtz. Esto se respalda con los gráficos efectuados, debido a que visualmente presenta la curva más cercana a la curva real. Del otro extremo, el método que presenta mayor magnitud de error es el HMDI, lo cual apoya lo anteriormente mencionado con respecto a la distancia entre las curvas.

El tercer error calculado, es un error diferencial que se determina en base al *RMS*. Este compara las derivadas de la curva real con respecto a las de los métodos de inversión, de esta forma, su interpretación es, qué tanto se asemeja la forma y características de la curva de inversión con respecto a la curva real. En este sentido, para el modelo Voigt el método con menor error diferencial es el HMDI, pudiendo considerarse la pendiente de la regresión lineal como indicador del comportamiento. Sin embargo, hay que señalar que HMDI tiene una tendencia decreciente, lo que lo diferencia de las demás curvas. Considerando esto, el método que tendría un comportamiento más semejante al de la curva real es el FV-H, ya que tiene el segundo error diferencial más bajo.

El modelo Zener tiene una curva de mayor crecimiento que el modelo Voigt, esto hace que el error diferencial del método HMDI ya no sea tan bajo como en el caso anterior, dejando al método FV-H, como el de menor error diferencial, lo que significaría que tiene la forma de curva más parecida a la real.

En resumen, lo que se observa es que el método Helmholtz consigue tener las magnitudes de módulo de corte más cercanas a las magnitudes de la simulación, mientras que el método FV-H logra una tendencia más cercana a la curva real.

También se determinó la desviación estándar para cada cálculo de módulo de corte según la frecuencia. Estas desviaciones pueden observarse en **Tabla 18** y **Tabla 20** presentes en **Apéndice**. Este valor representa la dispersión que sufren los datos con respecto al promedio calculado. Como bien se muestra en **Gráfico 11**, **Gráfico 12**, **Gráfico 13** y **Gráfico 14**, muchas veces la desviación estándar logra ser tanto o más grande que el módulo de corte promedio, lo que señalaría que existen valores calculados que se alejan muy por encima del módulo de corte promedio, ya que para los valores menores al promedio, no debería existir una distancia tan grande con respecto a este, puesto que es imposible obtener módulos de corte negativos.

Observando **Tabla 10**, es posible notar que los tiempos que le toma a los métodos de inversión arrojar resultados, no suelen tener mucha diferencia de un modelo a otro; en total el modelo Voigt tarda 2.681 [h] y el modelo Zener tarda 2.920 [h]. La diferencia radica entre los métodos de inversión, siendo el método HMDI el que más tiempo tarda en arrojar resultados; mientras que los métodos de FV, FV-H y Helmholtz tardan algunos segundos, al método HMDI le toma aproximadamente 2 [h] en entregar resultados.

Se añaden imágenes de la magnitud de módulo de corte de los métodos de inversión implementados, para una frecuencia de 60 [Hz].

Figura 14: Magnitud módulo de corte entregados por los métodos de inversión para modelo Voigt y Zener a 60 [Hz].

Las distribuciones de colores señalan cómo se distribuyen los módulos de corte en las regiones de cada imagen. Para el método HMDI, se observa una distribución de colores más homogénea, lo que significa que, las magnitudes de módulo de corte están más cercanas unas de otras, esto ayuda a representar cualitativamente el valor de desviación estándar del método HMDI, ya que este es relativamente bajo con respecto a otros métodos. En el caso de Helmholtz, la desviación estándar también es relativamente baja, puesto que la distribución de colores es también bastante homogénea, pero mayoritariamente de tonos amarillos, lo que indicaría que las magnitudes de módulos de corte son en general mayores, siendo esto consistente con su representación gráfica.

Por último, se lleva a cabo una prueba para saber cómo se ve afectada la curva de módulos de corte para la mayoría de los métodos (se excluye HMDI) cuando las propiedades mecánicas se modifican, específicamente el módulo de Young y la viscosidad. Se utilizaron diferentes magnitudes para ambas propiedades registrando los errores RMS, $RMS_{relativo}$ y $e_{diferencial}$ para cuantificar el comportamiento de las curvas con respecto a la curva real. Dicha información se encuentra disponible en **Apéndice**. De los datos obtenidos puede apreciarse que los errores más bajos se dieron en condiciones donde tanto el módulo de Young como la viscosidad presentan menores magnitudes.

5. Conclusiones

El planteamiento del caso de estudio llevado a cabo no entrega los mismos resultados que se pudiesen lograr emulando los métodos de imágenes médicas como US o MRE, debido a que la cantidad de variables que se deben considerar para esos casos es mucho mayor a las que se encuentran presentes en esta investigación. Además, los parámetros implementados no fueron del todo realistas, ya que su principal función fue reflejar un comportamiento de onda en sus resultados (efecto deseado en la simulación) más que representar fielmente las propiedades de un tejido humano.

Se optó por implementar los modelos reológicos de Voigt y Zener en lugar de un modelo de ley de potencia, debido a que, a partir de este último, no se lograron resultados favorables bajo ningún concepto; efecto de ondas en la simulación, magnitud de módulos de corte ni tendencia de las curvas de los métodos de inversión. Ninguno de estos parámetros fue cercano a lo esperado, por lo cual se decidió cambiar a los modelos indicados.

Debido a la naturaleza viscoelástica del material que se consideró en la simulación, un modelo de elasticidad lineal mixto resultó ser la propuesta indicada frente a las limitantes presentes en el caso de estudio, dado a que este abarca las restricciones de incompresibilidad o en este caso particular, cuasi incompresibilidad, conllevando así, a necesitar la implementación de una penalización que estabilizara las condiciones de presión que aparecen bajo estas circunstancias.

