DISEÑO Y PROTOTIPADO DE UN MÓDULO DE RECARGA PARA
DISPOSITIVOS MÓVILES CON ENERGÍA SOLAR.

Trabajo de Titulación para optar al Título de
Ingeniería en Fabricación y Diseño
Industrial.

Alumno:
Erika Erices Espinoza

Profesor Guía:
Santiago Geywitz Bernal

2018
RESUMEN

KEYWORDS: DISPOSITIVOS MÓVILES, SUSTENTABLE, RECARGA, BATERÍA, INNOVACIÓN SOCIAL.

Existe una demanda de los usuarios chilenos que usan dispositivos móviles por mantenerse comunicados. Se presenta como un consumidor con nuevos hábitos y exigente con su teléfono móvil inteligente.

Al año 2015 existían en Chile cerca de 23,7 millones de teléfonos móviles operativos. Según Subtel el 77% de las conexiones a internet diarias se hacen desde un celular.

El teléfono móvil Smartphone se vuelve un requisito diario, como herramienta de comunicación y de diversas labores, de mapas y un medio de entretenimiento para fotos, videos y juegos por el cual el uso de la batería disminuye su duración de 10 horas en uso moderado a 6 horas diarias en uso máximo considerando aplicaciones activas y uso de transferencia de datos.

Las baterías son un componente esencial para el funcionamiento del teléfono, en el cual los fabricantes de baterías de los celulares más vendidos y con precios al alcance de la media de la población rinde entre 5 horas y 10 horas dependiendo del uso que se le dé al dispositivo.

La dependencia del uso de los celulares y demás dispositivos móviles causa una desesperación cuando se acaba la batería de estos y no tienen forma de recargarlos cuando se encuentran fuera de casa u oficina.

Cabe destacar que por el medio virtual se comunican las personas, planean reuniones, encuentros, trabajos, reportes de trabajo y oficina, o fotografían en terreno para luego enviar las imágenes e información.

Su potencial está en un servicio gratuito para el usuario sustentable a través de la energía solar.

Todo se hace a través de dispositivos móviles y teléfonos móviles inteligentes, comunicarse, entretenerte, llegar a un lugar, agenda, trabajo, leer libros, noticias, escuchar música, sacar fotografías, etc. Esto genera la dependencia del celular y la necesidad de que este se mantenga con carga todo al día. La carga no se puede realizar en espacios públicos pues no poseemos energía eléctrica y obliga a los usuarios a buscar maneras de concurrir a un lugar particular que le suministre esta energía eléctrica.
SIGLAS

USB : Universal Serial Bus
TRIZ : Teoría para Resolver Problemas de Inventiva
INE : Instituto Nacional de Estadísticas
MINVU : Ministerio de Vivienda y Urbanismo
WIFI : Wireless Fidelity
SUBTEL : Subsecretaría de Telecomunicaciones
GPS : Global Positioning System
PDA : Personal Digital Assistant
3G : Tercera generación
UMTS : Universal Mobile Telecommunications System
ERNC : Energías Renovables No Convencionales
CONICYT : Comisión Nacional de Investigación Científica y Tecnológica
RSE : Responsabilidad Social Empresarial
MPPT : Maximum Power Point Tracker

SIMBOLOGÍAS

Kg : Kilogramo
m : Metro
cm : Centímetros
mm : Milímetros
pulg : Pulgadas
m² : Metros cuadrados
cm² : Centímetros cuadrados
A : Amperes
V : Volts
kWh : Kilo Watts hora
Wp : Watts de potencia
h : Hora
mA : Miliamperes.
Σ : Sumatoria
Ω : Ohm
% : Porcentaje
H : Rendimiento
RESUMEN
SIGLAS Y SIMBOLOGÍA
RESUMEN...2
INDICE DE CONTENIDOS..4
ÍNDICE DE FIGURAS...8
ÍNDICE DE TABLAS..9
ÍNDICE DE GRÁFICOS...10
ÍNDICE DE DIAGRAMAS...10
INTRODUCCIÓN ..1
CAPÍTULO I: ANTECEDENTES GENERALES...........................2
 1. ANTECEDENTES GENERALES......................................3
 1.1. POSICIONAMIENTO GLOBAL DE CHILE..................3
 1.1.1. Utilización de dispositivos móviles y redes..................4
 1.1.2. Consumo de energía en dispositivos móviles...............5
 1.1.3. Duración de carga de celulares................................5
 1.1.4. Dispositivos Móviles...6
 1.1.5. Clasificación de dispositivos móviles.......................7
 1.1.6. La Nomofobia en Chile...8
 1.1.7. Tipos de usuario de Dispositivos Móviles..................9
 1.1.8. Actividades de los usuarios y entornos....................10
 1.2. DEFINICIÓN DEL PROBLEMA DE DISEÑO....................11
 1.2.1. Sistemas de interfase de los Dispositivos Moviles........11
 1.2.2. Dispositivos Móviles con Interfaz USB......................11
 1.2.3. Conversor de Energía..12
 1.2.4. Tiempo de recarga de un dispositivo móvil...............12
 1.3. CONTEXTO DEL PROBLEMA.....................................13
 1.3.1. Espacios Públicos..13
 1.3.2. Espacio Público..14
 1.3.3. Tipos de Espacios Públicos (según MINVU)................14
 1.4. COMPRENSIÓN DEL MERCADO..................................15
 1.5. CUANTIFICACIÓN E IMPLEMENTACIÓN MERCADO............15
 1.5.1. Producto Nacional..15
 1.5.2. Producto Internacional..16
 1.6. EVALUACIÓN DE LAS BARRERAS SEGÚN M. PORTER........18
1.7. MODELO O ESTRATEGIA DE NEGOCIO CANVAS.........................19
1.8. DIMENSIÓN TECNOLÓGICA ..20
 1.8.1. Necesidades de alimentación para carga de dispositivos.................20
1.9. OBJETIVOS DEL PROYECTO..21
 1.9.1. Objetivo general..21
 1.9.2. Objetivo específico..21
CAPÍTULO II: DISEÑO CONCEPTUAL ..22
2.1. IDENTIFICACIÓN DE LAS OBLIGACIONES LEGALES.......................23
 2.1.1. Sobre la Ley 19300 ...23
 2.1.2. Las Energías Renovables No Convencionales23
 2.1.3. Norma ISO 26.000 sobre Responsabilidad Social Empresarial...........23
2.2 . DEFINICIÓN DEL MERCADO DE USUARIO Y CLIENTE...............24
 2.2.1. Segmento de Mercado...24
 2.2.2. Tamaño del Mercado..24
 2.2.3. La diferenciación..24
 2.2.4. Competencia...24
 2.2.5. Espacios de Implementación..25
 2.2.6. Tendencias y estilos en el sector25
2.3. CUANTIFICACIÓN DEL MERCADO ...27
 2.3.1. Estrategias de comercialización según Porter..........................27
 2.3.2. El liderazgo general en costos ...28
 2.3.3. La diferenciación..28
 2.3.4. El enfoque ..28
2.4. DEFINICIÓN DE OBJETIVOS DEL PRODUCTO A DISEÑAR29
2.5. ANÁLISIS Y DEFINICIÓN FUNCIONAL29
 2.5.1. Consideraciones de diseño ..29
 2.5.2. Consideraciones para el cliente ..30
 2.5.3. Restricciones y funciones del diseño30
2.6. DETERMINACIÓN DE CARACTERÍSTICAS31
 2.6.1. Requerimientos ...31
 2.6.2. Restricciones ...31
2.7. SOLUCIONES DISEÑO CONCEPTUAL TRIZ32
 2.7.1. Método de cajas negras ...32
 2.7.2. 1ra Ley: Integración de las partes32
 2.7.3. 2da Ley: Transmisión de Energía34
 2.7.4. 6ª Ley: Transición a un supersistema o hibridación....................34
 2.7.5. 8va Ley: Incrementación ...34
2.7.6. 9na Ley: Sustancia-Campo ...35
2.7.7. Contradicciones:...35
2.7.8. Modelación del sistema producto (cajas negras y transparentes)36

CAPÍTULO III: DISEÑO DE INGENIERÍA...37
3. DISEÑO CONCEPTUAL ...38

3.1. PARTES, PIEZAS Y COMPONENTES ..38
3.1.1. Soporte metálico base ..38
3.1.2. Gabinete inferior componentes ..39
3.1.3. Soporte superior panel solar ..39
3.1.4. Componentes estéticos y de usabilidad ..40
3.1.5. Componentes electrónicos y de adquisición40

3.2. ANALISIS TECNICO ...41
3.2.1. Determinación de carga energética según Potencia Solar41
3.2.2. Factor ergonómico del módulo de recarga de energía42
3.2.3. Antivandalismo ..43
3.2.4. Clima, intemperie ..43
3.2.5. Flujo de energía solar a energía eléctrica requerida45

3.3. DISEÑO INTERFAZ MEDIANTE ARDUINO...46
3.3.1. Interfaz de espacio con luminosidad al acercarse.46
3.3.2. Interfaz de recarga conexión y desconexión del puerto USB46
3.3.3. Interfaz de estado de uso con temporizador y aviso de carga completa.47

3.4. DISEÑO DE TRANSMISIÓN Y CONTROL ..47

3.5. DISEÑO DE MODELAMIENTO TRIDIMENSIONAL49

3.6. DEFINICIÓN DE PROCESOS DE MANUFACTURA53
3.6.1. Proceso General Ideal ..54

3.7. DEFINICIÓN DE LAYOUT IDEAL ..55
3.7.1. Maquinaria para la producción ..55
3.7.2. Distribución de la planta ..55
3.7.3. Matriz de Relaciones de Actividad de la planta56
3.7.4. Layout ideal de la planta productiva ...57

3.8. ESTIMACIÓN DE TIEMPOS PRODUCTIVOS57
3.8.1. Tiempos productivos ...58

3.9. FABRICACIÓN DE PRODUCTO SEGÚN OBJETIVOS58
3.9.1. Acopio de material ..58
3.9.2. Producción ...58
3.9.3. Procesamiento ..59

CAPÍTULO IV: MERCADO Y VIABILIDAD DEL PRODUCTO60
4.1. ESTIMACIÓN DE LA DEMANDA .. 61
4.2. CRITERIOS DE DESARROLLO MERCADO 61
4.3. CRITERIO FIJACIÓN PRECIO PRODUCTO .. 62
 4.3.1. Costos fijos ... 62
 4.3.2. Costos Variables ... 63
 4.3.3. Precio de Mercado ... 65
4.4. PROYECCIÓN Y DESARROLLO DEL PROYECTO 66
4.5. EVALUACIÓN FINANCIERA DEL PROYECTO 68
 4.5.1. Desarrollo de Flujo de Caja ... 68
 4.5.2. Inversión Inicial y Marcha de la empresa 69
 4.5.3. Variables Críticas y optimización del proyecto 70
 4.5.4. Tasa de Descuento .. 71
 4.5.6. Depreciación de equipos ... 71
4.6. ESTRATEGIA DE NEGOCIO CON ILKU ... 72
CONCLUSIONES .. 74
VOCABULARIO ... 75
BIBLIOGRAFÍA ... 76
ANEXOS ... 78
PROGRAMACIÓN DE TEMPORIZADOR DE CARGA EN ARDUINO UNO 79
PLANO PLACA DE CIRCUITO IMPRESO (PCB) 80
PLANO GENERAL ESTACIÓN DE CARGA ... 81
PLANO GABINETE DE BATERÍA .. 82
PLANO CABINA USB Y MESA .. 83
PLANO SOPORTE PARA PANEL SOLAR .. 84
PLANO DE DESPIECE GENERAL ... 85
Figura 1-1. Tipos de dispositivos móviles	9
Figura 1-2. Actividades de uso del celular en Chile.	10
Figura 1-3. Uso masivo de tecnologías emergentes en estratos sociales.	10
Figura 1-4. Utilización del celular, encuesta de Adimark.	10
Figura 1-5. División de usuarios de dispositivos móviles	12
Figura 1-6. Cruce de actividades v/s tipos de usuarios.	12
Figura 1-7. Tipos de interfaces.	14
Figura 1-8. Prueba de recarga con energía solar	15
Figura 1-9. Cargador portátil en el comercio.	17
Figura 1-10. Bee Solar en terreno.	18
Figura 1-11. City charge en terreno.	18
Figura 1-12. Cargadores solares YUPCHARGE.	19
Figura 1-13. Diagrama Fuerzas De Porter.	20
Figura 1-14. Metodología CANVAS.	22
Figura 2-1. Las tres estrategias genéricas de Porter.	31
Figura 2-2. Aplicación de método de cajas negras.	36
Figura 2-3. Sexta Ley de hibridación.	37
Figura 2-4. Novena Ley de Sustancia-Campo.	38
Figura 2-5. Modelo de Sistemas y Subsistemas.	39
Figura 3-1. Datos sobre radiación solar.	47
Figura 3-2. Datos sobre posición y apoyo mesa-usuario.	48
Figura 3-3. Boceto de prototipo de diseño conceptual inicial.	54
Figura 3-4. Boceto de prototipo de diseño conceptual 2	55
Figura 3-5. Boceto de prototipo de diseño conceptual con componentes.	55
Figura 3-6. Boceto de prototipo de diseño conceptual con medidas.	56
Figura 3-7. Modelado 3D de diseño final.	56
Figura 3-8. Plano general de estación de carga.	57
Figura 3-9. Render de producto en el entorno.	57
Figura 3-10. Matriz de relaciones de la planta.	61
Figura 3-11. Layout ideal de planta.	62
ÍNDICE DE TABLAS

Tabla 1-1. Estadísticas de consumos según acción de carga. 7
Tabla 1-2. Listado de usos comunes que consumen la batería del dispositivo móvil. 8
Tabla 1-3. Listado de rendimiento de las baterías de los teléfonos según reporte de usuarios. 8
Tabla 2-1. Primera Ley de Innovación TRIZ. 36
Tabla 2-2. Segunda Ley de Transmisión de Energía. 37
Tabla 2-3. Ideas de solución de los principios de inventiva: 37
Tabla 3-1. Materiales y componentes soporte base 43
Tabla 3-2. Materiales y componente de la fabricación de la estructura superior. 44
Tabla 3-3. Materiales y comp. de la fabr. de la estructura superior 44
Tabla 3-4. Materiales y materias primas. 45
Tabla 3-5. Componentes electrónicos y adquisiciones. 46
Tabla 3-5. Climatología de Chile. 49
Tabla 3-7. Tabla de cálculo consumo del producto. 51
Tabla 4-1. Costos Fijos Anuales de la empresa. 68
Tabla 4-2. Costos Variables Materiales por Unidad Productiva. 69
Tabla 4-3. Costos Variables Materiales Arduino por Unidad Productiva. 69
Tabla 4-4. Costos Variables Materiales Eléctricos por Unidad Productiva. 69
Tabla 4-5. Costos Variables de Fabricación por Unidad Productiva. 70
Tabla 4-6. Costos de Materiales y Fabricación por Unidad Productiva. 71
Tabla 4-7. Proyección y cálculo de ingresos por año. 72
Tabla 4-8. Proyección y cálculo de ingresos de servicios por año. 73
Tabla 4-9. Flujo neto de fondos. 74
Tabla 4-10. Costos de Inversión Inicial en equipos. 75
Tabla 4-11. Costos de Inversión Inicial Futura en equipos. 76
Tabla 4-12. Cálculo de la Tasa de Descuento. 76
Tabla 4-13. Depreciación Inversión Inicial. 77
Tabla 4-14. Depreciación Inversión Futura. 77
ÍNDICE DE GRÁFICOS

Gráfico 1-1. Utilización de Internet en Chile 3
Gráfico 1-2. Actividades de uso del celular en Chile. 4
Gráfico 1-3. Uso masivo de tecnologías emergentes en estratos sociales. 6
Gráfico 1-4. Utilización del celular, encuesta de Adimark, 26 enero 2016. 9
Gráfico 1-5. Utilización del celular según género. 10
Gráfico 1-6. Sector socio-económico de los encuestados 10

ÍNDICE DE DIAGRAMAS

Diagrama 3-1. Esquema eléctrico del producto. 48
Diagrama 3-2. Proceso de fabricación de Estructura base. 53
Diagrama 3-3. Proceso de fabricación Panel de Infografía. 54
Diagrama 3-4. Montaje general del Producto final. 54
Diagrama 3-5. Modelo de negocio empresa Ilku. 73
INTRODUCCIÓN

Hoy en día existe un usuario tecnológico que se siente cómodo y feliz mientras se encuentre comunicado, dándole cercanía y confianza al usuario como una herramienta de mejora de la calidad de vida. Las personas viven conectadas a redes, y eso implica no desconectarse de su entorno, en este ámbito hay una falta de servicio de recarga en lugares abiertos para usuarios dependientes de dispositivos móviles.