A partir de la ecuación de elasticidad mixta, se realizó un análisis de elementos finitos, donde se condicionó un mallado de carácter muy fino para la determinación de desplazamientos de los nodos de cada elemento presente en el modelo a simular. Este método resultó ser muy conveniente para la obtención de una gran cantidad de datos, con un tiempo de solución bastante corto producto a que no fueron considerados los desplazamientos fuera del plano. Era necesario seguir correctamente a las ondas, por lo cual se debía ajustar el tamaño de la malla a las longitudes de onda características en el medio. Esto se trató en el **Capítulo 3.2.4**, donde se definió la cantidad de puntos que deben existir en un segmento de longitud de onda, para representar correctamente una onda sinusoidal. De los resultados obtenidos, puede asegurarse que la densidad de malla fue apropiada para poder representar correctamente el fenómeno estudiado, debido a que la cantidad de elementos por segmento definida

en *FreeFEM*++, sobrepasa considerablemente la cantidad establecida para obtener un resultado óptimo. Con esto se concluye que la configuración elegida es lo suficientemente precisa.

De igual modo, el reticulado (resolución de imagen) que fue implementado en *Matlab* para la recuperación de datos por medio de interpolación, debía ser consistente al mallado establecido en *FreeFEM*++, es decir, no podía ser más fino que este para dicho fin, ya que esto generaría irregularidades para los pasos siguientes. Adicional a esto, es necesario acotar que los valores otorgados a cada vóxel repercuten en la interpolación de los datos de desplazamiento a una resolución establecida. Debido a las semejanzas en las imágenes obtenidas en *Matlab* y las obtenidas en *Paraview*, se concluye que, al no existir irregularidades, se cumple con esta condición.

Respecto a los resultados obtenidos a partir de los métodos de inversión, se determinó un valor de desviación estándar grande para cada frecuencia calculada en cada tejido (véase en Apéndice). Debido a la existencia de variabilidad en los resultados de módulo de corte, se da que en muchos casos la desviación alcance magnitudes iguales o mayores al módulo de corte promedio, lo que indicaría que existen algunos valores aislados dentro del tejido que se escapan muy por encima al valor promedio, ya que no puede haber valores de módulos de corte que sean menores a cero. Esta singularidad se origina posiblemente por un error de interpolación o al traspasar los valores de desplazamiento al reticulado en Matlab, lo que ocasionaría errores en los métodos de inversión afectando considerablemente los resultados finales, sobre todo para las inclusiones debido al menor número de nodos presentes en ellas con respecto a la matriz. Como bien fue mencionado en el capítulo anterior, los casos de Helmholtz y HMDI se destacan debido a que sus desviaciones estándar no superan el valor de módulo de corte en ningún punto dentro del rango de frecuencias. Esto puede deberse a que, en el caso de Helmholtz, se trabaja con un caso particular de modelo de elasticidad, donde solo se consideran los desplazamientos con divergencia nula. Mientras que en el caso de HMDI, esto se debe a la implementación de mínimos cuadrados que permite soluciones más suavizadas.

Si bien no se lograron resultados esperados a nivel numérico (considerado como valores reales en **Tabla 6** y **Tabla 7**), en la investigación se le dio más importancia al comportamiento de las curvas por sobre sus magnitudes, vale decir, preservar las tendencias al graficar los resultados arrojados por los métodos de inversión. En este caso, como bien fue visto en el **Capítulo 4.2**, en general las curvas experimentales presentaban una tendencia similar entre un modelo y otro, pero fue en el modelo Voigt donde hubo una mayor similitud en relación a la curva real, dado a que la ecuación que lo representa y los parámetros implementados, constituyen un comportamiento creciente. Por ello se concluye que, aplicado a este contexto, los resultados de los métodos de inversión para el modelo Voigt, son más cercanos a las curvas reales obtenidas por este modelo.

Respecto al rendimiento de los métodos de inversión, es posible observar a partir de los errores calculados que, a nivel de magnitud, el método más próximo a los resultados deseados fue el de Helmholtz, sin embargo, a nivel gráfico, el método que compartía mayor similitud con la tendencia de las curvas reales fue el FV-H. El método más alejado ante estos criterios fue el método HMDI, ya que tanto las magnitudes de sus resultados como el comportamiento de su curva, estuvieron muy alejados del modelo real que se usó como referencia. Además de esto, los tiempos de procesamiento, demuestran que el método HMDI fue con creces el más lento de los cuatro, al punto de que, a diferencia de los otros métodos, este tarda horas.

Fueron realizadas una serie de simulaciones variando las propiedades mecánicas del tejido, con el fin de evaluar el comportamiento de los métodos de inversión. Esto fue posible de cuantificar por

medio del cálculo de los errores RMS, $RMS_{relativo}$ y $e_{diferencial}$ presentes en las magnitudes de los módulos de corte experimentales frente a los empleados. Al llevar a cabo esto, se puede notar un mayor error a medida que se aumentan los parámetros de módulo de Young y viscosidad, tendiendo a alejarse las curvas experimentales de las reales, y se logra un punto óptimo cuando el módulo de Young y la viscosidad adquieren valores por debajo de los 1000 [*Pa*] y de 1 a 5 [*Pas*] respectivamente. Si bien estos valores no son de gran utilidad, ya que no son representativos para materiales reales por sus magnitudes, si entregan información sobre el rango de trabajo en el que los métodos resultan ser más efectivos, lo que podría indicar qué ajustes a futuro deben ser realizados para corregir y mejorar los métodos de inversión empleados.

Para finalizar, es posible notar la utilidad que representa la Elastografía como herramienta de diagnóstico médico, debido a que, a partir de vibraciones, puede dar información crucial del estado de un tejido y de este modo, saber si existen en este posibles anomalías. Además de que dicha información rige bajo parámetros mecánicos, lo cual indica cuán ligado está la Elastografía respecto al área ingenieril, particularmente a la mecánica presente en su aplicación.

6. Recomendaciones y propuestas a futuro

Para aquellos que quieran involucrarse a este tipo de temas para sus memorias, recomendaría mejorar esta propuesta, buscando e identificando los errores presentes en este, que no permitieron llegar a resultados óptimos, inclusive complementarlo con algún método de imagen como lo son US o MRE, para así simular de forma más cercana a la realidad un diagnóstico médico por medio de un método no invasivo. De seguir con una investigación de este tipo, recomendaría en mayor medida enfatizar en los métodos FV-H y Helmholtz para el modelo de Voigt, puesto que fueron los criterios que mejores resultados dieron en comparación a los valores reales desde una perspectiva de tendencia y magnitud respectivamente. Además, sería importante incluir un análisis de los efectos del ruido presentes en la extracción de datos.

Por otra parte, la idea es fomentar el estudio de alternativas de métodos no invasivos de diagnósticos que existen y que existirán, para hallar las mejores opciones a nivel de precisión y costos para las personas.

7. Bibliografía

- Anderssen, R., & Hegland, M. (1999). For numerical differentiation, dimensionality can be a blessing! *Mathematics of computation*, 68(227), 1121-1141.
- Barnhill, E., Davies, P. J., Ariyurek, C., Fehlner, A., Braun, J., & Sack, I. (2018). Heterogeneous Multifrequency Direct Inversion (HMDI) for Magnetic Resonance Elastography with Application to a Clinical Brain Exam. *Medical image analysis*, 46, 180-188.
- Bhatia, H., Norgard, G., Pascucci, V., & Bremer, P. T. (2012). The Helmholtz-Hodge decomposition—a survey. *IEEE Transactions on visualization and computer graphics*, 19(8), 1386-1404.
- Braun, J., Buntkowsky, G., Bernarding, J., Tolxdorff, T., & Sack, I. (2001). Simulation and analysis of magnetic resonance elastography wave images using coupled harmonic oscillators and Gaussian local frequency estimation. *Magnetic Resonance Imaging*, *19*(*5*), 703-713.

- Cahill, N. D., Jadamba, B., Khan, A. A., Sama, M., & Winkler, B. C. (2013). A first-order adjoint and a second-order hybrid method for an energy output least-squares elastography inverse problem of identifying tumor location. *Boundary Value Problems*, 2013(1), 1-19.
- Carnicero, A. (2001). *Introducción al método de los elementos finitos*. Escuela Técnica Superior de Ingeniería ICAI. Madrid: Universidad Pontificia Comillas.
- Denaro, F. (2003). On the application of the Helmholtz–Hodge decomposition in projection methods for incompressible flows with general boundary conditions. *International Journal for Numerical Methods in Fluids*, 43(1), 43-69.
- Department of Mathematics at Columbia University in the City of New York. (s.f.). Department of Mathematics at Columbia University in the City of New York. Obtenido de http://www.math.columbia.edu/~rf/innerprods.pdf
- Fabry, B., Maksym, G. N., Butler, J. P., Glogauer, M., Navajas, D., Taback, N. A., . . . Fredberg, J. J. (2003). Time scale and other invariants of integrative mechanical behavior in living cells. *Physical Review E*, 68(4), 041914.
- Fung, Y. C. (2013). Biomechanics: mechanical properties of living tissues. Springer Science & Business Media.
- García Q., J. C. (08 de enero de 2008). Tema 3. Viscoelasticidad lineal. *Universidad de Alicante*. Alicante, España.
- Gatica, L. (2005). Métodos de elementos finitos mixtos para elasticidad incompresible no lineal (Tesis doctoral). *Universidad de Concepción*. Concepción.
- GreenFacts. (01 de Abril de 2020). *GreenFacts*. Obtenido de https://www.greenfacts.org/es/glosario/tuv/tejidos-blandos.htm
- Guo, Z., You, S., Wan, X., & Bićanić, N. (2010). A FEM-based direct method for material reconstruction inverse problem in soft tissue elastography. *Computers & structures*, 88(23-24), 1459-1468.
- Guzmán Ahorca, F., Abellán Rivera, D., & Reus Pintado, M. (2014). La elastografía: una nueva aplicación de la ecografía. ¿Cuál es su utilidad clínica? *Radiología*, 56(4), 290-294.
- Hirsch, S., Braun, J., & Sack, I. (2017). *Magnetic resonance elastography: physical background and medical applications*. Weinheim: John Wiley & Sons.
- Honarvar, M., Sahebjavaher, R. S., Rohling, R., & & Salcudean, S. E. (2017). A Comparison of Finite Element-Based Inversion Algorithms, Local Frequency Estimation and Direct Inversion Approach Used in Magnetic Resonance Elastography. *IEEE transactions on medical imaging*, 36(8), 1686 - 1698.
- Joseph, D. D. (2013). Fluid dynamics of viscoelastic liquids. Springer Science & Business Media.
- Klatt, D., Hamhabe, U., Asbach, P., Braun, J., & Sack, I. (2007). Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. *Physics in Medicine & Biology*, *52*(*24*), 7281.