El usuario vive conectado en el día a día, en la calle, plazas, para comunicarse, enviar informes de trabajo, enviar correos etc. Sin embargo, no se puede estar todo el día con la carga de batería del dispositivo móvil, por lo que existe una necesidad de recargar constantemente el dispositivo, aproximadamente cada 7 horas, siendo una estrategia el considerar un Módulo de recarga de Dispositivos Móviles en zonas de gran afluencia de público y de poco acceso a energía eléctrica (enchufes).

Este trabajo tiene como objetivo diseñar Módulos de recarga de Dispositivos Móviles que ayuden de emergencia a los usuarios que no tienen acceso a energía eléctrica para poder recargar sus dispositivos móviles mientras están en plazas y espacios abiertos, cumpliendo con parámetros de seguridad, clima, intemperie y energía disponible en el módulo de recarga. Generar la suficiente cantidad de energía para poder cargar el dispositivo móvil, además que cumpla un papel de fundamento social el cual es un servicio gratuito de recarga utilizando energías renovables por medio del sustento de la publicidad de empresas privadas integrada al producto.

En el capítulo uno se mostrará en detalle los antecedentes de este proyecto enfocado dentro del país y el posicionamiento global del proyecto, entendiendo

En el capítulo dos se implementarán herramientas y metodologías para llegar a un diseño conceptual, se analizará la funcionalidad, cuantificación del mercado y cliente y algunas restricciones y obligaciones legales en relación al diseño del producto.

en el tercer capítulo se entregará parámetros de diseño de ingeniería en los que se muestran detalles de análisis técnicos, procesos de manufactura y fabricación en bases a planos para terminar con el último capítulo que entrega estimaciones de oferta y demanda, costos, precio de venta y crecimiento del mercado en base a sustentabilidad del proyecto.
CAPÍTULO I: ANTECEDENTES GENERALES
1. **ANTECEDENTES GENERALES**

1.1. **POSICIONAMIENTO GLOBAL DE CHILE EN EL USO DE INTERNET Y TECNOLOGÍAS.**

Un estudio del PewResearch Center en WASHINGTON analizó el uso de la telefonía móvil y el internet en 24 países emergentes, incluyendo a Chile y demostrando el crecimiento de nuestro país en estas áreas. Según la investigación del centro Pew, un 69% de los usuarios de internet en Chile se conecta todos los días, las redes sociales se han convertido en el uso más común de las conexiones de internet: un 77% de los usuarios encuestados en 22 países afirmó acceder a este tipo de servicios. En Chile la cifra llega al 76%, la comunicación y contacto con familia y amigos es lo más común (96% a nivel general, 96% en Chile), seguido de compartir opiniones sobre música y películas (73% a nivel global y 79% en Chile), religión (43% y 22%) y política (38% y 27%).

Fuente: Elaboración propia basado en estudio del PewResearch, WASHINGTON.

Gráfico 1-1. Utilización de Internet en Chile.

En cuanto al uso de telefonía móvil, Chile es el cuarto país de la muestra con mayor porcentaje de penetración. Un 91% de los encuestados en nuestro país afirmó tener un teléfono celular, y un 39% indicó que corresponde a un smartphone.
La actividad más común entre aquellas personas que tienen un celular es enviar mensajes de texto. En Chile un 75% envía mensajes de texto, mientras que un 67% accede a las funciones de cámara y un 37% a redes sociales.

Gráfico 1-2. Actividades de uso del celular en Chile.

1.1.1. Utilización de dispositivos móviles y redes.

Según la última encuesta Subtel realizada en Marzo del año 2015, el 77% de las conexiones a internet son hechas a través del celular. Es el primer Estudio con representatividad en 15 comunas seleccionadas, con una muestra de 4.530 encuestas distribuidas entre Valparaíso, Biobío y La Araucanía (representación de 14% de la población nacional).

Gráfico 1-3. Uso masivo de tecnologías emergentes en estratos sociales.
A marzo de 2016 existen en Chile cerca de 23,7 millones de teléfonos móviles operativos, lo que equivale a 132 aparatos activos por cada 100 habitantes, de acuerdo con las estadísticas de la Subsecretaría de Telecomunicaciones (Subtel), al primer trimestre.

El gráfico revela, además, que el uso de datos en los aparatos móviles ha crecido velozmente, tanto así que el 77,8% de los accesos a internet se hace a través de un teléfono móvil, principalmente, un smartphone.

1.1.2. Consumo de energía en dispositivos móviles

Los diversos dispositivos tienen un consumo promedio en un tiempo de 2 horas que se realiza la carga completa, sin embargo, el cargador del dispositivo puede seguir generando gastos si se encuentra enchufado.

A continuación, se muestra una tabla con las mediciones y cálculos realizados según consumo teórico y costos.

<table>
<thead>
<tr>
<th>ACCIÓN</th>
<th>CONSUMO (W)</th>
<th>CONSUMO ANUAL (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargar el celular</td>
<td>5 W</td>
<td>3,65 kWh (2 horas al día)</td>
</tr>
<tr>
<td>Cargador enchufado con el celular cargado</td>
<td>< 0,5 W</td>
<td>0,438 kWh (6 horas al día)</td>
</tr>
<tr>
<td>Cargador enchufado sin el celular</td>
<td>< 0,2 W</td>
<td>1,168 kWh (16 horas al día)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>5,26 kWh</td>
</tr>
</tbody>
</table>

Fuente: http://www.xataka.com/moviles/no-imaginas-el-dinero-que-te-cuesta-cargar-el-smartphone

1.1.3. Duración de carga de celulares por utilización de juegos y aplicaciones.

El celular dejó de utilizarse sólo para llamar por teléfono, y con ello se aumentó considerablemente su consumo de energía. Actualmente los usuarios de teléfonos inteligentes y dispositivos conectados a internet tienen que recargar sus equipos 2 y hasta 3 veces en un mismo día, dependiendo de las aplicaciones instaladas y el uso que dan a sus equipos.
Tabla 1-2. Listado de usos comunes que consumen la batería del dispositivo móvil.

<table>
<thead>
<tr>
<th>USO</th>
<th>PORCENTAJE DE CONSUMO BATERÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>conexión wifi</td>
<td>8%</td>
</tr>
<tr>
<td>pantalla táctil</td>
<td>33%</td>
</tr>
<tr>
<td>llamadas de voz</td>
<td>17%</td>
</tr>
<tr>
<td>capacidad de aguantar en inactivo</td>
<td>16%</td>
</tr>
</tbody>
</table>

Según lo que reportan los usuarios a través de las redes sociales, los celulares recién cargados promedian, utilizando un brillo automático bajo, entre 3 y 6 horas de duración.

Tabla 1-3. Listado de rendimiento de las baterías de los teléfonos según reporte de usuarios.

<table>
<thead>
<tr>
<th>Teléfono</th>
<th>Tiempo de Funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung S4</td>
<td>1,5 horas</td>
</tr>
<tr>
<td>Samsung S5</td>
<td>3,5 horas</td>
</tr>
<tr>
<td>Samsung J5</td>
<td>3,5 horas</td>
</tr>
<tr>
<td>Moto X Play</td>
<td>4 horas</td>
</tr>
<tr>
<td>Moto G2</td>
<td>4,5 horas</td>
</tr>
<tr>
<td>Moto G3</td>
<td>4,5 horas</td>
</tr>
<tr>
<td>Samsung J3</td>
<td>5 horas</td>
</tr>
<tr>
<td>iPhone 5</td>
<td>5 horas</td>
</tr>
<tr>
<td>Samsung S7</td>
<td>5 horas</td>
</tr>
<tr>
<td>Huawei G7</td>
<td>5,5 horas</td>
</tr>
<tr>
<td>iPhone 6Plus</td>
<td>6 horas</td>
</tr>
<tr>
<td>XiaomiRedmi 3 Pro</td>
<td>7 horas</td>
</tr>
</tbody>
</table>

Fuente: http://www.publimetro.cl/nota/teknik/pokemon-go-cuanta-bateria-del-celular-consume-el-juego/xIQphl!30YOVEWi1NrtQ/

1.1.4. Dispositivos Móviles

Un dispositivo móvil se puede definir como un aparato pequeño, de fácil uso y manejo, que permiten su traslado a cualquier lugar sin dificultad y cuyo consumo se hace sin necesidad de conexión eléctrica fija. Un dispositivo móvil posee capacidades de procesamiento, conexión a una red y con memoria limitada, que ha sido diseñado específicamente para una función, pero que puede llevar a cabo otras funciones más generales. De acuerdo con esta definición existen diferentes dispositivos móviles: los reproductores de audio portátiles, navegadores GPS, teléfonos móviles, tablets, entre otros.
1.1.5. Clasificación de dispositivos móviles.

1.1.5.1. **Teléfonos móviles**: Terminal móvil de telefonía que permite la comunicación vía voz, mensaje de texto, mensaje multimedia o, en algunos modelos de generación 3G, videotelefonía.

1.1.5.2. **Tablets**: también llamados ordenadores de bolsillo, se distinguen por la ausencia de discos duros, los cuales son sustituidos por pequeñas tarjetas de memoria. Este tipo de dispositivo incorpora las aplicaciones de: agenda, calendario, gestor de correo, etc., pudiéndose añadir programas adicionales en función de las necesidades de cada usuario.

1.1.5.3. **iPod ó Mp3**: Son reproductores digitales de música con un pequeño disco duro. Poseen una interfaz simple y de fácil utilización. Este reproductor ha sido diseñado por la empresa Apple.

1.1.5.4. **Consolas portátiles**: Sistema de hardware o software, o la combinación de ambos, diseñada para que el consumidor juegue con videojuegos e incluso se pueda conectar a Internet.

1.1.5.5. **Navegadores GPS**: Combinación de hardware y software que permite la localización geográfica vía satélite de personas, objetos o vehículos gracias a un transmisor-receptor Global PositioningSystem (de ahí su denominación por las siglas en inglés).

![Diagrama de dispositivos móviles](image-url)

Fuente: Elaboración propia.

Figura 1-1. Tipos de dispositivos móviles.
1.1.6. La Nomofobia en Chile.

La nomofobia es la adicción a estar constantemente conectados a través del celular, entorpeciendo las situaciones cotidianas de nuestra vida. Hay una necesidad por mantenerse conectados a toda hora y ésta fue la materia del estudio realizado por GfK Adimark junto a Entel, del que se obtuvieron datos nacionales sobre la nomofobia durante este año 2016.

De este estudio se desprende que el teléfono celular es un artículo prioritario para los chilenos. El 64% de los encuestados afirmó que el smartphone es más importante que el computador y el televisor, y son las mujeres quienes más lo priorizan, con un 76% de las respuestas, frente al 53% de los hombres.

Gráfico 1-5. Utilización del celular según género, encuesta de Adimark, 26 enero 2016.

Más de la mitad del total de la muestra prefiere que se le queden las llaves en la casa
antes que el teléfono móvil y en caso de que se les quede en casa, casi el 60% se devolvería a buscarlo.

Katherine Martorell, directora de Sustentabilidad y Comunidades de Entel, explicó: “es importante que la gente viva mejor conectada, y eso implica no desconectarse de su entorno. Por eso se promueve el uso responsable del celular y que éste sea una herramienta para contribuir a mejorar nuestra calidad de vida”.

Para hacer esta investigación, se encuestó en línea y durante el mes de enero a 497 personas: hombres y mujeres de 15 a 45 años de todos los segmentos económicos, que residieran en Santiago y que tuviesen un smartphone. La muestra es representativa de un estimado del 56% de la población nacional.

Para hacer esta investigación, se encuestó en línea y durante el mes de enero a 497 personas: hombres y mujeres de 15 a 45 años de todos los segmentos económicos, que residieran en Santiago y que tuviesen un smartphone. La muestra es representativa de un estimado del 56% de la población nacional.

Gráfico 1-6. Sector socioeconómico de los encuestados, encuesta de Adimark.

El 48% pertenecía al sexo masculino, mientras que el 52%, al femenino. El sector socioeconómico ABC1 tuvo una representación del 17%; el sector C2, de un 29%; el C3, de un 29%, y el sector D, de un 25%. El 35% de las personas que participaron tenía entre 15 y 24 años; un 34%, entre 25 y 34 años, y un 30%, entre 35 y 45 años.

1.1.7. Tipos de usuario de Dispositivos Móviles.

El usuario de dispositivos móviles se caracteriza por realizar diversas actividades y es por esta razón que se cuantifica cuando debe recurrir a recargar su dispositivo y en qué lugares. A continuación, se representa al usuario mediante actividades de vida diaria:
1.1.8. Actividades de los usuarios y entornos.

De la división de usuarios de la figura anterior se puede realizar una subdivisión categorizada según las actividades que realiza o realizan los diversos usuarios, generando un crucigrama de respuestas y porcentajes en los cuales se enfocará el diseño y el usuario específico.

<table>
<thead>
<tr>
<th>USUARIO</th>
<th>ACTIVIDADES FUERA DEL HOGAR</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEPORTE</td>
<td>TRABAJO</td>
</tr>
<tr>
<td>BÁSICO</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OFFLINE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LABORAL</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TECNOLOGICO</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>%</td>
<td>60%</td>
<td>83%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Figura 1-6. Cruce de actividades v/s tipos de usuarios.
1.2. DEFINICIÓN DEL PROBLEMA DE DISEÑO

Existe una oportunidad en lugares abiertos para recarga de dispositivos móviles en usuarios dependientes. Hay sistemas de recarga que se encuentran situados dentro de instituciones y locales, pero que no se enfocan en los espacios abiertos como plazas municipales y parques.

El usuario en contexto es un usuario tecnológico y dependiente de los dispositivos móviles el cual necesita rápidamente y por un tiempo preciso recargar su dispositivo móvil para mantenerse conectado, sin tener problemas de traer un cargador consigo.

Dentro de este ámbito, tenemos 2 tipos de usuario, el comprador que sería los Municipios a cargo de las plazas, parques o espacios intersticiales entre edificios, y el segundo usuario es el beneficiado directamente que es el usuario tecnológico que tiene la necesidad de recargar su dispositivo.

El diseño debe ser para dispositivos celulares catalogados como smartphones y/o mp3, tablets, etc que cuenten con sus respectivos adaptadores de no más de 5.5 volts de corriente.

1.2.1. Sistemas de interfase de los Dispositivos Moviles.

Interfaz se define como la conexión física y funcional entre dos aparatos o sistemas independientes (Real Academia Española, 2010).

Las interfaces son comúnmente llamadas cargadores en Chile y varios países de Latinoamérica.

Existen diversos tipos de cargadores, los más conocidos son los USB, los cuales se dividen en subcategorías según su aplicación.

1.2.2. Dispositivos Móviles con Interfaz USB

El USB (Universal Serial Bus) es un puerto que sirve para conectar periféricos a una computadora, permitiendo una gran transferencia de datos (Ramsland, 1998), este puerto de entrada se introdujo para unificar el gran número de conexiones distintas que tenían habitualmente las computadoras (Dembowski, 2003).
Por lo tanto, los dispositivos móviles con interfaz USB son aquellos que poseen una conexión que permite la interacción con otros dispositivos. Esta conexión permite la carga de batería y la transferencia de archivos entre el dispositivo móvil y una computadora.

- Dispositivos Móviles con Interfaz Microusb
- Dispositivos Móviles con Interfaz Miniusb
- Dispositivos Móviles con Interfaz Lightning (productos Apple)

![Tipos de interfaces](https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/USB_connectors.jpg/200px-USB_connectors.jpg)

Figura 1-2. Tipos de interfaces.

1.2.3. Conversor de Energía.

Los conversores de energía, comúnmente cargadores, permiten cargar y utilizar los dispositivos en cualquier lugar, siempre y cuando una fuente de alimentación esté disponible. En la actualidad existen cargadores de dispositivos móviles que son capaces de utilizar conexiones de bus serie universal (USB) para recargar dispositivos. Cualquier dispositivo que utilice una conexión USB, como una cámara digital, PDA o un teléfono celular, puede ser conectado a través de un puerto USB y cargado. (Rank Estudio, 2010).

1.2.4. Tiempo de recarga de un dispositivo móvil

Se probó en varios celulares y resultó que se necesita alrededor de 2 horas para que un celular conectado a un módulo de carga con energía solar tenga su máxima capacidad de energía, sin embargo si se colocaran incluso en paraderos o zonas de paso, las personas podrían llegar a cargar su teléfono sólo por unos minutos y el funcionamiento sería óptimo para alguna emergencia.
Como prueba experimental se ha usado una celda pequeña de 100x50 mm2 con una capacidad de 6V que traspasa energía a baterías recargables de litio portátil para celulares de 5.5 V.