- Marsden, J. E., & Chorin, A. J. (1993). A mathematical introduction to fluid mechanics. Springer-Verlag.
- Maurel, W., Thalmann, D., Wu, Y., & Thalmann, N. M. (1998). *Biomechanical models for soft tissue simulation* (Vol. 48). Berlín: Springer.
- Mayo Clinic. (17 de Mayo de 2018). *Mayo Clinic*. Obtenido de https://www.mayoclinic.org/eses/tests-procedures/magnetic-resonance-elastography/about/pac-20385177
- McLaughlin, J., Renzi, D., Yoon, J. R., Ehman, R. L., & Manduca, A. (2006). Variance controlled shear stiffness images for MRE data. *In 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro. IEEE*, 960-963.
- MedlinePlus. (25 de Febrero de 2020). *MedlinePlus*. Obtenido de https://medlineplus.gov/lab-tests/elastography/
- Mura, J. (2019). "Método de Elementos Finitos en 2 y 3 dimensiones". *Universidad Técnica Federico Santa María*. Santiago, Chile. 2019.
- Mura, J. (2019). "Modelos contínuos". Universidad Técnica Federico Santa María. Santiago, Chile. 2019.
- National Institute of Biomedical Imaging and Bioengineering. (Julio de 2016). *National Institute of Biomedical Imaging and Bioengineering*. Obtenido de https://www.nibib.nih.gov/sites/default/files/Ultrasound%20Fact%20Sheet%202016-spanish.pdf
- Palomares, J. E., Rodríguez, M., & Castro, J. G. (2017). Zener fractional order determination and biomechanical blood flow characterization. *Revista Internacional de Métodos Numéricos* para Cálculo y Diseño en Ingeniería, 33(1).
- Papazoglou, S., Hirsch, S., Braun, J., & Sack, I. (2012). Multifrequency inversion in magnetic resonance elastography. *Physics in Medicine & Biology*, 57(8), 2329.
- Papp, C. M. (2012). Construcción de un fantoma antropomórfico para mediciones de dosis en manos en procedimientos de braquiterapia (Tesis de maestría). Fundación Escuela Medicina Nuclear, Mendoza.
- RadiologyInfo. (18 de Junio de 2016). *RadiologyInfo*. Obtenido de https://www.radiologyinfo.org/sp/info.cfm?pg=bodymr
- RadiologyInfo. (04 de Junio de 2019). *RadiologyInfo*. Obtenido de https://www.radiologyinfo.org/sp/info.cfm?pg=elastography
- Rojas G., O. (1999). Introducción a la Reología. Universidad de los Andes. Mérida, Venezuela, 1999.
- Significados. (19 de 02 de 2019). *Significados*. Recuperado el 09 de 05 de 2020, de https://www.significados.com: https://www.significados.com/elasticidad/
- Significados. (21 de 02 de 2019). *Significados*. Recuperado el 09 de 05 de 2020, de https://www.significados.com: https://www.significados.com/deformacion/
- Sinkus, R., Siegmann, K., Xydeas, T., Tanter, M., Claussen, C., & Fink, M. (2007). MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of

contrast-enhanced MR mammography. *Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine*, 58(6), 1135-1144.

- Taber, L. A. (2004). Nonlinear theory of elasticity: applications in biomechanics. World Scientific.
- Testu, J., McGarry, M. D., Dittmann, F., Weaver, J. B., Paulsen, K. D., Sack, I., & Van Houten, E. E. (2017). Viscoelastic power law parameters of in vivo human brain estimated by MR elastography. *Journal of the mechanical behavior of biomedical materials*, 74, 333-341.
- Tomita, S., Suzuki, H., Kajiwara, I., Nakamura, G., Jiang, Y., Suga, M., . . . Tadano, S. (2018). Numerical simulations of magnetic resonance elastography using finite element analysis with a linear heterogeneous viscoelastic model. *Journal of visualization*, 21(1), 133-145.
- Wikipedia. (31 de 12 de 2017). Wikipedia. Recuperado el 13 de 05 de 2020, de https://es.wikipedia.org: https://es.wikipedia.org/wiki/V%C3%B3xel#:~:text=El%20v%C3%B3xel%20(del%20ingl%C3%A9s%20volumetric,p%C3%ADxel%20en%20un%20objeto%202D.
- Wikipedia. (3 de 09 de 2019). *Wikipedia*. Recuperado el 12 de 05 de 2020, de https://es.wikipedia.org: https://es.wikipedia.org/wiki/M%C3%B3dulo_de_cizalladura
- Zhang, W., & Holm, S. (2016). Estimation of shear modulus in media with power law characteristics. *Ultrasonics*, 64, 170-176.
- Zhu, Y., Zheng, Y., Shen, Y. Y., Chen, X., Zhang, X. Y., Lin, H. M., ... Chen, S. P. (2014). Analyzing and modeling rheological behavior of liver fibrosis in rats using shear viscoelastic moduli. *Journal of Zhejiang University Science B*, 15(4), 375-381.

8. Apéndice

8.1. Tablas de velocidad de corte y longitud de onda

Modelo Voigt:

$c_s [m/s]$								
<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz			
30	1.347	1.349	1.383	1.117	0.942			
40	1.391	1.402	1.435	1.190	1.025			
50	1.442	1.461	1.496	1.267	1.108			
60	1.499	1.526	1.561	1.346	1.190			
70	1.558	1.592	1.628	1.424	1.269			
80	1.619	1.660	1.697	1.501	1.344			
90	1.680	1.728	1.766	1.575	1.417			
100	1.742	1.796	1.835	1.648	1.487			