![Imagen de baterías recargables con energía solar](image)

Fuente: Elaboración propia

Figura 1-3. Prueba de recarga con energía solar.

Con esto se comprueba la capacidad de almacenamiento a diversos climas e inclinaciones de la celda y el tiempo de carga de la celda.

1.3. **CONTEXTO DEL PROBLEMA**

1.3.1. **Espacios Públicos**

Según documento de Espacios Públicos del MINVU, señala que más del 40% de nuestras ciudades son espacios públicos. Parques, plazas, calles o paseos, constituyen esos espacios donde experimentamos la interacción social y la vida urbana, por lo que sabemos que de la calidad y la distribución equitativa de los espacios públicos en las ciudades depende en gran medida la percepción de los ciudadanos respecto a la calidad de vida y el valor. Un espacio Público debe poseer los siguientes factores:

“**Accesibilidad**” que facilite el acceso peatonal de todos los ciudadanos, garantizando su uso y la reactivación de su entorno urbano.

“**Confort**” en la forma de diseños que fomente la seguridad, de mobiliarios que acojan e inviten a permanecer en el espacio público en toda época del año, y de una adecuada mantención y limpieza.
“Identidad” construida en base a una imagen clara con la cual los ciudadanos y vecinos se identifiquen y valoren, apropiándose de su espacio.

“Uso”, mediante un diseño flexible que permita múltiples expresiones recreativas, culturales y de encuentro social, y una gestión que fomente actividades que mantengan en uso permanente el espacio público, asegurando su vitalidad y seguridad.

“Integración social”, como la expresión de un espacio urbano que acoja la diversidad y cohesión social, ayudando a fortalecer los vínculos sociales entre personas y grupos etáreos, sociales y culturales diferentes.

1.3.2. Espacio Público

Cada experiencia de apropiación colectiva y democrática del “espacio libre” lo convierte en “espacio público”. No tratándose de un problema esencialmente del derecho al espacio se basa en la accesibilidad y la acogida del mismo y en el mismo, lugares compartidos donde las personas pueden desarrollar sus necesidades vitales y donde generan creatividad y conocimiento.

El concepto de espacio público hace referencia, entonces, a un componente de uso colectivo, y por lo tanto sugiere una representación colectiva de uso social, accesible y adecuado a la diversidad de los grupos humanos si quiere generar una amplia satisfacción social.

1.3.3. Tipos de Espacios Públicos (según MINVU).

Se entiende, que todos los espacios públicos cumplen una función transversal de recreación y esparcimiento para las personas, entre ellos se encuentran:

- Parques metropolitanos e intercomunales
- Parques comunales o zonales
- Plazas
- Plazoletas o plazuelas
- Espacios residuales (retazos con potencial de recuperación)
- Espacios intersticiales (Entre edificaciones)
- Jardines
- Esquinas
- Veredas anchas o veredones
Los espacios por trabajar para el proyecto serán los que poseen mayor necesidad de recarga de dispositivos móviles por la afluencia de gente dada su localización y tamaño: Plazas, espacios intersticiales, Parques metropolitanos e intercomunales.

1.4. **COMPRENSIÓN DEL MERCADO**

Hay sistemas de recarga que se encuentran situados dentro de instituciones y locales, pero que no se enfocan en los espacios abiertos como plazas municipales y parques.

Dentro del mercado se encuentra la competencia, son aquellos productos que compiten con un producto similar dentro del mercado nacional e internacional.

1.5. **CUANTIFICACIÓN E IMPLEMENTACIÓN MERCADO INTERNACIONAL Y NACIONAL.**

El mercado Nacional respecto al desarrollo de cargadores solares aún está en su primera fase, el avance chileno se ha enfocado en la utilización de la Energía Solar con la venta y masificación de los paneles solares, sin embargo, el valor agregado y desarrollo de productos en base a esta energía aún es deficiente.

Existen estaciones de carga instaladas en plazas, instituciones y lugares públicos, pero estos productos en su mayoría no son Nacionales, sino marcas extranjeras que desarrollan e importan al mercado nacional, dentro de estas empresas se encuentra la empresa mexicana Brame que ha instalado estaciones de carga en Valparaiso, la española YupCharge que posee variados productos y de gran tecnología instalados con el apoyo de Subtel en algunas zonas del país y también la estadounidense Gocharge que entrega estaciones de carga para eventos como Lollapalooza. Dentro de las empresas nacionales se encuentra un emprendimiento de estudiantes Antofagastinos llamado Inti Raymi instalado en Antofagasta con éxito y por otro lado la más reconocida es la empresa BeeSolar con estaciones en Santiago

1.5.1. **Producto Nacional, prototipo Bee Solar, 19 diciembre 2014**

Creado por Francisco Urra, el propósito de Bee Solar es ser una opción sustentable que le sirva a las personas, mediante la implementación de conectividad a Internet en plazas,
parques y cualquier lugar de uso público que tenga la necesidad de un sistema Wi-Fi y de recarga de equipos móviles. Para ello, utilizaron paneles fotovoltaicos que se montan sobre una maqueta gigante que tiene forma de flor además cada estructura fue fabricada según los requerimientos específicos del lugar de instalación, que posee sus propias características y necesidades.

Figura 1-10. Bee solar en terreno

1.5.2. Producto Internacional, Yup Charge empresa consolidada en España con presencia en Chile.

Yup Charge fabrica cargadores públicos y universales para baterías de teléfonos inteligentes, tablets y otros aparatos, es un nuevo concepto de servicio que satisface las necesidades de los consumidores actuales. Empresa innovadora, joven y dinámica del área industrial-tecnológica, fase de crecimiento actual -nacional e internacional- y con una atractiva gama de soluciones tecnológicas aplicadas al campo de la próxima generación de dispositivos móviles y publicidad digital.

En febrero de 2017, se instalaron tótems de carga de YupCharge en las localidades de Los Aromos y Santa Olga de la comuna de Constitución que fueron arrasadas por los incendios forestales este verano. Están diseñados para cargar teléfonos móviles multimarca y fueron cedidos en calidad de préstamo por la empresa para apoyar y acompañar en esta etapa de reconstrucción a los damnificados.
Figura 1-12. Cargadores solares YUPCHARGE.

Tabla 4-7. Comparación de precios del producto en el mercado.

<table>
<thead>
<tr>
<th>Producto: Soleo de Yupcharge</th>
<th>Producto: EcoCarga de Improinde</th>
<th>Producto: MK-1412 de Intelligent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origen: España</td>
<td>Origen: Colombia</td>
<td>Origen: China</td>
</tr>
<tr>
<td>Precio neto: $3,300,000 CLP</td>
<td>Precio neto: 2,520,000 CLP</td>
<td>Precio neto: $ 869,000 CLP</td>
</tr>
<tr>
<td>Salidas de carga: de 4 a 8 USB</td>
<td>Salidas de carga: 6 USB</td>
<td>Salidas de carga: 6 USB</td>
</tr>
<tr>
<td>Paneles: monocristalino 50W 12V</td>
<td>Paneles: policristalino 80W 12V</td>
<td>Paneles: policristalino 50W 12V</td>
</tr>
<tr>
<td>Batería: AGM 100 mA 12V</td>
<td>Batería: AGM 12V/24Ah</td>
<td>Batería: AGM 35 Ah</td>
</tr>
<tr>
<td>Circuito: 12V-22V</td>
<td>Circuito: 12V-22V</td>
<td>Circuito: 12V-22V</td>
</tr>
<tr>
<td>Estructura: Acero inoxidable y madera, publicidad acrílico.</td>
<td>Estructura: acero inoxidable, mesa en corian de 400mm</td>
<td>Estructura: acero inoxidable, con tablero en acero.</td>
</tr>
<tr>
<td>Dimensiones:3004x950x1697mm</td>
<td>Dimensiones: 2200x700x700</td>
<td>Dimensiones:2800x600x600 mm</td>
</tr>
<tr>
<td>Peso: 200 kg</td>
<td>Peso: 100 kg</td>
<td>Peso: 75 kg</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, proyección anual.
1.6. **EVALUACIÓN DE LAS BARRERAS DE ENTRADA DEL SECTOR COMERCIAL, SEGÚN M. PORTER**

El Análisis de las 5 fuerzas de Porter, es un modelo estratégico para analizar el nivel de competencia dentro de la industria. Estas fuerzas son las que se relacionan en el entorno inmediato de un proyecto empresarial y afectan en la habilidad que tiene esta para satisfacer a clientes y obtener rentabilidad. A continuación, se aplicará al producto, las amenazas de productos sustitutos y entrantes, rivalidad entre competidores, como también la negociación con proveedores y clientes.

Diagrama 1-13. Diagrama Fuerzas De Porter

Según el análisis de las fuerzas de Porter, el ingreso de los insumos se puede obtener de diversos proveedores ya sea nacionales o externos, además los compradores están acotados a un límite de plazas y también directamente disponer de los insumos.

El peligro está en los productos sustitutivos y la competencia que se puede hacer cada vez más fuerte, es decir, que los dispositivos móviles que existen en el comercio mejoren su calidad y la batería tenga mayor duración.

Aun así el producto es viable para su venta y producción, pero se ve amenazado por la posible competencia e innovaciones futuras.
1.7. DEFINICIÓN DEL MODELO O ESTRATEGIA DE NEGOCIO CANVAS.

Canvas es un modelo de negocio que describe la lógica de cómo una organización crea, entrega y captura valor. Este modelo de negocio consiste en 9 fundamentos principales:

a.- Segmento de mercado: Enfocado al mercado de masas, centrado en un gran grupo de clientes que tienen necesidades y problemas similares, utilizando y consumiendo tecnología en dispositivos móviles.

b.- Propuestas de valor: Corresponde al conjunto de productos y servicios que entrega el cargador solar al segmento de mercado anterior, en este caso se enfoca en la mejora del rendimiento y de la accesibilidad de energía en un sector inexistente.

c.- Canales: El medio por el cual se dará a conocer el producto es de tipo directo ya sea en página web como equipo comercial e indirecto en tiendas de socios y canales de convenio.

d.- Relación con clientes: El cliente directo es la empresa y/o institución a la cual se le venderá el servicio y el usuario es aquel que recibe el servicio en el entorno.

e.- Fuentes de ingresos: Al ser un producto que se considera sustentable, su ingreso proviene de la publicidad, esta dependerá si es por medio de la ganancia por venta de activo o por concesión de alquiler.

f.- Recursos clave: Dentro de los recursos prioritarios se necesita de aquéllos de tipo económicos y físicos para el desarrollo, fabricación y producción de la estación de carga.

g.- Actividades clave: En las actividades clave hay dos grandes áreas que requiere de su funcionamiento, la producción que requiere de una gestión de cadena de suministros y la resolución de problemas a base de información y requerimientos del cliente.

h.- Partners clave: Se enfoca en la realización de alianzas estratégicas entre empresas desarrolladoras y no competidoras, crear relaciones con empresas conjuntas para nuevos negocios y mantener relación de empresas proveedoras de suministros para mantención y servicio técnico.

i.- Estructura de costes: Se caracteriza por una estructura de costes fijos y de costes variables según la escala de producción (fabricación e insumos).

A continuación, se presenta el modelo Canvas descrito para este proyecto.
1.8. DIMENSIÓN TECNOLÓGICA

1.8.1. Necesidades de alimentación para carga de dispositivos

La alimentación para cualquier dispositivo electrónico está dada por dos factores importantes, la corriente y el voltaje:

Corriente se refiere al flujo de las cargas eléctricas en el espacio en una dirección determinada. Existe una corriente eléctrica cuando hay un flujo neto de carga eléctrica en una dirección específica del espacio, algo similar al número de electrones que circulan por el conductor.

Volteaje es la potencia eléctrica entre dos puntos, o el trabajo realizado por unidad de carga en el campo eléctrico. Está relacionado con el tiempo, de modo que se mide la cantidad de energía entregada o absorbida por un elemento en un tiempo determinado (Boylestad, 2004). Todos los dispositivos móviles requieren de voltaje y amperaje (corriente) específico.
para su funcionamiento, de tal manera que, al no poseer estas características específicas, el dispositivo no funcionará bien ni permitirá su carga.

1.9. **OBJETIVOS DEL PROYECTO**

Los objetivos de este proyecto tienen como finalidad poder establecer los logros que se esperan alcanzar con esta investigación de grado. Sirven para exponer cómo se piensa abordar la problemática planteada en el título de la tesis y cómo se desarrollará a partir del planteo de soluciones y los rangos generales y específicos acotados en esta tesis.

1.9.1. Objetivo general

Fabricar un prototipo modular de carga para dispositivos móviles electrónicos que contenga y almacene energía solar renovable y sustentable.

1.9.2. Objetivo específico

- Generar la suficiente cantidad de energía para poder cargar el dispositivo electrónico de 4.5 a 5.5 volts.
- Integrar infografía en el sistema de carga.
- Generar un servicio público y gratuito para el usuario.
- Utilizar energías sustentables en un producto modular.
CAPÍTULO II: DISEÑO CONCEPTUAL
2.1. IDENTIFICACIÓN DE LAS OBLIGACIONES LEGALES, RESTRICCIONES AMBIENTALES, BARRERAS, SEGURIDAD, ETC., QUE AFECTAN AL PROYECTO EN FORMA ESPECÍFICA.

2.1.1. Sobre la Ley 19300

Artículo 1°. El derecho a vivir en un medio ambiente libre de contaminación, la protección del medio ambiente, la preservación de la naturaleza y la conservación del patrimonio ambiental se regularán por las disposiciones de esta ley, sin perjuicio de lo que otras normas legales establezcan sobre la materia.

2.1.2. Las Energías Renovables No Convencionales (ERNC) en el Mercado Eléctrico Chileno.

Aquí se analiza el funcionamiento del mercado eléctrico chileno con respecto a la integración y operación de proyectos de ERNC en este mercado. Se orienta sobre los fundamentos legales y regulatorios, las obligaciones asociadas, las oportunidades de negocio y los aspectos operativos para la realización de proyectos ERNC.

Estas regulaciones rigen para Centrales generadoras de energía mayores a 3 MW. Descritas en el artículo 1º de la ley 19300: Artículo 10.- Los proyectos o actividades susceptibles de causar impacto ambiental, en cualquiera de sus fases, que deberán someterse al sistema de evaluación de impacto ambiental.

Norma internacional que pretende ayudar a todo tipo de organización a operar de una manera socialmente responsable con orientación en: Gobernanza de la organización, derechos humanos, prácticas laborales, medio ambiente, prácticas justas de operación, asuntos de consumidores, participación activa y desarrollo de la comunidad, esta última con mayor relevancia sobre el producto que se describe en esta tesis.

La ISO 26000 contiene guías voluntarias, no requisitos, y por lo tanto no es para utilizar como una norma de certificación como la ISO 9001 y la ISO 14001.
2.2 DEFINICIÓN DEL MERCADO DE USUARIO Y CLIENTE

2.2.1. Segmento de Mercado.

Empresas adheridas al Compromiso de Responsabilidad Social que cada año crece un 5% el desempeño RSE de las empresas, entre ellas se encuentran más de 40 empresas chilenas reconocidas a nivel internacional dispuestas a invertir en innovación social, sustentabilidad y medio ambiente. Existe además empresas de mercado urbano que necesitan entregar un servicio de calidad y con valor agregado para satisfacer a sus clientes.

2.2.2. Tamaño del Mercado.

Hoy en día existe la Norma ISO 26000 de Responsabilidad Social en la cual más de 600 empresas con RSE entregan fondos para diversas actividades y productos con mejoras sociales, económicas y ambientales.

2.2.3. La diferenciación.

Que el producto sea percibido como un servicio útil, de gran demanda, de mejora en la calidad de vida de los usuarios y además amigable con el medio ambiente, en definitiva, la sustentabilidad hoy en día es muy valorada y aceptada más si se trata de un servicio gratuito al usuario. Un producto que se integre a la evolución tecnológica y ayude al ecosistema, tiene una fuente duradera de viabilidad a lo largo de la línea de vida de innovación (4ta ley innovación tipo de TRIZ).

2.2.4. Competencia

Existen 2 tipos de competencias, competencia directa e indirecta. La competencia Directa se refiere al estado del arte de lo existente que soluciona parcial o totalmente los objetivos de este proyecto. La competencia indirecta es aquella que establece una solución a los objetivos, pero no técnicamente ni estructuralmente similar a este proyecto.
2.2.4.1. Competencia Directa.
En la actualidad existe una empresa española en Chile llamada YupCharge enfocada en segmentos institucionales y privados de módulo de recarga de celulares no incluyendo a espacios públicos ni municipalidades en donde existe realmente necesidad. Esta empresa cuenta con 12 años de desarrollo con presencia en 7 países enfocada en el desarrollo sustentable y el Green marketing.

2.2.4.2. Competencia Indirecta.
En el mercado actual existe un producto complementario para la recarga de dispositivos móviles y son las baterías portátiles que existen en versiones de 2000, 5000 hasta 20000 mAh y que en justa medida dan solución por un costo módico a la demanda de recarga de dispositivos móviles en espacios abiertos, pues son de uso personal y portátiles, sin embargo, esta alcanza solo una carga porcentual y luego debo cargar el cargador portable para volver a usarlo.

2.2.5. Espacios de Implementación.
Existen en las ciudades chilenas un 40% de diversos tipos de espacios públicos, los cerrados y los abiertos. Para este proyecto se trabajará con los espacios abiertos, cabe mencionar parques, plazas, calles o paseos y además se considerarán entre estos espacios sólo los que se definen como “espacios seguros”, es decir de los 523 parques correspondiente a 4.754 hectáreas. Existe un porcentaje de estos denominados seguros que corresponden al 19% que corresponde a 99 plazas céntricas ubicadas en el país.

¿Qué se entiende por espacios seguros? Se entiende por aquellas plazas y parques en el que se implementa a través de estrategias que modifican ciertos factores y condiciones de riesgo físico del espacio público, orientadas a reducir la vulnerabilidad de un potencial blanco accesible y/o al diseño del entorno urbano. Algunos factores de seguridad son visibilidad natural, iluminación focalizada, vigilancia, movimiento peatonal y accesibilidad, usos y entornos (ubicación) del lugar.

2.2.6. Tendencias y estilos en el sector

Actualmente en Europa (especialmente Italia y Alemania) se utiliza la energía eléctrica como fuente de energía para vehículos eléctricos e híbridos pues no contamina y es alternativa al costoso combustible, los cuales utilizan gran cantidad de energía.
Para esto se ha impulsado el uso de estaciones de carga eléctrica a través de la Energía solar y así minimizar los gastos en recargas eléctricas.

Hay una tendencia mundial y nacional por el uso de dispositivos móviles que cada vez va aumentando (ver punto 1.1.1 Cap. I) y también un sector de mercado ligado a empresas adheridas al Compromiso de Responsabilidad Social que cada año crece un 5% el desempeño RSE de las empresas, entre ellas se encuentran más de 40 empresas chilenas reconocidas a nivel internacional dispuestas a invertir en innovación social, sustentabilidad y medio ambiente. Existe además empresas de mercado urbano que necesitan entregar un servicio de calidad y con valor agregado para satisfacer a sus clientes. Ya se han desarrollado en el mercado estaciones de carga, tanto promocionales como un servicio en la comunidad.

2.2.4. Responsabilidad Social Empresarial

La Responsabilidad Social Empresarial, desde ahora RSE, se define como la contribución activa y voluntaria al mejoramiento social, económico y ambiental por parte de las empresas.

Un elemento nuevo de competitividad estaría en la capacidad de las empresas para incorporarse a los mercados y permanecer en ellos, lo cual depende no sólo de su tecnología, de sus procesos productivos y de su gestión financiera, sino que también de su comportamiento en materia de respeto y cuidado del medio ambiente, de la comunidad y de sus trabajadores, como personas con intereses, motivaciones, capacidades, necesidades de desarrollo y sujetos de derechos: individuales y colectivos.

Crecientemente, los consumidores y la sociedad en general esperan, e incluso algunos exigen, que las empresas jueguen un papel central en el desarrollo y el aumento de la calidad de vida de sus trabajadores, de su comunidad y del país.

Actualmente existe la norma ISO 26000, que ofrece una guía en RSE. Está diseñada para ser utilizada por organizaciones de todo tipo, tanto en los sectores público como privado, en los países desarrollados y en desarrollo, así como en las economías en transición. La presión de esta norma proviene de los clientes, consumidores, gobiernos, asociaciones y el público en general y ayuda a las organizaciones en su esfuerzo por operar de la manera socialmente responsable que la sociedad exige cada vez más.
2.3. **CUANTIFICACIÓN DEL MERCADO**

En Chile existen 345 municipalidades y una cantidad de 523 parques y plazas considerados espacios públicos, si bien el proyecto va enfocado a las municipalidades se debe considerar además los espacios intersticiales entre edificaciones, donde se centran los usuarios de dispositivos móviles a sociabilizar, recrearse y descansar.

La cantidad de usuarios de dispositivos móviles son de 132 aparatos activos por cada 100 habitantes, por lo cual estadísticamente, en una plaza diariamente fluctúan entre 100 a 300 personas que hacen uso del espacio por diversos motivos y que pueden requerir de recarga de su dispositivo móvil.

2.3.1. **Estrategias de comercialización según Porter.**

Las tres estrategias genéricas planteadas por Michael Porter son: liderazgo global en costos, diferenciación y enfoque o concentración, a través de ellas una empresa puede hacer frente a las cinco fuerzas que moldean la competencia en un sector y conseguir una ventaja competitiva sostenible que le permita superar a las firmas rivales.

![Figura 2-1. Las tres estrategias genéricas de Porter.](http://www.gestiopolis.com/cuales-son-las-tres-estrategias-genericas-de-porter/)
2.3.2. El liderazgo general en costos

Producir a menor costo mediante el branding de empresas, es decir, la materia prima se adquiere con proveedores que estén dispuestos a invertir en productos a cambio de visualizar la marca en Responsabilidad Social con la estación de carga de móviles.

Es un riesgo en costos y los competidores podrían imitar la estrategia, disminuyendo las utilidades de la industria en general, así los adelantos tecnológicos en la industria podrían volver la estrategia ineficaz o que el interés de los compradores podría desviarse hacia otras características de diferenciación además del precio.

La finalidad es minimizar el coste de fabricación por parte de la empresa y que este se financie por terceros a beneficio de un sistema de gratuidad, en el caso contrario se tendrá que cobrar una tarifa de recarga por el servicio otorgado a usuarios o instalarlo en un lugar que costee el servicio al cliente (entiéndase institución o empresa).

2.3.3. La diferenciación

Que el producto sea percibido como un servicio útil, de innovación social, mejorando la calidad de vida de los usuarios y además amigable con el medio ambiente, en definitiva, la sustentabilidad hoy en día es muy valorada y aceptada más si se trata de un servicio gratuito al usuario. Un producto que se integre a la evolución tecnológica y ayude al ecosistema, tiene una fuente duradera de viabilidad a lo largo de la línea de vida de innovación (4ta ley innovación tipo de TRIZ).

2.3.4. El enfoque

Su enfoque no es generar dinero, sino que servir al usuario, dar solución a una problemática de diario uso. Formar parte del mobiliario urbano del espacio público, tal como los paraderos de micro, los postes de luz, señales, publicidad, etc.

El producto se enmarca en la proyección de las soluciones de servicio social mediante el uso de energías renovables concientizando el cuidado del medio ambiente dentro del mercado nacional e internacional, además entregar un soporte complementario a las necesidades que conlleva el alto uso de dispositivos móviles y las implementaciones de un mercado tecnológico en crecimiento.
El eco-marketing, marketing verde y ambiental son parte de los nuevos enfoques de marketing que no se limita a modificar el enfoque, adaptar o mejorar el pensamiento, sino que busca desafiar esos enfoques y ofrecer una perspectiva sustancialmente diferente. Con más detalle, verde, ambiental y eco-marketing pertenecen al grupo de enfoques que tratan de hacer frente a la falta de ajuste entre el marketing como se practica actualmente y las realidades ecológicas y sociales del amplio entorno del marketing.

2.4. DEFINICIÓN DE OBJETIVOS DEL PRODUCTO A DISEÑAR

Objetivos específicos del producto:

- Producir y almacenar energía eléctrica con sistema sustentable de energía solar.
- Introducir conexiones de traspaso de energía con los principales sistemas o dispositivos de comunicación.
- Poseer la capacidad de carga simultánea.
- Diseñar un dispositivo ergonómico de fácil uso y amigable con el usuario.
- Poseer espacios para soportar publicidad.

2.5. ANÁLISIS Y DEFINICIÓN FUNCIONAL

En este apartado se indican las diversas consideraciones para el diseño conceptual, incluyendo las restricciones, requerimientos del cliente y de usuario.

2.5.1. Consideraciones de diseño

Para llevar a cabo el diseño del producto se deben considerar los siguientes aspectos:

- Los materiales tienen que ser resistentes a la interperie.
- El lugar del montaje de la estación de carga debe tener acceso fácil para que los interesados hagan uso de ella en plazas, parques o paseos.
- Fácil de fabricar y montar.
- Las baterías deben ser especificadas según cálculos.
• Cálculo de energía paneles solares.
• Diseño funcional y atractivo. (estilos, tendencias)
• Ergonomía de acorde a necesidad usuario.
• Diseñar bajo leyes y reglamentos de instalación en espacios públicos.
• Debe poseer un diseño estable para sostener un panel solar de aproximadamente 2 kg el cual debe estar en altura y en ángulo hacia la radiación solar (37 grados de inclinación al norte).

2.5.2. Consideraciones para el cliente

• Espacio que genere seguridad al usuario y que este también se sienta cómodo a la espera que se realice la carga del móvil.
• Infografía de uso atractiva.
• Luminoso y aviso de estado de la estación (libre u ocupado).
• Diseño bajo normas y reglamentos de publicidad.

2.5.3. Restricciones y funciones del diseño

El prototipo que se utilizará para el aprovechamiento de la energía que emite el sol, se creará por medio de un panel fotovoltaico que será el encargado de hacer funcionar el módulo de carga de dispositivos móviles con un consumo de 6 voltios, el cual se le define como una solución rápida y efectiva para cubrir la demanda de consumo eléctrico que los usuarios necesiten en modo emergencia mientras estén fuera de casa para realizar sus actividades en un tiempo de 15 minutos de recarga.

Consta de diversos elementos que permiten su funcionamiento, estos a su vez son las fuentes de energía, y básicamente son dos:

El primero que contiene paneles fotovoltaicos que son los encargados de captar la energía del sol y una batería con inversor, que es donde se almacena la energía captada.

El segundo que son los indicadores de funcionamiento: estos son los que permiten al usuario saber el nivel de carga de la batería y si el panel está funcionando correctamente, para esto se utiliza un controlador y temporizador de carga.
Las baterías, el inversor y el controlador idealmente deben almacenarse en una caja que tenga ventilación y pueda mantener la temperatura adecuada de funcionamiento para extender su vida útil.

Una de las características importantes que tendrá la estación de carga de dispositivos móviles es el diseño, que será estructurado para la comodidad de los beneficiados, esto significa que los usuarios podrán interactuar entre ellos en el momento de hacer cargar los dispositivos, pero a la vez mantener la privacidad en el uso de su dispositivo móvil.

La base principal de la estación de carga solar debe constar de una base hecha de acero para mantener aislado del equipo electrónico que conforma la estación en general.

Además de la protección de los componentes se debe proteger al usuario y prevalecer su comodidad mientras utiliza la estación de carga.

2.6. DETERMINACIÓN DE CARACTERÍSTICAS

2.6.1. Requerimientos

- Diseño Modular para mantenimiento.
- Fácil armado para transportarlo.
- Anclaje a piso para soporte de carga.
- Ventilación y protección de piezas electrónicas (batería)
- Multipropósito (mesa de apoyo)
- Señalización de estado de carga (en uso - desocupado)
- Autosustentable y autonomía.
- Múltiples usuarios (para 3 personas)
- Infografia de uso
- Poseer almacenador carga (batería) y un inversor carga a corriente directa.
- Recarga por terminal USB

2.6.2. Restricciones

- Altura y ángulo del panel solar
• Seguro y luminoso
• Privacidad
• Resistente al clima (lluvia, viento, polvo)
• Uso exterior (espacios públicos)

2.7. **SOLUCIONES DISEÑO CONCEPTUAL TRIZ**

2.7.1. Método de cajas negras

![Diagrama de metodología de cajas negras con funciones](image)

Fuente: Elaboración propia.

Figura 2-2. Aplicación de método de cajas negras.

2.7.2. 1ra Ley: Integración de las partes

Tabla 2-1. Primera Ley de Innovación TRIZ.

<table>
<thead>
<tr>
<th>SUBSISTEMAS</th>
<th>COMPONENTES</th>
<th>FUNCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.- Trabajo</td>
<td>puertos de salida</td>
<td>conexión con el usuario</td>
</tr>
<tr>
<td>2.- Matriz</td>
<td>panel</td>
<td>transformar energía</td>
</tr>
<tr>
<td></td>
<td>baterías</td>
<td>entregar energía</td>
</tr>
<tr>
<td></td>
<td>regulador</td>
<td>intercambiar energía</td>
</tr>
<tr>
<td>3.- Transmisor</td>
<td>cables</td>
<td>transmitir energía</td>
</tr>
<tr>
<td>4.- Estructural</td>
<td>carcasa</td>
<td>unir todo para la comunicación</td>
</tr>
<tr>
<td>5.- Control</td>
<td>sensor corriente</td>
<td>reconocer energía</td>
</tr>
<tr>
<td></td>
<td>sensor movimiento</td>
<td>reconocer movimiento</td>
</tr>
<tr>
<td></td>
<td>iluminación</td>
<td>reconocer luminosidad</td>
</tr>
<tr>
<td></td>
<td>temporizador</td>
<td>establecer tiempo</td>
</tr>
<tr>
<td></td>
<td>carcasa</td>
<td>proteger componentes</td>
</tr>
<tr>
<td></td>
<td>puertos</td>
<td>transmitir señal</td>
</tr>
<tr>
<td>6.- Ergonómico</td>
<td>carcasa</td>
<td>comunicación con el usuario</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
2.7.3. 2da Ley: Transmisión de Energía

Tabla 2-2. Segunda Ley de Transmisión de Energía.

<table>
<thead>
<tr>
<th></th>
<th>PASADO</th>
<th>PRESENTE</th>
<th>FUTURO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERSISTEMA</td>
<td>teléfonos fijos</td>
<td>móviles</td>
<td>integrados</td>
</tr>
<tr>
<td>SISTEMA</td>
<td>cabina de teléfono</td>
<td>tótem de carga</td>
<td>inalámbrico</td>
</tr>
<tr>
<td></td>
<td>sub. Trabajo</td>
<td>sub. Trabajo</td>
<td>sub. Trabajo</td>
</tr>
<tr>
<td></td>
<td>sub.motriz</td>
<td>sub.motriz</td>
<td>sub.motriz</td>
</tr>
<tr>
<td></td>
<td>sub.transmisión</td>
<td>sub.transmisión</td>
<td>sub.transmisión</td>
</tr>
<tr>
<td></td>
<td>sub.control</td>
<td>sub.control</td>
<td>sub.control</td>
</tr>
<tr>
<td></td>
<td>sub.estructural</td>
<td>sub.estructural</td>
<td>sub.estructural</td>
</tr>
<tr>
<td>SUBSISTEMAS</td>
<td>sub.ergonomico</td>
<td>sub.ergonomico</td>
<td>sub.ergonomico</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

2.7.4. 6ª Ley: Transición a un supersistema o hibridación

Tótem de carga + quitasol de restaurant

Fuente: Elaboración propia.

2.7.5. 8va Ley: Incrementación

- mover
- articular
- trasformar
2.7.6. 9na Ley: Sustancia-Campo

2.7.7. Contradicciones:

Tabla 2-3. Ideas de solución de los principios de inventiva:

<table>
<thead>
<tr>
<th>REQUERIMIENTOS CLIENTE</th>
<th>PARÁMETRO QUE MEJORA</th>
<th>PARÁMETRO QUE EMPEORA</th>
<th>PRINCIPIOS DE INVENTIVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>carga rápida</td>
<td>(25) pérdida de tiempo</td>
<td>(21) potencia</td>
<td>35 -20-10-6</td>
</tr>
<tr>
<td>disponer de diversos conectores</td>
<td>(26) cantidad de sustancia o materia</td>
<td>(36) complejidad del objeto</td>
<td>3-13-27-10</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

2.7.7.1. Primeras contradicciones (25)-(21).

(20) - Cargar continuamente y cambiar la batería.
- Cargar un tiempo, luego avisa que ya cargó el tiempo especificado y cambia a otra persona.
- Máquina dispensadora de baterías por medio de ventas y compras de baterías.