Tabla 13: Valores calculados de c_s para modelo Voigt

$\lambda [m/s]$								
<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz			
30	0.0449	0.0450	0.0461	0.0372	0.0314			
40	0.0348	0.0350	0.0359	0.0297	0.0256			
50	0.0288	0.0292	0.0299	0.0253	0.0222			
60	0.0250	0.0254	0.0260	0.0224	0.0198			
70	0.0223	0.0227	0.0233	0.0203	0.0181			
80	0.0202	0.0208	0.0212	0.0188	0.0168			
90	0.0187	0.0192	0.0196	0.0175	0.0157			
100	0.0174	0.0180	0.0183	0.0165	0.0314			

Tabla 14: Valores calculados de λ para modelo Voigt

Modelo Zener:

Tabla 15: Valores calculados de c_s para modelo Zener

$c_{s}[m/s]$								
<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz			
30	1.428	1.343	1.319	1.083	0.942			
40	1.514	1.390	1.338	1.138	1.030			
50	1.596	1.420	1.348	1.174	1.100			
60	1.672	1.440	1.354	1.197	1.155			
70	1.739	1.454	1.357	1.214	1.198			
80	1.798	1.463	1.360	1.225	1.231			
90	1.850	1.470	1.361	1.233	1.258			
100	1.894	1.475	1.363	1.239	1.279			

Tabla 16: Valores calculados de λ para modelo Zener

$\lambda [m/s]$								
<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz			
30	0.048	0.045	0.044	0.036	0.031			
40	0.038	0.035	0.033	0.028	0.026			
50	0.032	0.028	0.027	0.023	0.022			
60	0.028	0.024	0.023	0.020	0.019			
70	0.025	0.021	0.019	0.017	0.017			
80	0.022	0.018	0.017	0.015	0.015			
90	0.021	0.016	0.015	0.014	0.014			
100	0.019	0.015	0.014	0.012	0.013			

8.2. Tablas de promedio y desviación estándar

Modelo Voigt:

Tabla 17. $\mathcal{A}_{\mathcal{G}}$ por region para cada metodo de inversión modelo vorge	Tabla 1	7: $\overline{x_G}$ por	región p	oara cada	método	de i	inversión	modelo	Voigt
--	---------	-------------------------	----------	-----------	--------	------	-----------	--------	-------

			$\overline{x_{G}}[Pa]$			
Método	<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz
	30	247.499	156.366	146.870	75.937	256.628
	40	229.498	171.033	168.302	118.127	324.877
FV	50	303.963	244.682	216.128	164.886	429.658
	60	482.090	420.865	221.315	232.227	576.732
	70	625.921	488.156	313.638	228.729	691.341

	80	580.578	402.906	429.975	321.703	793.448
	90	747.723	504.413	580.582	359.035	893.239
	100	944.610	612.658	639.805	395.220	1029.770
	30	204.661	135.597	118.820	64.264	235.837
	40	205.478	148.175	145.431	101.541	302.943
	50	257.193	213.377	181.443	137.340	392.389
EVH	60	406.940	373.754	200.530	200.681	524.294
гү-п	70	535.589	430.846	269.347	206.624	631.188
	80	521.988	396.108	364.263	277.240	727.345
	90	635.444	499.291	481.277	316.682	829.004
	100	807.544	593.750	546.085	353.789	951.513
	30	373.460	284.646	259.935	138.405	317.998
	40	413.808	310.616	384.377	265.459	444.246
	50	528.304	475.278	413.352	397.177	572.496
Ualmhalta	60	775.854	929.432	468.994	503.153	838.463
Heimionz	70	992.914	919.839	664.500	565.332	967.686
	80	935.226	862.052	831.264	760.837	1095.993
	90	1122.307	1037.126	1098.934	893.309	1258.778
	100	1474.379	1237.512	1182.116	987.145	1475.358
	30	230.281	163.577	161.847	122.124	188.813
	40	166.980	140.406	130.191	116.146	173.218
	50	149.950	142.386	121.771	103.882	157.515
	60	149.062	177.688	110.579	111.569	161.087
ΠΝΙΟΙ	70	141.930	145.220	110.058	98.540	148.336
	80	119.933	123.097	118.890	102.364	139.299
	90	119.866	128.938	116.955	98.556	135.188
	100	125.230	126.681	110.492	97.249	132.256

Tabla 18: σ	por región para	cada método de	inversión modelo	Voigt
--------------------	-----------------	----------------	------------------	-------

σ [Pa]						
Método	f [Hz]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz
	30	367.804	150.130	146.562	95.574	699.925
	40	284.469	174.937	142.230	134.577	653.657
	50	394.746	282.591	211.090	183.759	897.674
EV	60	845.137	569.253	218.481	252.238	1136.524
ГV	70	894.530	630.311	296.150	217.947	1396.847
	80	847.959	483.256	511.131	303.899	1470.648
	90	1295.142	574.379	764.814	345.823	1602.781
	100	1366.740	756.875	867.196	463.290	1838.221
	30	295.150	175.917	113.722	74.577	918.095
	40	339.352	145.816	122.935	106.835	1087.824
	50	304.562	233.236	178.883	141.135	1057.640
	60	691.576	449.023	180.732	256.768	1210.655
гү-п	70	798.230	486.775	244.286	185.520	1526.759
	80	738.804	483.043	383.021	243.388	1661.807
	90	969.703	574.733	564.302	285.944	1963.970
	100	1185.675	681.760	626.261	378.368	2140.823
Helmholtz	30	475.464	360.512	382.699	106.282	426.802