(10) - Acción anticipada
- Dispositivo de carga portátil

(6) - agregar valor con otro producto
Ej: música, Wifi, publicidad, pantallas, calefacción, luminosidad, aire acondicionado.

2.7.7.2. Segundas contradicciones (26) - (36).

(3) - Cambio de estructura homogénea a una heterogénea.
 1 parte, varias funciones, acción del ambiente.

(13) - Hacer algo contrario a lo convencional, hacer lo estacionario móvil.
(2) - Desechar, reemplazar objeto costoso por económico y conveniente.
(10) - Acción anticipada, arreglar objetos con antelación. Suplicidad.

2.7.8. Modelación del sistema producto (cajas negras y transparentes)

Fuente: Elaboración Propia

Figura 2-5. Modelo de Sistemas y Subsistemas.
CAPÍTULO III: DISEÑO DE INGENIERÍA
3. **DISEÑO CONCEPTUAL**

Este módulo de recarga para dispositivos móviles debe ser desarrollado para su fabricación en serie, es por eso que dentro de este capítulo se plantearán los materiales, las medidas, los procesos productivos, montaje y las especificaciones técnicas que debe tener el producto final.

3.1. **PARTES, PIEZAS Y COMPONENTES**

La lista de materiales tiene como finalidad organizar el armado y fabricación del módulo de recarga y también detallar los componentes para entregar sus costos respecto al mercado y proceso de fabricación.

El diseño del módulo es de estructura rígida para soportar clima, golpes, protección de componentes internos y alargar la vida útil del producto que estará instalado a la intemperie.

3.1.1. Soporte metálico base

Posee un perfil tubular el cual cumple la función de columna principal y soporta la carga de los componentes y panel solar. Además, será el canal conductor del cableado entre el puerto USB y el inversor de corriente eléctrica.

La base inferior es apernada a piso por medio de anclaje a concreto usando pernos de anclaje expansivos y además posee un tamaño espacial superior a la estructura para evitar el cizalle y movilidad por vandalismo o clima.

| Tabla 3-1. Materiales y componentes soporte base. |
|-----------------|-----------------|------------------|
| **Materia prima** | **Componentes** | **Proceso** |
| Perfil tubular radio100(mm) espesor 2(mm) POSTE | 2 ángulos de refuerzo pilar 2x3x7/8 (pulg) 4 pernos y tuercas diámetro 5(mm) | Soldadura a base en T Pintura electroestática Perforaciones |

Fuente: Elaboración propia.
3.1.2. **Gabinete inferior componentes**

Es la estructura modular en la cual van insertados los componentes internos como batería e inversor de carga, cables y panel solar.

La parte inferior de la estructura contiene un doble gabinete el cual sirve para contener los componentes electrónicos (baterías, BMS, regulador, MPPT), este marco de estructura de acero posee agujeros y canaleta para paso de agua y espacio dimensionado para manipulación de componentes.

Tabla 3-2. Materiales y componente de la fabricación de la estructura inferior.

<table>
<thead>
<tr>
<th>MATERIA PRIMA</th>
<th>COMPONENTES</th>
<th>PROCESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lámina de acero plegado, espesor 1 (mm) CAJA</td>
<td>4 remaches (2mm)</td>
<td>Plegado de lámina</td>
</tr>
<tr>
<td>Canaleta Normal 61x20(mm)</td>
<td></td>
<td>Soldadura en ángulo</td>
</tr>
<tr>
<td>Celosía 200x200mm</td>
<td></td>
<td>Pintura electroestática</td>
</tr>
<tr>
<td>Material aislante</td>
<td>pegamento</td>
<td>Pegado</td>
</tr>
<tr>
<td>Lámina de acero plegado 1 (mm) PUERTA</td>
<td>Bisagra pasador</td>
<td>Pintura electroestática</td>
</tr>
<tr>
<td></td>
<td>Chapa de mueble</td>
<td>Perforaciones</td>
</tr>
<tr>
<td>Lámina acero 3(mm) BASE</td>
<td>2 ángulos de refuerzo pilar 2x3x7/8 (pulg)</td>
<td>Pintura electroestática</td>
</tr>
<tr>
<td></td>
<td>Pernos de anclaje, diámetro 3/4 (pulg) x 80(mm)</td>
<td>Perforaciones</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

3.1.3. **Soporte superior panel solar**

Tabla 3-3. Materiales y componente de la fabricación de la estructura superior.

<table>
<thead>
<tr>
<th>MATERIA PRIMA</th>
<th>COMPONENTES</th>
<th>PROCESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marco pletina 20x1.5(mm) SOPORTE PANEL</td>
<td>Panel solar 449x510x25(mm)</td>
<td>Soldadura en esquina y solape</td>
</tr>
<tr>
<td>Placa sujetador caja USB</td>
<td>1 perno y tuerca hexagonal M5 para sujetar foco led.</td>
<td>Pintura electroestática</td>
</tr>
<tr>
<td>Perfil tubular diámetro 50(mm)</td>
<td>Foco led</td>
<td>Perforaciones</td>
</tr>
<tr>
<td></td>
<td>1 pasador sujeción de panel</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
3.1.4. Componentes estéticos y de usabilidad

Corresponde a los materiales que dan valor agregado y funcionalidad al producto, entre ellos se encuentra:

- Mesa que da funcionalidad de apoyo para posar el dispositivo móvil mientras se está en uso de carga.
- 3 puertos USB (puerto de uso universal) que dan la funcionalidad requerida por el usuario del producto, mediante la salida de 5V para la recarga del dispositivo móvil. En este caso el diseño del producto se puede modificar según necesidades incluyendo el cable del dispositivo móvil específico para cada celular (min-usb-iphone-micro usb).
- 1 zona de Infografía en el poste de la estación de carga para que se entregue información del uso de la carga de dispositivos y para promover la recarga.

Tabla 3-4. Materiales y materias primas.

<table>
<thead>
<tr>
<th>MATERIA PRIMA</th>
<th>COMPONENTES</th>
<th>PROCESO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lámina de acero espesor 2 (mm) MESA</td>
<td>4 pernos y tuercas M3</td>
<td>Corte de lamina Soldadura en ángulo Pintura electroestática Perforaciones</td>
</tr>
<tr>
<td>Lámina acero 1(mm) para CABINA porta USB</td>
<td>4 pernos y tuercas de M3</td>
<td>Soldadura Pintura electroestática</td>
</tr>
<tr>
<td>3 puertos USB</td>
<td>3 puertos USB</td>
<td></td>
</tr>
<tr>
<td>Lámina de acrílico 3 (mm) INFOGRAFÍA</td>
<td>2 sujetadores aluminio 2sujetadores pletina acero 4 pernos y tuercas M3</td>
<td>Corte laser perforaciones</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, materiales y materias primas

3.1.5. Componentes electrónicos y de adquisición.

El módulo de carga solar posee varios componentes electrónicos para el funcionamiento de este módulo de recarga.

Para poder guardar la energía desde el Panel solar se necesita un colector de energía que en este caso se usan 4 baterías de ciclo profundo de 12 V y 7A, estas son de pequeñas dimensiones y se pueden poner en cualquier posición.

Para transformar la energía se necesita un controlador e inversor de energía en la cual entra un voltaje que es regulado y de salida 5V. Cables eléctricos para realizar la conducción de la energía eléctrica, un relé, un fusible para su protección, 3 puertos USB para la salida de
la energía hacia el dispositivo móvil, un panel solar fotovoltaico para la capacidad necesaria de carga y además un Switch para controlar encendido y apagado del sistema.

Tabla 3-5. Componentes electrónicos y adquisiciones.

<table>
<thead>
<tr>
<th>Componentes</th>
<th>Especificaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel solar, 12V 30W</td>
<td>Celda policristalina, 510449250(mm), Peso 1 kg.</td>
</tr>
<tr>
<td>Switch de control de energía</td>
<td>300x300 (mm)</td>
</tr>
<tr>
<td>Cables eléctricos</td>
<td>8 (m) de cable eléctrico.</td>
</tr>
<tr>
<td>Controlador Inversor de energía</td>
<td>Alta Calidad 10A 12 V/24 V Solar Controlador de Carga Panel Regulador de L Batería Protección Segura, 10x9.5x3.7 (cm)</td>
</tr>
<tr>
<td>3 bancos universales de Carga USB 5 V</td>
<td>Soquete de PVC con hilo, diámetro 20 (mm), largo 25 (mm)</td>
</tr>
<tr>
<td>1 batería ciclo profundo 12V 33Ah</td>
<td>196 (Largo) x 165 (Ancho) x 170 (Alto) (± 2 mm), peso 10 (kg)</td>
</tr>
<tr>
<td>Sensores electrónicos</td>
<td>Sensor de luminosidad, de distancia, luces led. 5V</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

3.2. ANALISIS TECNICO

3.2.1. Determinación de carga energética según Potencia Solar.

Las celdas solares de silicio disponibles comercialmente en la actualidad tienen una eficiencia de conversión en electricidad de la luz solar que cae sobre ellas de cerca del 18%.

Existe una proporción entre la potencia de la batería y la de un panel solar, esta relación está dada por “cada 50 Wh se requiere 15 Wp de energía fotovoltaica”. En el caso de la entrega de carga para dispositivos móviles necesito 80Wh por día almacenados que corresponde a 25 Wp para el panel fotovoltaico.

Para saber cuánto es la energía solar necesaria para satisfacer el rendimiento de 5V, considerando que el puerto USB tiene un máximo de 500 mA y un voltaje desde 4.75 V a 5.25 V. Se necesita saber el rendimiento que tiene el panel solar y la potencia solar del sector. Esta relación está dada por la siguiente fórmula:

$$ Potencia \Entrada \ast \eta = Potencia \ de \ Salida $$

Donde:
Potencia de Entrada: Es la potencia en kWh de Radiación Solar.

Potencia de Salida: Es la potencia que se entregará al dispositivo móvil.

η: Es el rendimiento en porcentaje que posee el panel o celdas solares en cuestión.

Según el diagrama obtenido en la zona centro, específicamente en la región de Viña de Mar se entrega una potencia de 3.95 kWh por metro cuadrado y un total de 142.2 kWh durante el mes de octubre.

Respecto a lo anterior se estima que la potencia de salida de un panel solar promedio de un rendimiento del 82% tendrá aproximadamente 3.23 kWh por metro cuadrado.

Figura 3-1. Datos sobre radiación solar

3.2.2. Factor ergonómico del módulo de recarga de energía

Para el factor ergonómico de módulo de recarga se tomó en consideración la altura necesaria del usuario para el descanso de codos y comodidad en la mesa durante la manipulación del móvil mientras se está en uso el servicio de recarga.

Para ello se considera una altura de 1100 mm desde la base hasta la posición de descanso de codos del usuario.
3.2.3. Antivandalismo.

Según definición de la RAE, vandalismo es espíritu de destrucción que no respeta cosa alguna, sagrada ni profana.

Es una actitud o inclinación por cometer acciones destructivas contra la propiedad pública sin consideración alguna hacia los demás. En pocas palabras el vandalismo pone en peligro la convivencia de los ciudadanos.

Tipos de vandalismos que afectan al mobiliario urbano:

VANDALISMO ADQUISITIVO: La agresión material se produce, sin ningún tipo de miramiento.

VANDALISMO TÁCTICO: En este caso pretende llamar la atención sobre una situación concreta para provocar una reacción enfocada en esta situación.

VANDALISMO IDEOLÓGICO: Los vándalos manchan todas las paredes de toda la ciudad para mostrar su descontento e ideología.

Este requerimiento de diseño se aplicará para los diseños propuestos en espacios públicos con nivel de seguridad alto según sea el sector público a trabajar, el cual se aplicará con bajo nivel para el prototipo de esta tesis.

Para estos casos sectorizados hay que analizar resistencia a impactos de un objeto, esfuerzo, rayones y peso que resistirán los materiales de fabricación.

3.2.4. Clima, intemperie.
El contexto del módulo de recarga es en sectores públicos, sectores empresariales, institucionales al aire libre, específicamente en parques y plazas cívicas dependientes de municipalidades. Para este caso dentro de Chile insular se debe considerar las variables de climas estacionales: desértico, mediterráneo, templado húmedo, oceánico y estepárico frío.

<table>
<thead>
<tr>
<th>LETRA</th>
<th>UMBRAL TÉRMICO</th>
<th>CLIMA</th>
<th>FORMACIÓN DE VEGETACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Temperatura media mensual superior a 18°C.</td>
<td>Cálidos: tropical lluvioso, sabana, monzón.</td>
<td>Bosque ecuatorial o selva tropical, sabana.</td>
</tr>
<tr>
<td>B</td>
<td>La evaporación supera a la precipitación.</td>
<td>Secos: áridos y semiáridos.</td>
<td>Desierto, estepa.</td>
</tr>
<tr>
<td>C</td>
<td>La temperatura media del mes más frío es inferior a 18°C y superior a 10°C.</td>
<td>Templados: de lluvias estacionales y lluvias todo el año.</td>
<td>Bosque templado y matorral.</td>
</tr>
<tr>
<td>D</td>
<td>La temperatura media del mes más frío es inferior a -3°C y la del mes más cálido es superior a 10°C.</td>
<td>Boreales: de lluvias estacionales y lluvias todo el año.</td>
<td>Bosque de coníferas.</td>
</tr>
<tr>
<td>E</td>
<td>En ningún mes la temperatura media supera los 10°C.</td>
<td>Fríos: tundra y hielo.</td>
<td>Tundra y ausencia de vegetación por presencia de hielo.</td>
</tr>
</tbody>
</table>

Fuente: http://www7.uc.cl/sw EDUC/geografia/cartografiainteractiva/Inicio/Paginas/UntitledFrameset-1.htm

Se considerará que en Chile la eficiencia solar es bastante potente, y que las zonas donde más desarrollo de luz solar están entre las zonas A, B y C. Teniendo un clima considerable para la mantención y funcionamiento de los paneles solares con radiación que cubre el 85% de la eficiencia del panel solar.

No obstante, las zonas frías también poseen días de luminosidad especialmente en verano, a pesar de ser zonas lluviosas, su mantención sigue siendo eficiente, pero probablemente la eficiencia de los paneles solares disminuya al 50% de su capacidad total.

En el caso del clima A, las condiciones son extremadamente únicas, porque tiene un sol muy fuerte, pero la temperatura no es muy alta. El norte de Chile es el mejor lugar del mundo para la instalación de paneles fotovoltaicos, pues se puede tener una eficiencia al 100% del panel solar en cuanto a almacenamiento la radiación solar permite producir 2.600 horas al año de energía.
3.2.5. Flujo de energía solar a energía eléctrica requerida.

3.2.5.1. Datos de carga

- Duración promedio de la batería de un dispositivo móvil de uso óptimo: 4,5-6 horas.
- Duración promedio de la batería de un dispositivo móvil de uso normal: 9 horas.
- Tiempo de recarga de un dispositivo 100% recarga: 1,9 horas
- Tiempo de recarga de un dispositivo al 10% de recarga: 11 minutos.
- Tiempo de recarga de un dispositivo al 14% de recarga: 15 minutos, será el margen de carga por los puertos USB por cada usuario que utilice el módulo de recarga.
- Se dispone de 3 cargadores, es decir, en 1 hora hay un máximo de 12 dispositivos móviles cargados al 14% de recarga.

3.2.5.2. Eficiencia energética

- Potencia del generador de energía 3.95 KW por día = 3950 Watts, considerando la eficiencia del panel de 82% y en un día nublado será de 3,23 KW = 3230 watts.
- Máximo almacenaje de una batería de ciclo profundo 33A*12V = 396 Watts/hora
- Pero la batería de 12V entrega solo el 70% de su almacenaje, es decir, 277,2 Watts/hora disponible.
- Duración Promedio de una batería en uso óptimo: 4,5 - 6 horas
- Duración promedio de una batería en uso normal: 9 -10 horas
- Duración de recarga completa (100%): 1,9 - 2 horas
- En 1,9 hora consumo de KWh = 0.0095= 9,5 watts que corresponde al 100% de batería y en 1 hora = 0,005 KWh = 5 watts hora.
- El consumo energético en KWh de un dispositivo móvil en un tiempo de 15 minutos de recarga = 0,00125 KWh = 1,25 Wh.
- En 1 hora para 12 dispositivos hay un consumo de 0,015 KWh = 15 watts hora.
- En 19 horas para 235 dispositivos cargados continuamente en los 3 puertos, el consumo es de 293,75 Watts.
- En un día normal se estima se cargarán 15 dispositivos en total, por lo que se tendría energía reservada de 197,2 Watts.
- EL consumo en Watts para 15 dispositivos del módulo de recarga incluyendo consumo energético de arduino, luz y recarga es aproximadamente 80 Wh por día.
- Por lo que se puede tener autonomía de recarga para dispositivos por 2,5 días.
Tabla 3-7.-Tabla de cálculo consumo del producto.

<table>
<thead>
<tr>
<th>DETALLE</th>
<th>CONSUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 dispositivos móviles</td>
<td>18 Wh por día</td>
</tr>
<tr>
<td>Consumo de Arduino y sensores</td>
<td>36 Wh por día</td>
</tr>
<tr>
<td>Consumo de luz led, uso por 2 horas al día</td>
<td>26 Wh por día</td>
</tr>
<tr>
<td>TOTAL CONSUMO MODULO</td>
<td>80 Wh por día</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

3.3. **DISEÑO FUNCIONAMIENTO ELECTRÓNICO CONTROL DE INTERFAZ MEDIANTE ARDUINO.**

Para apoyar la interfaz de uso y funcionamiento de recarga del dispositivo móvil se ha incorporado la tecnología Arduino UNO, que consiste en una plataforma electrónica de código abierto, programable y con puertos de entradas y salidas que a través de comandos entrega y almacena la información electrónica por medio de un controlador principal.

En este proyecto se utilizará Arduino como complemento para el subsistema de control de la recarga de dispositivos móviles. Para esto se han definido 3 puntos de utilización de interfaces con usuario: interfaz de espacio con luminosidad al acercarse, interfaz de recarga conexión y desconexión del puerto USB, interfaz de estado de uso con temporizador y aviso de carga completa. A continuación, se describe el funcionamiento de cada interfaz.

3.3.1. **Interfaz de espacio con luminosidad al acercarse.**

Este sistema cuenta con una luz led con sensor de ultrasonido que entrega posición de distancia, la cual al entrar en contacto con ciertas coordenadas se activa el parámetro de entrada para entregar de salida la luminosidad necesaria en el espacio de recarga que está situado el usuario.

3.3.2. **Interfaz de recarga conexión y desconexión del puerto USB.**

La interfaz de recarga contiene 3 puertos USB los cuales están conectados a la toma de corriente (baterías de 12V), para evitar que siempre se esté en modo reposo y no se utilice el 1% de energía que gasta un enchufe conectado a la toma de corriente se ha resuelto que al entrar el contacto un cargador de puerto USB con un dispositivo móvil se conecte a la energía central, luego de que finalice el temporizador de carga, el puerto USB se desconectará de la
toma de corriente. Con esto se logra minimizar pérdidas de la batería y aumentar la vida útil del producto.

3.3.3. Interfaz de estado de uso con temporizador y aviso de carga completa.

Esta interfaz es la más importante dentro del subsistema de control, pues es el principal controlador de uso del producto y que va ligado directamente al servicio de recarga entregado al usuario. Consiste en un temporizador de carga de 15 minutos que se activa con la interfaz de conexión al puerto USB, es en ese instante que comienza a correr el tiempo que entrega energía directa al puerto para entregar una carga aproximada del 14% de batería para el dispositivo móvil, luego de terminada la recarga, el temporizador activa un switch de desconexión y una alarma de sonido para avisar al usuario de la carga terminada.

Cabe destacar que si el usuario necesita mayor tiempo de carga puede enchufar nuevamente el dispositivo y se activarán nuevamente los 15 minutos, por otro lado si el usuario desconecta su dispositivo antes del tiempo señalado, el puerto de carga se desconectará y desactivará el tiempo aunque no se haya completado la carga.

3.4. DISEÑO FUNCIONAMIENTO ELECTRÓNICO DEL SUBSISTEMA DE TRANSMISIÓN Y CONTROL.

El subsistema de transmisión y el subsistema de control son parte del alma del producto y componen una estructura interna seccionada en controladores, fuente de energía y cableados de transmisión.

A continuación, se describe el funcionamiento de los componentes de los subsistemas mencionados:

- Panel Fotovoltaico: es un conjunto de celdas fotovoltaicas que reaccionan químicamente con el calor entregado por la radiación solar, encargado de captar la fuente de energía solar con capacidad de 25 Wp.

- Batería de almacenamiento: consta de batería de ciclo profundo BMS de 35A y 12V para almacenar la energía proveniente del Panel Fotovoltaico.

- BMS: Es un sistema de gestión de baterías sus funciones esenciales son: 1. Desconectar o apagar la carga cuando la tensión de una celda de la batería cae por debajo de 2,5 V. 2. Detener el proceso de carga cuando la tensión de una celda de la
batería sube por encima de 4,2 V. 3. Apagar el sistema cada vez que la temperatura de una celda exceda los 50°C.

- **MPPT**: conocido como Maximum Power Point Tracker, es el sistema encargado de regular la carga almacenada en el panel fotovoltaico según el máximo umbral de luminosidad de captación del panel solar según ubicación, posicionamiento y temperatura, estos factores se determinan con la ecuación $V \times I$ (voltaje por intensidad).

- Regulador de Voltaje: es un dispositivo electrónico encargado de mantener un nivel de tensión constante. Para este caso se necesita regular el voltaje de salida desde 12V a 5V para cargar los dispositivos móviles.

- Sistema de Protección: conjunto de elementos que protegen el funcionamiento de la batería con el MPPT. En este caso se utilizará un relé o mosfet para entradas y salidas de energía y un fusible para interrumpir la corriente en el caso de que esta sea excesiva y se des controle.

Diagrama 3-1. Esquema eléctrico del producto.
3.5. DISEÑO DE MODELAMIENTO TRIDIMENSIONAL

El diseño Conceptual está basado al desarrollo de bocetos y medidas según los requerimientos y restricciones vistos en Cap. 2.

Para ello se debe considerar que estará instalado en espacios públicos, que debe ser visible y de fácil acceso al usuario y que deben protegerse sus componentes.

Se ha tomado en cuenta las partes, piezas y componentes y un estándar de 2,3 metros de altura para posicionar el panel solar en un ángulo de 37 grados con la horizontal, dando una altura final de 2,6 metros.

A continuación se muestra la evolución del diseño.

![Figura 3-3. Boceto de prototipo de diseño conceptual inicial.](image-url)
En primera instancia se analiza la estructura principal y los componentes que necesita tener la estación de carga.

Figura 3-4. Boceto de prototipo de diseño conceptual 2.

Figura 3-5. Boceto de prototipo de diseño conceptual con componentes.
Figura 3-6. Boceto de prototipo de diseño conceptual con medidas.

Figura 3-8. Plano general de estación de carga.

Figura 3-9. Render de producto en el entorno.
3.6. **DEFINICIÓN DE PROCESOS DE MANUFACTURA**

A continuación, se describe el proceso de fabricación para formar la estructura.

La lámina de acero de 3mm que entra en mitad del proceso es la placa base que va soldada al perfil poste.

Diagrama 3-2. Proceso de fabricación de Estructura base.

Fuente: Elaboración propia.

Luego se realiza el panel de infografía que se sujeta sobre la estructura base y que le da personalización y sigue el mismo estilo circular que la base, además de cubrir componentes internos (luminaria control de puertos).
Diagrama 3-3. Proceso de fabricación Panel Infografía.

Fuente: Elaboración propia.

3.6.1. Proceso General Ideal

En este apartado se describe el proceso ideal para el proyecto de fabricación del producto módulo de recarga, en el cual se describen los procesos por piezas, montaje y la necesidad de realizar pruebas o ensayos de correcto funcionamiento, luego de pasar por ese proceso de calidad puede ser empacado.

Diagrama 3-4. Montaje general del Producto final

Fuente: Elaboración propia.
3.7. DEFINICIÓN DE LAYOUT IDEAL

Para definir el layout se debe realizar un listado de maquinarias, herramientas y equipos a utilizar y dividir en cada proceso productivo.

3.7.1. Maquinaria para la producción

3.7.1.1. Máquinas

- Plegadora hidráulica
- Cortadora Láser
- Compresor

3.7.1.2. Equipos

- Taladro Pedestal
- Tronzadora
- Lijadora Banco (esmeril)
- Soldadora TIG
- Carro yegua multiuso

3.7.1.3. Herramientas

- Pistola de pintura
- Atornillador a batería
- Broca ½ pulg., 3/8 pulg
- Fresa 110-50
- Juego de dados
- Remachadora manual
- Electrodom
-Soldadora

3.7.2. Distribución de la planta

1. Cortado
2. Perforado
3. Plegado
4. Soldadura
5. Pulido
6. Lijado
7. Montaje (ensamble)
8. Acabado-Pintura
9. Pruebas de Funcionamiento
10. Bodegas
11. Mantención
12. Oficinas
13. Baños
14. Zonas de Seguridad

3.7.3. Matriz de Relaciones de Actividad de la planta

La siguiente Matriz se relaciona entre sí con la importancia y relación entre un proceso y otro, el cual se distribuye con vocales.

![Matriz de relaciones de la planta.](image)

Fuente: Elaboración propia.

Figura 3-10. Matriz de relaciones de la planta.
3.7.4. Layout ideal de la planta productiva

![Diagrama de planta productiva](image)

Fuente: Elaboración propia.

Figura 3-11. Layout ideal de planta.

3.8. **ESTIMACIÓN DE TIEMPOS PRODUCTIVOS.**

Para los primeros 5 años se establecerá la producción a tercerización de procesos, pues se necesita en los primeros años estabilizar el negocio para aumentar productividad v/s rentabilidad comenzando con una producción de 18 módulos por año. Sólo el armado se realizará dentro de la empresa, sin embargo, para la segunda fase de fabricación entre 5 a 10 años de producción se pretende levantar una planta con mayor inversión para equipos de procesos de manufactura del producto.

En la fase 2, las piezas son procesadas por la planta, la capacidad de producción es variada y está determinada por la relación entre su capacidad de financiamiento y las condiciones de producción (como fábrica, terreno, mano de obra, etc.) Sin embargo, muchas plantas empiezan con una capacidad mínima y la maximizan a gran escala gradualmente. Se empezará con una producción mínima de la planta de 52 módulos anuales.
3.8.1. **Tiempos productivos**

Cantidad de producción semanal: 1 módulos de recarga.
Cantidad de producción anual: 52 unidades.
Cantidad de turnos rotativos: 1 turno.
Cantidad de personas trabajando: 2 personas (1 soldadura, 1 pintura-acabado- lijado, ambos montaje-pruebas), se debe tener en cuenta las hr/hombre, hr/máquina y los tiempos de pérdida.

Cabe destacar que la cantidad, necesidad de trabajadores y tipos de producción están sujetas a cambio según la demanda y el crecimiento estimativo del producto.

3.9. **FABRICACIÓN DE PRODUCTO SEGÚN OBJETIVOS.**

Se considera la producción como un tipo de fabricación bajo pedido, es decir, no habrá stock de producto, pero sí de algunas materias primas.

Se fabricará ofreciendo diseño y fabricación incluida, sin embargo, está la opción que el cliente requiera un diseño específico, cabe destacar que este módulo de recarga es para en espacios públicos por lo que el cliente puede requerir factores externos o de publicidad e iluminación integrada.

3.9.1. **Acopio de material**

Es la etapa de reunir proveedores y distribuidores de las materias primas.

El objetivo principal de una empresa durante esta fase del proceso de producción es conseguir la mayor cantidad de materia prima posible al menor costo. En este cálculo hay que considerar también los costes de transporte y almacenaje.

3.9.2. **Producción**

Proceso de fabricación en el cual las materias primas se transforman en el producto real que la empresa produce a través de su montaje.

En esta etapa se evaluarán los estándares de calidad y controlar su cumplimiento y tiempos.
3.9.3. Procesamiento

Comprender las necesidades del cliente o la adaptación del producto para un nuevo fin orientada hacia la inserción del módulo de recarga en el comercio y desarrollo sustentable. Por ejemplo: personalización, integrar publicidad, diseño a medida, recarga por energía solar, sistema de ahorro luminario, vida útil.

También se considerará transporte, almacén, servicio mantención y elementos intangibles asociados a la demanda.
CAPÍTULO IV: MERCADO Y VIABILIDAD DEL PRODUCTO
4.1. **ESTIMACIÓN DE LA DEMANDA**

En el marco de RSE (Responsabilidad Social Empresarial) y al compromiso de las empresas que cada día aumentan en un 5%, dentro de las grandes empresas se encuentran adheridas 56 empresas en el Pacto Global Chile en post de mejoras continuas en calidad social, laboral y del medio ambiente. Aun así, hay muchas empresas que también consideran y están abriendo puertas a esta nueva forma de gestión empresarial social.

Además, existe un ranking a nivel nacional de RSE, que lleva 12 años evaluando la gestión integral de la Sustentabilidad de empresas y organizaciones. Más de 420 empresas de distintos sectores y tamaños han sido evaluadas en sus 12 versiones y en el año 2016 se evaluaron 22 empresas participantes en el ranking, entre ellas Paris, banco BCI, Mall Plaza que fueron las ganadoras el 2016.

Existe así diversos ranking y premios institucionales en RSE, el Premio SOFOFA Responsabilidad Social comenzó a otorgarse en 1998 en el marco de la Cena Anual de la Industria, bajo el nombre “Premio al Desarrollo Social, lleva 18 ceremonias y cada año tiene más adeptos a entrar al mercado Social Empresarial.

Se tiene un margen de 600 empresas chilenas en el desarrollo RSE, sin embargo, para este proyecto se tomará en cuenta una estimación de 40 empresas que pertenecen al Pacto Global Chile para vender el producto.

4.2. **CRITERIOS DE DESARROLLO MERCADO**

Para realizar la proyección, se debe estipular el mínimo de ventas a generar para que la Utilidad Bruta generada permita cubrir los gastos fijos del negocio.

El margen bruto por obtener es del 60% y los gastos como nueva empresa se considera costos fijos y costos variables.

Se tendrá en consideración el inicio de actividades de una empresa nueva la cual tendrá una inversión inicial de 10,5 millones de pesos chilenos de los cuales 5,5 millones son para poner en marcha el taller de armado, oficinas de diseño, pagina web y equipos necesarios para la gestión y venta del producto. Los otros 4 millones son para inyectar dinero en capital de trabajo y levantar el proyecto en los primeros 4 meses.
4.3. **CRITERIO FIJACIÓN PRECIO PRODUCTO**

Para la fijación del precio se ha realizado un estudio de precios referenciales en el mercado en productos similares y también se ha considerado un margen bruto de ganancias sumando ventas y servicios del 60% respecto al costo del producto, considerando que los gastos fijos y variables no repercutan en el valor de la utilidad anual del proyecto.

4.3.1. Costos fijos

Los costos fijos son los que no dependen de las ventas (conexión a internet, arriendo, sueldos, electricidad, agua, página web). A continuación, se desglosa una tabla con los gastos del levantamiento de una nueva empresa.

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>MENSUAL ($)</th>
<th>ANUAL ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICIDAD</td>
<td>42000</td>
<td>504000</td>
</tr>
<tr>
<td>AGUA</td>
<td>10000</td>
<td>120000</td>
</tr>
<tr>
<td>INTERNET</td>
<td>20000</td>
<td>240000</td>
</tr>
<tr>
<td>ARRIENDO</td>
<td>350000</td>
<td>4200000</td>
</tr>
<tr>
<td>TELEFONÍA</td>
<td>35000</td>
<td>420000</td>
</tr>
<tr>
<td>ASEO</td>
<td>25000</td>
<td>300000</td>
</tr>
<tr>
<td>INSUMOS</td>
<td>30000</td>
<td>360000</td>
</tr>
<tr>
<td>PAGINA WEB Y HOSTING</td>
<td>3325</td>
<td>39900</td>
</tr>
<tr>
<td>SUELDO DE GESTION</td>
<td>500000</td>
<td>6000000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$ 1.015.325</td>
<td>$ 12.183.900</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, costos fijos basado en estimaciones.
4.3.2. Costos Variables

Los costos variables son los que dependen del volumen de ventas y lo que conlleva la fabricación de la línea productiva (costo de adquisiciones, costo de materiales, costo de procesos manufactura, costo de envío, costos de transporte), además se consideran los costos de instalación e implementación electrónica. A continuación, se desglosan las tablas con los gastos de volumen producción implementada en la empresa.

Tabla 4-2. Costos Variables Materiales por Unidad Productiva.