	40	560.821	312.077	301.382	227.113	516.188
	50	418.279	387.216	290.760	448.527	610.415
	60	1077.114	1077.441	303.223	351.142	1061.397
	70	1096.793	926.789	406.044	371.133	1067.404
	80	758.462	670.084	497.609	622.267	1061.191
	90	731.334	1103.019	818.053	667.441	1154.661
	100	1054.074	1092.967	699.685	708.338	1353.359
	30	157.838	130.962	121.870	69.612	186.065
	40	97.325	76.638	85.362	62.867	141.895
	50	80.451	71.934	66.931	58.078	125.708
	60	102.351	136.841	49.029	62.884	138.022
ΠΝΙΔΙ	70	97.271	86.080	48.376	57.819	108.991
	80	61.259	67.258	47.777	58.391	98.562
	90	62.185	76.029	53.352	61.720	92.514
	100	76.956	72.871	45.252	60.101	90.702

Modelo Zener:

Tabla 19: $\overline{x_G}$ por región para cada método de inversión modelo Zene
--

			$\overline{x_G}[Pa]$			
Método	<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz
	30	214.710	141.903	128.874	108.357	283.818
	40	219.790	153.082	211.282	129.042	325.351
	50	320.540	236.437	217.976	154.776	434.116
EV	60	492.773	401.489	235.433	227.053	581.454
ΓV	70	594.131	447.082	311.974	227.463	682.295
	80	559.351	375.251	425.084	321.295	781.318
	90	739.860	483.636	567.482	358.970	889.322
	100	955.440	613.958	584.059	388.178	1015.158
	30	178.971	121.490	106.117	87.927	257.741
	40	194.588	132.655	172.348	109.761	298.936
FV-H	50	264.838	207.222	181.055	131.111	399.836
	60	413.015	361.816	209.576	195.072	529.557
	70	517.719	400.163	264.471	204.694	625.548
	80	517.374	379.937	362.999	275.720	718.002
	90	642.874	486.836	470.877	314.475	826.273
	100	811.709	594.033	511.043	348.911	940.586
	30	351.453	273.406	224.076	162.036	340.530
	40	378.608	276.786	425.125	279.928	430.625
	50	542.471	457.223	398.318	368.981	574.961
Halmhaltz	60	778.611	820.807	501.682	505.846	836.690
Heiminoltz	70	939.939	832.329	651.034	561.723	954.230
	80	947.976	830.089	846.520	754.789	1090.772
	90	1128.440	994.900	1088.024	894.475	1257.191
	100	1539.175	1201.620	1170.176	981.176	1480.143
	30	217.852	155.951	145.533	133.308	212.672
HMDI	40	166.245	131.357	131.862	125.268	172.140
	50	152.587	141.101	120.779	105.388	160.368

60	147.580	159.842	109.710	112.526	162.072
70	146.340	131.558	111.913	98.531	147.970
80	122.010	120.068	119.670	104.326	139.412
90	119.595	122.259	118.869	94.109	135.437
100	124.369	118.041	108.401	93.579	131.302

			σ [Pa]			
Método	<i>f</i> [<i>Hz</i>]	Inclusión 0	Inclusión 1	Inclusión 2	Inclusión 3	Matriz
	30	325.102	151.783	152.717	167.224	684.676
	40	265.059	157.546	199.002	137.665	664.244
	50	450.094	276.330	222.341	170.702	841.529
	60	888.821	559.313	240.258	239.033	1085.451
ГV	70	770.310	520.833	294.815	220.265	1379.416
	80	691.032	381.977	520.524	302.081	1430.508
	90	1195.668	548.103	801.507	371.587	1598.270
	100	1310.553	691.411	707.143	455.717	1806.613
	30	254.462	143.933	133.367	110.523	897.926
	40	345.764	137.094	168.175	109.825	957.528
	50	304.756	234.893	181.990	136.659	1109.033
EV H	60	682.766	459.310	197.946	233.518	1256.785
гү-п	70	722.800	421.605	229.472	187.104	1508.921
	80	647.886	489.278	441.570	260.747	1615.487
	90	883.982	575.411	576.430	292.226	1897.220
	100	963.455	651.379	553.943	386.494	2087.302
	30	423.083	382.403	267.882	138.127	502.998
	40	433.154	272.271	306.857	312.252	496.247
	50	434.457	391.891	270.658	297.897	628.960
Halmhaltz	60	1139.932	783.274	353.102	383.896	1063.756
Heiminoltz	70	952.373	739.451	428.997	408.146	1054.158
	80	720.410	689.735	498.275	543.466	1039.145
	90	746.389	741.972	726.231	702.544	1188.743
	100	1197.132	784.021	734.705	702.750	1387.462
	30	155.235	118.326	105.405	96.765	236.169
	40	108.351	81.008	89.349	71.121	144.167
	50	89.344	75.195	65.767	64.829	130.352
	60	96.182	106.834	51.161	64.373	138.446
ΠΝΙΟΙ	70	102.137	73.439	43.815	57.897	107.624
	80	63.383	65.422	50.757	62.221	98.310
	90	58.492	63.061	51.914	57.979	91.646
	100	64.241	63.510	41.537	55.514	87.384

	Tabla 20: o	por región par	a cada método de	e inversión	modelo Zener
--	-------------	----------------	------------------	-------------	--------------

8.3. Gráficos magnitud módulo de corte vs frecuencia

Modelo Voigt:

Gráfico 5: Curvas de los módulos de corte experimentales y real para inclusión 1 modelo Voigt.

Gráfico 6: Curvas de los módulos de corte experimentales y real para inclusión 2 modelo Voigt.

Gráfico 7: Curvas de los módulos de corte experimentales y real para inclusión 3 modelo Voigt.

Modelo Zener:

Gráfico 8: Curvas de los módulos de corte experimentales y real para inclusión 1 modelo Zener.

Gráfico 9: Curvas de los módulos de corte experimentales y real para inclusión 2 modelo Zener.

Gráfico 10: Curvas de los módulos de corte experimentales y real para inclusión 3 modelo Zener.

Modelo Voigt:

Gráfico 12: Curva de módulo de corte y su desviación estándar para matriz en método HMDI.

Modelo Zener:

Gráfico 13: Curva de módulo de corte y su desviación estándar para inclusión 2 en método FV-H.

Gráfico 14: Curva de módulo de corte y su desviación estándar para inclusión 3 en método Helmholtz.

8.5. Pruebas variación de parámetros modelo Voigt

Método FV:

Tabla 21: Errores presentes en el módulo de corte al modificar los parámetros de las regiones para FV del modelo Voigt

Tejido	<i>E</i> [<i>Pa</i>]	η [Pas]	RMS	RMS _{relativo}	e _{diferencial}
	250	2.1	134.267	0.239	4.758
	2350	0.6	1736.067	0.736	18.794
Inclusión 0	2350	2.6	1876.290	0.735	9.719
	3350	0.6	2965.612 0.883		9.547
	6350	0.6	5777.426	0.909	13.364
	6450	2.1	5861.492	0.901	15.961
	7350	3.3	6796.098	0.909	15.984
	8350	0.6	7718.618	0.924	20.354
	250	21	7864.621	0.880	107.064
	8900	0.116	8265.477	0.929	17.781

	36750	16.5	36172,997	0.966	12.655
	73500	33	72979.307	0.975	46.020
	300	1.8	241.503	0.380	2.585
	2000	0.8	1626 517	0.803	9 841
	2000	2.8	1865.507	0.811	1.320
	3000	0.8	2772.509	0.918	6.144
	6000	0.8	5585 524	0.929	12 571
	6400	2.6	5983 609	0.923	11 303
Inclusión 1	7400	3.7	7056.658	0.933	7.685
	300	18	7091 343	0.920	98 516
	8000	0.8	7466 475	0.920	15 900
	8500	0.1643	7963.008	0.932	18 797
	37000	185	36946 598	0.937	23 007
	74000	37	74359 301	0.982	45 939
	400	1.05	307.088	0.392	1 667
	2200	0.95	1741 211	0.392	11 284
	2200	2.95	2001 411	0.700	2 5 9 2
	3200	0.95	2001.411	0.797	5.303
	6200	0.95	5951 252	0.919	11 440
	6500	27	6181.097	0.936	9 760
Inclusión 2	7200	2.7	7062.010	0.930	6.967
	400	19.5	7002.919	0.943	104 174
	8200	0.95	7866 960	0.928	10 807
	9000	0.1925	8717.087	0.950	10.034
	36500	19	36062 222	0.964	31 589
	73000	38	72838 481	0.901	52 007
	5000	0.95	272 566	0.774	9.050
	200	0.05 1 0E	275.500	0.495	0.039
	200	1.05 2.0E	290.722	0.449	1.370 E 962
Inclusión 3	1500	2.05	040.970	0.003	3.002
	1500	0.05	1300.073	0.003	2.902
	4500	0.05	4277.010	0.947	10.010
	5200	2.5	52/1 720	0.940	2 962
	6500	0.05	6202 201	0.932	5.002
	7000	0.05	6020.010	0.908	5.445
	200	105	7272 270	0.970	102 004
	26500	10.5	26949 660	0.930	22 446
	52000	25	52000 125	0.973	51 100
	200	22	145 210	0.980	51.190
	200	2.5	145.218	0.200	0.353
Matt	200	2.5	150.430	0.230	4.568
Matriz	200	0.5	6/0.948	1.997	18.55/
	1200	0.5	/80.406	0.643	9.006
	4200	0.5	3552.566	0.845	11.799

14.209
13.905
14.878
126.581
35.858
71.867

Método FV-H:

 Tabla 22: Errores presentes en el módulo de corte al modificar los parámetros de las regiones para FV-H del modelo

 Voigt

Tejido	$E[Pa]$ $\eta[Pas]$ RMS RMS _{relative}		RMS _{relativo}	<i>e_{diferencial}</i>	
	250	2.1	211.224	0.319	2.556
	2350	0.6	1822.720	0.772	15.883
	2350	2.6	1970.853 0.768		7.212
	3350	0.6	3016.360 0.898		8.263
	6350	0.6	5861.289	0.922	10.972
Inclusión ()	6450	2.1	5977.213	0.918	12.212
Inclusion 0	7350	3.3	6919.464	0.925	11.796
	8350	0.6	7812.382	0.935	14.672
	250	21	8102.453	0.903	111.772
	8900	0.116	8366.022	0.940	15.194
	36750	16.5	36337.116	0.971	14.692
	73500	33	73214.148	0.978	43.199
	300	1.8	345.936	0.488	0.695
Inclusión 1	2000	0.8	1697.493	0.838	7.428
	2000	2.8	1939.249	0.840	0.839
	3000	0.8	2779.053	0.921	5.298
	6000	0.8	5625.518	0.936	11.893
	6400	2.6	6041.712	0.930	9.276
inclusion 1	7400	3.7	7108.561	0.940	6.243
	300	18	7197.823 0.932		100.402
	8000	0.8	7539.118	539.118 0.942	
	8500	0.1643	8036.316	8036.316 0.945	
	37000	18.5	37075.489	0.980	21.696
	74000	37	74536.720	0.985	41.630
Inclusión 2	400	1.95	359.179	0.451	2.378
	2200	0.95	1783.943	0.799	10.819
	2200	2.95	2048.823	0.814	8.972
	3200	0.95	2997.839	0.930	4.727
	6200	0.95	5904.633	0.950	8.749
	6500	2.7	6258.710	0.948	6.615
	7300	3.8	7132.091	0.954	4.645
	400	19.5	7773.518	0.935	105.957