<table>
<thead>
<tr>
<th>ARTÍCULOS</th>
<th>CANTIDAD</th>
<th>VALOR TOTAL($)</th>
<th>LOCAL COMERCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfil Tubular Acero diámetro 4” x 2 mm x 2 m.</td>
<td>1</td>
<td>7190</td>
<td>Kupermetal Valparaiso</td>
</tr>
<tr>
<td>Perfil Tubular Acero diámetro 2” x 2 mm x 2.6</td>
<td>1</td>
<td>4700</td>
<td>Kupermetal Valparaiso</td>
</tr>
<tr>
<td>Perfil Ángulo Acero de 100 x 100 x 4 mm</td>
<td>1</td>
<td>1200</td>
<td>Kupermetal Valparaiso</td>
</tr>
<tr>
<td>Perfil Ángulo Acero de 60 x 60 x 4 mm</td>
<td>1</td>
<td>850</td>
<td>Kupermetal Valparaiso</td>
</tr>
<tr>
<td>Perfil T L 60 x 60 x 60</td>
<td>1</td>
<td>4700</td>
<td>Kupermetal Valparaiso</td>
</tr>
<tr>
<td>Perfil de ángulo de acero de 100 x 100 x 4 mm x 6 m</td>
<td>1</td>
<td>1850</td>
<td>Kupermetal Valparaiso</td>
</tr>
<tr>
<td>Perfil T 40 x 40</td>
<td>1</td>
<td>990</td>
<td>Kupermetal Valparaiso</td>
</tr>
</tbody>
</table>

TOTAL $ 85.151

Fuente: Elaboración propia, costos de materiales basados en cotizaciones.

Tabla 4-3. Costos Variables Materiales Arduino por Unidad Productiva.

<table>
<thead>
<tr>
<th>ARTÍCULOS</th>
<th>CANTIDAD</th>
<th>VALOR TOTAL($)</th>
<th>LOCAL COMERCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arduino Nano</td>
<td>1</td>
<td>5000</td>
<td>zambeca</td>
</tr>
<tr>
<td>Sensor de corriente ACS711EX</td>
<td>3</td>
<td>8400</td>
<td>zambeca</td>
</tr>
<tr>
<td>Placa PCB 100x100 mm</td>
<td>1</td>
<td>3185</td>
<td>aliexpress</td>
</tr>
<tr>
<td>Terminal Screw</td>
<td>10</td>
<td>1450</td>
<td>https://es.aliexpress.com/store/product/10-Pcs-2-Pole-5Mm-Pitch-Pcb-Mount-Screw-Terminal-Block-Blue-Ac-300V-16A/722856_327...</td>
</tr>
<tr>
<td>Buzzer</td>
<td>1</td>
<td>1690</td>
<td>https://es.aliexpress.com/store/product/Passive-buzzer-module-low-level-trigger-buzzer-control-board/1314203_32316314842.h...</td>
</tr>
<tr>
<td>Modulo de 3 relés</td>
<td>1</td>
<td>1950</td>
<td>https://es.aliexpress.com/store/product/Free-shipping-4-channel-relay-module-4-channel-relay-control-board-with-optocoupler/72216...</td>
</tr>
<tr>
<td>Cable puente de prototipado, m = 125 mm</td>
<td>50</td>
<td>5000</td>
<td>zambeca</td>
</tr>
</tbody>
</table>

TOTAL $ 26.675

Fuente: Elaboración propia, costos de adquisiciones basados en cotizaciones.

Tabla 4-4. Costos Variables Materiales Eléctricos por Unidad Productiva.
Para el total de costos variables en materiales y adquisiciones para la fabricación y montaje de unidad de producto se considerarán todos los valores antes mencionados, que sumadas las 3 tablas anteriores asciende al monto de $258.786 pesos.

Además, se debe incluir los valores de procesos productivos considerando horas hombre y hora máquina, es decir, existe un coste variable adicional unitario en la producción por hora, que será aproximada y especificada en la siguiente tabla:

Tabla 4-5. Costos Variables de Fabricación por Unidad Productiva.

<table>
<thead>
<tr>
<th>ARTÍCULOS</th>
<th>CANTIDAD</th>
<th>VALOR TOTAL($)</th>
<th>LOCAL COMERCIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATERIA CICLE PROFUNDO 33Ah 12V AGM</td>
<td>1</td>
<td>57000</td>
<td>http://www.solarshop.cl/product.php?id_product=66</td>
</tr>
<tr>
<td>CONTROLADOR CARGA SOLAR 10A PMW</td>
<td>1</td>
<td>19900</td>
<td>https://ilku.cl/producto/controlador-carga-solar-10a-pmw-pantalla-lcd-y-timer/</td>
</tr>
<tr>
<td>PUERTO USB ARMABLE</td>
<td>1</td>
<td>3000</td>
<td>Autosfera, Valparaíso</td>
</tr>
<tr>
<td>BATERIA CICLE PROFUNDO 33Ah 12V AGM</td>
<td>1</td>
<td>57000</td>
<td>http://www.solarshop.cl/product.php?id_product=66</td>
</tr>
<tr>
<td>TRANSISTOR IRUF 365N 3A en unidades</td>
<td>4</td>
<td>4000</td>
<td>autosfera Valparaíso</td>
</tr>
<tr>
<td>CONTADOR</td>
<td>1</td>
<td>5500</td>
<td>Autosfera, Valparaíso</td>
</tr>
<tr>
<td>CONTROLADOR DE PUERTOS USB PARA 3</td>
<td>1</td>
<td>11900</td>
<td>Autosfera, Valparaíso</td>
</tr>
<tr>
<td>CARGADOR DE AUTOS USB 12V - 5V</td>
<td>3</td>
<td>5970</td>
<td>Telectra Valparaíso</td>
</tr>
<tr>
<td>CABLE SOLAR 4 mm2 por metro</td>
<td>4</td>
<td>3980</td>
<td>http://www.solarshop.cl/product.php?id_product=138</td>
</tr>
<tr>
<td>CAJA DE DISTRIBUCIÓN DLR</td>
<td>1</td>
<td>2000</td>
<td>electricidad Jure, Valparaíso</td>
</tr>
<tr>
<td>MC4 HEMBRA</td>
<td>1</td>
<td>2400</td>
<td>http://www.solarshop.cl/product.php?id_product=133</td>
</tr>
<tr>
<td>MC4 HEMBRA</td>
<td>1</td>
<td>2400</td>
<td>http://www.solarshop.cl/product.php?id_product=133</td>
</tr>
<tr>
<td>TERMINAL DE BATERIA 18 a 33 Ah</td>
<td>2</td>
<td>7600</td>
<td>http://www.solarshop.cl/product.php?id_product=135</td>
</tr>
<tr>
<td>CABLE SOLAR 4 mm2 por metro</td>
<td>4</td>
<td>2800</td>
<td>http://www.solarshop.cl/product.php?id_product=138</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$ = en pesos chilenos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 = en pesos chilenos

Fuente: Elaboración propia, costos de materiales basados en cotizaciones.

Se considerará inicialmente para el proyecto el costo del Subtotal correspondiente a $383.000 pesos que incluye diseño del producto y asesoría, pero para fines de producción en serie y venta de un producto ya diseñado no se considerará diseño y el monto bajaría a $343.000 pesos.
Para realizar el flujo neto de fondos y el costo del producto se tomará en cuenta siempre el valor mayor productivo es decir $383.000 en fabricación y $258.786 en materiales y adquisiciones, redondeando un total de costos de producto unitario a $602.000 pesos chilenos.

Tabla 4-6. Costos de Materiales y Fabricación por Unidad Productiva.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL COSTOS DE MATERIALES</td>
<td>$258.786</td>
</tr>
<tr>
<td>TOTAL COSTOS DE FABRICACIÓN</td>
<td>$343.000</td>
</tr>
<tr>
<td>TOTAL COSTO PRODUCCION UNITARIA</td>
<td>$601.786</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, costos basados en cotizaciones.

4.3.3. Precio de Mercado.

El precio en el mercado es bastante variado dependiendo de la zona de origen y materiales de fabricación, en Chile no existe muchas referencias por lo que se hizo un estudio con productos internacionales referenciales y similares al módulo de recarga presentado en este proyecto.

El módulo Soleo comercializado en Chile por la empresa española YupCharge no representa al diseño de este proyecto, pero sí es el producto que más se vende en Chile y cumple con parámetros similares de funcionalidad y componentes, sin embargo, posee mayor envergadura en tamaño y materiales de fabricación, siendo un diseño más costoso de fabricar y que además contiene mayores elementos de valor agregado.

Los productos existentes en Colombia y China se asemejan bastante en la materialidad y diseño del módulo de este proyecto y además sus precios son más cercanos a los valores chilenos respecto a adquisiciones y materialidad.

El precio establecido para la venta del módulo de recarga equivale a $1.300.000 pesos chilenos, el valor se debe especialmente a adquisiciones, materiales y diseño. El margen de ganancia respecto al precio de costo es de 60%, siendo el costo del producto de $601.786.
4.4. PROYECCIÓN Y DESARROLLO DEL PROYECTO

Para el desarrollo del mercado se plantea una proyección de ventas de los años en que se desarrollará el proyecto de venta de módulos de carga solar, la proyección se obtiene de la fórmula P*Q donde:

P: Precio del producto.
Q: Cantidad de productos.

Para el costo del producto se tomará en cuenta los componentes electrónicos, y materiales de estructura, que en su conjunto forman el módulo de carga solar, por lo cual el costo unitario del producto será de $601.786 pesos chilenos.

Para el precio de cada unidad se tomarán en cuenta factores como procesos de manufactura, diseño del producto, traslados y garantía 3 años, por lo que el precio del producto será de 1.300.000 pesos chilenos.

La proyección de venta se estipulará para un proyecto de 5 años, comenzando el año 2018, para el primer año se venderán 18 módulos de recarga, luego 24, 32, 42 y 52 respectivamente, aumentando su producción anual en un 30% respecto al año anterior.

Se tendrá en cuenta que en primer año se venderá el producto al 35% del mercado estipulado como reales compradores (equivalente a 15 de las 40 empresas compradoras), siendo una totalidad de 600 empresas dentro del mercado posible, por lo que en primer año se venderá al 4% del total del mercado nacional existente al 2017.

Tabla 4-7. Proyección y cálculo de ingresos de ventas por año.
La demanda se proyecta que aumentará al año anterior en un 30% y finalizará el año 5 con estancamiento y nivelación de la demanda, en este punto se replanteará el mercado y el diseño del producto.

El margen bruto de ganancia se encuentra entre un 58% a 60%, esto se debe a que aumentan los gastos de operación y es por esto que se vuelve necesario aumentar el margen bruto de ganancias. Para este cálculo se han considerado ganancias de ventas, agregándose asimismo ganancias por servicio de arriendo de productos, instalación y mantenimiento del producto.

A continuación, se explica en detalle el desglose de precios y ganancias de cada ítem.

<table>
<thead>
<tr>
<th>Año 1 ($)</th>
<th>Año 2 ($)</th>
<th>Año 3 ($)</th>
<th>Año 4 ($)</th>
<th>Año 5 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo</td>
<td>10832148</td>
<td>14442864</td>
<td>19257152</td>
<td>25275012</td>
</tr>
<tr>
<td>Ingreso Total</td>
<td>28116000</td>
<td>36948000</td>
<td>49024000</td>
<td>63264000</td>
</tr>
<tr>
<td>Margen Bruto</td>
<td>17283852</td>
<td>22505136</td>
<td>29766848</td>
<td>37988988</td>
</tr>
<tr>
<td>Margen Bruto %</td>
<td>61</td>
<td>61</td>
<td>61</td>
<td>60</td>
</tr>
<tr>
<td>UNIDADES</td>
<td>18</td>
<td>24</td>
<td>32</td>
<td>42</td>
</tr>
<tr>
<td>Ingreso Ventas</td>
<td>$23.400.000</td>
<td>$31.200.000</td>
<td>$41.600.000</td>
<td>$54.600.000</td>
</tr>
<tr>
<td>costo unidad</td>
<td>$601.786</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>precio unidad</td>
<td>$1.300.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL UNID.VENDIDAS</td>
<td>168</td>
<td>$218.400.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$ = en pesos chilenos

Fuente: Elaboración propia, proyección anual.

Se proyecta que cada año aumentará la demanda entre un 30% respecto al año anterior y que al final del año 5 se producirá el estancamiento y nivelación de la demanda, es ahí donde se replanteará el mercado y el diseño del producto.

El margen bruto de ganancia se encuentra entre un 58% a 60%, esto se debe a que aumentan los gastos de operación y es por esto que se vuelve necesario aumentar el margen bruto de ganancias, para este cálculo se han considerado ganancias de ventas, agregándose así ganancias por servicio de arriendo de productos, instalación y mantenimiento del producto.

A continuación, se explica en detalle el desglose de precios y ganancias de cada ítem.

Tabla 4-8. Proyección y cálculo de ingresos de servicios por año.

<table>
<thead>
<tr>
<th>Año 1 ($)</th>
<th>Año 2 ($)</th>
<th>Año 3 ($)</th>
<th>Año 4 ($)</th>
<th>Año 5 ($)</th>
<th>PRECIO DE SERVICIOS</th>
<th>VALOR ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingreso Instalación</td>
<td>936000</td>
<td>1248000</td>
<td>1664000</td>
<td>2184000</td>
<td>Servicio de instalación</td>
<td>52.000</td>
</tr>
<tr>
<td>Ingreso Arriendo</td>
<td>378000</td>
<td>490000</td>
<td>576000</td>
<td>648000</td>
<td>Servicios de Arriendo diario</td>
<td>180.000</td>
</tr>
<tr>
<td>Ingreso Mantención</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Servicio de Mantenimiento</td>
<td>72.000</td>
</tr>
<tr>
<td>Suma Servicios</td>
<td>4716000</td>
<td>5748000</td>
<td>7424000</td>
<td>8664000</td>
<td></td>
<td>14152000</td>
</tr>
<tr>
<td>TOTAL INGRESOS ($)</td>
<td>2816000</td>
<td>3694000</td>
<td>49024000</td>
<td>63264000</td>
<td>81752000</td>
<td></td>
</tr>
</tbody>
</table>

$ = en pesos chilenos

Fuente: Elaboración propia, proyección servicios anual.

En esta tabla se indica que los ingresos totales por servicio y venta de productos durante 5 años corresponde a $259.104.000 pesos chilenos, la división de servicios se efectúa
como estrategia de ganancias a corto plazo por este proyecto y el servicio de mantención se realiza solo al quinto año del proyecto.

4.5. **EVALUACIÓN FINANCIERA DEL PROYECTO**

La evaluación del proyecto consiste en establecer y calcular estimativamente el posible desarrollo del proyecto y la viabilidad de este dependiendo de la proyección en cifras de ganancias respecto a los ingresos, egresos, riesgos por ventas del producto.

De esta proyección depende el éxito o fracaso del proyecto por lo que es importante establecer parámetros de demanda, establecer el mercado e inversiones para el crecimiento del desarrollo del proyecto, los principales beneficios de esta evaluación son: mejora en toma de decisiones, identificar riesgos, promover la organización conjunta y reducir los costes por proyecto.

4.5.1. **Desarrollo de Flujo de Caja.**

El proyecto de la empresa considera un flujo neto de fondos para 5 años activos, para el año 0 se considerará un capital de proyecto e inversión inicial de puesta en marcha, sin procesos productivos. Durante el año 1 comienza activamente la producción de venta y arriendo de productos, como también servicios, teniendo un flujo positivo a partir del segundo año de $ 3.551.325 pesos, hasta llegar al año 5 con ganancias de 25 millones de pesos aproximadamente.

La depreciación acelerada total se realiza el año 5 con la venta de equipos por valor libro con ganancias de venta de activos de computadoras por $1.500.000 pesos.

El VAN (Valor Actual Neto) del proyecto de 5 años es mayor a la inversión y capital de trabajo, por lo que la empresa genera ganancias y se considera efectiva la viabilidad del proyecto. El ideal es que el VAN obtenga un valor positivo y que se puedan recuperar los costos de inversión inicial.

Para el cálculo de impuesto a la renta se utilizará un valor de 27% correspondiente al año 2018 según ley N° 20.780 sobre los nuevos cambios graduales al impuesto.
4.5.2. Inversión Inicial y Marcha de la empresa.

Como inversión inicial se considerará un monto de $5.546.936 pesos el cual se utilizará para fabricar 3 productos como primera producción. También correspondientes a la inversión de equipos de oficina y herramientas básicas de la empresa.

Se considerará una inversión de capital de trabajo de $4.061.300 pesos para la operación inicial de trabajo durante 3 a 4 meses, además trámites comerciales, legales de la iniciación de actividades como empresa.

A continuación, se detallan los costos de inversión inicial para equipamiento.

Tabla 4-10. Costos de Inversión Inicial en equipos.

<table>
<thead>
<tr>
<th>MAQUINARIAS Y EQUIPOS</th>
<th>COSTOS SIN IVA($)</th>
<th>COSTO CON IVA($)</th>
<th>EMPRESA COTIZADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carro Yegua multiuso 200 kg</td>
<td>31.912</td>
<td>37.975</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>Atornillador a Batería</td>
<td>11.021</td>
<td>13.115</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>EPP</td>
<td>40.000</td>
<td>47.600</td>
<td>VARIOS</td>
</tr>
<tr>
<td>Herramientas pequeñas</td>
<td>56.000</td>
<td>66.640</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>2 Computadores de escritorio</td>
<td>960.000</td>
<td>1.142.400</td>
<td>PC FACTORY</td>
</tr>
<tr>
<td>Impresora</td>
<td>27.000</td>
<td>32.130</td>
<td>PC FACTORY</td>
</tr>
<tr>
<td>Insumos de oficina</td>
<td>40.000</td>
<td>47.600</td>
<td>PRESCOMP</td>
</tr>
<tr>
<td>Mobiliario</td>
<td>890.000</td>
<td>1.059.100</td>
<td>VARIOS</td>
</tr>
<tr>
<td>Arriendo Inicial</td>
<td>700.000</td>
<td>833.000</td>
<td>PARTICULAR</td>
</tr>
<tr>
<td>3 cargadores para servicio de arriendo</td>
<td>1.805.358</td>
<td>2.148.376</td>
<td>EMPRESA</td>
</tr>
<tr>
<td>Fletes</td>
<td>35.000</td>
<td>41.650</td>
<td>VARIOS</td>
</tr>
<tr>
<td>Diseño y asesoría electronico</td>
<td>65000</td>
<td>77350</td>
<td>EMPRESA</td>
</tr>
<tr>
<td>TOTAL ($)</td>
<td>5.546.936</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, FNF anual.
4.5.3. Variables Críticas y optimización del proyecto.

Para el proyecto de 5 años no se ha considerado inversión en maquinaria y en contratación de personas, pues el costo de inversión sería demasiado alto y el flujo neto de fondos del proyecto tendría resultados negativos durante los 3 primeros años, ya que los costos fijos aumentarían en mantención de equipos, pago de remuneraciones, servicio eléctrico y arriendo, por lo que se ha optado en tercerizar los servicios de procesos industriales que involucren horas máquina y horas hombre.

Por lo tanto, se ha considerado tercerizar la mano de obra y los procesos de manufactura por los primeros 5 años de proyecto. Este sistema de outsourcing tiene la ventaja de encontrar ayuda necesaria sin generar gastos inadecuados para el levantamiento del proyecto inicial, entregando comodidades de forma temporaria y sin compromisos.

Es así como el proyecto necesita formalizarse y generar cimientos vitales durante los primeros 5 años, para luego recuperar los costos de inversión inicial e invertir en un proyecto a mayor plazo en una fase 2 del desarrollo de la empresa incluyendo equipos, maquinarias y mano de obra contratada por la empresa.

Tabla 4-11. Costos de Inversión Inicial Futura en equipos.

<table>
<thead>
<tr>
<th>MAQUINARIAS Y EQUIPOS</th>
<th>COSTOS SIN IVA($)</th>
<th>COSTO CON IVA($)</th>
<th>EMPRESA COTIZADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldadora TIG-arco y cunta plasma</td>
<td>360.000</td>
<td>428.400</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>Compresor 200 litros 3 HP Krafter</td>
<td>323.190</td>
<td>399.000</td>
<td>SODIMAC</td>
</tr>
<tr>
<td>Tronzadora sensible 14’ 2200 watts</td>
<td>88.000</td>
<td>104.720</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>Esmeril de banco 6” x 1/3hp</td>
<td>26.800</td>
<td>31.892</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>Carro Yegua multiuso 200 kg</td>
<td>31.912</td>
<td>37.975</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>Plegadora hidráulica 4100 x 1820 x 3200 mm</td>
<td>4.200.000</td>
<td>4.998.000</td>
<td>ADHMT</td>
</tr>
<tr>
<td>Equipo de pintar 600 watts</td>
<td>55.920</td>
<td>66.545</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>Atornillador a Batería</td>
<td>1.021</td>
<td>13.115</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>Remachadora manual</td>
<td>10.950</td>
<td>13.031</td>
<td>ACO CHILE</td>
</tr>
<tr>
<td>Artículos para procesos</td>
<td>80.000</td>
<td>95.200</td>
<td>VARIOS</td>
</tr>
<tr>
<td>EPP</td>
<td>80.000</td>
<td>95.200</td>
<td>VARIOS</td>
</tr>
<tr>
<td>2 Computadores de escritorio</td>
<td>960.000</td>
<td>1.142.400</td>
<td>PC FACTORY</td>
</tr>
<tr>
<td>Impresora</td>
<td>27.000</td>
<td>32.130</td>
<td>PC FACTORY</td>
</tr>
<tr>
<td>Insumos de oficina</td>
<td>40.000</td>
<td>47.600</td>
<td>PRESCOMP</td>
</tr>
<tr>
<td>3 cargadores para servicio de arriendo</td>
<td>1.805.358</td>
<td>2.148.376</td>
<td>PROPIOS</td>
</tr>
<tr>
<td>Flete equipos</td>
<td>42.000</td>
<td>49.980</td>
<td>VARIOS</td>
</tr>
<tr>
<td>TOTAL ($)</td>
<td>9.703.564</td>
<td>9.703.564</td>
<td>9.703.564</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia, Inversión equipos proyección empresa.
4.5.4. Tasa de Descuento.

La tasa de descuento es un valor financiero que sirve para determinar el valor del dinero en el tiempo, en este caso, se determinará el valor actual del proyecto de inversión. La metodología utilizada es mediante el cálculo del CAPM, cuya fórmula establecida es: $K_e = rf + B (r_m - rf) + R_p$, donde:

- **rf:** Tasa referencial
- **B:** Tasa de riesgo
- **R_p:** Credits default swaps
- **r_m:** Rentabilidad del mercado

Se han considerado valores según Banco Central de Chile correspondientes a estadísticas del año 2017, el valor obtenido del cálculo de tasa de descuento para este proyecto corresponde a 21,5 aproximadamente.

<table>
<thead>
<tr>
<th>Tasa de descuento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rf: Tasa referencial</td>
</tr>
<tr>
<td>B: Tasa de riesgo</td>
</tr>
<tr>
<td>R_p: credit default swaps</td>
</tr>
<tr>
<td>r_m: Rent. del mercado</td>
</tr>
<tr>
<td>CAPM (%)</td>
</tr>
</tbody>
</table>

Los valores corresponden al año 2017

| **Tabla 4-12. Cálculo de la Tasa de Descuento.** |

4.5.6. Depreciación de equipos.

Se considerarán 2 tipos de depreciaciones: la depreciación de inversión inicial con la cual está cuantificado el Flujo neto de fondos actual y la depreciación de inversión futura que cuenta con maquinaria para poner en marcha el proceso de manufactura en planta propia.

| **Tabla 4-13. Depreciación Inversión Inicial.** |

<table>
<thead>
<tr>
<th>EQUIPOS</th>
<th>AÑO 0 ($)</th>
<th>AÑO 1 ($)</th>
<th>AÑO 2 ($)</th>
<th>AÑO 3 ($)</th>
<th>AÑO 4 ($)</th>
<th>AÑO 5 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 COMPUTADORES</td>
<td>-</td>
<td>571.000</td>
<td>571.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMPRESORA</td>
<td>-</td>
<td>32.130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 ESTACIONES DE CARGA</td>
<td>-</td>
<td>720.000</td>
<td>720.000</td>
<td>720.000</td>
<td>720.000</td>
<td>720.000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>-</td>
<td>1.323.130</td>
<td>1.291.000</td>
<td>720.000</td>
<td>720.000</td>
<td>720.000</td>
</tr>
</tbody>
</table>
En resumen, la evaluación del proyecto inicialmente partirá con una inversión inicial acorde a la estimación de venta y crecimiento gradual, el plan piloto consiste en la recuperación de los fondos de inversión y que este modelo deje ganancias del 60% para que se pueda proyectar una continuidad gracias a la venta, mantención y servicios adicionales post venta, así se genera fidelidad de clientes entregando un servicio completo.

4.6. **ESTRATEGIA DE NEGOCIO CON ILKU**

Se realiza una vinculación de fabricación de la estación de carga en conjunto con la empresa de iluminación y suministros para la energía solar Ilku.

ILKU: Contribuye al desarrollo de forma sustentable, promoviendo tecnologías de punta para un uso energético eficiente, independiente, rentable, e inteligente. Enfocados en mejorar la calidad de vida de las personas por vía de una mejor gestión de la energía.

Para una primera instancia se fabricará el prototipo expuesto en este informe, funcional: en estructura metálica y equipamiento electrónico.

Luego, en una segunda fase se modificará el prototipo según requerimientos y mejora estructural eliminando el gabinete de batería y reemplazando esta por un Set de baterías de litio insertas en perfil tubular de la base y que tendrá una puerta anclada para su mantención.

La fabricación de este producto tiene un costo de $30.000 pesos por día de trabajo de fabricación del producto+$258.786 (costo de materiales y equip.electrónico).
Ilku requiere de una cartera de clientes que serán los posibles compradores de este producto, y llegar a acuerdo para gestar negocio con empresas, instituciones públicas y/o privadas.

A continuación se presenta el diagrama de modelo de negocio con ilku.

Diagrama 3-5. Modelo de negocio empresa Ilku.
CONCLUSIONES

A partir de la investigación y análisis realizados en los capítulos 1 y 2 se puede determinar que existe una necesidad de mantener cargados los dispositivos móviles, enfocada en el usuario tecnológico que en su día a día depende de la comunicación a través de aplicaciones móviles que usa en su dispositivo.

La utilización de tecnologías claves, como la energía solar y programación en arduino, entrega valor agregado a soluciones ecológicas y tecnológicas que se enmarcan en los programas de gobierno y de empresas con RSE, dando mayor importancia a alternativas de financiamiento y abertura de mercado.

Las soluciones de diseño modular analizadas en capítulo 3, permite la mantención de la estación de carga, un factor importante para entregar un buen servicio al cliente.

El marco económico del proyecto se visualiza por etapas de producción: se comprueba que para el año inicial no se tendrá una inversión alta y su financiamiento será por un capital de financiamiento externo, en una segunda etapa se planifica el diseño de proceso incluyendo mano de obra e inversión en equipos industriales, para lo cual se requiere un ingreso mayor según el auge de ganancias estipuladas en el capítulo 4, que se pronostica positivamente con 60% de ganancia viable a 5 años y replicable a más de 10 años.
Nomofobia: la adicción a estar constantemente conectados a través del celular, entorpeciendo las situaciones cotidianas de la vida.

Marketing verde: Es el marketing de productos que son mostrados como ambientalmente preferibles sobre otros.

Fotovoltaica: La palabra fotovoltaica se compone de dos términos: Foto= Luz, Voltaica = Electricidad. Es un dispositivo que convierte directamente la luz solar en electricidad.

Energía Solar: Es una fuente de energía de origen renovable, obtenida a partir del aprovechamiento de la radiación electromagnética procedente del Sol.

Irradiación: Emisión y propagación de una radiación, como la luz, el calor u otro tipo de energía: la irradiación solar.

Fotosíntesis: s. f. Proceso metabólico que tiene lugar en las células con clorofila y que permite, gracias a la energía de la luz, transformar un sustrato inorgánico en materia orgánica rica en energía: la fotosíntesis es esencial para la vida humana y animal ya que, entre otras cosas, purifica y oxigena la atmósfera.

Volt: El voltio,1 o volt,2 por símbolo V, es la unidad derivada del Sistema Internacional para el potencial eléctrico, la fuerza electromotriz y la tensión eléctrica.

Watt: Unidad de potencia del Sistema Internacional de Unidades, equivalente a 1 Joule/segundo.

Branding: es un anglicismo empleado en mercadotecnia que hace referencia al proceso de hacer y construir una marca (en inglés, brandequity) mediante la administración estratégica del conjunto total de activos vinculados en forma directa o indirecta al nombre y/o símbolo (logotipo) que identifican a la marca influyendo en el valor de la marca.

USB: (en inglés: Universal Serial Bus) es un bus estándar industrial que define los cables, conectores y protocolos usados en un bus para conectar, comunicar y proveer de alimentación eléctrica entre computadoras, periféricos y dispositivos electrónicos.
BIBLIOGRAFÍA

Websites:

ECOENERGÍAS, Proyectos Industriales, Paneles Solares [sitio web].
<http://www.ecoenergias.cl/industria-comercio.html> [Consulta el 24 de agosto de 2016].

WIKIPEDIA, Energía solar [sitio web].
<https://es.wikipedia.org/wiki/Energ%C3%ADa_solar> [Consulta el 21 de agosto de 2016].

EMOL, Cargadores solares, Lollapalooza [sitio web].
http://www.emol.com/noticias/tecnologia/2012/03/30/533561/gocharge-las-estaciones-para-cargar-celulares-en-lollapalooza.html [Consulta el 05 de agosto de 2016].

DIARIO EL VIAJERO, Estación de Carga [sitio web].

VEOVERDE, Estación Solar [sitio web].
<https://www.veoverde.com/2013/02/planeta-geek-estacion-solar-para-carga-de-celulares-en-parque-de-nueva-york/> [Consulta el 05 de agosto de 2016].

ECONOMIA Y NEGOCIOS, Noticia estación de carga [sitio web].
<http://www.economiaynegocios.cl/noticias/noticias.asp?id=94947> [Consulta el 06 de agosto de 2016].

BEE SOLAR, Cargador solar [sitio web].
<http://www.innovacion.cl/2014/12/bee-solar-wifi-y-carga-de-celulares-gratis-para-todos/> [Consulta el 05 de agosto de 2016].

PUBLIMETRO, Consumo de batería, Pokémon Go, [sitio web].
<http://www.publimetro.cl/nota/teknik/pokemon-go-cuanta-bateria-del-celular-consume-el-juego/xIQphl!30YOVEWi1NmtQ/> [Consulta el 23 de agosto de 2016].

GREEN SOLUTION, Cargador Solar España [sitio web].
<http://www.greensolution.cl/> [Consulta el 30 de agosto de 2016].

MINERA ENERGÍA, Cálculo de generación eléctrica fotovoltaica por zona del país [sitio web] <elechttp://www.minenergia.cl/exploradorsolar/> [Consultas contantes].
YUPCHARGE, Cargador solar [sitio web]. <http://www.yupcharge.cl/> [Consulta el 30 de agosto de 2016].

EL MERCURIO, Tasa de descuento [sitio web]. http://diario.elmercurio.com/detalle/index.asp?id={c801eb0d-9581-490d-95d7-f93c0f6e0bb7} [Consulta el 10 de agosto de 2017].

ANEXOS
PROGRAMACIÓN DE TEMPORIZADOR DE CARGA EN ARDUINO UNO

const int analogInPin = A0; // Analog input pin that the potentiometer is attached to

void setup() {
 Serial.begin(9600);
 pinMode(3, OUTPUT);
}

void loop() {
 int sensorValue = analogRead(analogInPin);

 if (sensorValue > 500) {
 Serial.println("desconectado");
 digitalWrite(3, LOW);
 } else {
 Serial.println("conectado");
 tone(9, 2637, 200);
 delay(400);
 tone(9, 3136, 200);
 int init_time = millis();
 int times = millis() - init_time;

 while ((times < 15000) && (sensorValue < 500)) {
 Serial.print(times);
 Serial.print(" ");
 Serial.println("Cargando");
 times = millis() - init_time;
 sensorValue = analogRead(analogInPin);
 delay(1000);
 }
 Serial.println("Carga Terminada");
 tone(9, 2000, 200);
 delay(400);
 tone(9, 2000, 200);
 delay(400);
 tone(9, 2000, 200);
 digitalWrite(3, HIGH);
 delay(10000);
 digitalWrite(3, LOW);
 }
 delay(2);
}
PLANO PLACA DE CIRCUITO IMPRESO (PCB)
PLANO GENERAL ESTACIÓN DE CARGA
PLANO GABINETE DE BATERÍA
PLANO CABINA USB Y MESA

ISOMETRÍA
SCALE 1/1

DETAIL A
SCALE 1/2

83
PLANO SOPORTE PARA PANEL SOLAR
PLANO DE DESPIECE GENERAL