	8200	0.95	7902.891	0.963	8.636
	9000	0.1925	8737.094	0.971	7.156
	36500	19	36229.520	0.969	31.469
	73000	38	73055.580	0.977	41.501
	500	0.85	329.683	0.581	5.885
	200	1.85	425.022	0.581	3.029
	500	2.85	959.723	0.758	8.263
	1500	0.85	1376.871	0.893	2.478
	4500	0.85	4307.357	0.954	8.011
Inclusión 2	4500	2.5	4413.084 0.954		2.806
Inclusion 3	5300	3.5	5279.980	0.959	2.908
	6500	0.85	6315.467	0.970	4.409
	7000	0.1723	6831.382	0.976	4.750
	200	18.5	7519.430	0.944	106.535
	26500	17.5	26979.107	0.979	22.008
	53000	35	54224.726	0.984	52.186
	200	2.5	161.909	0.246	5.731
	200	0.5	207.888	0.283	3.950
	1200	0.5	810.084	0.667	8.362
	4200	0.5	3614.198	0.859	10.771
Matriz	5300	1.2	4657.975	0.875	12.437
	5900	2	5263.860	0.883	12.208
	6000	0.0979	5402.715	0.900	12.924
	6200	0.5	5561.372	0.896	13.002
	200	25	9497.564	0.894	128.875
	29500	10	28098.606	0.943	31.910
	59000	20	57007.563	0.956	66.075

Método Helmholtz:

 Tabla 23:
 Errores presentes en el módulo de corte al modificar los parámetros de las regiones para Helmholtz del modelo Voigt

Tejido	<i>E</i> [<i>Pa</i>]	η [Pas]	RMS	RMS _{relativo}	e _{diferencial}
	250	2.1	318.034	0.286	9.833
	2350	0.6	1511.926	0.641	25.239
	2350	2.6	1636.267	0.646	13.955
	3350	0.6	2742.571	0.817	15.300
	6350	0.6	5439.383	0.856	19.126
Inclusión 0	6450	2.1	5577.756	0.857	21.135
	7350	3.3	6525.553	0.873	20.125
	8350	0.6	7362.732	0.881	24.672
	250	21	7421.718	0.837	98.024
	8900	0.116	7886.331	0.886	24.402
	36750	16.5	35563.310	0.950	33.950

	73500	33	71954.937	0.961	58.304
	300	1.8	381.245	0.387	12.431
	2000	0.8	1345.657	0.666	16.592
	2000	2.8	1487.983	0.658	8.282
	3000	0.8	2503.184	0.829	10.779
	6000	0.8	5200.478	0.865	21.288
Inclusión 1	6400	2.6	5574.411	0.859	18.851
Inclusion 1	300	18	6547.248	0.860	86.967
	7400	3.7	6621.749	0.876	18.641
	8000	0.8	7034.903	0.879	25.660
	8500	0.1643	7540.199	0.887	27.655
	37000	18.5	36287.758	0.959	37.104
	74000	37	73425.181	0.970	42.408
	400	1.95	436.002	0.413	13.481
	2200	0.95	1304.390	0.587	25.150
	2200	2.95	1547.351	0.628	10.536
	3200	0.95	2699.696	0.838	13.086
	6200	0.95	5489.222	0.884	19.522
In alternitien O	6500	2.7	5845.587	0.886	17.310
Inclusion 2	7300	3.8	6732.325	0.901	12.221
	400	19.5	6969.016	0.856	87.830
	8200	0.95	7510.806	0.915	18.686
	9000	0.1925	8342.767	0.927	15.882
	36500	19	34820.675	0.931	35.952
	73000	38	71184.183	0.952	78.433
	200	1.85	331.587	0.348	10.830
	500	2.85	377.162	0.390	4.951
	500	0.85	473.725	0.708	18.763
	1500	0.85	1118.377	0.729	8.769
	4500	0.85	3961.884	0.878	18.860
Inclusión 3	4500	2.5	4042.432	0.876	11.298
	5300	3.5	4904.732	0.892	8.911
	6500	0.85	5963.363	0.916	13.527
	7000	0.1723	6499.150	0.928	12.687
	200	18.5	6803.568	0.867	91.450
	26500	17.5	26212.693	0.952	20.016
	53000	35	53107.617	0.964	56.148
	200	0.5	259.315	0.205	10.004
	200	2.5	438.620	0.329	13.616
Matriz	1200	0.5	623.612	0.516	14.185
wiatilZ	4200	0.5	3307.518	0.787	17.325
	5300	1.2	4344.903	0.816	19.695
	5900	2	4934.110	0.828	19.824

6000 0.0979 5078.713 0.846 20.889 6200 0.5 5219.488 0.841 20.444 200 25 9010.298 0.855 118.626 29500 10 27444.856 0.921 39.548 50000 20 56202.259 0.042 60.006						
6200 0.5 5219.488 0.841 20.444 200 25 9010.298 0.855 118.626 29500 10 27444.856 0.921 39.548 50000 20 5(202.259) 0.042 (0.00)		6000	0.0979	5078.713	0.846	20.889
200 25 9010.298 0.855 118.626 29500 10 27444.856 0.921 39.548 50000 20 56202.258 0.042 60.006		6200	0.5	5219.488	0.841	20.444
29500 10 27444.856 0.921 39.548 50000 20 56202.358 0.042 60.006		200	25	9010.298	0.855	118.626
	2	29500	10	27444.856	0.921	39.548
59000 20 56202.258 0.943 69.996	5	59000	20	56202.258	0.943	69.996